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A Calculus Approach to Energy-Efficient Data
Transmission With Quality-of-Service Constraints

Murtaza A. Zafer, Member, IEEE, and Eytan Modiano, Senior Member, IEEE

Abstract—Transmission rate adaptation in wireless devices
provides a unique opportunity to trade off data service rate
with energy consumption. In this paper, we study optimal rate
control to minimize transmission energy expenditure subject
to strict deadline or other quality-of-service (QoS) constraints.
Specifically, the system consists of a wireless transmitter with
controllable transmission rate and with strict QoS constraints on
data transmission. The goal is to obtain a rate-control policy that
minimizes the total transmission energy expenditure while en-
suring that the QoS constraints are met. Using a novel formulation
based on cumulative curves methodology, we obtain the optimal
transmission policy and show that it has a simple and appealing
graphical visualization. Utilizing the optimal ‘“offline” results,
we then develop an online transmission policy for an arbitrary
stream of packet arrivals and deadline constraints, and show, via
simulations, that it is significantly more energy-efficient than a
simple head-of-line drain policy. Finally, we generalize the optimal
policy results to the case of time-varying power-rate functions.

Index Terms—Delay, energy, network calculus, quality of service
(QoS), rate control, wireless.

I. INTRODUCTION

ERVICES envisioned in modern communication systems
S extend beyond traditional voice communication to en-
hanced data applications such as video and real-time multimedia
streaming, high-throughput data access, and voice-over-IP [1].
Invariably, meeting the quality-of-service (QoS) requirements
for these applications translates into stricter packet-delay and
throughput constraints. Wireless systems also generally have
strict limitations on energy consumption, thereby necessi-
tating efficient utilization of this resource [2]. For example,
minimizing energy consumption leads to improved battery
utilization for mobile devices, increased lifetime for sensor
nodes and ad hoc networks, and better utilization of limited
energy sources in satellites. Since, in many scenarios, trans-
mission energy constitutes a significant portion of the total
energy expenditure for wireless nodes [2], it is imperative
to minimize this cost to achieve significant energy savings;
henceforth, in this paper, we will focus solely on transmission
energy expenditure.
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A. Motivation and Summary

Modern wireless devices are equipped with rate-adaptive ca-
pabilities [3], [4], which allows the transmitter to adjust the
transmission rate over time. This is achieved in various ways that
include adjusting the power level, symbol rate, coding scheme,
constellation size, and any combination of these approaches.
Associated with a rate, there is a corresponding power expen-
diture that is governed by the power-rate function. Specifically,
a power-rate function is a relationship that gives the amount
of transmission power that would be required to transmit at a
certain rate. Keeping the bit-error probability fixed, it is widely
known that, for most encoding schemes, the required power is
a convex function of the rate [7]-[10], [12], [14], [17]. This im-
plies, from Jensen’s inequality, that transmitting data at a low
rate and over a longer duration has less energy cost compared
to a fast rate transmission. However, with QoS constraints taken
into consideration, a low rate transmission may not always be
able to meet these constraints; thus, there is a tradeoff. In this
work, we seek to obtain the optimal rate-control policy that min-
imizes the transmission energy expenditure while also ensuring
that the strict QoS constraints are met.

We consider a transmitter with data arrivals that have strict
QoS constraints such as individual packet deadlines, finite
buffer, or other service constraints. We represent the arrivals
as a cumulative curve (known as the arrival curve) and model
the QoS constraints using the concept of a minimum departure
curve. The minimum departure curve helps translate fairly
general QoS constraints into a simple and graphical form.
Using this model, we first consider a time-invariant power-rate
function and obtain the optimal policy under the knowledge of
the arrival curve. The optimal policy has a simple and appealing
graphical visualization as discussed later. Using the optimal
solution, a heuristic online policy is developed, which does
not require prior knowledge of the arrival process; the online
policy is shown to be energy-efficient via simulations. Finally,
in the latter half of the paper, we extend the results to a setup
involving a time-varying power-rate function.

B. Related Work

Transmission rate adaptation/control is an active area of re-
search in communication networks in various different contexts.
Adaptive network control and scheduling have been studied in
the context of network stability [16]-[19], average throughput
[20]-[23], average delay [7], [14], and packet-drop probability
[15]. This literature considers “average metrics” that are mea-
sured over an infinite time horizon and, hence, do not directly
apply for delay-constrained and real-time data. Incorporating
packet deadlines and other strict QoS constraints introduces new

1063-6692/$25.00 © 2009 IEEE
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challenges and complexity in the problem; recent work in this
direction includes [8]-[12].

The work in [8] studied the problem of a known stream of
packet arrivals that must be transmitted by a common deadline
using minimum energy. In [12], the problem was extended by
allowing different energy functions for different packets, where
the authors proposed the MoveRight algorithm that eventually
converges to the optimal solution; however, the actual analytical
form of the optimal solution was not obtained. In [10], the au-
thors considered batch arrivals and packet deadlines as the QoS
metric and utilized filtering techniques to obtain an energy-effi-
cient transmission policy. In this paper, we provide a simple yet
general framework for the QoS constrained energy minimiza-
tion problem from which these earlier results can be recovered
as special cases (see Section III-C). The work in [11] has a dif-
ferent context wherein the transmitter can recover partial en-
ergy lost while it is in the idle state, whereas in [9], the authors
studied several data transmission problems using dynamic pro-
gramming. The dynamic programming methodology, however,
leads to numerical solutions without much insight in most cases.

Within a different context in [25], the problem of transmitting
a stored video file from a server to a client over a network was
considered. Utilizing buffering at the client, the optimal policy
was obtained that minimizes the bit-rate variability. Strikingly,
the mathematical formulation in the work of [25] has similari-
ties to that considered in this paper; hence, the optimal policies
share various properties such as the shortest-path feature (al-
beit with different contextual meanings). However, the solution
methodology in [25] is based on a majorization technique that is
only suitable for discrete data models. In contrast, our approach
is based on continuous-time convex optimization and applies to
both discrete and fluid data models. Moreover, in this paper, we
also develop the optimal solution for a time-varying power-rate
relationship, which was not addressed in the stored video con-
text. In another context, [26] studied the problem of job sched-
uling for a dynamically variable voltage processor where similar
properties (such as the shortest-path property of the optimal so-
lution) were observed. Finally, part of the results presented in
this paper have appeared in our preliminary work in [6].

The rest of the paper is organized as follows. In Section 1I,
we present the system model. In Section III, we present the op-
timal policy for the case of time-invariant power-rate function.
Finally, in Section IV, we generalize the setup and consider a
time-varying power-rate function.

II. SYSTEM MODEL

We consider a continuous-time model and assume that rate
can be varied continuously in time. Such a model is an approxi-
mation of an actual system, but the assumption is justified since,
in practice, the communication slots over which rate-control can
be done are of the order of 1-ms duration [3] and much smaller
than packet-delay requirements, which are typically on the order
of hundreds of milliseconds. The advantage of such a model is
that it makes the problem we consider mathematically tractable
and also provides a simple and intuitive graphical visualization
of the optimal solution. The results thus obtained can then be ap-
plied to a discrete-time system in a straightforward manner by
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Fig. 1. Data flow model: (a) fluid arrival model, (b) packetized arrival model.

simply evaluating the solution at the discrete-time slot bound-
aries.

A. Data Flow Model

To describe the flow of data into the system, we utilize a cu-
mulative curves methodology [13], [24]. This model applies to
a general setting where data could arrive in packets (packetized
model) or in a continuum of bits (fluid model). Let A(t), D(%)
and Dp,;,(t) denote the arrival curve, departure curve, and the
minimum departure curve, respectively; these are assumed to be
right-continuous functions and are defined as follows.

Definition 1 (Arrival Curve): An arrival curve A(t),t >
0,t € R, is the total number of bits that have arrived in time
interval [0, ¢].

Definition 2 (Departure Curve): A departure curve D(t),t >
0,t € R, is the total number of bits that have departed (served)
in time [0, ¢].

In case of a fluid arrival model, A(t) is a continuous function,
whereas, for a packet arrival model, it is a piecewise-constant
function as depicted in Fig. 1. To ensure that the transmitter does
not transmit more than the data that has arrived to the queue,
we require that D(t) < A(t). We refer to this constraint as
the causality constraint. Now, to model the quality-of-service
constraints, we introduce a new notion of a “minimum departure
curve,” which is defined as follows.

Definition 3 (Minimum Departure Curve): Given an arrival
curve A(t), a minimum departure curve D,,;,,(t) is a function
such that Dy, (t) < A(t),Vt > 0, and is defined as the cu-
mulative minimum number of bits that would satisfy the QoS
requirements if departed by time ¢.

The function Dyin(t) can be viewed as the constraint func-
tion such that, in order to satisfy the QoS requirements, the de-
parture curve D(t) must satisfy D(t) > Dpin(t). Thus, in a
compact way, the QoS and the causality constraints can be ex-
pressed as Dpin(t) < D(t) < A(t), Vt. Note that the definition
of Dmin(t) hides the implicitly assumed service discipline (the
order in which data is served), as the above model looks at the
data flow only in a cumulative sense. As we show next, through
a few illustrative examples, a number of commonly used QoS
constraints can be modelled within this framework.

1) Deadline Constraint: Consider a set of packet arrivals
according to an arrival curve A(¢), and let d be the individual
deadline constraint on the incoming data. To obtain D,y (%) set,
Dpnin(t) = 0,t € [0,d) and Dpin(t) = A(t — d),t > d; now,
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Fig.2. QoS examples: (a) packet deadline constraint of d, (b) buffer constraint
of B.

following an earliest-deadline-first service discipline such that
the departure curve satisfies Dy () < D(t) < A(t), Vi, itis
easy to see that the deadline constraints will all be met. Thus,
here, Dyyin () is simply a time-shifted version of A(t) as shown
in Fig. 2(a). As a generalization, suppose that the data has vari-
able deadlines, and these deadlines are in the increasing order
in which the bits arrive. Consider a packet arrival model and let
{t;} denote the arrival epochs, {d;} the deadlines, and {b;} the
sizes of the data packets. Then, D,,,;,,(t) is a piecewise constant
function with jumps at times {¢; + d;}, the sizes of the jumps
being {b;}. Along similar lines as above, one can also obtain
Dmin(t) for a fluid arrival model.

2) Buffer Constraint: Consider a buffer constraint of B, i.e.,
the queue size must not exceed B, V¢ > 0. For an arrival curve
A(t) and a departure curve D(t), the buffer size at any time ¢ is
given by b(t) = A(t) — D(t). Since b(t) < B, we have D(t) >
max[A(t) — B,0]. Thus, we see that, following a first-come-
first-serve service discipline, the minimum departure curve must
be Dnin(t) = max[A(t)— B, 0], as shown in Fig. 2(b). It is easy
to incorporate a time-varying buffer constraint B(t) as well.

3) Service-Curve Constraint: The notion of service curves
forms an integral part of network calculus theory [24]. Given
a service curve ((t) and an arrival curve A(t), the quantity
A(t) ® B(t) represents the minimum data that must flow out
of the system, where ® is convolution in the min-plus algebra.
Therefore, under network calculus theory, given any service
curve f((t), the minimum departure curve can be obtained as
Dmin(t) = A(t) ® B(¢).

Thus, we see that a wide variety of QoS constraints can be
abstracted by constructing the appropriate minimum departure
curve.

B. Transmission Model

Let P(t) denote the required transmission power to reliably
transmit at rate 7(¢) at time ¢. We assume the following power-
rate relationship

P(t) = g(r(t),t) (1)

where the function g(r,t) is a convex increasing function with
respect to the first argument (rate) and g(r,¢) > 0 for r >
0,Vt. The relationship in (1) is a general transmission model
for most encoding schemes and has been widely studied in the
literature in various forms [7]-[12], [14], [15]. As an example,
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the well-known Shannon formula for the power per bit gives the
relationship [8] P = NoW (2"/" — 1); in case of other coding
schemes, the Shannon formula gives a lower bound on the power
per bit.

Given the relationship in (1), the transmission energy expen-
diture of a departure curve D(t) over time interval [0, T is given
by

eww) = [ LoD (1)t o

where D’ (¢) is the derivative! at time ¢; it gives the transmission
rate at that instant and the term g(D’(t),t) gives the instanta-
neous transmission power.

Throughout the paper, our focus will be on the time interval
[0, 7] for some finite 7" with finite deadline/QoS constraints.
Thus, we deal with energy minimization over a finite time in-
terval rather than considering an infinite time horizon, as done
in much of the literature on power-rate adaptation that studies
average performance metrics. Since a departure curve specifies
the transmission rate and vice versa, we will use the terms de-
parture curve and transmission policy interchangeably.

III. TIME-INVARIANT POWER-RATE FUNCTION

We first consider the case of a time-invariant power-rate func-
tion and assume in this section that P(¢) is only a function of
r(t), i.e., P(t) = g(r(t)). Such an assumption models a static
channel or a slow fading wireless channel where, over [0, 7],
the channel gain does not change appreciably over time. This is
a good model for wireless LAN or fixed wireless network sce-
narios.

A. Problem Formulation

Consider an arrival curve A(t) and assume that this curve is
known over the interval [0, T']. Based on the QoS requirements,
one can construct the minimum departure curve D, (¢) as dis-
cussed in Section II. Now given A(t) and Dyin(t), a departure
curve D(t) that represents how data is transmitted is said to be
admissible if it satisfies both the causality and the QoS con-
straints; i.e., Dmin(t) < D(t) < A(t), t € [0,T]. The en-
ergy minimization problem is to obtain the admissible depar-
ture curve with the least energy expenditure. Mathematically,
this can be stated as follows:

min

guin £0W) = [ (D0
subject to  Dpin(t) < D(t) < A(t), t € [0,7]. (3)

Without loss of generality, we take Dy,;n(0) = 0, D(0) = 0,
and Dp,in(T) = A(T), where the last equality simply states
that all the data must depart by 7. For the above problem, we
also require that D(t) belong to the set T', where T' consists
of all nondecreasing, continuous functions with bounded right-
derivative for all ¢ € [0,7] and with D(0) = 0. The non-
decreasing assumption follows from the cumulative nature of
the departure curves. The continuity assumption is natural, as

IThroughout the paper, at points of nondifferentiability, D’(t) is taken as the
right-derivative, and the right-derivative is assumed to exist for all £.
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Fig. 3. Cumulative curves for the BT -problem.

any discontinuity would imply instantaneous transmission of
nonzero amount of data, which is practically infeasible. Finally,
the bounded right-derivative assumption ensures that the rate
and the energy cost in (3) are finite. Furthermore, if one makes
the natural assumption that there is no data that arrives and
needs to be transmitted instantaneously, then admissible depar-
ture curves exist.

B. Optimality Properties

In this section, we present the optimality criterion and the var-
ious properties of the optimal departure curve. To motivate the
discussion, consider the following simple example: The trans-
mitter has B units of data that must be transmitted by deadline 7'
using minimum energy. We refer to this as the “BT-problem.”
This example sheds important insights into the problem and also
serves as a building block for the general problem.

1) BT-problem: The two curves A(t) and D, (t) for this
problem are as follows. Since there are no new arrivals and the
queue has B units of data at the beginning, the arrival curve is
A(t) = B, Vt € [0, T). Furthermore, there is no minimum data
transmission requirement until the deadline 7', at which point all
the data must be transmitted; hence, D i, (t) = 0, t € [0,T)
and Dp,;n(T) = B. The admissibility criterion specialized to
this case thus becomes 0 < D(t) < B and D(T) = B. Fig. 3
is a schematic diagram of these curves that also depicts a few
admissible departure curves.

We claim that the optimal policy is constant rate transmission
at rate B/T, ie., (D°P')(t) = £ and D°P'(t) = BL ¢t €
[0, T7], where D°Pt(t) denotes the optimal departure curve. To
see why this is true, consider the following integral version of
Jensen’s inequality [27].

Lemma 1: Let f(t),p(t) be two functions defined for a <
t < bsuchthat a < f(t) < and p(t) > 0, with p(t) Z 0. Let
¢(u) be a convex function defined on the interval & < u < ;
then

_ Lo @pyr

’ < IN f(t)p(t)dt)
eyt )~ [ p(t)dt

“

with strict inequality if ¢() is strictly convex and a # b, a # f3.
Proof: See [27]. [ |

Now, consider an admissible departure curve D(t) and make
the following substitution in the above lemma, p(t) = 1, ¢() =
9(), fO) = D'(),a = 0and b = T'. This gives

_Jo 9D/t

[ D' (t)dt
7 ) dt - [Tat

0

o(POPN e [Cypipa o

(&)

T
9(B/T)T < / o(D'W)d. D

The left-hand side in (7) is the total energy cost of the constant
rate transmission policy at rate B/T, while the right-hand side
is the total cost of any other admissible departure curve. The
inequality in (7) thus proves the optimality claim.

The result for the BT -problem is fairly intuitive given the
convexity property of the power-rate function. Its practical im-
plication is interesting, as it says that employing a complex vari-
able-rate policy does not provide any gains in the energy ex-
penditure; in fact, a constant-rate policy suffices. Another ob-
servation is that when g(-) is strictly convex, the inequality in
(7) is strict for any admissible D(¢) other than the constant-rate
policy. Hence, in this case, the constant-rate policy is the unique
optimal solution. On the other hand, for the case when g(-) is
linear, there is equality in (7), and all policies have the same en-
ergy cost.

2) General Case: We now consider the general setup and
assume without loss of generality that A(t) > Duyin(t),0 <
t < T. Otherwise, if at some time t. there is equality, the
problem can be divided into two subproblems over time inter-
vals [0, t.] and [t.,T], and each can be solved independently.
The first result, Theorem 1, is a generalization of the result for
the BT-problem, and it gives the criterion for the optimality of
a departure curve.

Theorem I (Optimality Criterion): Let D(t) be an admissible
departure curve and L(t) be a straight line segment over [a, b]
that joins points D(a) and D(b), 0 < a < b < T.If L(t)
satisfies Dp,in(t) < L(t) < A(t), and L(t) #Z D(t), the new
departure curve D"V (¢) constructed as

D™™(t) =D(t), t € 0,a)
=L(t), t € [a,0]
=D(t), t € (b,T]

satisfies £(D"V(t)) < £(D(t)), where the inequality is strict
if g(.) is strictly convex.

The above theorem states that, if there exists any two points
on the curve D(t) that can be joined by a straight line without vi-
olating the admissibility constraints, replacing that part of D(¢)
with the straight line can only lower the energy cost. The im-
plication of this is that whenever admissible, it is optimal to
transmit at a constant rate. A schematic diagram depicting this
is given in Fig. 4. Henceforth, the criterion that there does not
exist any two points along a departure curve that can be joined
by a distinct admissible straight line will be referred to as the
“Optimality Criterion.”
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Proof: First note that since L(t) is admissible, the new
curve D"V () is also admissible. Consider

b
E(D*N(1)) — E(D(H)) = E(L(t)) — / g(D'(t))dt.  (8)
Over the interval [a,b], we know from the result of the
BT-problem that L(t) has the least energy cost among
all departure curves that would transmit (D(b) — D(a))
amount of data in time (b — a). Hence, from (5)—(7), we get
E(L(t)) — f;’ g(D'(t))dt < 0, and the result follows.

Remark I (Linear Power-Rate Function): An interesting spe-
cial case arises when the power-rate relationship is linear, i.e.,
P = kr, where k > 0 is a constant. In this case, the integral
value in (3) is the same for all admissible departure curves, and,
hence, all departure curves have the same energy cost. Thus,
with a linear power-rate curve, it does not matter, in terms of
the energy cost, how data is transmitted as long as the causality
and the QoS constraints are met. However, even in this special
case of linear power-rate function, we will see next that the de-
parture curve that satisfies the optimality criterion has appealing
properties that make it a good candidate transmission policy.

Henceforth, we consider the more interesting case of strictly
convex g(-) function. The next result shows that the optimal
departure satisfying the optimality criterion is unique.

Theorem 2 (Uniqueness): Consider the optimization problem
in (3) with g(-) being strictly convex. Let D(t) be an admis-
sible departure curve that satisfies the optimality criterion. Then,
f)(t) is unique, and it minimizes the energy cost in (3).

Proof: See Appendix A. ]

Throughout now, we will denote the admissible departure
curve satisfying the optimality criterion as D°P*(¢), and later
in Section III-C, give an algorithm for constructing D°Pt(¢).
We now characterize the points in time at which the optimal
rate changes, i.e., points at which the slope (or the right-deriva-
tive where nondifferentiable) of D°Pt(#) changes either contin-
uously or in a discrete step. Denoting any such point as ¢, the
following results are obtained.?

Lemma 2: At to, D°P'(t) either intersects A(t) or Dyin(t);
i.e., we have D°Pt(to) = A(tp) or D°P*(tg) = Dmin(to)- Note,
if there is a discontinuity in A(%) at to (jump point for packetized
data), then D°P(tg) = A(ty).

2The notation f(x*) means lim, . f(x + €,), and f(2~) means
lim, o f(z —€,), withe, > 0,e, — 0.
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\/

time T
t=a

Fig. 5. Example showing violation of Lemmas 2—4. The dotted lines show that
D(¢) does not meet the optimality criterion.

Lemma 3: Suppose that at ¢, we have D°P*(to) = Dyin(to)-
Then, the slope change must be negative.

Lemma 4: Suppose that at tq we have D°Pt(ty) = A(tg) (or
A(tg ). Then, the change in slope must be positive.

The proofs of the above lemmas are straightforward and
omitted for brevity. They can be easily understood from Fig. 5.
Point £ = a corresponds to a point of rate change, and it
violates Lemma 2. It is easy to see that around ¢ = a the
optimality criterion is violated since an admissible straight line
segment exists (the dotted segment around ¢ = « in the figure).
Similarly, points ¢ = b and ¢t = ¢ correspond to a violation of
Lemmas 3 and 4, respectively.

Among other properties, the optimal departure curve D°Pt(#)
uses the least maximum transmission power and has the
shortest length metric. The minimal maximum-power property
of D°Pt(t) states that among all admissible departure curves,
if we look at the maximum instantaneous power requirement
over time, D°Pt(¢) curve has the least such requirement. This
is summarized in the theorem below.

Theorem 3 (Minimal Maximum Power): Given any admis-
sible departure curve D(t), the optimal departure curve D°Pt(¢)
satisfies

DY (¢) < D'(t). 9
tgﬁ)a%( )'(t) < o (t) )

Equivalently, max;cpo,7y P°P*(t) < maxyejo,r) P(t), where
P(-) denotes the power expenditure over time.
Proof: See Appendix B. ]

Remark 2: The above theorem is very significant if we im-
pose an additional maximum power constraint in the optimiza-
tion problem in (3). In this case, the problem is first solved
without the power constraint. If the optimal solution satisfies
the maximum power constraint, we are done; otherwise, from
Theorem 3, it follows that there does not exist any other admis-
sible departure curve that can satisfy the power constraint, and
the constrained optimization problem has no solution. Thus, we
see that D°P(¢) is the unique curve that satisfies the QoS con-
straints with both the least total energy cost and the least max-
imum power requirement.

As mentioned earlier, D°P*(¢) also has the shortest length
among admissible departure curves. More specifically, for any
continuous, piecewise differentiable curve, its total length using
standard geometrical result is given as fOT (14 (D'(t))?)dt.
The result below states that D°Pt(¢) minimizes this metric.
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Fig. 6. String visualization for the optimal curve. (a) String lying between A(t)
and Diy,in(%); (b) D°PY(t) as taut string.

Theorem 4 (Shortest Length): The optimal departure curve
DePt(t) has the shortest length among all admissible departure
curves. Specifically, it minimizes the metric

T
len(D(t)) £ / (1+ (D'(t))?)dt (10)
0
Proof: Since D°PY(t) minimizes the integral in (3) for a
convex increasing function g(-), the result follows by replacing

g(r) with g(r) = /(1 + 72).

C. Optimal Policy

In the last section, we presented the optimality criterion and
the various properties of the optimal curve. We now construct
the optimal departure curve D°P'(t). However, before giving
the algorithmic description, it is instructive to consider a very
insightful visualization. This graphical picture provides a simple
and intuitive way to understand D°P*(¢) and is described next.

String Visualization: Consider a string restricted to lie be-
tween A(t) and Dp,in(t) (i.e., visualize A(t), Dmin(t) curves
as hard boundaries for the string). Tie one end of the string at
the origin and pass the other end through D,,;, (7). If we now
make the string tight, its trajectory gives the optimal departure
curve.?

Fig. 6 is an illustration showing a general A(¢) and Dpin (1)
curve and the corresponding D°P*(¢) visualized as a tight string.
Intuitively, when the string is in the tight condition, it cannot
be made tighter between any two points along its trajectory.
This means that the optimality criterion must be satisfied be-
cause, otherwise, the construction in Theorem 1 would make the
string tighter, thereby leading to a contradiction. By the unique-
ness result, it then follows that this must be the optimal curve.
Note that, depending on the shape of A(t) and D,;,(t) curves,
the curve D°P'(t) consists of segments of constant-rate trans-
mission and/or segments where the rate is varying continuously
over time; see, for example, Fig. 10(b), where over time [a, b]
and [c, d], the curve D°P*(t) has a continuous rate change.

Examples: Using the above string visualization, we now
present a few illustrative examples for which the optimal solu-
tion can be obtained in closed-form. Among these, the first two
examples have been studied earlier in the literature [8], [10],
and their solutions were obtained using a discrete-optimization
approach that was mathematically tedious. By reformulating
the problems within our framework, the solutions can be ob-
tained more easily from the graphical picture.

3This observation was pointed out by R. L. Cruz
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Fig. 7. Curves A(t), Duin(t) and D°P*(t) for Example 1.

Example 1 [8]: Consider a sequence of N packets arriving to
the system in time [0, T'), with the first packet arrival at time 0
and the rest arriving at times {¢*}2¥ 7*. The deadline constraint
is that all the packets must depart by time 7' (common dead-
line), where T > tV 1. The curves A(t) and D, (t) for this
problem are depicted in Fig. 7 (where we have set t = T)).
From the string visualization, it is easy to see that the optimal
departure curve consists of piecewise linear segments with in-
creasing slopes and the points at which the slope changes, the
transmitter buffer is empty (see Fig. 7).

Algorithmically, to construct the linear segments of D°P!(t)
proceed as follows. Let A® denote the cumulative amount of
data arrived to the queue just before time ¢ (the total data in
the first ¢ packets). Starting at time 0, consider the straight line
segments that join the points (0,0) (origin) and (#*, A*) (jump
points of A(t)). From among these, choose the segment with the
minimum slope, i.e., the segment having slope equal to the min-
imum over % of ’?— , as shown schematically in Fig. 8(a). De-

noting the minimizing index as 7, the first segment of D°P*(¢)

)
from ¢ = O until ¢ = ¢7. Starting at ¢™, the procedure is re-
peated by shifting the origin to the new point (¢™, A™), as shown
in Fig. 8(b). Thus, the slopes of the linear segments denoted
as {s1,...,84} can be computed recursively as follows. Take
l1 =1,t° =0, A’ = 0 and initialize m = 1; we then have

(AT — Al
Sm = ie{lr,rnl,l,.I.I,N} ( ti — tm—1) ) (11)

Al — Alm=1)
( to— t(lm—l) ) : (12)

. . . . . T
is then constant-rate transmission with rate s; = min; (i

min

lms1=14+a
+ + rgie{lm,..,N}

The above iteration stops when [,,, 41 = N + 1. Intuitively, the
optimal policy follows a constant rate transmission until points
where the future arrivals are such that, relative to the deadline
constraint, the transmission rate must be higher.

Example 2 [10]: Consider M data packets in the transmitter
buffer at time 0, with individual packets having a deadline by
which they must be transmitted. Let the jth packet have b; units
of data and a deadline ¢;, j = 1,..., M. The packets in the
queue are served in the earliest-deadline-first order, and for this
case, the A(t) and Dp;,(t) curves can be obtained as shown in
Fig. 9(a). Note that the structure of this problem is the reverse of
Example 1, and in some loose sense, one can regard these prob-
lems as “duals” of each other. From the string interpretation, we
see that the optimal policy is a piecewise linear curve as shown
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Fig. 8. (a) Construction of the first segment of D°P*(¢) for Example 1.
(b) Construction of the second segment.
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Fig.9. (a) Curves A(t), Dumin(t) and D°P*(¢) for Example 2. (b) Construction
of the first segment of D°P(¢).

in the figure, and as compared to Example 1, the slopes of the
linear segments are now monotonically decreasing in time.

To obtain the segments of D°P*(¢), proceed as follows. Let
Bj = >"]_, bi, where B; denotes the cumulative data in the first
7 packets. Starting at time O, consider the straight line segments
that join the points (0,0) (origin) and (¢;, B;) (jump points of
D in(t)). From among these, choose the segment with the max-
imum slope, i.e., the segment having slope equal to the max-
imum over j of (f—;) Denoting the maximizing index as ,
the first segment of D°P'(t) is constant-rate transmission with
rate % from ¢ = O until ¢ = ¢,. Starting at ¢, the proce-
dure iswrepeated by shifting the origin to the new point (¢, By ).
Specifically, the slopes denoted as {s1, ..., s,} are obtained as
follows. Take I; = 1, tg = 0, By = 0 and initialize m = 1.
We then have
13)

Sm =

B] B B(lm_l)>

max (
J€{lm -, MY\ 15 — t(1,,—1)

Imy1 =1+ arg max (—Bj — B(l"l_1)> . (14
) §€{lm, MY\ t; —t,,—1)
The above iteration stops when [,,, 41 = M + 1.

Example 3: Consider a stream of N packet arrivals of size
B units with a constant interarrival time 7. Each packet has a
deadline d before which it must depart [Fig. 10(a)]. Such an
arrival stream is a good model for applications that generate
packets at regular times (or with a small variance), e.g., voice
data. The optimal minimum energy curve is shown in the figure
and is given as follows. If d < 7, the solution is trivial, and the
packet must be transmitted before the next arrival. If d > 7, the
optimal curve is a straight line with slope NB/(d+ (N —1)7).

The intuition gained from the examples above can now be
utilized to obtain D°Pt(¢#) for the general setting, and this is pre-
sented next. For simplicity, however, we restrict our attention to

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 3, JUNE 2009

4B "
op
D
T
3B 20
T A
2B Dipin(®
T : opt
B (1)
NDypin®
0 d T 0 a b cd T
(a) (b)

Fig. 10. Curves A(t), Dmin(t) and D°P*(t) for (a) Example 3 and (b) con-
tinuous data flow.

only piecewise-constant A(¢) and D,,,;,,(t) curves (i.e., staircase
functions corresponding to the packet data model). The algo-
rithm for the more general case with continuous curves is a di-
rect extension of the arguments presented here and can be found
in [5].

Construction of the Optimal Departure Curve: As is the case
in Examples 1 and 2, the main idea behind constructing the
optimal curve D°Pt(t) is to obtain its segments in a recursive
fashion. From Example 1, we see that with A(t) constraints,
the minimum-slope line segments are chosen; while from Ex-
ample 2, we see that with Dy, (¢) constraints, the maximum-
slope line segments are chosen. Thus, intuitively, in the general
case, we would need to combine these two ideas, and this is done
more formally in the discussion below.

To proceed, consider any generic point (¢g, @), where 0 <
to < T and Dpmin(to) < a < A(to). Starting at this point,
consider straight lines with nonnegative slopes. Among these,
choose those lines that starting at (¢¢, @) remain admissible for
some finite duration. In other words, consider straight lines L(t)
for which there exists an € > 0 (e could depend on the chosen
L(t)) such that L(¢) is admissible for ¢t € [to,to + €), i.e.,
Dmin(t) < L(t) < A(t), fort € [to,to + €). Denote this set
as F. Intuitively, the slopes of the lines in F give the possible
admissible slopes that D°P*(t) can have at that point. Note that
the set F depends on the point (¢, @), but to make the notations
simple, we drop the explicit dependence.

Now, consider L(t) € F. Then, clearly, L(t) eventually ei-
ther intersects A(¢) or D,y (t), where we use the following def-
inition of intersection.

Definition 4: Starting at to, L(t) intersects Dyin(t) if for
some point t > to, called the point of intersection, one of the
following holds: a) either L(f) = Dpyin(f), or b) the function
L(t) = Dpnin(t) changes sign at £ (here £ is a discontinuity point).

Intuitively, the above definition means that L(t) crosses the
curve Dpin(t) at t. A similar definition holds for intersection
with A(t). Let the set F be partitioned into a set of lines that
intersect A(t) first and those that intersect Dy (¢) first. Denote
these sets as F 4 and Fp,,, respectively. The following intuitive
result states that the slope of the lines in F 4 (those that intersect
A(t) first) is greater than the slope of the lines in Fp, (those
that intersect D,y (t) first).

Lemma5: a)Let Lp(t) € Fp,, . Then,any L(t) € F thathas
slope less than L', intersects D.y,in () first. b) Let La(t) € Fa.
Then, any L(t) € F that has slope greater than L', intersects
A(t) first.
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Fig. 11. Example depicting A(¢) and D,,;,(t) curves and the constructed
D(t) curve.

Proof: See Appendix C. ]

Let S4 and Sp,, denote the slopes of the lines in F4 and

Fbp,,, respectively. Consider the line, which we denote as L,,
with slope f3, at the boundary of the two intervals, i.e.

B, =inf S4 = supSp (15)

If either S4 or Sp,, is empty, it is neglected. We call 3, the
optimal slope and the line L, the optimal line. Thus, in simple
terms, L, is the least-slope line that intersects A(t) first, or the
maximum-slope line that intersects Dy, (¢) first (note the simi-
larities with Examples 1 and 2). Using this line L,, we can now
obtain an algorithm for constructing the optimal departure curve
as illustrated next.

To begin with, we have D°P*(0) = 0; thus, the starting point
is (0,0). Let to denote a generic time instant, where to = 0 in
the first iteration.

1) Obtain f3, as in (15) and the optimal line L.

2) Obtain the first instant ¢; such that, a) L, (¢1) = Dmin(t1),
orb) L,(t1) = A(t1) or Lo(t1) = A(t7). Set D°P(¢) =
Lo(t),t € (to,tl].

If t; = T, terminate; else, repeat the above steps with the new
starting point as (1, D°P(#1)). The correctness and optimality
of the above algorithm is shown in Appendix D.

As an example, consider A(t) and Dyin(t) shown in Fig. 11
for which the algorithm executes as follows. Start at the origin
(0,0) and note that L is the optimal line as defined above and ¢,
is the first instant at which it equals Dy, (t). Thus, segment Ly
from ¢ = [0, ¢1] is the first part of the optimal curve. Note that
lines with slope greater than I} intersect A(t) first, and lines
with slope less than L} intersect Dpin(t) first. The line Ly is
the one with slope at the boundary [as defined in (15)]. Next,
starting from the new point (¢1, Dinin(t1)), Lo is the optimal
line and ¢ is the first instant such that Ly (t2) = A(t; ). The
segment Ly from ¢ = [tq,¢5] forms part of the optimal curve.
The segment L3 is also obtained in a similar fashion, and it is
the last segment as ¢ = 7' is reached.

D. Online Policy Without Arrival Information

In the previous sections, we obtained a fundamental un-
derstanding of the energy minimization problem by assuming
that the data arrival information was known in advance. In this

section, we utilize those results to consider the more realistic
case when there is an arbitrary stream of packet arrivals to the
queue and there is no information, statistical or otherwise, of
the packet-arrival process. Each arriving packet has a distinct
deadline by which it must be served, and the goal as before
is to minimize the total energy expenditure. To address this
problem, we present an online transmission policy, referred to
as the “backlog-adaptive” (BA) policy, and give numerical
results comparing the energy cost of the BA policy with the
head-of-line drain policy.

To understand the BA policy, let us first revisit Example 2
in Section III-C, which we summarize here again. Suppose that
the transmitter has M packets with individual deadlines on the
packets; there are no new arrivals to the system, and the goal is
to empty the buffer with minimum energy. The optimal policy
for this case is shown in Fig. 9, but to highlight the dynamic na-
ture of the policy, and for computational simplicity, we rephrase
it as follows. Denote the state of the system as (¢, D), where the
notation means that at time ¢, the cumulative amount of data that
has been transmitted is D, i.e., D(t) = D. Assuming an admis-
sible system state, i.e., Dpnin(t) < D < A(t) and ¢t < T, the
optimal transmission rate for this state is obtained as follows.
First, visualize the origin at point (¢, D). Then, it is easy to see
that the optimal rate is the maximum value among the slopes

Ei;—:tD), corresponding to the straight line segments that con-
nect the points (¢, D) and (¢t;, B;) forall {j : B; > D,t; > t}.
Specifically, let r*(¢, D) denote the optimal rate. We then have

Bj—D

max .
ti—t

“(t,D) =
(8, D) j:(B;>D,t;>t)

(16)

The above function is an alternate way to state the optimal policy
shown in Fig. 9 for Example 2; it provides a convenient way for
implementation. The transmitter simply keeps track of the cu-
mulative amount of data that has been transmitted, and at time ¢,
it computes the rate at that instant as given in (16) by a simple
max operation. Note that the policy in (16) applies for a static
buffer that already contains packets with deadlines; we now ex-
tend it to incorporate packet arrivals to the queue that are un-
known in advance.

Consider arbitrary packet arrivals to the queue, with each
packet having a distinct deadline associated with it. Assume
that the arrivals occur at discrete time instances. Clearly, at the
instant immediately following an arrival, the transmitter queue
consists of a) earlier remaining packets with their deadlines and
b) the new packet with its own deadline. Rearranging the data
in the earliest-deadline-first order, we can view the queue as
consisting of a total amount B of data with variable deadlines.
This is identical to the problem mentioned earlier of emptying
the data in the buffer with minimum energy; hence, we can use
the transmission policy given in (16). Now, as this policy is fol-
lowed, at the next packet arrival instance we simply repeat the
above procedure by rearranging the data and taking the new
packet into account. We refer to the above policy as the BA
policy, and it can be summarized as follows,

BA Policy: Transmit the data in the queue with the rate as
given in (16); at every packet arrival instant, rearrange the data
in the earliest-deadline-first order to obtain a new set of Bt;
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Fig. 12. Energy cost comparison for Poisson arrival process for (a) different
arrival rate and (b) different sample paths.

values by including the new packet and its deadline; reinitialize
D and ¢t to zero and follow (16) thereafter.

Note that the BA policy is not based on any specific arrival
process. Hence, it is robust to changes in the arrival statistics
and can even accommodate multiple deadline classes of packet
arrivals to the queue.

E. Simulation Results

In this section, we present illustrative simulation results com-
paring the performance of the BA policy with the “head-of-line
drain” (HLD) policy. In HLD policy, the data in the queue is
arranged in the earliest-deadline-first order, and the packets are
served in that order. At time ¢, let H; be the amount of data left
in the head-of-the-line packet and Ty be the amount of time
until its deadline. Then, under HLD policy, the rate is chosen as
Ty = Ti; Thus, the transmitter serves the first packet in queue
at a rate to transmit it out by its deadline, then moves to the next
packet in line and so on. At every packet-arrival instant, the data
in the queue is rearranged in the earliest-deadline-first order, and
the above policy is repeated with the new packet taken into ac-
count.

The simulation setup is as follows. The transmitter has
Poisson packet arrivals, and each packet has a deadline as-
sociated with it. On each simulation run, the total time over
which the packets arrive and the system is operated is taken as
L = 10 s. This interval [0, 10] is partitioned into 10 000 slots;
thus, each slot is of duration d¢ = 1 ms, and for simplicity,
the packet arrivals take place at the slot boundaries. For both
the BA and the HLD policies, the transmission rate chosen for
a slot is obtained by evaluating the respective policies at the
time corresponding to the start of that slot. We take g(r) = r%;
hence, the energy cost per slot is r2dt. The total expected
energy cost is obtained by taking an average of the total cost
over multiple sample runs of the system.

We first consider the setup where each packet has 1 unit of
data and a deadline of 200 ms. Fig. 12(a) is a plot of the energy
cost averaged over the sample paths and plotted on a logarithmic
scale versus the packet arrival rate. As is evident from the plot,
the BA policy has a much lower energy cost compared to the
HLD policy, and as the arrival rate increases, the difference be-
tween the two increases. This can be intuitively explained as
follows. When the arrival rate is low, most of the time the queue
has at most a single packet; hence, both policies choose a rate
based on the head-of-line packet. As the arrival rate increases,
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Fig. 13. (a) Average energy cost versus packet size and (b) average energy cost
versus packet deadline.

and due to the bursty nature of the Poisson process, the queue
tends to have more packets. The BA policy then adapts the rate
based on the backlog and the deadlines of all the packets in the
queue, whereas the HLD policy chooses a rate based solely on
the head-of-line packet. In Fig. 12(b), we set the arrival rate as
10 packets/s and plot the energy cost for the first 50 sample
paths. As evident in the plot, the BA policy has lower energy
cost not just in an average sense but even on most individual
sample paths.

In Fig. 13(a), we set the arrival rate as 10 packets/s and plot
the average energy cost by varying the packet size. Clearly, as
seen in the figure, the energy cost increases as the packet size
increases since there is more data that needs to be transmitted.
However, the BA policy has a much lower energy cost compared
to the HLD policy. In Fig. 13(b), we plot the average energy cost
by varying the packet deadlines, and a similar trend is observed.
The energy cost decreases as the packet deadline increases since
lower transmission rates are required to meet the deadlines, and
here as well, the BA policy has a significant lower energy cost
compared to HLD policy.

IV. TIME-VARYING POWER-RATE FUNCTION

In previous sections, we considered the time-invariant power-
rate function case and utilized a cumulative curves methodology
to obtain the optimal solution. The framework provided a graph-
ical visualization of the problem and the optimal solution. In this
section, we generalize those results and consider a time-varying
power-rate function setup. Thus, now the function P(t) has a
time-varying dependence and is given as P(t) = g(r(t),t). For
a fixed time o, the amount of power required to transmit at a
certain rate r is governed by the convex function g(-, %), but
now this convex function could be different at different times.

A. Problem Formulation

The problem formulation remains the same as given in
Section III-A with the data flows being described using cumu-
lative curves, and the objective is to obtain the minimum energy
departure curve. The optimization problem is given as

min

T
D'(t),t)dt
min, | o
subject to  Duyin(t) < D(t) < A(t), t € [0,T].

£(D(1)) =
(17
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In the above formulation, we assume that g(r, t) as a function of
ris a strictly convex, increasing, and continuously differentiable
function for all ¢. We also assume that g(r, t) is a deterministic
function of time ¢ € [0, 7] and piecewise continuous in ¢.

The above formulation provides a general framework to
model various scenarios involving time-variability in the
system. It generalizes the problem in Section III-A to include
time-dependent parameters in transmission arising due to phe-
nomena such as beamforming, antenna patterns, etc. Since it
models a more general power-rate cost function, one can also
introduce an artificial cost for control purposes; for example,
by imposing a high cost over certain intervals, one can control
the times over which data should be transmitted. Finally, it also
models scenarios where we have a time-varying channel and
the channel gain is predictable or known over time.

B. Optimality Properties

We proceed as in Section III by first considering the
BT-problem and then extending the results to general A(¢) and
D in(t) curves. As in the time-invariant case, the BT-problem
provides useful insight into the problem and also plays an
important role as a building block.

1) BT-Problem: Consider the BT-problem where the trans-
mitter has B units of data in the queue and a deadline 7" by which
this data must be transmitted using minimum energy. The fol-
lowing lemma gives the optimal solution for this problem; its
proof is based on results from the theory of Calculus of Varia-
tions [29].

Lemma 6: The optimal transmission rate r°P(t) for the
BT-problem is given as

r°PY(t) = max(0,7*(t)) (18)

where r*(t) is a unique positive value that satisfies

01 g(r, f)|r @) = k, and k is a positive constant such
that [/ roP'(t)dt = B.
Proof: See Appendix E. [ |

Thus, we see that the optimal rate is such that the partial
derivative of g(r,t) with respect to r at the positive value r*()
equals a constant k. The value of this constant is chosen such
that the deadline constraint at 7" is met. We refer to the constant
k as the “marginal cost” for the BT -problem. At any time ¢,
if there exists a positive rate r*(¢) for which the marginal cost
is k, that rate is chosen as the transmission rate; otherwise, the
transmission rate is 0, and no data is transmitted.

For positive transmission rate, since the marginal cost (or the
first derivative of g(r, t) with respect to r) is the same for all ¢, it
implies that infinitesimal changes in the rate would not change
the total energy cost. This observation is intuitive, since, oth-
erwise, we could decrease the rate over the intervals when the
marginal cost is high and correspondingly increase the rate over
the intervals when the marginal cost is low, thereby reducing the
total energy cost and violating the optimality claim. Now, for all
¢ such that r°P*(¢) = 0, we must have 2g(r,t)|,>0 > k. This
means that at all such times, the marginal cost is high, and it is
relatively costly to transmit the data; hence, the optimal policy
chooses a zero rate.

As compared to the time-invariant power-rate function case,
clearly the optimal rate now is not constant over time; how-
ever, interestingly, the marginal cost is constant. Thus, the con-
stant slope property from before translates into a constant mar-
ginal-cost property. As a check, if we remove the time depen-
dence in g(r,t), then 7*(¢) would be a constant. This gives
roPY(t) = r*, and from [ r°P'(t)dt = B, we get1* = Z.
Thus, the optimal solution is constant-rate transmission in con-
formity with the result in Section III-B.

As concrete examples for illustration, we now specialize (18)
to two specific forms of g(r,t)—namely, the Monomial class
and the Exponential class of functions.

Example 4 (Monomial Class): Let g(r,t) = %7 n >
1, ¢(t) > 0, be the class of positive monomial functions,
with ¢(t) representing the channel gain or the time-dependent
parameter. For any positive constant k —) = k
gives

’ ()r C(t)

r*(t) = (’“’T(t))—

Since k and c(t) are positive, we have r*(¢) > 0, V¢, and from
1
(18) we get roP(t) = (kCT(t)) "~ The value of k, such that

. o . . T
the deadline constraint is met is obtained from f ToPY(¢ )dt

19)

B, which gives k7T = B where N = fo (t)/n)==TdLt.
¥
Substituting back in r°P*() finally gives
1
B t n—1
ropt (1) = 2 (@) . (20)
¥\ n

Example 5 (Exponential Class): Let g(r,t) = Cr(t_)l, a >

1, ¢(t) > 0, be the class of exponential functions, with c(t)
being the time-dependent parameter. Note that taking o = 2

and c(t) = |h(t)|? gives the Shannon formula for the power per
bit. For the exponential case, 22 (g;’t) = tztl)“(a) = k gives
In(k) —In(1
(1) - e (0, BB = n(m@)/e0)Y
In(a)

The value of %k such that the deadline constraint is met is ob-
tained from fOT max (0, W dt = B

Returning back to the solution in (18), we next show an inter-
esting monotonicity property with respect to the marginal cost k.
This is presented in the lemma below.

Lemma 7 Let r°pt( ) be given by (18) for some £ > 0
and D°Pt(t f 7°P*(s)ds. Then, D°P*(t) is monotonically
nondecreasmg in k, unique for a given value of k£ and zero
throughout for ¥ = 0. Furthermore, for D°P*(T') = B > 0,
there is a unique positive value of £ that achieves it.

Proof: See Appendix F. [ |

From the above lemma, we see that, given B and 7', a binary
search would be sufficient to obtain the value k& numerically.

2) General Case: Thus far, we have presented results for
the BT -problem; these can now be generalized to the setup
with general A(t) and Dy, (t) curves. Theorem 5 gives the
optimality criterion for this case and is a generalization of
Theorem 1 presented earlier. It states that, if there exists
any two points on an admissible departure curve that can
be replaced with a constant marginal-cost solution without
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violating the admissibility constraints, the new departure
curve obtained will have a lower energy cost. The nota-
tion “constant marginal-cost curve over time-interval [a,b]
between data-points [Bi, Ba]” will refer to the departure
curve, L(t), obtained using the solution in (18) as follows:
L(a) = By, L(t) = L(a) + [ r(s)ds, t € [a,b], where
r(s) = max(0,7*(s)) and marginal-cost k is chosen such
that L(b) = B. From Lemma 7, this value of k£ and the
corresponding L(t) are unique.

Theorem 5 (Optimality Criterion): Let D(t) be an admissible
departure curve and L(t) be the constant marginal-cost curve
over time-interval [a, b] between data points [D(a), D(b)], 0 <
a < b < T.If L(t) is admissible, i.e., Dyin(t) < L(t) < A(?)

and L(t) #Z D(t), the new departure curve D(¢) constructed as

D(t)=D(t), t €]0,a)
=L(t), t € [a,b]
D(t), t € (b,T]

satisfies £(D(t)) < £(D(t)), where &(-) is as given in (17).
Proof: First, note that since L() is admissible, the new
curve D(t) is also admissible. Consider

5(13(t))—5(D(t))=5(L(t))—/ g(D'(t),t)dt.  (22)

From Lemmas 6 and 7, we know that L(t) is the unique curve
that has the least energy cost among all departure curves that
would transmit (D(b) — D(a)) units of data over time interval
[a,b]. Thus, E(L(t)) < fab g(D'(t), t)dt, which completes the
proof.

From the above theorem, we see that, whenever admissible,
segments of the optimal departure curve follow the constant
marginal-cost curve. This property translated into constant-rate
(straight line) segments in the time-invariant power-rate func-
tion case, as outlined earlier in Theorem 1. Thus, we see that
the pictorial representation and the properties from the time-in-
variant case apply here in terms of constant marginal costs. Last,
as illustrative examples for the time-varying case, we revisit Ex-
amples 1 and 2 in Section III-C and obtain the departure curve
that satisfies the optimality criterion. The algorithms presented
below are obtained by translating the respective ones from the
time-invariant case, where, instead of constant-slope segments,
we will be seeking constant marginal-cost segments.

Example 6: Consider the setup in Example 1 ,where there
is a stream of N packet arrivals and a deadline 7" by which
all the data must depart. The curves A(t) and D, (t) for this
problem are depicted in Fig. 7. To obtain the departure curve
satisfying the optimality criterion, proceed as follows. Start at
time O; let {k;}, 7 = 1,..., N be the marginal costs to meet
each of (¢, A%) points individually; i.e., k; is the marginal
cost associated with optimally transmitting A’ bits over time
[0,7]. Let kmin be the minimum among {k;} and in;, the
corresponding index of the minimizing jump point. The first
segment of D°PY(¢) is then the constant marginal-cost solution
between [0, timin] with marginal cost kuin. Now, starting at
(timin | A%min) | repeat the algorithm by shifting the origin to
this point and considering the jump points beyond i, i.e.,
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considering all 7 such that #* > t¢min_ Finally, the algorithm
stops when timin = T,

Example 7: Consider the setup in Example 2 where the queue
has M data packets, with the jth packet having b; bits and a
deadline ¢;, j = 1, .., M. For this problem, the curves A(t) and
Din(t) are shown in Fig. 9(a). As in the previous example,
the departure curve satisfying the optimality criterion is con-
structed as follows. At time 0, let {k;}, j = 1,..., M be the
marginal costs to meet the (¢;, B;) points; i.e., k; is the mar-
ginal cost associated with optimally transmitting B; bits over
time [0,¢;]. Let kmax be the maximum among {k;} and jmax
be the corresponding index of the maximizing jump point. The
first segment of D°Pt(¢) is then the constant marginal-cost so-
lution between [0, ¢;, | with marginal cost kmax. Now, starting
at (t,.... Bj....), repeat the algorithm by shifting the origin to
this point and considering the jump points beyond ¢; The
algorithm finally stops at the step whent; = T.

max

max *

V. CONCLUSION

We considered the problem of transmitting QoS constrained
data over a finite-time horizon with minimum transmission en-
ergy expenditure. The problem was formulated using a calculus
approach and posed as a continuous-time optimization. This
novel formulation provided a graphical visualization of the
problem and an appealing “string visualization” for the optimal
policy. Utilizing the general solution, we considered various
examples and presented the optimal policy under these setups.
An online policy was also developed, and it was shown through
simulation results to provide significant gains compared to the
head-of-line drain policy. The energy minimization formulation
was then extended to incorporate a time-varying power-rate
function.

The continuous-time, cumulative curves approach taken in
this paper leads to a simple optimal solution and avoids many of
the complications associated with discrete-time approaches and
dynamic programming. Hence, we believe that this approach
provides promise for future research into issues related to delay
and QoS constraints in wireless networks. Promising extensions
to this work include the consideration of multiple users and mul-
tihop traffic.

APPENDIX A
PROOF OF THEOREM 2—UNIQUENESS

Let us assume that the admissible departure curve satisfying
the optimality criterion, D(¢), is not unique. Let D1(¢) and
D5(t) be two such distinct curves. From the boundary condi-
tions, we have D1(0) = D2(0) = 0 and D1(T) = Do(T) =
Duin(T). Since Dy(t) # Da(t), the two curves must differ
over some time interval in [0,7"]. Let ¢t = a be the first instant
at which the two curves differ and ¢ = b be the first time in-
stant after ¢ = a at which they are equal again. Note thatb < T
as D1(T) = Dy(T) at time T'. Without loss of generality, let
Dq(t) > Ds(t),t € (a,b). From the admissibility of the two
curves, we have

Duin(t) < Da(t) < Di(t) < A(t), t € (a,b).  (23)

By assumption, since both curves D;(t) and Ds(t) satisfy the
optimality criterion, Lemmas 2—4 apply for points of slope
changes. As D1 (t) is strictly greater than D, (t) int € (a,b),
it follows from those lemmas that its slope cannot decrease in
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(a,b). This implies that D1 (¢) is convex in (a,b) (it could be
linear as well). Similarly, as Ds(t) is strictly less than A(%)
int € (a,b), its slope cannot increase, and hence it must be
concave in (a, b). It is clear that starting with D1 (a) = Da(a)
and having D1 (t) convex and Ds(t) concave in t € (a,b), the
two curves cannot be equal again at ¢ = b, which leads to a
contradiction. Finally, if both curves are linear in (a,b) with
equality at t = a and ¢ = b, then this violates the assumption
that Dy (t) # Da(t), t € (a,b).

To show that D(t) minimizes the energy cost in (3), we pro-
ceed as follows. First, as defined in the problem statement in
(3), we have D(t) € T, where I is the set of all nondecreasing,
continuous functions with bounded right-derivative for all ¢ €
[0, T']. In addition, we also assume that | D’ (¢)| < M, VYD(t) €
I, Vt € [0,T], where M > 0 is chosen large enough so that
all practical policies of interest (with finite-energy cost) are in-
cluded in T'. Also, the curves A(t) and D, (t) are assumed to
have a bounded right-derivative for all ¢ € [0, T].

Let B denote the space of continuous functions defined on
[0, 7] with the supremum norm, ) f(1); this
space is then a Banach space [28]. Let €2 denote the set of
all admissible departure curves, i.e., {D(¢) : D(t) € T and
Dpnin(t) < D(t) < A(t)}. We then have Q C B. First, we claim
that (2 is a convex set. To see this, consider D1 (), Do(t) € Q
and let D3(t) = zD1(t) + (1 — 2)Ds(t), = € [0,1]. Since
D1 (¢), Do(t) are continuous, nondecreasing and have bounded
right-derivative, it is easy to see that D3(t) also has these prop-
erties. Furthermore, we also have D i, () < D1 (t) < 2A(%)
and (1 — 2)Dpin(t) < (1 — z)Do(t) < (1 — z)A(t), which
gives Dnin(t) < D3(t) < A(t); thus, the causality and the
QoS constraints are also satisfied. Next, we show that Q is
compact. To see this, consider a sequence of admissible depar-
ture curves {D, ()} ,. Since |D'(t)] < M, VD(t) € Q,
we have |D,(t2) — Dn(t1)] < M|tz — t1], which makes
the sequence of functions {D,(¢)} form an equicontinuous
family of functions. From [28, Thm. 7.25, p. 158], it then
follows that there is a subsequence that converges in the
supremum norm. Thus, this limit function is continuous, and
since D, (t) satisfies the causality and the QoS constraints
for all n, it is satisfied by the limit function as well. Hence,
the limit function lies in €2, and we see that ) is compact.
Now, consider the energy cost function £(D(t)) as given
in (3), with g(-) being strictly convex. We next show that
E(D(t)) is also strictly convex. Consider D+ (t), D2(t) € Q

and let D3(t) = xzDq(t ) (1 - x)DZ( ), = € [0,1].
Then, &(Ds(t)) = fo g(zDi(t) + (1 — =z)D4(t))dt
< fOT (zg(Dy(t)) + (1 —x)g (D’( )))dt. Thus, we see

that £(D3(t)) < 2€(D1(t)) + (1 — 2)E(D>(t)). From above,
we see that (3) involves an optimization of a strictly convex
functional over a compact convex set. Thus, it has a unique
minimizer in [30]. From Theorem 1, the necessary condition
for any admissible departure curve to be the minimizer is that
it must satisfy the optimality criterion, and since such a curve
is unique, it must be the optimal solution.

APPENDIX B
PROOF OF THEOREM 3—MINIMAL MAXIMUM POWER

Consider an admissible departure curve D(t) that is not op-
timal. Let [a, b] be the interval over which the optimality crite-
rion is violated. Then, based on the construction in Theorem 1,

we obtain a new curve D(t) that is also admissible. The line
segment L(t) between [a, b] in D(t) always has a slope that is
less than the maximum slope of D(t) between [a, b). As D(t) =
D(t),t & (a,b), the overall maximum slope of D() cannot ex-
ceed that of D(t). Thus

max D'(t) < max D'(t).
t€[0,T) te[0,T)

(24)
If D(t) = D°Pt(t), then we are done. If not, proceed as follows.

From Theorem 2, we know that D°P'(¢) is unique and
minimizes the energy cost for any nonnegative, convex in-
creasing power-rate function g(r). In particular, consider
the sequence of functions g,(r) = r™. For any D(t), we

1/n
(W)ndt) " = maxiep.r D/(0).

Since D°P'(t) minimizes the integral for all n, we obtain
max;¢o,7)(DP") () < max,ejo,7) D'(t) as required.

know that lim,, ... ( e

APPENDIX C
PROOF OF LEMMA 5

a) Let £ be the point at which Lp(#) intersects Dy, () first.
By definition, Lp(t) < A(t),Vt € (to,t). The proof now fol-
lows in two parts. First, we show that any line in F with slope
less than L', must intersect D min(t) at or before t, and second,
that this line does not intersect A(t) in (to, ). Consider L(t) €
F with slope less than L’,; then, L(t) < Lp(t),Vt > to.
Hence, at time #, we have L(t) < Lp(t) = Duin(#). If instead,
t is the dlscontlnmty point for Dypin(t), then, Lp(t) — Dmin(t)
changes sign at, and so L () — Dy, (t) must have changed sign
earlier at t < f. Thus, we see that L(t) must intersect D, () at
or before 7. Next, since L(t) < Lp(t) < A(t)int € (to,%), the
line L(t) cannot intersect A(t) first. This completes the proof
of part a) in the lemma. Along similar lines as above, part b)
follows.

APPENDIX D
PROOF OF OPTIMALITY FOR THE D°P(#) ALGORITHM

From Theorem 2, we know that D°P*(¢) is unique. Hence,
it suffices to prove that the constructed curve satisfies the opti-
mality criterion.

Let D.(t) denote the constructed curve. It is obvious from
the construction that, at all points where the slope changes,
Lemma 2 is satisfied. We next show that Lemmas 3 and 4 are
also satisfied. Let tg be the starting instant at some iteration
and suppose that L, intersects D,,i,(¢) first, i.e., at ¢1 (as in
the algorithm) we have L,(t1) = Dpin(t1). Also, suppose that
Lo(t1) # A(t7). From the chosen ¢; in step 2, it is clear that
Lo(t) < A(t) in (to,t1]. Thus, if we pick a line Ly € F4 with
slope close to L/ (= 3,), then L1 would intersect A(¢) beyond
t1. More precisely, there exists an € > 0 such that any L1 € F'4
with slope 3, < L} < (3, + € intersects A(t) first at > #;.
Now, it follows that at the next iteration, starting from time %1,
the new set F4 must at least contain all lines with slopes in
(8o, Bs + €). Hence, the optimal line starting at time ¢; (at the
new iteration) cannot have slope greater than (3, (3, here refers
to the optimal slope for the iteration at ¢(). Thus, we see that
Lemma 3 is satisfied at ¢;.



910

Similarly, if in step 2, we have L,(t1) = A(t1)(or A(t])),
then, using a similar argument as above, it can be seen that
starting from time ¢;, the new set Fp  must at least contain
all lines with slopes in (53,, 3, — ¢€). Hence, the optimal line
starting at time ¢ cannot have slope less than /3,, and this shows
that Lemma 4 is satisfied at ¢;. Note that, if at ¢; we have
Lo(t1) = Dmin(t1) = A(t7), then it does not matter how the
slope changes beyond ¢;.

Thus, we see that starting at (0, 0), at every iteration of the al-
gorithm (every constructed segment of D, (t)), Lemmas 2—4 are
satisfied. This implies that around every point where the slope of
D.(t) changes, we cannot construct an admissible line segment
(as outlined in Theorem 1); hence, D..(t) satisfies the optimality
criterion.

APPENDIX E
PROOF OF LEMMA 6

As presented in Section III-B, the two curves A(t) and
D in(t) for the BT-problem are A(t) = B, Vt € [0,T], and
Dpin(t) = 0,t € [0,T), Dupin(T) = B. The admissibility
criterion is 0 < D(t) < B and D(T) = B. Rephrasing the
BT-problem as a calculus of variations problem, we get [29]

min
(1)
subject to

T
&) = [ atrie).
D'(t)=r(t), D(T)=B
r(t) >0, t €[0,7]. (25)
Using [29], the Hamiltonian for the above is H(D,r,t) =
g(r,t) + A(t)r, and from Pontryagin’s maximum prin-
ciple (which is also a sufficient condition in our case due
to convexity), the optimal value r°Pt(t) satisfies 7°P*(¢) =
argmax,>o H(DP*,r,t) = argmax,>o (g(r,t) + A(t)r).
We also have A\(t) = —98 = 0, which implies A(t) =
constant. Taking & = —A(¢) as the constant and sub-
stituting back in the r°P'(¢) equation, we get, 7°P*(t) =
arg max,>o (g(r,t) — kr). The solution to this maximization
is as given in (18). Since g(r, t) is strictly convex and increasing
in r, we have that 7* is unique. Finally, to ensure that a total of
B units of data is transmitted by the deadline 7', the value of k
must be chosen such that fOT r°P(t)dt = B.

APPENDIX F
PROOF OF LEMMA 7

Let k1, ko be two positive values such that 0 < k1 < ko. Let
rzpt(t) szt( ) be the corresponding optimal rate functions as
given in (18). Suppose at time ¢t we have rzll’t (t) > 0. Then,
due to strict convexity, % g(r,t) is an increasing function of ,
and since ko > ki, the unique r* value for ko must be greater

than for k1. This gives, r}” “(t) > ert (t). If instead at time ¢
we have r?(¢) = 0, then, r°pt (t) can be either O or positive.

Thus, we see that r“pt(t) > r"pt( t), Vt, with equality only if
both are zero. This shows that D°Pt (t) is nondecreasing in k.
For a given k value, the uniqueness of D°P*(t) follows since *
is unique due to strict convexity.
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Now suppose k = 0. Then, since g(r, t) is increasing in r, we
have -2 5e9(r,t) >0, Vr (a nonnegative function of ). However,
we also know that -2 5-9(r,t) is an increasing function in r; thus,
there cannot be any positive r* such that 2 g(r, )| = 0
(= k as taken). This gives 7°P*(¢) = 0 and DOPt( ) =0, Vt.

Finally, suppose that D°P*(T') = B > 0 and let k1, ko be two
distinct % values such that [ 7} Opt (s)ds = T Opt( )ds = B.
Without loss of generality, assume ko > kl. From the ear-

lier arguments, we know that whenever rift(t) > 0, we have

PP (t) > rpP'(t). Since B > 0, an interval exists over which

rpPt(t) > 0. Thus, we see that Jr P (s)ds < ) et (s)ds,
which leads to a contradiction; hence there is a unique k value
that achieves D°P*(T) = B.
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