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Abstract 
One of the most fundamental principles in system dynamics is the premise that the structure of the system 

will generate its behavior. Such philosophical position has fostered the development of a number of 

formal methods aimed at understanding the causes of model behavior. To most in the field of system 

dynamics, behavior is commonly understood as modes of behavior (e.g., exponential growth, exponential 

decay, and oscillation) because of their direct association with the feedback loops (e.g., reinforcing, 

balancing, and balancing with delays, respectively) that generate them. Hence, traditional research on 

formal model analysis has emphasized which loops cause a particular “mode” of behavior, with 

eigenvalues representing the most important link between structure and behavior. The main contribution 

of this work arises from a choice to focus our analysis in the overall trajectory of a state variable – a 

broader definition of behavior than that of a specific behavior mode. When we consider overall behavior 

trajectories, contributions from eigenvectors are just as central as those from eigenvalues. Our approach to 

understanding model behavior derives an equation describing overall behavior trajectories in terms of 

both eigenvalues and eigenvectors. We then use the derivatives of both eigenvalues and eigenvectors with 

respect to link (or loop) gains to measure how they affect overall behavior trajectories over time. The 

direct consequence of focusing on behavior trajectories is that system dynamics researchers’ reliance on 

eigenvalue elasticities can be seen as too-narrow a focus on model behavior – a focus that has excluded 

the short term impact of a change in loop (or link) gain in its analysis. 
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1. Introduction 
 
The premise that structure generates behavior is one of the fundamental principles in system 

dynamics, second only to the concept of information feedback.i The importance of the 

connection between structure and behavior is easily seen in Forrester’s introduction to Industrial 

Dynamics (1961) and subsequent interpretations: 

• “Information-feedback systems… owe their behavior to three characteristics – 

structure, delays, and amplification.” (Forrester 1961, p15); 

• “The system dynamics approach … takes the philosophical position that feedback 

structures are responsible for the changes we experience over time. The premise is 

that dynamic behavior is a consequence of system structure.” (Richardson and Pugh 

1981, p15, emphasis in original); and 

• “A fundamental principle of system dynamics states that the structure of the system 

will give rise to its behavior.” (Sterman 2000, p 28).  

While “solving complex problems in [feedback] systems require understandings of the 

relationships between feedback structure and the problematic behavior observed” (Richardson 

and Pugh 1981, p12), researchers interested in formal model analysis have traditionally 

interpreted “behavior” in a very restrictive sense. Conventionally, “behavior” has been readily 

associated with “behavior modes,” that is, modes such as exponential growth, exponential decay 

or oscillations directly associated with reinforcing loops, balancing loops or higher order 

balancing loops and the eigenvalues they generate (positive real, negative real and 

positive/negative complex). This narrow interpretation of behavior has its roots both in the 

system dynamics modeling approach as well as the historical process of model analysis.  

Consider first the role of the system dynamics modeling approach. Richardson and Pugh 

(1981, p19) state that to begin the system dynamics process “one defines problems dynamically, 

that is, in terms of graphs of variables over time.” Then, one must formulate a dynamic 

hypothesis, where “[t]he dynamic hypothesis is a statement of feedback structures that are 

conjectured to have the power to create or at least contribute to problem behavior.” (Richardson 

and Pugh 1981, p63, emphasis in original).  Because there are only two types of feedback 

processes (balancing and reinforcing), generating characteristic modes of behavior (exponential 

growth, decay or oscillations), the dynamic hypotheses can easily focus on theories that can 

potentially generate the problematic behavior over time.  
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Incidentally, the process by which we build our dynamic theories directly influences how 

we develop intuition about model behavior, that is, the process by which we analyze models (the 

second component of our interpretation of behavior). “By exploring the behavior generated by 

individual feedback loops … the modeler learns about structure and behavior…Simulation 

experiments isolating and combining [feedback loops] … can precisely pinpoint the structure 

responsible.” (Richardson and Pugh 1981, p268). The feedback loop is defined as the structural 

unit of analysis because it provides a more adequate way of characterizing the cause of behavior. 

For instance, is it more appropriate to consider the growth in population as caused by an increase 

in births, or an increase in births as caused by population growth? Since both population and 

births are causally linked, the reinforcing population feedback loop is a better unit of analysis to 

explain the growth in births (and population) behavior.  

Due to the focus on feedback loops as the unit of analysis for causes of behavior, the 

discussion developed into how different loops and how shifts in loop dominance could influence 

observed behavior. Nathan Forrester (1982) discusses two traditional methods used to indentify 

dominant feedback loops. “The first method involves disconnecting unimportant loops and 

showing that the remaining, isolated loops produce behavior similar to that of the whole model. 

The second approach involves making small changes in model behavior. Loops containing 

influential parameters are assumed to be dominant.”  (N. Forrester 1982, p178). Shortly after, 

Richardson (1984) provides rigorous definitions for the important building blocks for loop 

analysis, such as loop polarity, loop dominance and shifts in loop dominance. The useful notion 

of dominant feedback loops as drivers of behavior is common today. According to Sterman 

(2000, p897) “several methods exist to identify the dominant loops at any point in a simulation, 

quantify the contribution of any parameter or loop to a given mode [of behavior], and show how 

nonlinearities change the dominant feedback structure.”  

The main contribution of this work arises from a choice to focus our analysis in a broader 

definition of behavior, which differs from the definition adopted by prior research in formal 

model analysis. To many in the field of system dynamics behavior is commonly understood as 

“modes of behavior” (e.g., exponential growth, exponential decay and oscillations) because of 

their direct association with the feedback loops that generate them. Hence, traditional research on 

formal model analysis emphasizes which loops cause a particular “mode” of behavior. In such 
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context, eigenvalues are the most important link between structure and behavior in model 

analysis; and, considerations about eigenvectors and their contributions are largely irrelevant.  

However, when we consider behavior more broadly in terms of overall behavior 

trajectories, contributions from eigenvectors are just as central as those from eigenvalues. Our 

approach to understanding model behavior derives an equation describing overall behavior 

trajectories in terms of both eigenvalues and eigenvectors. We then use the derivatives of both 

eigenvalues and eigenvectors with respect to link (or loop) gains to measure how they affect 

overall behavior trajectories over time. The direct consequence of focusing on behavior 

trajectories is that system dynamics researchers’ reliance on eigenvalue elasticities can be seen as 

too-narrow a focus on model behavior – a focus that has excluded the short term impact of a 

change in loop (or link) gain in its analysis. 

2. Literature review 

Formal model analysis remains an important and challenging area in system dynamics.  

Several methods aimed at understanding the causes of model behavior have been proposed in 

recent years (Kampmann 1996; Mojtahedzadeh 1997; Gonçalves, Lertpattarapong and Hines 

2000; Saleh and Davidsen 2001; Saleh 2002; Mojtahedzadeh, Richardson and Andersen 2004; 

Oliva 2004; Oliva and Mojtahedzadeh 2004; Güneralp 2005; Hines 2005; Kampmann and Oliva 

2005; Saleh, Davidsen and Bayoumi 2005). These methods trace back two threads in model 

analysis: the loop dominance work of Richardson (1984) and eigenvalue elasticity work of 

Forrester (1982).   

Mojtahedzadeh (1997) and Mojtahedzadeh, Richardson and Andersen (2004) extend the loop 

dominance work first proposed by Richardson (1984).  The research proposes pathway 

participation metrics (PPM) to find the structure that most influences the time path of a given 

variable. The PPM method provides a local assessment of how changes in a state variable of 

interest influence the net change of the same variable ( kk dxxd& ). Furthermore, the ratio 

kk dxxd& can be transformed into a ratio between dtxd k& and dtdxk , i.e., a ratio between the 

curvature and slope of state at time t. Because the method captures information on both the 

curvature and slope of the behavior of state at time t, it has valuable information about the 

local behavior of state variable . The quantity 

kx

kx

kx kk dxxd& is called the Total Participation Metric 
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and can be partitioned among pathways that contribute to the a net-flow influencing state 

variable . Since several pathways will affect the state, the PPM method computes which 

pathways are most influential, defined as the pathway “whose participation is the largest in 

magnitude and has the same sign as the total changes in the net-flow X when it is disturbed by a 

infinitesimal change in the state variable at the tail of the pathway.” (Mojtahedzadeh, Richardson 

and Andersen 2004). The method has the advantage of being computationally simple. More 

important, while the Total Participation Metric is obtained from slopes and curvatures computed 

at a specific time t, researchers applying the PPM method are interested in the overall trajectory 

of a state variable.  

kx

Most of the remaining research traces back to eigenvalue elasticity theory originally 

proposed by Perez–Arriaga (1981) and introduced to the system dynamics field by Nathan 

Forrester (1982). The method calls for the computation of eigenvalues and then explores how the 

eigenvalues change as link gains change, that is, link gain elasticities. Forrester showed that a 

complete description of link elasticities allows one in principle to calculate loop elasticities.  This 

suggestion though never implemented in software, promised to provide an answer to how model 

structure, that is a set of feedback loops, determines model behavior. The particular calculation 

that Forrester suggested is actually not feasible.  As he realized later, Forrester’s suggested 

approach results in a system of equations that is over-determined – an effect of the fact that the 

number of loops increases much faster than the number links. Kampmann discovered that a small 

subset of loops is sufficient to uniquely describe eigenvalues (i.e. the behavior) of a system 

dynamics model (Kampmann 1996).  Using an Independent Loop Set (ILS) produces a smaller 

system of equations, a system that can be solved.  The Independent loop set (ILS) method has the 

important advantage of allowing us to calculate loop gains from link gains, where the number of 

links in a model is often small.  However, it has the disadvantage of relying on an ad hoc 

procedure to select the independent loop set (ILS).  

Gonçalves, Lertpattarapong and Hines (2000) use Mason’s rule to express the characteristic 

equation and its solutions (eigenvalues) in terms of loop gains (instead of link gains), which 

allows them to obtain loop gain elasticities directly. The method has the advantage of 

sidestepping the problem associated with an arbitrary selection of loops, however, it has the 

shortcoming of requiring the computation of all loop gains and cycle compositions in the model 
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to obtain the characteristic polynomial. While the maximum number of loops rise quickly even 

for moderately sized models, it is unlikely that the rise will exceed current computational power.  

Oliva (2004) provides an extension to the method selecting first the shortest loops.  The 

shortest independent loop set (SILS) provides a systematic representation of the feedback 

complexity in its simplest components and it is the most granular description of the structure in a 

cycle partition.  Oliva and Mojtahedzadeh (2004) compare the results obtained with the SILS 

approach to that of PPM and find that the loops generating the main dynamics are often included 

in the SILS.  More recently, Kampmann and Oliva (2006) explore the application of loop 

eigenvalue elasticity to three models to assess the potential of the method and find that the 

insights depend on the character and dynamics of the model. The work of Saleh, Davidsen and 

Bayoumi (2005) is most akin to ours in its interest in understanding the contribution of both 

eigenvalues and eigenvectors on model behavior. While we focus on the analytical computation 

of the influence of eigenvalues and eigenvectors on model behavior, Saleh et al. (2005) provide a 

computational method (implemented in Matlab) to calculate such influence. Automated 

approaches that allow researchers to understand how changes in the structure of their models 

affect overall behavior are fundamental to policy design. Our work provides a mathematical 

framework for future research and automated engines using the contribution of both eigenvectors 

and eigenvalues for formal model analysis.  

3. How Links Influence Overall State Trajectories 

A linear system dynamics model with a vector of state variables x(t), where x(t) = (x1, x2, …, 

xn)’, a vector of first time derivatives of the state variables (t), where (t) = ( )’, and 

a gain matrix A capturing the partial derivatives of the net change of a state variable with respect 

to another (

x& x& nx,...,x,x &&& 21

xxA nx  n   ∂∂ &= ), can be represented compactly in the following way:  

Axx =&  (1) 

The linear system above can be solved if A is not degenerate (see Appendix A for details of 

this derivation), leading to: 

( ) ( )tt Rzx =  (2) 
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where R is the matrix of right eigenvectors and z(t) = (z1(t), z2(t), …  zn(t))’ is a 

column vector. 

Expanding equation (2) to write the individual eigenvectors and components of z(t) yields:  

( ) ( ) ( ) ( ) n21 rrrx 000 21
21

n
ttt ze...zezet nλλλ +++=  (3) 

The behavior of each state xi(t) in the system can be described by: 

( ) ( ) ( ) ( )000 2211
21

n
t

ni
t

i
t

ii zer...zerzertx nλλλ +++=  (4) 

where r1i is the i-th component of the first eigenvector.   

Equation 4 highlights that the overall behavior trajectory of state variable xi(t) is determined 

by the linear combination of the product of eigenvector components (rji), behavior mode (eλjt) 

generated by eigenvalue (λj) and initial condition (zj(0)). 

Also, we could easily rewrite equation (4) in matrix form, to obtain: 

( )
( )

( )

( )
( )

( )⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0

0
0

2

1

21

22212

12111

2

1

2

1

n
tλ

tλ

tλ

nnnn

n

n

n ze
...
ze
ze

r...rr
............
r...rr
r...rr

tx
...

tx
tx

n

 (5) 

Note that in the traditional focus on behavior modes, model analysis might emphasize on 

understanding why state xi(t) oscillates or grows exponentially according to a behavior mode that 

is best characterized by a specific eigenvalue (λj). Researchers will traditionally characterize 

eigenvalue λj as the dominant behavior mode and will search for clues that inform which 

parameters might influence the strength of such eigenvalue.  

If instead we are interested in the overall behavior trajectory of the state variable xi(t), we 

observe that it will be determined not only by the mode of behavior ( ) due generated by 

eigenvalue (λj), but also by the influence of each j-th component of each eigenvector (rji). The 

equations also highlight that the behavior of each state variable xi(t) is influenced both by 

eigenvalues (λj) and eigenvector components (rji).  In addition, both eigenvalues (λj) and 

eigenvector components (rji) depend on the values of link gains (i.e., parameters in the model), 

because eigenvalues are solutions to the characteristic polynomial (P(λ)), where 

tjeλ

0A)( =−= nIP λλ  and the entries of the A matrix are parameters (i.e., the partial derivatives or 
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the link gains (akl)) in a system dynamics model. Furthermore, we compute eigenvectors by 

solving a system of equations (Ari=λiri) that depend on the value of eigenvalues. Therefore, a 

change in the gain of an arbitrary link (akl) results in a new A matrix and different values for both 

eigenvalues (λi) and eigenvector components (rji).   

To understand the nature of the impact of changes in link gains on overall system behavior, 

we take the partial derivative of each state variable xi(t) in the system with respect to its link 

gains.  From equation (4), we obtain the change in overall behavior of each state variable xi(t) 

due to changes in link gain (akl) as: 

( ) ( ) ( )[ 0011
1

n
tλ
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klkl

i zer...zer
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tx
n++
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=
∂

∂ ]  (6) 

and taking the derivative of individual components, we obtain:ii 
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Rewriting equation (7) in a more compact way, we get:  
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Because the eigenvalues and eigenvectors in liner systems are constant, the derivative of the 

exponential of the j-th behavior mode (eλjt) with respect to its eigenvalue (λj) yields a term that 

depends on time (teλjt).  Therefore, we can rewrite equation (8) to yield: 
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Equation (9) suggests that a change in behavior of state xi(t) due to a change in link gain (akl) 

will be composed by two terms for each behavior mode (eλjt) contributing to the overall behavior 

trajectory of state variable xi(t). Each of the terms corresponds to: 

1. The derivative of eigenvector component (rji ) with respect to link gain (akl); and 

2. The product of eigenvector component (rji ), the derivative of eigenvalue (λi) with respect 

to link gain (akl), and time (t).  
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The first term captures the change in weight in behavior mode (eλjt) due to the partial 

derivative of eigenvector component (rji ) with respect to link gain (akl).  The second term 

captures a more complicated change in weight in behavior mode (eλjt). The weight changes with 

time, eigenvector component (rji ) and the partial derivative of eigenvalue (λi) with respect to link 

gain (akl). Note that, if eigenvalues (λ) and eigenvectors (r) are complex their derivatives will 

also be complex. In such cases, the exponentials will be multiplied by complex values which will 

influence not only the amplitude of the behavior mode, but will also lead to a phase shift (see 

derivation in appendix B).  

The equation above suggests that early in time ( 0≅t ),behavior mode (eλjt) will be mainly 

influenced by the first term, i.e., the derivative of the eigenvector with respect to the link gain; 

and later on (as ), behavior mode (eλjt) will be more influenced by the second term, i.e., 

the derivative of the eigenvalue with respect to the link gain.  In a linear system, the weight of 

behavior mode (eλjt) will be highly determined by the second term at high values of time (t) – 

determined by the value of 

∞→t

kl

j
ji a
λ

r
∂
∂

.  Since most research in model analysis has dealt with 

eigenvalue elasticity – closely associated with the derivative of the eigenvalue with respect to 

link gains ( )kla∂jλ∂  – we have focused myopically at the long term behavior impact of a link 

change. That is, we have focused on how changes in links (or loops) affect the long term 

behavior mode of a state variable.  However, since we care deeply about transient behavior it is 

important to characterize the likely impact of short term behavior due to link (or loop) changes. 

3.1. Interpreting the Impact on Behavior Modes 

To understand and interpret the impact that a change in a link gain has on each behavior 

mode composing the overall trajectory of a state variable, it is useful to consider the ratio 

between the changed weight in the behavior mode due to the change in link gain and the original 

weight.  Note that the ratio can be a complex number. The real part of the ratio determines a 

factor that multiplies the behavior mode, either amplifying or dampening it. The complex part 

determines a phase gain to the behavior mode.  To obtain the behavior mode impact, we must 

divide each component in equation (9) by the corresponding component in equation (4): 
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Equation (10) reemphasizes the role that the first time derivatives of both eigenvector and 

eigenvalue with respect to the link gain have on each behavior mode (eλjt) influencing the overall 

trajectory of state xi(t). Since the ultimate goal of formal model analysis is inform policy, it is 

important to compute the overall impact of changes by a link (or loop) gain to the overall 

behavior trajectory of specific states.  This overall impact requires addition of the individual 

impacts of different modes.  Since the overall trajectory is composed by a mix of behavior modes 

(oscillatory, exponential growth and decay) and their weights change with time, automated 

implementation of the method will provide a mechanism to visualize the result from changes in 

link gains, and subsequent policy design, by selecting links (or loops) to change to obtain the 

desired behavior.  

3.2. System Behavior: Link Eigenvalue and Link Eigenvector Sensitivities 

In equation (9), the partial derivatives of eigenvalue (λi) and eigenvector component (rji) with 

respect to a link gain (akl), respectively 
kl

j

a
λ

∂
∂

 and 
kl

ji

a
r

∂
∂

, can be understood in the context of 

previous work on link gain eigenvalue elasticity (N. Forrester 1982, 1983).  According to Nathan 

Forrester (1982, 1983), 
kl

j

a
λ

∂
∂

measures the sensitivity of eigenvalue (λi) with respect to link (akl), 

which allows us to understand how the strength of a link (akl) can impact behavior mode (eλjt). 

kl

i
kl a

S
i ∂

∂λ
λ =  (11)  

It is possible to normalize the sensitivity measure defined above (11) to isolate the effect of 

the change in link gain from the magnitude of the eigenvalue and link gain. This normalization 

can be obtained multiplying the sensitivity by the ratio of the magnitude of the link gain (akl) to 

the magnitude of the eigenvalue (λi). Nathan Forrester (1983) defined this measure eigenvalue 

elasticity with respect to link gain or link gain (eigenvalue) elasticity.  
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kl

kl

i
ikl

a
a

E
λ∂

∂λ
=  (12) 

where |akl| is the absolute value of the link gain and ||λi|| is the Euclidean norm of a 

potentially complex eigenvalue (λi).   

Note that the partial derivative of the eigenvalue (λi) with respect to that link gain (akl) is 

present in the second term of equation (9) characterizing how a change in a link gain would 

affect behavior mode (eλjt).   

While it has been suggested that eigenvector elasticity would be required to understand how 

structure ultimately influences behavior, there is little research implementing it (a welcome 

exception is Saleh et al. 2005). To incorporate eigenvector elasticity in formal model analysis, 

we must first define it. Let the elasticity eigenvector component (rji) with respect to a link gain 

(akl) be defined in a similar way as the link gain eigenvalue elasticity. First, let 
kl

ji

a
r

∂
∂

define the 

sensitivity of an eigenvector component (rji) with respect to a specific link (akl). The eigenvector 

component (rji) sensitivity provides a measure of how the strength of link gain (akl) impacts 

eigenvector component (rji). 

kl

ij
klr a

r
S

ij ∂
∂

=  (13)  

Next, it is possible to normalize the eigenvector component sensitivity measure to isolate the 

effect of the change in link gain from the magnitude of the eigenvector component and link gain. 

This normalization can be obtained by multiplying the sensitivity by the ratio of the magnitude 

of the link gain (akl) to the magnitude of the eigenvector component (rij). Finally, define this 

measure as the eigenvector component (rji) elasticity with respect to link gain or link gain 

eigenvector component elasticity.  

ij

ij

 
 

ij r
a

a
r

E kl

kl
klr ∂

∂
=  (14) 

where |akl| is the absolute value of the link gain and ||rij || is the Euclidean norm of the 

eigenvector component (rij ).   
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Note that the partial derivative of the eigenvector component (rij) with respect to the link gain 

(akl) is present in the first term of equation (9) characterizing how a change in link gain (akl) 

affects the weight of behavior mode (eλjt). 

While the notion of link gain eigenvalue and eigenvector component elasticities are useful, 

equation (9) provides an integrated way to assess how eigenvalue and eigenvector component 

sensitivities  work together to influence the weight of behavior mode (eλjt). Rewriting equation 

(9) using eigenvalue and eigenvector component sensitivities, we obtain: 

( ) ( ) ( )∑
=

+=
∂

∂ n

j
j

tλ
kljiklr

kl

i zetSrS
a

tx j

jij
1

0λ  (15) 

• Eigenvector component sensitivity 
kl

ji
klr a

r
S

ij ∂
∂

=  captures the change in weight in 

behavior mode (eλjt) due to a change in a link gain (akl); 

• Eigenvalue sensitivity 
kl

j
kl a

λ
S

j ∂
∂

=λ  captures the change in weight in the behavior 

mode (eλjt) due to a change in the link gain (akl).   

• The contribution of the eigenvalue sensitivity to the weight changes with time and 

it becomes the main determinant of weight of behavior mode (eλjt) as time grows. 

4. Behavior in Nonlinear Dynamic Systems 

The method of analysis described above applies only to linear systems. However, most 

system dynamics models are nonlinear. Hence, we cannot apply it right away and instead we 

must consider ways to apply the results derived for linear systems to nonlinear ones. One 

possibility to apply the method to nonlinear systems is to linearize the system.  The local 

linearization option is limited, however, because linearized solutions are good approximations of 

nonlinear systems solutions only close to the operating point. By linearizing the nonlinear system 

at every point in time (in practice, every time step in the simulation), however, the analysis can 

be generalized to the rest of the system, providing insight into how change in link gains influence 

the behavior trajectory of interest. Considering how the overall trajectory, xi(t), of a linearized 

system, might be affected by a change in link gain (akl) at the linearization time (t0) yields:  
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jij
1

0
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λ  (16) 

where each zj(t0) refers to the position of the system at the linearization time (t0). 

Since the linearized system provides a good approximation to the nonlinear system only 

close to the operating point, we only care about solutions to equation (16) that happen early in 

time ( ). The result of equation (16) at later times (0tt ≅ ∞→t ) departs too far from where the 

system is a close approximation to the nonlinear system. Hence, for nonlinear systems that are 

linearized at every point in time, the impact of a change in link gain on overall system behavior 

can be simplified by substituting  in equation (16). Despite the additional complexity of 

nonlinear systems, by linearizing the system at every point in time and then considering the 

impact of the link gains, we arrive at a general solution that is similar to that of a linear system.  

Equation (16) suggests that eigenvector component sensitivity also plays an important role in 

determining the impact that a change in structure has on model behavior in nonlinear systems. 

The equation above also provides a framework to include eigenvector component sensitivity in 

the formal model analysis research.   

0tt ≅

5. Application to a Linear System: The Inventory-Workforce Oscillator 

We illustrate the concepts above with a version of the familiar inventory–workforce model.  

The model captures a simple production system that attempts to maintain inventory at the desired 

level by adjusting production through hiring and firing workers.  More precisely, inventory 

integrates the difference between production and shipments.  Shipments are determined by 

demand reduced by stock-outs, should inventory fall too low.  Production depends on the 

available workforce and its productivity.  Workforce level is “anchored” to the level necessary to 

meet expected demand with normal productivity.  The workforce is adjusted above (below) this 

anchor when inventory is below (above) desired inventory.  Expected demand is given by a first 

order exponential smooth of actual demand.  

A stock and flow diagram of the model is shown below. The model is composed of three 

state variables (inventory, workforce, and expected demand), four flows (producing, shipments, 

hiring/firing rate, and change in demand), three auxiliary variables (desired workforce, desired 

producing, and inventory correction), six constants (desired inventory, correction time, hire/fire 
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time, time to change in expectations, minimum processing time, and productivity), and one 

exogenous variable (demand).  

Inventory
(I)

Workforce
(W)

Producing
(P)

Hiring/Firing
Rate HFR)

Desired
Inventory

(DI)

Inventory
Correction

(IC)

CorrectionTime
(CT)

Desired
Producing

(DP)

Shipments
(S)

Demand
(D)

Expected
Demand

(ED)

Desired
workforce

(DW)Hire/FireTime
(HFT)

Time to Change
Expectations

(TCE)

Productivity
(PDY) Change in

Expected
Demand

(CED)

Minimun
Processing Time

(MPT)

 
 

Figure 1 – Diagram of the linear inventory-workforce system dynamics model. 
 

I
•

= P − S = PDY ⋅ W − D

W
•

= HFR = (DW − W)/ HFT

ED
•

= CED = (D − ED) / TCE

   

IC = (DI − I)/ CT
DP = IC + ED
DW = DP/ PDY

 

 
The A matrix of the system above leads to the following relation: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⋅−⋅⋅−=

TCE/
PDYHFTHFT/CTPDYHFT

PDY

100
111

00
J  

 
Alternatively, we could have written the A matrix of the system in terms of loop gains.  This 

system has three loops:  

1. Workforce adjustment: a minor balancing loop adjusting workforce (W), with a loop gain 

of g1= -1/HFT. 

2. Demand adjustment: a minor balancing loop adjusting demand (ED), with a loop gain of 

g2= -1/TCE. 
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3. Inventory–workforce: a major balancing loop linking inventory and workforce (W), with 

a loop gain of g3=-1/(CT *HFT). 

We can rewrite the A matrix in terms of the loop gains to obtain:iii 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

2

113

00

00

g
PDYggPDYg

PDY
A  

We find the characteristic polynomial (P(λ)) of the A matrix in terms of the loop gains by 

computing the determinant of (λI-A): 

P(λ ) = λ3 + (−g1 − g2 )λ2 + (g1g2 − g3 )λ + g2g3  

We find the eigenvalues of the A matrix, by computing the roots of the characteristic 

polynomial (P(λ)= |λI-A|=0):  

λ1 = g2 , 3
2

1
1

2 4
2
1

2
ggg

+−=λ , and 3
2

1
1

3 4
2
1

2
ggg

++=λ  

Next, we compute the eigenvectors of the system solving the system of equations Ari=λiri : 

( )

( )( )

( ) ( )

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ ++−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ ++
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

+−

=
0
1

2
4

0
1
2

4

1

3

3
2
11

3

3
2
11

3221

21

3221

1

g
PDYggg

;
g

PDYggg

;
PDYgggg

gg
gggg

g

321 rrr
 

With the results for eigenvalues and eigenvectors we can write the equations for the behavior 

of each state xi(t) in the system according to the result in equation (4): 

( ) ( ) ( ) ( ) ( ) ( ) ( )0
2

4
0

2
4

0 3

4
2
1

3

3
2
11

2

4
2
1

3

3
2
11

1
3221

1 3
2
113

2
11

2 ze
g

PDYggg
ze

g
PDYggg

ze
gggg

gtI
tgggtgggtg ⎟

⎠
⎞⎜

⎝
⎛ ++⎟

⎠
⎞⎜

⎝
⎛ +− ++−

+
++

−
+−

=

  ( ) ( )( ) ( ) ( ) ( )000 3

4
2
1

2

4
2
1

1
3221

21 3
2
113

2
11

2 zezeze
PDYgggg

ggtW
tgggtgggtg ⎟

⎠
⎞⎜

⎝
⎛ ++⎟

⎠
⎞⎜

⎝
⎛ +−

++
+−

=  

( ) ( )01
2 zetED tg=  

To understand how the state variables are impacted by changes in the loop gains, we need to 

compute both the derivatives of eigenvalues and eigenvectors with respect to the loop gains. The 

two tables below present the necessary derivatives for eigenvalues and eigenvectors. 
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Table 1 – Derivatives of eigenvalues wrt loop gains for Inventory-Workforce model. 
 Eigenvalue 1 

 
λ1 = g2  

Eigenvalue 2 

3
2

1
1

2 4
2
1

2
ggg

+−=λ  

Eigenvalue 3 

3
2

1
1

3 4
2
1

2
ggg

++=λ  

Loop 1 – Workforce 
Adjustment (g1)  

0
1

1 =
∂
∂
g
λ  

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+
−=

∂
∂

3
2

1

1

1

2

4
1

2
1

gg

g
g
λ  

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+
+=

∂
∂

3
2

1

1

1

3

4
1

2
1

gg

g
g
λ  

Loop 2 – Demand 
Adjustment (g2) 

1
2

1 =
∂
∂
g
λ  0

2

2 =
∂
∂
g
λ 0

2

3 =
∂
∂
g
λ  

Loop 3 -  Inventory – 
Workforce (g3) 

0
3

1 =
∂
∂
g
λ  

3
2

13

2

4

1

ggg +
−=

∂
∂λ  

3
2

13

3

4

1

ggg +
+=

∂
∂λ  

 

First, note that the derivative of the eigenvalues 2 and 3 are not influenced by loop gain 2 

(the derivatives are equal to zero). Note also that loop 3 does not affect the real part of the 

complex eigenvalues (λ2 and λ3) and that increasing the gain of loop 1 (g1) increases the 

dampening and decreases the frequency (f), i.e., increases the period (T), of oscillation. Note that 

frequency and period are inversely related (f = 1/T). Also, the complex part in the derivative has 

a different sign than the sign of the eigenvalue’s complex part (b).iv Therefore, a change in g1 

decreases the complex part of the eigenvalue and since f = 2πb (or T = 2π/b) a lower value of b 

leads to lower frequency (or, a longer period.) Analogously, increasing g3 increases the 

frequency of oscillation, since the complex part of the derivative has the same sign as the sign of 

the eigenvalue’s complex part (b).  

 
Table 2 – Derivatives of eigenvectors wrt loop gains for Inventory-Workforce model. 

 Eigenvector 1 

( ) ( )( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−+−

= 1
3221
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Eigenvector 2 
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Eigenvector 3 
( )

⎥
⎥
⎦

⎤

⎢
⎢
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⎡ ++−
= 01

2
4

3

3
2
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g
PDYggg
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Loop 1 
Workforce 
(g1)  
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( )
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⎥
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⎢
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⎢
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Loop 2 
Demand 
Adj. (g2) 
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⎥
⎤
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Inventory-
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(g3) 

( )( ) ( )( ) ⎥
⎥
⎤
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⎢
⎣
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∂
∂
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⎥
⎥
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⎤
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⎟
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⎝

⎛
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∂ 00
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2
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3
2
1

3
2
1

12
33 gg

ggg
g

PDY
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2r  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+
−=

∂ 00
4

2
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3
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1
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12
33 gg

ggg
g

PDY
dg

3r  

  
Consider the impact of the changes of loop gains in the eigenvectors (table 2). Focusing 

mainly on the oscillatory eigenvalues let us consider the derivative of r21 with respect to g1. First, 
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the real part suggests that every incremental change in g1 causes a multiplication of (-PDY/2g3). 

The complex part of the derivative suggests a reduction in the complex value b, reducing the 

phase lag that it could have on the system behavior. Since the real and complex parts have 

different signs the inverse tangent that defines the phase lag would lead to a negative phase lag. 

Loop 3 has a positive impact on the phase lag.  Incorporating the results from tables 1 and 2 in 

equation (9) provides an integrated way to assess how the partial derivatives of the states with 

respect to a loop gain influence system behavior.   
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Each mode of behavior ( ) is multiplied by a (potentially complex) factor tλ je

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂

∂
t

g
λ

r
g
r

k

j
ji

k

ji ,  influencing the weight of the original behavior mode and potentially the 

phase lag. Interpreting the set of matrices above, we note that changes in g2 do not affect the 

oscillatory mode of behavior, as seen in the zeros in the second and third columns of the 

( ) 2gtxi ∂∂  equations. This result makes intuitive sense because loop 2, a minor balancing loop 

associated with Expected Demand (ED), does not contribute to the generation of the oscillatory 

mode, as can be seen from the equations for λ2 and λ3. Nevertheless, a change in g2 impacts all 

states in the system, increasing the rate associated with the exponential decay. Note also that the 

weight of the impact depends on time, resulting from our previous results. The equations above 
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also suggest that changes in g1 and g3 do not impact the behavior of expected demand (ED), 

which can be seen by the last row of zeros in the matrices capturing the derivatives of states with 

respect to g1 and g3. 

Further results may be easier to derive after we substitute values for each of the loop gains. 

With this purpose, we allow the time constants for inventory correction time (CT), hire-fire time 

(HFT), and change demand expectations (TCE) to equal (e.g. 2 months), we obtain that g1= -

1/HFT=-1/2, g2= -1/TCE=-1/2, g3= -1/(CT*HFT)=-1/4, and PDY =10, providing us with the 

following eigenvectors: 
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With the numerical results for eigenvalues and eigenvectors we can write the equations for 

the behavior of each state xi(t) in the system as well as interpret them: 
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The set of equations suggest that the behavior of state ED(t) follows an exponential decay 

with rate g2(= – 1/2) – only loop 2 (with gain g2) influences the behavior of ED(t). In addition, 

the behavior of states I(t) and W(t) are composed by a linear combination of two modes of 

behavior: an exponential decay and a decaying oscillation. Overall states I(t) and W(t) will 

follow decaying oscillatory exponentials. 

Having the description of the original behavior provides a reference to interpret the impact 

introduced by changes in the loop gains. Such comparison can be made by comparing the cells of 

the original system behavior with cells from each of the three matrices below: 
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Note that a change in g1 multiplies the weight of the original exponential decay (
t

e 2
1

−
) mode 

by a factor of four while also changing its sign. Perhaps more difficult to understand is the 

impact on the weight of the oscillatory mode of behavior for inventory, state I(t), as seen in the 

coefficients for both 
( )ti

e
31

4
1

+−
and 

( )ti
e

31
4
1

−−
.  Again, the real part of the ratio (of the changed 

state behavior to the original one) determines a factor that multiplies the original weight of this 

complex behavior mode; and, the complex part of the ratio determines a phase lag to the original 

behavior mode.  Consider first the impact of a change in g1 on inventory’s behavior mode 
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e

31
4
1

+− )
: the ratio between changed and original state is 
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2
. The result suggests that 

the weight multiplying this behavior mode depends on time. The complex coefficient contributes 

to the amplification with the square root of the sum of squares of the real and complex parts 
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321 tttan ).  When time is close to zero ( 0≅t ), the amplification to 

the oscillatory mode is given by a factor of 
3

32  and the phase shift is of 
2
π

− . To compute the 

impact on the inventory (I) behavior at a specific time t, it would be required to substitute the 

adequate value of time. For instance, at t = 4 the change in g1 causes an amplification to the 

oscillatory mode by a factor of 3.05 (since 053
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approximately -49
o
 (since ( ) o1 49332 −≈−−tan ).  It is necessary to proceed in a similar way to 

compute the impact on different behavior modes.  

The discussion above suggests that while there are some insights that are readily available 

from this type of analysis, deeper analyses will require further visualization, interpretation and 

measures of contribution of changed weights after changes in loop (or link) gains. Since the 

overall trajectory of any state is a linear combination of different behavior modes, graphs or 

metrics that can provide a clear visualization of the contribution of individual modes of behavior 

to the overall trajectory will likely be useful tools for the design of improved policies. Given that 

the Pathway Participation Method allows us to visualize and draw inferences from pathways that 

contribute most to the Total Participation Metric, it seems that we can readily apply a similar 

approach to visualize and interpret how the weights of different behavior modes affect overall 

behavior trajectories.  

5. Discussion 
 

The main contribution of this paper arises from a broader definition of behavior as the overall 

trajectory of a state variable, instead of the traditional definition associating behavior with 

behavior modes (e.g., exponential growth, exponential decay, and oscillation). When we 

consider overall behavior trajectories, influences from eigenvectors as well as eigenvalues are 

central to understanding how the structure of the system generates the observed behavior.  The 

paper provides a mathematical framework to understand the contribution that changes in link (or 

loop) gains have on the time path behavior of state variables in linear dynamic systems. Our 

approach to understanding model behavior uses the derivatives of both eigenvalues and 

eigenvectors with respect to link (or loop) gains, following closely the research tradition 

established by Forrester (1982). In particular, we derive an equation that characterizes the 

relative contribution of both eigenvalues and eigenvectors to changes in overall behavior over 

time. The direct consequence of focusing on behavior trajectories is that previous focus on 

behavior modes and the use of eigenvalue elasticities has led to a myopic attention on long-term 

impact of a change in loop (or link) gain in its analysis.  

The paper develops an analytical framework to understand how eigenvectors can be 

incorporated to the analysis of overall behavior trajectories of linear systems. The approach is 

precise, reproducible, and provides a standard way to analyze linear dynamic systems. In 
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addition, the method provides a direct measure of the impact of different loops on the behavior 

response of the system. By capturing both the short-term and long-term impact of a change in 

loop (or link) gain in the overall trajectory, the method also contributes to our understanding of 

transient analysis instead of simply steady state analysis of linear systems. Finally, by linearizing 

a nonlinear system at every point in time, we arrive at a general solution that provides a good 

approximation of the impact of a change in link gains on overall behavior trajectories of state xi.  

The method offers new opportunities for formal model analysis, but also has its own 

limitations. First, the main derivations apply to the impact of a change in structure to the overall 

behavior trajectory of states in a linear system, consecutive system linearization at every point in 

time extends the application to nonlinear systems. While this result is stated, no example is 

provided. Second, further research implementing the computation of eigenvalues, eigenvectors 

and the results of the main equation derived here to different nonlinear models is required to 

assess the usefulness of the proposed method. In addition, it is likely that the method can benefit 

from visualization tools showing how different behavior modes contribute to the overall 

trajectory and within a specific behavior mode how the first and second term contribute to the 

total weight of the behavior mode. Computationally, the application to nonlinear systems 

requires linearization of the system at every time step of the simulation, calculation of the A 

matrix, numerical evaluation of eigenvalues, eigenvectors, equation results, and overall trajectory 

contribution data as well as visualization of such data for adequate analysis and policy design. 

As the simple linear example suggests, interpreting the results of the method poses 

challenges in terms of evaluating the specific impact of eigenvector and eigenvalue contribution 

to behavior modes. Evaluation of impact of a change in a link gain on overall system behavior 

has to be done by inspection and requires tedious processing case-by-case. Policy design has also 

to be done manually based on inferences about which links (or loops) cause most impact on the 

desired system trajectory.  Despite current challenges and limitations, we are hopeful that the 

method provides a useful step on the analysis of how structure influences behavior as well as a 

new direction for future research on the analysis of nonlinear dynamic systems.  
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Appendix A – Behavior in Linear Dynamic Systems 
 

The formal structure of a linear system dynamics model with a vector of state variables x(t), 

where x(t) = (x1, x2, …, xn)’, a vector of first time derivatives of the state variables (t), where 

(t) = ( )’, a gain matrix A capturing the partial derivatives of the net change of a state 

variable with respect to another (the matrix 

x&

x& nx,...,x,x &&& 21

xxA nx  n   ∂∂ &=  is commonly known as the A matrix), 

and a constant vector b, can be represented compactly in the following way:  

bAxx +=&  (A1) 

Consider now the solution to the homogeneous system. A standard result in linear systems 

theory is that the eigenvalues (λ) of matrix A describe the behavior modes inherent in the model 

and are the solutions of the characteristic polynomial (P(λ)), where ( 0)( =−= AnIP λλ ). 

Assume for simplicity that the system matrix Anxn has a complete set of n linearly independent 

eigenvectors (r1, r2,…,rn) with corresponding eigenvalues (λ1, λ2,…, λn ), where eigenvalues may 

or may not be distinct.  Since the eigenvectors are linearly independent, they span the n 

dimensional space, therefore an arbitrary value of the state x(t) can be expressed by the linear 

combination of the eigenvectors:   

( ) ( ) ( ) ( ) n21 rrrx tz...tztzt n+++= 21  (A2) 

where zi(t), i=1, 2, …, n are scalars.  

Using the fact that by definition multiplication of the system matrix by their eigenvectors 

results in the product of the eigenvectors by eigenvalues (Ari=λiri), we can rewrite equation (A2) 

by multiplying it by the system matrix Anxn. 

( ) ( ) ( ) ( ) ( ) n21 ArArArxAx tztztztt n+++== ...21&  

( ) ( ) ( ) ( ) n21 rrrx nn tz...tztzt λλλ +++= 2211            &  (A3) 

Since equation (A2) defines the state vector x(t), we can take its first time derivative. In 

addition, using the fact that eigenvalues and eigenvectors are constant in linear systems, we can 

rewrite (A2) to get: 

( ) ( ) ( ) ( ) n21 rrrx tz...tztzt n&&&& +++= 21  (A4) 
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Comparing the right hand side of (A4) and (A3), we obtain: 

( ) ( ) ( ) ( ) ( ) ( ) n21n21 rrrrrr nnn tz...tztztz...tztz λλλ +++=+++ 221121 &&&  (A5) 

And since the eigenvectors are linearly independent, the equality can only hold if:  

( ) ( ) iii tztz λ=&  (A6) 

The system above can be represented in matrix form as: v   
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The solution of the homogeneous system of decoupled equations presented above is known: 

( )
( )

( )

( )
( )

( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0

0
0

00

00
00

2

1

2

1

2

1

nn z
...

z
z

e...
............

...e

...e

tz
...

tz
tz

nλ

λ

λ

 or ( ) ( )0i
t

i zetz iλ=  (A8) 

Substituting the result in (A8) in our original equation (A2) yields:vi  

( ) ( ) ( ) ( ) n21 rrrx 000 21
21

n
ttt ze...zezet nλλλ +++=  (A9) 
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Appendix B – The Product of a Complex Number by Complex Exponentials 
 

To understand the implication of multiplying a complex exponential by a complex number, 

consider the following example:   ( ) ( )ii dceba ++  

we can rewrite the exponential as:   ( ) ii dcdc eee =+  

and by definition    ( ) ( )dsindcosed ii +=  

so we can rewrite the equation above as:  ( ) ( ) ( )( )dsindcosbaec ii ++  

( ) ( ) ( )( ) ( ) ( ) ( )( )dsindcosbedsindcosae cc −++ ii  

( ) ( )( ) ( ) ( )( )[ ]dsinadcosbdsinbdcosaec ++− i  

Multiplying by 1(
22

22

ba
ba

+

+ ) and defining ( )φtan
a
b

= , we observe that ( )φcos
ba

a
=

+ 22
and 

( )φsin
ba

b
=

+ 22
 we can rewrite the equation above as: 

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−

+
+ dsin

ba
adcos

ba
bdsin

ba
bdcos

ba
aeba c

22222222

22 i  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )[ ]dsincosdcossindsinsindcoscoseba c φφφφ ++−+ i22  

Since ( ) ( ) ( ) ( ) ( )( )dsinsindcoscosdcos φφφ −=+  and ( ) ( ) ( ) ( ) ( )( )dsincosdcossindsin φφφ +=+ , we 

obtain: 

( ) ( ) ( )[ ]φφ ++++ dsindcoseba c i  22  

( ) ( )φ+++ dceba i22    

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛++ −

+ a
btandc

eba
1i

22    

Therefore, the complex number multiplying the exponential contributes to the amplification 

with the square root of the sum of squares of the real and complex parts, and to the phase shift by 

the inverse tangent of the ratio of the complex by the real parts. The inverse tangent of (x) is 

defined in the interval 
22
πφπ

<<− . The inverse tangent takes a value of zero when x is zero; and 

it takes a positive (negative) value when x is positive (negative). 
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Appendix C - How loops influence system behavior? 
 

To understand how changes in loop gains (i.e., the strength of a feedback loop) influence 

system behavior, we follow a derivation analogous to the one in section 3.  The behavior of each 

state in the system xi(t) is described by equation (4), which demonstrates that the behavior of 

each state is influenced both by eigenvalues (λi) and eigenvector components (rji).   

( ) ( ) ( ) ( )000 2211
21

n
t

ni
t

i
t

ii zer...zerzertx nλλλ +++=   

While it is more common to write the characteristic polynomial (P(λ)) and eigenvalues in 

terms of the link gains (akl), it is also possible to write them in terms of loop gains (gk), as shown 

in the example provided in section 5. Loops, and their gains, may be a more comprehensive 

(better) way to describe structure, since modelers often decide to include (or exclude) loops 

based on the dynamic hypotheses that they believe are important in a system.  Since we are 

ultimately interested in how structure drives behavior, understanding how changes in loop gains 

influence system behavior may be more appropriate than looking at how changes in links 

influence behavior.  To capture how loops influence system behavior, we take the partial 

derivative of each state in the system xi(t) with respect to an arbitrary loop gain (gk). Therefore 

we take a partial derivative of equation (4), characterizing the behavior of state xi(t), with respect 

to a loop gain (gk).  

( ) ( ) ( )[ 0011
1
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kk

i zer...zer
gg
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n++

∂
∂

=
∂

∂ ] (B1) 

Which for linear systems, we can rewrite as:  

( ) ( )∑
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i zet
g
λ

r
g
r

g
tx j

1
0  (B2) 

Equation (B2) suggests that a change in behavior of state xi(t) due to a change in loop gain 

(gk) will be composed by two terms for each behavior mode (eλjt) contributing to the overall 

behavior trajectory of state variable xi(t). Each of the terms corresponds to: 

1. The derivative of eigenvector component (rji ) with respect to loop gain (gk); and 

2. The product of eigenvector component (rji ), the derivative of eigenvalue (λi) with respect 

to loop gain (gk), and time (t).  
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With his suggestion of finding the characteristic polynomial in terms of the loop gains, 

Forrester (1983) extended the results of link sensitivity and link elasticity to loop sensitivity and 

loop elasticity. 

k

i
k g

S
i ∂

∂λ
λ =  and 

i

k

k

i
ik

g
g

E
λ∂

∂λ
=  (B3) 

In addition, we can extend the concept of link eigenvector component sensitivity and 

elasticity introduced in section 3.2 to loop eigenvector component sensitivity and eigenvector 

component elasticity with respect to loop gain or loop gain eigenvector component elasticity. 
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ij ∂
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ij  

 
∂
∂

=  (B4)  

Equation (B2) provides an integrated way to assess how loop eigenvalue and eigenvector 

sensitivity (i.e., the partial derivatives with respect to a loop gain) work together to influence 

system behavior. In particular, we can rewrite equation (B2) as: 

( ) ( ) ( )∑
=

+=
∂

∂ n

j
j

tλ
kjikr

k

i zetSrS
g

tx j

jij
1

0λ  (B5) 

• Loop eigenvector component sensitivity 
k

ij
kr g

r
S

ij ∂
∂

= captures a change in weight in 

behavior mode (eλjt) due to a change in loop gain (gk); 

• Loop eigenvalue sensitivity 
k

i
k g

S
i ∂

∂λ
λ = captures the change in weight in the 

behavior mode (eλjt) due to a change in the loop gain (gk); and 

• The contribution of the eigenvalue sensitivity to the weight changes with time and 

it becomes the main determinant of weight of behavior mode (eλjt) as time grows. 
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i “The first and most important foundation for [system] dynamics is the concept of servo-mechanisms (or 
information-feedback systems).” (Forrester 1961, p14). 
ii Note that the computation of the partial derivative of each term ( )0j

tλ
ji ze jr  assumes that the initial state ( )0jz

(0j

( ) (00 xR 1−= ( )0z

 does 
not depend on the link gain.  State )z  is a new state variable – obtained after the change of variables – given by 

( )z ) where  is the initial position vector of the new state variables and ( )0x is the initial position vector 
of the original state variables.  The inverse of the matrix of eigenvectors ( 1R − ) depends on the value of all 
eigenvectors and thus varies with changes in the link gain.  However, we abstract away from those changes because 
we are interested in deriving an expressions that hold no matter what the initial conditions are. 
iii Gonçalves, Hines, Lertpattarapong (2000) provide a derivation of the characteristic polynomial of the inventory-
workforce model in terms of the loop gains. To compute the eigenvalues in terms of loop gains readers are also 
directed to Forrester (1983), Kampmann (1996) and Kampmann and Oliva (2006). 
iv While the table results shows the same sign, note that the complex number is in the denominator and will need to 
be multiplied by its conjugate to arrive at the correct sign of the complex number. 
v Note that we rewrite the results above more compactly in matrix form defining R as the nxn matrix whose n 
columns are the eigenvectors of A and defining the column vector z(t) with components (z1(t), z2(t), …  zn(t)). 
Defining R that way allows us to write equation (A2) as ( ) ( )tt Rzx = . We can interpret the new equation as a change 
in variable and use it to rewrite the dynamic system, which yields: ( ) ( )tt ARzzR =& ( ) or simply: ( )tt ARzR 1−=&

( )t&

z , 
where the computation of the inverse of the matrix of eigenvectors (R-1) depends on the value of all the system 
eigenvectors. The new system ( z ) is related to the original one ( ( )tx& ) by a change of variable. The new system 
matrix    (R-1AR) corresponds to the system governing the z(t) state equations, where the change in each state 
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( )tzi& (tz

( )

( ) depends only on the product of the associated eigenvalue (λi) and the own state ( )i
).  Accordingly, we can 

write R-1AR=Λ, where Λ is the diagonal matrix with the eigenvalues of A in the diagonal.  
vi The initial values of z(0) can be obtained in terms of x(0) from the change in variable definition: ( )00 xRz 1−= . 
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