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Fundamental Limits of Wideband Localization—
Part I: A General Framework

Yuan Shen, Student Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—The availability of position information is of great im-
portance in many commercial, public safety, and military applica-
tions. The coming years will see the emergence of location-aware
networks with submeter accuracy, relying on accurate range mea-
surements provided by wide bandwidth transmissions. In this two-
part paper, we determine the fundamental limits of localization
accuracy of wideband wireless networks in harsh multipath envi-
ronments. We first develop a general framework to characterize
the localization accuracy of a given node here and then extend our
analysis to cooperative location-aware networks in Part II. In this
paper, we characterize localization accuracy in terms of a perfor-
mance measure called the squared position error bound (SPEB),
and introduce the notion of equivalent Fisher information (EFI) to
derive the SPEB in a succinct expression. This methodology pro-
vides insights into the essence of the localization problem by uni-
fying localization information from individual anchors and that
from a priori knowledge of the agent’s position in a canonical form.
Our analysis begins with the received waveforms themselves rather
than utilizing only the signal metrics extracted from these wave-
forms, such as time-of-arrival and received signal strength. Hence,
our framework exploits all the information inherent in the received
waveforms, and the resulting SPEB serves as a fundamental limit
of localization accuracy.

Index Terms—Cramér–Rao bound (CRB), equivalent Fisher in-
formation (EFI), information inequality, localization, ranging in-
formation (RI), squared position error bound (SPEB).

I. INTRODUCTION

L OCATION-AWARENESS plays a crucial role in
many wireless network applications, such as local-

ization services in next generation cellular networks [1],
search-and-rescue operations [2], [3], logistics [4], and blue
force tracking in battlefields [5]. The global positioning system
(GPS) is the most important technology to provide loca-
tion-awareness around the globe through a constellation of at
least 24 satellites [6], [7]. However, the effectiveness of GPS is
limited in harsh environments, such as in buildings, in urban
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Fig. 1. Location-aware networks: the anchors (A, B, C, and D) communicate
with the agents (1 and 2), and each edge denotes a connection link between
anchor and agent.

canyons, under tree canopies, and in caves [8], [9], due to the
inability of GPS signals to penetrate most obstacles. Hence,
new localization techniques are required to meet the increasing
need for accurate localization in such harsh environments [8],
[9].

Wideband wireless networks are capable of providing ac-
curate localization in GPS-denied environments [8]–[12].
Wide bandwidth or ultrawide bandwidth (UWB) signals are
particularly well suited for localization, since they can provide
accurate and reliable range (distance) measurements due to
their fine delay resolution and robustness in harsh environments
[13]–[20]. For more information about UWB, we refer the
reader to [21]–[26].

Location-aware networks generally consist of two kinds of
nodes: anchors and agents. Anchors have known positions (for
example, through GPS or system design), while agents have un-
known positions and attempt to determine their positions (see
Fig. 1). Each node is equipped with a wideband transceiver, and
localization is accomplished through the use of radio commu-
nications between agents and their neighboring anchors. Local-
izing an agent requires a number of signals transmitted from
the anchors, and the relative position of the agent can be in-
ferred from these received waveforms using a variety of signal
metrics. Commonly used signal metrics include time-of-arrival
(TOA) [8], [9], [17]–[20], [27]–[30], time-difference-of-arrival
(TDOA) [31], [32], angle-of-arrival (AOA) [9], [33], and re-
ceived signal strength (RSS) [9], [34], [35].

Time-based metrics, TOA and TDOA, are obtained by mea-
suring the signal propagation time between nodes. In ideal sce-
narios, the estimated distance equals the product of the known
propagation speed and the measured signal propagation time.

0018-9448/$26.00 © 2010 IEEE
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The TOA metric gives possible positions of an agent on a circle
with the anchor at the center, and it can be obtained by either
the one-way time-of-flight of a signal in a synchronized net-
work [18], [19], [28], [29], or the round-trip time-of-flight in a
nonsynchronized network [26], [36]. Alternatively, the TDOA
metric provides possible positions of an agent on the hyperbola
determined by the difference in the TOAs from two anchors lo-
cated at the foci. Note that TDOA techniques require synchro-
nization among anchors but not necessarily with the agent.

Another signal metric is AOA, the angle at which a signal
arrives at the agent. The AOA metric can be obtained using an
array of antennas, based on the signals’ TOAs at different an-
tennas.1 The use of AOA for localization has been investigated,
and many hybrid systems have been proposed, including hy-
brid TOA/AOA systems [30], [41], and hybrid TDOA/AOA sys-
tems [42]. However, some of these studies employ narrowband
signal models, which are not applicable for wideband antenna
arrays. Others are restricted to far-field scenarios or use far-field
assumptions.

RSS is also a useful metric for estimating the propagation dis-
tance between nodes [9], [34], [36]. This metric can be measured
during the data communications using low-complexity circuits.
Although widely implemented, RSS has limited accuracy due
to the difficulty in precisely modeling the relationship between
the RSS and the propagation distance [4], [9].

Note that the signal metrics extracted from the received wave-
forms may discard relevant information for localization. More-
over, models for the signal metrics depend heavily on the spe-
cific measurement processes.2 Therefore, in deriving the funda-
mental limits of localization accuracy, it is necessary to utilize
the received waveforms rather than the signal metrics extracted
from the waveforms [28], [29], [46], [47].

Since the received waveforms are affected by random phe-
nomena such as noise, fading, shadowing, multipath, and
nonline-of-sight (NLOS) propagations [48], [49], the agents’
position estimates are subject to uncertainty. The Cramér–Rao
bound (CRB) sets a lower bound on the variance of esti-
mates for deterministic parameters [50], [51], and it has been
used as a performance measure for localization accuracy [52].
However, relatively few studies have investigated the effect of
multipath and NLOS propagations on localization accuracy.
Multipath refers to a propagation phenomenon in which a
transmitted signal reaches the receive antenna via multiple
paths. The superposition of these arriving paths results in
fading and interference. NLOS propagations, created by phys-
ical obstructions in the direct path, produce a positive bias in
the propagation time and decrease the strength of the received
signal, which can severely degrade the localization accuracy.
Several types of methods have been proposed to deal with
NLOS propagations: 1) treat NLOS biases as additive noise

1The AOA metric can be obtained in two ways, directly through measure-
ment by a directional antenna, or indirectly through TOA measurements using
an antenna array [37]–[40]. Wideband directional antennas that satisfy size and
cost requirements are difficult to implement, since they are required to perform
across a large bandwidth [36]. As such, antenna arrays are more commonly used
when angle measurement for wide bandwidth signals is necessary.

2For instance, the error of the TOA metric is commonly modeled as an addi-
tive Gaussian random variable [8], [30], [43]. This model contradicts the studies
in [18]–[20], [44], and [45], and the experimental results in [8] and [16].

injected in the true propagation distances [8], [53], [54]3; 2)
identify and weigh the importance of NLOS signals for local-
ization [55]–[60]; or 3) consider NLOS biases as parameters
to be estimated [27]–[30], [46], [47], [61], [62]. The authors
in [8], [9], [28], and [29] showed that NLOS signals do not
improve localization accuracy unless a priori knowledge of the
NLOS biases is available, but their results were restricted to
specific models or approximations. Moreover, detailed effects
of multipath propagations on localization accuracy remains
underexplored.

In this paper, we develop a general framework to determine
the localization accuracy of wideband wireless networks.4 Our
analysis begins with the received waveforms themselves rather
than utilizing only signal metrics extracted from the waveforms,
such as TOA, TDOA, AOA, and RSS. The main contributions
of this paper are as follows.

• We derive the fundamental limits of localization accuracy
for wideband wireless networks, in terms of a performance
measure called the squared position error bound (SPEB),
in the presence of multipath and NLOS propagation.

• We propose the notion of equivalent Fisher information
(EFI) to derive the agent’s localization information. This
approach unifies such information from different anchors
in a canonical form as a weighed sum of the direction ma-
trix associated with individual anchors with the weights
characterizing the information intensity.

• We quantify the contribution of the a priori knowledge of
the channel parameters and agent’s position to the agent’s
localization information, and show that NLOS compo-
nents can be beneficial when a priori channel knowledge
is available.

• We derive the performance limits for localization systems
employing wideband antenna arrays. The AOA metrics ob-
tained from antenna arrays are shown not to further im-
prove the localization accuracy beyond that provided by
TOA metric alone.

• We quantify the effect of clock asynchronism between
anchors and agents on localization accuracy for networks
where nodes employ a single antenna or an array of
antennas.

The rest of the paper is organized as follows. Section II
presents the system model, the notion of the SPEB, and the
Fisher information matrix (FIM) for the SPEB. In Section III,
we introduce the notion of EFI and show how it can help
the derivation of the SPEB. In Section IV, we investigate
the performance of localization systems employing wideband
antenna arrays. Section V investigates the effect of clock
asynchronism between anchors and agents. Discussions are
provided in Section VI. Finally, numerical illustrations are
given in Section VII, and conclusions are drawn in the last
section.

Notations: The notation is the expectation operator
with respect to the random vector ; denotes that the

3In practice, however, an NLOS induced range bias can be as much as
a few kilometers depending on the propagation environment [48], [55],
and small perturbation may not compensate for NLOS induced error.

4In Part II [63], we extend our analysis to cooperative location-aware
networks.
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matrix is positive semidefinite; is the trace of a
square matrix; denotes the upper left submatrix
of its argument; is the element at the th row and th
column of its argument; is the Euclidean norm of its ar-
gument; and the superscripts represents the transpose of its
argument. We denote by the probability density function
(pdf) of the random vector unless specified otherwise,
and we also use in the paper the following function for the FIM:

where can be either a vector or a symbol.5

II. SYSTEM MODEL

In this section, we describe the wideband channel model [14],
[21], [24], [26], [64], formulate the problem, and briefly review
the information inequality and Fisher information. We also in-
troduce the SPEB, which is a fundamental limit of localization
accuracy.

A. Signal Model

Consider a wireless network consisting of anchors and
multiple agents. Anchors have perfect knowledge of their posi-
tions, and each agent attempts to estimate its position based on
the received waveforms from neighboring anchors (see Fig. 1).6

Wideband signals traveling from anchors to agents are subject
to multipath propagation.

Let denote the position of the agent,7 which
is to be estimated. The set of anchors is denoted by

, where denotes
the set of anchors that provide line-of-sight (LOS) signals to
the agent and denotes the set of remaining anchors that
provide NLOS signals to the agent. The position of anchor is
known and denoted by . Let denote the
angle from anchor to the agent, i.e.,

where and .
The received waveform at the agent from anchor can be

written as

(1)

where is a known wideband waveform whose Fourier
transform is denoted by , and are the amplitude
and delay, respectively, of the th path, is the number of
multipath components (MPCs), represents the obser-
vation noise modeled as additive white Gaussian processes

5For example, � is replaced by symbol ����� in the case that ���� is a condi-
tional pdf of � given ���.

6Agents estimate their positions independently, and hence without loss of
generality, our analysis focuses on one agent.

7We first focus on 2-D cases and then extend the results to 3-D cases where
� � .

with two-side power spectral density , and is
the observation interval. The relationship between the agent’s
position and the delays of the propagation paths is

(2)

where is the propagation speed of the signal, and

is a range bias. The range bias for LOS propagation,

whereas for NLOS propagation.8

B. Error Bounds on Position Estimation

Our analysis is based on the received waveforms given by (1),
and hence the parameter vector includes the agent’s position
and the nuisance multipath parameters [9], [62], i.e.,

where is the vector of the multipath parameters associated
with , given by

Note that for and is excluded from .
We introduce as the vector representation of all the received

waveforms , given by

where is obtained from the Karhunen–Loeve expansion of
[50], [51]. Let denote an estimate of the parameter vector

based on observation . The mean squared error (MSE) matrix
of satisfies the information inequality [50], [51], [65]

(3)

where is the FIM for the parameter vector .9 Let be an
estimate of the agent’s position, and it follows from (3) that10

and hence

(4)

8LOS propagation does not introduce a range bias because there is an un-
blocked direct path. NLOS propagation introduces a positive range bias be-
cause such signals either reflect off objects or penetrate through obstacles. In
this paper, received signals whose first path undergoes LOS propagation are re-
ferred to as LOS signals, otherwise these signals are referred to as NLOS signals.

9When a subset of parameters is random, � is called the Bayesian infor-
mation matrix. Inequality (3) also holds under some regularity conditions and
provides lower bound on the MSE matrix of any unbiased estimates of the de-
terministic parameters and any estimates of the random parameters [50], [65].
With a slight abuse of notation, �� ��� will be used for deterministic, hybrid,
and Bayesian cases with the understanding that the expectation operation is not
performed over the deterministic components of ���.

10Note that for 3-D localization, we need to consider a ���matrix � .
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Therefore, we define the right-hand side of (4) as a measure to
characterize the limits of localization accuracy as follows.

Definition 1 (SPEB): The SPEB is defined to be

C. Fisher Information Matrix

In this section, we derive the FIM for both deterministic and
random parameter estimation to evaluate the SPEB.

1) FIM Without a Priori Knowledge: The FIM for the deter-
ministic parameter vector is given by [50]

(5)

where is the likelihood ratio of the random vector con-
ditioned on . Since the received waveforms from different an-
chors are independent, the likelihood ratio can be written as [51]

(6)

where

Substituting (6) in (5), we have the FIM as

(7)

where , , , and are given by (41) and (42). In the
above matrices, and are related to the LOS signals, and

and are related to the NLOS signals.
2) FIM With a Priori Knowledge: We now incorporate the a

priori knowledge of the agent’s position and channel parameters
for localization. Since the multipath parameters are indepen-
dent a priori, the pdf of can be expressed as11

(8)

where is the pdf of the agent’s position, and is the
joint pdf of the multipath parameter vector conditioned on
the agent’s position. Based on the models of wideband channels
[36], [40], [64] and UWB channels [14], [21], [24], [26], [36],
we derive in (52) in Appendix II and show that

(9)

where .
The joint pdf of observation and parameters can be written as

11When a subset of parameters are deterministic, they are eliminated from
������.

where is given by (6), and hence the FIM becomes

(10)

where and are the FIMs
from the observations and the a priori knowledge, respec-
tively.12 The FIM can be obtained by taking the expectation
of in (7) over the random parameter vector , and can be
obtained by substituting (8) in (10) as

...
. . .

(11)

where describes the FIM from the a priori knowledge of ,
given by

and , , and
characterize the joint a priori knowl-

edge of and .

D. Equivalent Fisher Information Matrix

Determining the SPEB requires inverting the FIM in (7)
and (10). However, is a matrix of high dimensions, while
only a small submatrix is of interest. To circumvent
direction matrix inversion and gain insights into the localization
problem, we first introduce the notions of EFI [46], [47].

Definition 2 (Equivalent Fisher Information Matrix): Given
a parameter and the FIM of the form

(12)

where , , , , and
with , the equivalent Fisher information

matrix (EFIM) for is given by13

(13)

Note that the EFIM retains all the necessary information to
derive the information inequality for the parameter vector ,
since ,14 and the MSE matrix of the esti-
mates for is bounded below by . For 2-D localization

, we aim to reduce the dimension of the original FIM to
the EFIM.

12Note that � in (10) requires averaging over the random parameters, and
hence does not depend on any particular value of ���. In contrast, � in (5) is a
function of a particular value of the deterministic parameter vector ���.

13Note that� ���� � does not depend on any particular value of ��� for a random
parameter vector ��� , whereas it is a function of ��� for a deterministic parameter
vector ��� .

14The right-hand side of (13) is known as the Schur complement of the matrix
� [66].
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III. EVALUATION OF EFIM

In this section, we apply the notion of EFI to derive the SPEB
for both the case with and without a priori knowledge. We also
introduce the notion of ranging information (RI), which turns
out to be the basic component of the SPEB.

A. EFIM Without a Priori Knowledge

First consider a case in which a priori knowledge is unavail-
able. We apply the notion of EFI to reduce the dimension of the
original FIM in (7), and the EFIM for the agent’s position is
presented in the following proposition.

Proposition 1: When a priori knowledge is unavailable, an
EFIM for the agent’s position is

(14)

where and are given by (41) and (42), respectively.
Proof: Let ,

, and in (7). Applying the notion of EFI in
(13) leads to the result.

Remark 1: When a priori knowledge is unavailable, NLOS
signals do not contribute to the EFIM for the agent’s position.
Hence, we can eliminate these NLOS signals when analyzing lo-
calization accuracy. This observation agrees with the results of
[29], but the amplitudes of the MPCs are assumed to be known
in their model.

Note that the dimension of the EFIM in (14) is much larger
than . We will apply the notion of EFI again to further re-
duce the dimension of the EFIM in the following theorem. Be-
fore the theorem, we introduce the notion of the first contiguous
cluster and RI.

Definition 3 (First Contiguous Cluster): The first contiguous
cluster is defined to be the set of paths , such that

for , and ,
where is the duration of .

Definition 4 (RI): The RI is a matrix of the form ,
where is a nonnegative number called the ranging information
intensity (RII), and a matrix called the ranging
direction matrix (RDM) with angle , given by

The first contiguous cluster is the first group of nondisjoint
paths (see Fig. 2).15 The RDM is 1-D along the direction

with unit intensity, i.e., has one (and only one)
nonzero eigenvalue equal to with corresponding eigenvector

Theorem 1: When a priori knowledge is unavailable, the
EFIM for the agent’s position is a matrix

(15)

15The first contiguous cluster, defined for general wideband received signals,
may contain many MPCs. Two paths that arrive at time � and � are called
nondisjointed if �� � � � � � .

Fig. 2. An illustration of the first contiguous cluster (containing � paths) in a
LOS signal.

where is the RII from anchor , given by

(16)

In (16), is given by (59)

(17)

and

(18)

Furthermore, only the first contiguous cluster of LOS signals
contains information for localization.

Proof: See Appendix III-A.

Remark 2: In Theorem 1, is known as the effective band-
width [50], [67], is called path-overlap coefficient (POC) that
characterizes the effect of multipath propagation for localiza-
tion, and is the SNR of the th path in . We draw
the following observations from Theorem 1.

• The original FIM in (7) can be transformed into a simple
EFIM in a canonical form, given by (15), as a

weighted sum of the RDM from individual anchors. Each
anchor (e.g., anchor ) can provide only 1-D RI along the
direction , from the anchor to the agent, with intensity

.16

• The RII depends on the effective bandwidth of , the
SNR of the first path, and the POC. Since ,
path overlap in the first contiguous cluster will reduce the
RII, thus leading to a higher SPEB, unless the signal via
the first path does not overlap with others .

• The POC in (59) is determined only by the waveform
and the NLOS biases of the MPCs in the first con-

tiguous cluster. The independence of on the path am-
plitudes seems counterintuitive. However, this is due to the
fact that, although large causes severe interpath inter-

ference for estimating the TOA , it increases the esti-

mation accuracy for , which in turn helps to mitigate
the interpath interference.

We can specialize the above theorem into a case in which the
first path in a LOS signal is completely resolvable, i.e., the first
contiguous cluster contains only a single component.

16For notational convenience, we suppress the dependence of � and � on
the agent’s position � throughout the paper.
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Corollary 1: When a priori knowledge is unavailable and the
first contiguous cluster of the received waveform from anchor
contains only the first path, the RII becomes

(19)

Proof: See Appendix III-B.

Remark 3: When the first path is resolvable, in (16)
and hence attains its maximum value. However, when the
signal via other paths overlap with the first one, these paths will
degrade the estimation accuracy of the first path’s arrival time
and hence the RII. Corollary 1 is intuitive and important: the RII
of a LOS signal depends only on the first path if the first path is
resolvable. In such a case, all other paths can be eliminated, and
the multipath signal is equivalent to a signal with only the first
path for localization.

From Theorem 1, the SPEB can be derived in (20), shown at
the bottom of the page. When the first paths are resolvable, by
Corollary 1, we have all in (20) and the corresponding

becomes the same as those based on single-path signal
models in [9], [29]. However, those results are not accurate when
the first path is not resolvable.

B. EFIM With a Priori Knowledge

We now consider the case where there is a priori knowledge
of the channel parameters, but not of the agent’s position. In
such cases, since is deterministic but unknown, is elim-
inated in (8). Similar to the analysis in the previous section, we
can derive the EFIM for the corresponding FIM in (10).

Theorem 2: When a priori knowledge of the channel pa-
rameters is available and the sets of channel parameters cor-
responding to different anchors are mutually independent, the
EFIM for the agent’s position is a matrix

(21)

where is given by (63a) for LOS signals and (63b) for NLOS
signals.

Proof: See Appendix III-C.

Remark 4: Theorem 2 generalizes the result of Theorem 1
from deterministic to hybrid parameter estimation.17 In this
case, the EFIM can still be expressed in a canonical form as
a weighed sum of the RDMs from individual anchors. Note
that due to the existence of a priori channel knowledge, the
RII of NLOS signals can be positive, and hence these signals
contribute to the EFIM as opposed to the case in Theorem 1.

Corollary 2: A priori channel knowledge increases the RII.
In the absence of such knowledge, the expressions of RII in
(63a)–(63b) reduce to (16) and zero, respectively.

17This is the case where the agent’s position� is deterministic and the channel
parameters are random.

Proof: See Appendix III-D.

Corollary 3: LOS signals can be treated as NLOS signals
with infinite a priori Fisher information of , i.e., is
known. Mathematically, (63a) is equivalent to (63b) with

.
Proof: See Appendix III-E.

Remark 5: Corollary 2 shows that Theorem 2 degenerates
to Theorem 1 when a priori channel knowledge is unavailable.
Moreover, Corollary 3 unifies the LOS and NLOS signals under
the Bayesian estimation framework: the LOS biases

can be regarded as random parameters with infinite a priori
Fisher information instead of being eliminated from as in
Section II-A. Hence, all of the signals can be modeled as NLOS,
and infinite a priori Fisher information of will be assigned
for LOS signals.

We next consider the case where a priori knowledge of the
agent’s position is available in addition to channel parameters.
Note that the topology of the anchors and the agent changes with
the position of the agent. The EFIM is given in (65),
which is more intricate than the previous two cases. To gain
some insights, we consider a special case where18

(22)

in which is the agent’s expected position, for
some function involved in the derivation of the EFIM (see
Appendix III-F).

Proposition 2: When the a priori position distribution of
the agent satisfies (22), and the sets of channel parameters cor-
responding to different anchors are mutually independent, the
EFIM for the agent’s position is a matrix

(23)

where is given by (66), and is the angle from anchor to
.

Proof: See Appendix III-F.

Remark 6: The a priori knowledge of the agent’s position
is exploited, in addition to that of the channel parameters, for
localization in Proposition 2. The expressions for the EFIM can
be involved in general. Fortunately, if (22) is satisfied, the EFIM
can be simply written as the sum of two parts as shown in (23):
a weighted sum of the RDMs from individual anchors as in the
previous two cases, and the EFIM from the a priori knowledge
of the agent’s position. This result unifies the contribution from
anchors and that from the a priori knowledge of the agent’s

18This occurs when the agent’s a priori position distribution is concentrated
in a small area relative to the distance between the agent and the anchors, so
that ���� is flat in that area. For example, this condition is satisfied in far-field
scenarios.

(20)
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Fig. 3. An antenna array is described by the reference point �, the orientation
�, and the relative positions of the antennas.

position into the EFIM. The concept of localization with a priori
knowledge of the agent’s position is useful for a wide range of
applications such as successive localization or tracking.

IV. WIDEBAND LOCALIZATION WITH ANTENNA ARRAYS

In this section, we consider localization systems using wide-
band antenna arrays, which can perform both TOA and AOA
measurements. Since the orientation of the array may be un-
known, we propose a model to jointly estimate the agent’s po-
sition and orientation, and derive the SPEB and the squared ori-
entation error bound (SOEB).

A. System Model and SOEB

Consider a network where each agent is equipped with an
-antenna array,19 which can extract both the TOA and AOA

information with respect to neighboring anchors. Let
denote the set of antennas, and let
denote the position of the agent’s th antenna,

which needs to be estimated. Let denote the angle from an-
chor to the agent’s th antenna, i.e.,

Since relative positions of the antennas in the array are usually
known, if we denote as a reference point and as
the orientation of the array,20 then the position of the th antenna
in the array can be represented as (Fig. 3)

where and denote the relative distance
in and direction from the reference point to the th antenna,
respectively.

19Each anchor has only one antenna here. We will discuss the case of multiple
antennas on anchors at the end of this section.

20Note from geometry that the orientation � is independent of the specific
reference point.

Since the array orientation may be unknown, we classify the
localization problem into orientation-aware and orientation-un-
aware cases, where can be thought of as a random parameter
with infinite (orientation-aware) and zero (orientation-unaware)
a priori Fisher information [46].

The received waveform at the agent’s th antenna from an-
chor can be written as

where and are the amplitude and delay, respectively,
of the th path, is the number of MPCs, and repre-
sents the observation noise modeled as additive white Gaussian
processes with two-side power spectral density . The rela-
tionship between the position of the th antenna and the delay
of the th path is

(24)

The parameters to be considered include the position of the ref-
erence point, the array orientation, and the nuisance multipath
parameter as

(25)

where consists of the multipath parameters associated with
the received waveforms from all anchors at the th antenna

and each consists of the multipath parameters associated
with

Similar to Section II-B, the overall received waveforms at the
antenna array can be represented, using the KL expansion, by

, where

in which is obtained by the KL expansion of .

Definition 5 (SOEB): The SOEB is defined to be

B. EFIM Without a Priori Knowledge

We first consider scenarios in which a priori knowledge is
unavailable. Following similar steps in Section III-B, we have
the following theorem.

Theorem 3: When a priori knowledge is unavailable, the
EFIMs for the position and the orientation, using an -antenna
array, are given respectively by

(26)
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and

(27)
where is given by (71), , and

(28)

and

(29)

Proof: See Appendix IV-A.

Corollary 4: The EFIM for the position is given by

(30)

for orientation-aware localization.
Proof: (Outline) In orientation-aware localization, the

angle is known and hence excluded from the parameter
vector in (25). Consequently, the proof of this corollary is
analogous to that of Theorem 3 except that the components
corresponding to are eliminated from the FIM in (67) and
(68). One can obtain (30) after some algebra.

Remark 7: The EFIM in (26) and (30) corre-
sponds to the localization information from the th antenna. We
draw the following observation from the above theorem.

• The EFIM in (26) consists of two parts: 1) the
sum of localization information obtained by individual an-
tennas, and 2) the information reduction due to the uncer-
tainty in the orientation estimate, which is subtracted from
the first part.21 Since in the second part is a posi-
tive-semidefinite matrix and
is always positive, we have the following inequality:

(31)

The inequality implies that the EFIM for the position, using
antenna arrays, is bounded above by the sum of all EFIMs
corresponding to individual antennas, since the uncertainty
in the orientation estimate degrades the localization accu-
racy, except for or orientation-aware localization
[i.e., (30)].

• The EFIM and depend only on the
individual RI between each pair of anchors and antennas
(through ’s and ’s), and the array geometry (through

’s). Hence, it is not necessary to jointly consider the re-
ceived waveforms at the antennas, implying that AOA

21For notational convenience, we suppress the dependence of � , � , and
� on the reference position �.

obtained by antenna arrays does not increase position ac-
curacy. Though counterintuitive at first, this finding should
not be too surprising since AOA is obtained indirectly by
the antenna array through TOA measurements, whereas the
TOA information has already been fully utilized for local-
ization by individual antennas.

• The gain of using antenna arrays for localization mainly
comes from the multiple copies of the waveform received
at the antennas [see (26)],22 and its performance is sim-
ilar to that of a single antenna with measurements. The
advantage of using antenna arrays lies in their ability of si-
multaneous measurements at the agent.

The equality in (31) is always achieved, independent of ref-
erence point, in orientation-aware localization. However, only a
unique reference point achieves this equality in orientation-un-
aware localization. We define this unique point as the orientation
center.

Definition 6 (Orientation Center): The orientation center is
a reference point such that

Proposition 3: Orientation center exists and is unique in
orientation-unaware localization, and hence for any

Proof: See Appendix IV-B.

Remark 8: The orientation center generally depends on
the topology of the anchors and the agent, the properties of the
received waveforms, the array geometry, and the array orienta-
tion. Since at the orientation center, the EFIMs for the
array center and the orientation do not depend on each other,
and hence the SPEB and SOEB can be calculated separately.
The proposition also implies that the SPEB of reference points
other than will be strictly larger than that of . The SPEB
for any reference point is given in the next theorem.

Corollary 5: The SOEB is independent of the reference
point , and the SPEB is

(32)

Proof: See Appendix IV-C.

Remark 9: The SOEB does not depend on the specific ref-
erence point, which was not apparent in (27). However, this is
intuitive since different reference points only introduce different
translations, but not rotations. On the other hand, different ref-
erence point results in different ’s and hence different ,
which in turn gives different EFIM for position [see (26)]. We
can interpret the relationship in (32) as follows: the SPEB of ref-
erence point is equal to that of the orientation center plus

22In near-field scenarios where the antenna separation is on the order of the
distances between the array and the anchors, additional gain that arises from the
spatial diversity of the multiple antennas may be possible.
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the orientation-induced position error, which is proportional to
both the squared distance from to and the SOEB.

C. EFIM With a Priori Knowledge

We now consider a scenario in which the channel param-
eter vector independent for different ’s and ’s. The in-
dependence assumption serve as a reasonable approximation of
many realistic scenarios, especially near-field cases. When the
different sets of channel parameters are correlated, our results
provide an upper bound for the EFIM.

Proposition 4: When a priori knowledge of channel parame-
ters is available and the set of channel parameters corresponding
to different anchors and antennas are mutually independent, the
RII becomes (70).

Proof: See Appendix IV-A.

We then consider the case where a priori knowledge of
the agent’s position and orientation is available in addition
to channel knowledge. Note that the topology of the agent’s
antennas and anchors changes with the agent’s positions and
orientations. The expression of the EFIM can be derived
analogous to (65), which is involved in general. Again to
gain insights about the contribution of a priori position and
orientation knowledge, we consider scenarios under condition

(33)

where , for some functions involved in the
derivation of the EFIM.

Corollary 6: When a priori position and orientation distribu-
tion of the agent satisfies (33), and the sets of channel parame-
ters corresponding to different anchors and antennas are mutu-
ally independent, the EFIMs for the position and the orientation,
using an -antenna array, are given, respectively, by

and

where , , , and are corresponding functions in The-
orem 3 of and , respectively, and .

Proof: (Outline) The proof of this corollary is analogous to
that of Theorem 3. Note that when condition (33) is satisfied, the
a priori knowledge of position and orientation for localization
can be characterized in the EFIM by using the approximation as
in the proof of Proposition 2.

D. Discussions

1) Far-Field Scenarios: The antennas in the array are closely
located in far-field scenarios, such that the received waveforms
from each anchor experience statistically the same propagation
channels. Hence, we have and for all

, leading to . We define an important
reference point as follows.

Definition 7 (Array Center): The array center is defined as
the position , satisfying

and

Proposition 5: The array center becomes the orientation
center in far-field scenarios.

Proof: See Appendix IV-D.

Remark 10: Since the orientation center has the minimum
SPEB, Proposition 5 implies that the array center always
achieves the minimum SPEB in far-field scenarios. Hence, the
array center is a well-suited choice for the reference point, since
its position can be determined from the array geometry alone,
without requiring the received waveforms and the knowledge
of the anchor’s topology.

In far-field scenarios, we choose the array center as the
reference point. The results of Theorem 3 become

and

where is a function of . Similarly, when the a priori po-
sition and orientation knowledge is available and condition (33)
is satisfied, the results of Corollary 6 become

and

where is a function of .
Note that the localization performance of an -antenna

array is equivalent to that of a single antenna with measure-
ments, regardless of the array geometry, in far-field scenarios.

2) Multiple Antennas at Anchors: When anchors are
equipped with multiple antennas, each antenna can be viewed
as an individual anchor. In this case, the agent’s SPEB goes
down with the number of the antennas at each anchor. Note that
all the antennas of a given anchor provide RI approximately in
the same direction with the same intensity, as they are closely
located.
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3) Other Related Issues: Other issues related to localization
using wideband antenna arrays include the AOA estimation, the
effect of multipath geometry, and the effect of array geometries.
A more comprehensive performance analysis can be found in
[11].

V. EFFECT OF CLOCK ASYNCHRONISM

In this section, we consider scenarios in which the clocks of
all anchors are perfectly synchronized but the agent operates
asynchronously with the anchors [68]. In such a scenario, the
one-way time-of-flight measurement contains a time offset be-
tween the agent’s clock and the anchors’ clock.23 Here, we in-
vestigate the effect of the time offset on localization accuracy.

A. Localization With a Single Antenna

Consider the scenario described in Section II, where each
agent is equipped with a single antenna. When the agent op-
erates asynchronously with the anchors, the relationship of (2)
becomes

where is a random parameter that characterizes the time offset
in terms of distance, and the corresponding parameter vector
becomes

Similar to Theorem 2, where is deterministic but unknown and
the remaining parameters are random, we have the following
result.

Theorem 4: When a priori knowledge of the channel param-
eters and the time offset is available, and the sets of channel
parameters corresponding to different anchors are mutually in-
dependent, the EFIMs for the position and the time offset are
given, respectively, by

(34)

and

(35)

where is given by (63b), , and

Proof: See Appendix V-A.

Remark 11: Since is a positive-semidefinite matrix and
is positive in (34), compare to Theorem 2, we always

have the inequality

(36)

23We consider scenarios in which localization time is short relative to clock
drifts, such that the time offset is the same for all measurements from the
anchors.

where the equality in (36) is achieved for time-offset-known
localization (i.e., ), or time-offset-independent lo-
calization (i.e., ). The former corresponds to the case
where accurate knowledge of the time offset is available, while
the latter depends on the RII from each anchor, as well as the
topology of the anchors and agent. The inequality of (36) re-
sults from the uncertainty in the additional parameter , which
degrades the localization accuracy. Hence, the SPEB in the pres-
ence of uncertain time offset is always larger than or equal to that
without a offset or with a known offset.

We next consider the case where a priori knowledge of the
agent’s position is available. When the a priori position distri-
bution of the agent satisfies (22), we have the following corol-
lary.

Corollary 7: When the a priori position distribution of the
agent satisfies (22), and the sets of channel parameters cor-
responding to different anchors are mutually independent, the
EFIMs for the position and the time offset are given, respec-
tively, by

and

where is the angle from anchor to , is given by (66),
and is a function of .

Proof: (Outline) Conditions in (22) hold in far-field sce-
narios, and we can approximate the expectation over random
parameter vector using the average position . By following
the steps of Theorem 4 and Proposition 2, we can derive the the-
orem after some algebra.

B. Localization With Antenna Arrays

Consider the scenario describing in Section IV where each
agent is equipped with an array of antennas. Incorporating
the time offset , (24) becomes

and the corresponding parameter vector becomes

Similar to Theorem 3, where and are deterministic but un-
known and the remaining parameters are random, we have the
following theorem.

Theorem 5: When a priori knowledge of the channel pa-
rameters is available, and the sets of channel parameters cor-
responding to different anchors and antennas are mutually inde-
pendent, the EFIM for the position, the orientation, and the time
offset, using an -antenna array, is given by (37) shown at the
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bottom of the page, where and correspond to
orientation-aware and orientation-unaware localization, respec-
tively, and , , and are given by (70), (28), and (29),
respectively.

Proof: See Appendix V-B.

Remark 12: Theorem 5 gives the overall EFIM for the
position, the orientation, and the time offset, where individual
EFIMs can be derived by applying the notion of EFI again.

We finally consider the case where a priori knowledge of
the agent’s position and orientation is available. The EFIM in
far-field scenarios is given in the following corollary.

Corollary 8: When a priori knowledge of the agent’s po-
sition, orientation, time offset, and the channel parameters is
available, and the sets of channel parameters corresponding to
different anchors and antennas are mutually independent, in far-
field scenarios, the EFIMs for the position, the orientation, and
the time offset, using an -antenna array, are given, respec-
tively, by

and

where is the expected position of the agent’s array center,
is the angle from anchor to , and , , and are

functions of .
Proof: See Appendix V-C.

VI. DISCUSSIONS

In this section, we will provide discussions on some related
issues in the paper. It includes 1) the relations of our results to
the bounds based on signal metrics, 2) the achievability of the
SPEB, and 3) the extension of the results to 3-D localization.

A. Relation to Bounds Based on Signal Metrics

Analysis of localization performance in the literature mainly
employs specific signal metrics, such as TOA, AOA, RSS, and
TDOA, rather than utilizing the entire received waveforms. Our
analysis is based on the received waveforms and exploits all the
localization information inherent in these signal metrics, implic-
itly or explicitly. In particular, TOA and joint TOA/AOA met-
rics were incorporated in our analysis in Sections III and IV,
respectively. Similarly, TDOA and joint TDOA/AOA metrics
were included in the analysis of Section V, and the RSS metric
has been implicitly exploited from a priori channel knowledge
in Section II-C1.

B. Achievability of the SPEB

Maximum a posteriori (MAP) and maximum-likelihood
(ML) estimates, respectively, achieve the CRB asymptotically
in the high SNR regimes for both the case with and without
a priori knowledge [50]. High SNR can be attained using se-
quences with good correlation properties [69]–[71], or simply
repeated transmissions. Therefore, the SPEB is achievable.

C. Generalization to 3-D Localization

All results obtained thus far can be easily extended to 3-D
case, i.e., and the RDM becomes

where and are the angles in the coordinates, and

Similarly, we can obtain a corresponding EFIM in the form
of (21).

VII. NUMERICAL RESULTS

In this section, we illustrate applications of our analytical re-
sults using numerical examples. We deliberately restrict our at-
tention to a simple network to gain insights, although our ana-
lytical results are valid for arbitrary topology with any number
of anchors and any number of MPCs in the received waveforms.

A. Effect of Path Overlap

We first investigate the effect of path overlap on the SPEB
when a priori knowledge is unavailable. In particular, we com-
pare the SPEB obtained by the full-parameter model proposed
in this paper and that obtained by the partial-parameter model
proposed in [28]. In the partial-parameter model, the amplitudes
of MPCs are assumed to be known and hence excluded from the
parameter vector.

(37)
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Fig. 4. Network topology: Four anchors are equally spaced on a circle with an
agent at the center. All signals from the anchors to the agent are LOS.

Fig. 5. SPEB as a function of path separation for the full-parameter, partial-
parameter, and nonoverlap models, without a priori knowledge.

Consider a simple network with four anchors
equally spaced on a circle and an agent at the center receiving all
LOS signals (see Fig. 4). Each waveform consists of two paths:
one LOS path ( 0 dB) and one NLOS path (

3 dB), and the separations of the two paths are iden-
tical for all . In addition, the transmitted waveform is a second
derivative of Gaussian pulse with width approximately equal to
4 ns. Fig. 5 shows the SPEB as a function of path separation

according to Theorem 1.
We can draw the following observations. First, path overlap

increases the SPEB in both models, since it reduces the ability
to estimate the first path and hence decreases the RII. Note that
the shape of the curves depends on the autocorrelation function
of the waveform [47]. Second, when the path separation
exceeds the pulse width (approximately 4 ns), the two models
give the same SPEB, which equals the nonoverlapping case. In

such cases, the first contiguous cluster contains only the first
path, and hence the RII is determined by this path. This agrees
with the analysis in Section III. Third, excluding the amplitudes
from the parameter vector incorrectly provides more RI when
the two paths overlap, and hence the partial-parameter model
results in a loose bound. This demonstrates the importance of
using the full-parameter model.

B. Improvement From a Priori Channel Knowledge

We then quantify the contribution of the a priori knowledge
of channel parameters to the SPEB. The network topology and
channel parameters are the same as those in Section VII-A, ex-
cept a priori knowledge of , and is now available.
For simplicity, we consider these parameters to be independent
a priori and denote the a priori Fisher information of parameter

by . In Fig. 6(a), the SPEBs are plotted
as functions of the path separation for different a priori knowl-
edge of and (no a priori knowledge of ); while in
Fig. 6(b), the SPEBs are plotted for different a priori knowledge
of (no a priori knowledge of and ).

We have the following observations. First, the SPEB de-
creases with the a priori knowledge of the amplitudes and the
NLOS biases. This should be expected since a priori channel
knowledge increases the RII and thus localization accuracy,
as indicated in Corollary 2. Moreover, the NLOS components
are shown to be beneficial for localization in the presence of a
priori biases knowledge, as proven in Section III-B. Second, as
the a priori knowledge of the amplitudes approaches infinity,
the SPEB in Fig. 6(a) obtained using the full-parameter model
converges to that in Fig. 5 obtained using the partial-parameter
model. This is because the partial-parameter model excludes
the amplitudes from the parameter vector, which is equivalent
to assuming known amplitudes and hence infinite a priori
Fisher information for the amplitudes .

Third, it is surprising to observe that, when the a priori knowl-
edge of the NLOS biases is available, path overlap can result
in a lower SPEB compared to nonoverlapping scenarios. This
occurs at certain regions of path separations, depending on the
autocorrelation function of . Intuitively, path overlap can
lead to a higher SNR compared to nonoverlapping cases, when
a priori knowledge of the NLOS biases is available.

C. Path-Overlap Coefficient

We now investigate the dependence of POC on path arrival
rate. We first generate channels with MPCs according to a
simple Poisson model with a fixed arrival rate , and then calcu-
late according to (59). Fig. 7 shows the average path-overlap
coefficient as a function of path interarrival rate for dif-
ferent number of MPCs, where the averaging is obtained by
Monte Carlo simulations.

We have the following observations. First, the POC is
monotonically decreasing from to with . This agrees
with our intuition that denser multipath propagation causes
more interference between the first path and other MPCs, and
hence the received waveform provides less RII. Second, for a
fixed , the POC increases with . This should be expected
as additional MPCs may interfere with earlier paths, which
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Fig. 6. SPEB with a priori knowledge of the amplitudes and the NLOS biases
as a function of path separation, respectively. (a) SPEB with a priori knowledge
of � and � , while � � �. (b) SPEB with a priori knowledge of � ,

while � � � � �.

degrades the estimation accuracy of the first path and thus
reduces the RII. Third, observe that beyond paths,
does not increase significantly. This indicates that the effects
of additional MPCs beyond the fifth path on the RII is negli-
gible, regardless of the power dispersion profile of the received
waveforms.

D. Outage in Ranging Ability

We have observed that the channel quality for ranging is char-
acterized by the POC. If the multipath propagation has a larger
POC (close to ), we may consider the channel in outage for
ranging. We define the ranging ability outage (RAO) probability
as

Fig. 7. POC as a function of the path interarrival time for different number of
MPCs.

Fig. 8. RAO probability as a function of the threshold � for different path
interarrival time ��� with � � ��. The five curves correspond to interarrival
time ��� � 3.5, 2.5, 2, 1.6, 1.4 ns, respectively.

where is the threshold for the POC. The RAO probability
tells us that with probability , the propagation channel
is unsatisfactory for ranging.

The RAO probability as a function of for different
Poisson arrival rate is plotted in Fig. 8 for a channel with

. The RAO probability decreases from to , as the
threshold increases or the path arrival rate decreases.
This should be expected because the probability of path overlap
decreases with the path arrival rate, and consequently decreases
the RAO probability. The RAO probability can be used as a
measure to quantify the channel quality for ranging and to guide
the design of the optimal transmitted waveform for ranging.

E. SPEB and SOEB for Wideband Antenna Array Systems

We consider the SPEB and SOEB for different reference
points of a uniform linear array (ULA). The numerical results
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Fig. 9. SPEB and SOEB with different a priori knowledge of agent’s position
and orientation, respectively. (a) SPEB as a function of the reference point-to-
array center distance. (b) SOEB as a function of the reference point-to-array
center distance.

are based on a network with six equally spaced anchor nodes
located on a circle with an agent in the center. The

agent is equipped with a four-antenna array whose
spacing is 0.5 m. In far-field scenarios, and

. Fig. 9(a) and (b) shows the SPEB and the SOEB,
respectively, as a function of different reference point along the
ULA for different a priori knowledge of the orientation and
reference point.

We have the following observations. First, a priori knowl-
edge of the orientation improves the localization accuracy as
the SPEB decreases with . The curves for and

correspond to the orientation-unaware and orienta-
tion-aware cases, respectively. As a counterpart, a priori knowl-
edge of the reference point improves the orientation accuracy
as the SOEB decreases with . This agrees with both intu-
ition and Theorem 3. Second, the array center has the best lo-
calization accuracy, and its SPEB does not depend on , which

agrees with Theorem 3. On the other hand, the array center ex-
hibits the worst orientation accuracy, and its SOEB does not de-
pend on . This should be expected since the knowledge for
the array center tells nothing about the array orientation. Third,
the SPEB increases with both the distance from the reference
point to the array center and the SOEB, as predicted by Corol-
lary 5. On the contrary, the SOEB decreases as a function of the
distance from the reference point to the array center if a priori
knowledge of the reference point is available. This observation
can be verified by Theorem 3. Last but not least, the SPEB is
independent of specific reference point if , as referred
to orientation-aware localization, and the SOEB is independent
of the specific reference point if , as shown in Corollary
5.

F. SPEB With Time Offset and Squared Timing Error Bound

We finally investigate the effect of time offset on the SPEB
and squared timing error bound (STEB) for the network illus-
trated in Fig. 4. The RII from each anchor ,

. Initially, four anchors are placed at ,
, , and , respectively. We then vary

the position of anchor counterclockwise along the circle.
Fig. 10(a) and (b) shows the SPEB and the STEB, respectively,
as functions of for different a priori knowledge of the time
offset.

We have the following observations. First, both the SPEB and
the STEB decrease with the a priori knowledge of the time offset.
The SPEB for the case in Fig. 10(a), i.e., known time
offset, is equal to that of a system without a time offset. On the
otherhand,when , theSTEBinFig.10(b) isequal tozero
regardless of since the offset is completely known. Second, all
the curves in Fig. 10(a) have the same value at . The time
offset has no effect on the SPEB at this point, since , re-
ferredtoas time-offset-independent localization.In thiscase,both
the SPEB and the STEB achieve their minimum, implying that
location and timing information of a network are closely related.
Third, as increases from to , all the curves in Fig. 10(a) first
increase and then decrease, whereas all the curves in Fig. 10(b)
increase monotonically. We give the following interpretations:
the estimation error of time offset in Fig. 10(b) becomes larger
when all the anchors tend to gather on one side of the agent (
increases from to ). In Fig. 10(a), the SPEB first increases
since both the localization information in (34)
and the information for the time offset becomes smaller. Then,
the SPEB decreases since the localization information increases
(when ) faster compared to the decrease of the infor-
mation for time offset. Note in Fig. 10(a) that although
and result in the same SPEB in the absence of time offset,

gives a better performance in the presence of time offset.

VIII. CONCLUSION

In this paper, we developed a framework to study wideband
wireless location-aware networks and determined their local-
ization accuracy. In particular, we characterized the localiza-
tion accuracy in terms of a performance measure called the
SPEB, and derived the SPEB by applying the notion of EFI. This
methodology provides insights into the essence of the local-
ization problem by unifying the localization information from
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Fig. 10. SPEB and STEB with different a priori knowledge of the time offset,
and � � �� ����� ��, respectively. (a) SPEB as a function of anchor � ’s
position. (b) STEB as a function of anchor � ’s position.

the a priori knowledge of the agent’s position and informa-
tion from individual anchors. We showed that the contributions
from anchors, incorporating both measurements and a priori
channel knowledge, can be expressed in a canonical form as a
weighted sum of the RDM. Our results are derived from the re-
ceived waveforms themselves rather than the signal metrics ex-
tracted from the waveforms. Therefore, our framework exploits
all the information inherent in the received waveforms, and con-
sequently the results in this paper serve as fundamental limits of
localization accuracy. These results can be used as guidelines
for localization system design, as well as benchmarks for loca-
tion-aware networks.

APPENDIX I
FISHER INFORMATION MATRIX DERIVATION

To facilitate the analysis, we consider a mapping from into
another parameter vector , where

with .

When the agent is localizable,24 this mapping is a bijection and
provides an alternative expression for the FIM as

(38)

where is the FIM for , and is the Jacobian matrix for the
transformation from to , given, respectively, by

(39)

and

(40)

with denoting a matrix of all zeros and denoting an identity
matrix. The block matrices , , , and are given as
follows:

. . .

(41)

and

(42)

where

with (43)

, and is given by

(44)

Note that elements in can be expressed as

24Note that an agent is said to be localizable if its position can be determined
by the signal metrics extracted from the waveforms received from neighboring
anchors, i.e., triangulation is possible. This is true when � � �, or in some
special cases when � � �.
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and

where . In particular

(45)

where and are given by (17) and (18), respectively.
Substituting (39) and (40) into (38), we have the FIM in (7).

APPENDIX II
WIDEBAND CHANNEL MODEL AND A PRIORI

CHANNEL KNOWLEDGE

Wideband channel measurements have shown that MPCs
follow random arrival and their amplitudes are subject to path
loss, large- and small-scale fading. While our discussion is
valid for any wideband channels described by (1), we con-
sider the model of IEEE 802.15.4a standard for exposition.
Specifically, this standard uses Poisson arrivals, log-normal
shadowing, Nakagami small-scale fading with exponential
power dispersion profile (PDP) [26].

A. Path Arrival Time

The arrival time of MPCs is commonly modeled by a Poisson
process [26], [64]. Given the path arrival rate , we have

for and . Using (2), we obtain

(46)

for and . Note that we let for
consistency.

B. Path Loss and Large-Scale Fading

The RSS in decibels at the distance can be written as [26]

where is the expected RSS at the reference distance , is
the propagation (path gain) exponent, and is a random vari-
able (r.v.) that accounts for large-scale fading, or shadowing.

Shadowing is usually modeled with a log-normal distribution,
such that is a Gaussian r.v. with zero-mean and variance ,
i.e., .25 The pdf of the RSS of can then be
written as

(47)
where , and is given by

with denoting the average over small-scale fading.

C. Power Dispersion Profile and Small-Scale Fading

As in [24] and [26], we consider an exponential PDP given
by26

(48)

where is the decay constant, and is a normalization coef-
ficient such that

(49)

In addition, is a Nakagami r.v. with second moment given
by (48). Specifically, we have

(50)

where is the gamma function and is the Nak-
agami -factor, which is a function of [26].

1) A Priori PDF for Multipath Parameters: The joint pdf
of the multipath parameters and the RSS, conditioned on the
distance from anchor to the agent, can be derived as

(51)

25The standard deviation is typically 1–2 dB (LOS) and 2–6 dB (NLOS) [21]
around the path gain.

26Note that the first component of LOS signals can exhibit a stronger strength
than (48) in some UWB measurement [72]. In such cases, (48) and (49) need to
be modified, accordingly.
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By integrating over , we obtain the pdf of the multipath pa-
rameters of as follows:

(52)

Equation (52) characterizes the a priori knowledge of channel
parameters, and can be obtained, for IEEE 802.15.4a standard,
by substituting (46),(47), and (50) into (51) and (52). Note that
since is known, is a function of and hence we have (9).

APPENDIX III
PROOFS OF THE RESULTS IN SECTION III

A. Proof of Theorem 1

Proof: We first prove that is given by (15). We par-
tition in (43) and in (44) as

and

where is obtained by (45), ,
, and

Using these notations, we can write the EFIM given by (14) in
Proposition 1, after some algebra, in the form of (12)

and

Applying the notion of EFI as in (13), we obtain the
as

(53)

where the POC

(54)

This completes the proof of (15).
Next, we show that only the first contiguous cluster contains

information for localization. Let us focus on . Define the

following notations for convenience:

and

If the length of the first contiguous cluster in the received wave-
form is where , then

for and
, and27

and

where and . Hence, (54)
becomes

(55)

which depends only on the first paths, implying that only the
first contiguous cluster of LOS signals contains information for
localization.

Finally, we show that is independent of . Note that
and can be written as

(56)

and

(57)

where and are given by
the matrix partition in (58), shown at the bottom of the next page.
Substituting (56) and (57) into (55), we obtain

(59)

which is independent of all the amplitudes.
Note that : is nonnegative since it is a quadratic

form and is a positive-semidefinite FIM (hence is ); and
since the contribution from each anchor to the EFIM in

(53) is nonnegative.

B. Proof of Corollary 1

Proof: This scenario can be thought of as a special case
of Theorem 1 with , i.e., the first contiguous cluster
contains only one path. In this case, (59) becomes

27 is a block matrix that is irrelevant to the rest of the derivation.
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Since waveform is continuous and time limited in realistic
cases, we have

implying that , which leads to (19).

C. Proof of Theorem 2

Proof: When a priori channel knowledge of the channel is
available, the FIM is

where and
. The FIM

can be partitioned as (12), where is given by (60), shown
at the bottom of the page, and

and

Applying the notion of EFI, we have the EFIM, after some
algebra, given by (61), shown at the bottom of the page. From
(9), we can rewrite and in (11) using chain rule as

and (62)

where and .
Substituting (62) into (61) leads to (21), where is given by
(63a)–(63b), shown at the bottom of the page, for LOS signals
and NLOS signals, respectively.

D. Proof of Corollary 2

Proof: We first show that the a priori channel knowledge
increases the RII. Consider in (63a). Let

and

...
...

(58)

...
. . .

(60)

(61)

(63a)

(63b)
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We have , since

where . Hence, we have
, where equals (16). This implies that the a

priori channel knowledge can increase the RII.
We next show that the RIIs in (63a)–(63b) reduce to (16) and

zero, respectively, in the absence of a priori channel knowledge.
When a priori channel knowledge is unavailable, ,

, and all equal zero, and the corresponding RII in
(63a)–(63b) becomes

for , and

for .

E. Proof of Corollary 3

Proof: The block matrices and in (11) for NLOS
signals can be written as

and

where , and . Note

that corresponds to the Fisher information of . When the

a priori knowledge of goes to , i.e., ,
we claim that

(64)
To show this, we partition as

and then the left-hand side of (64) becomes

where

and

When is known, i.e., , we have ,

, and . Notice

that . Hence, we proved our claim in (64).
Substituting (64) into (63b), we have

for , which agrees with the RII of LOS signals
in (63a).28 Hence, LOS signals are equivalent to NLOS with
infinite a priori knowledge of for localization.

F. Proof of Proposition 2

Proof: Note that , , , , and are func-
tions of when a priori knowledge of the agent’s position is
available. Hence, we need to take expectation of them over
in (10). After some algebra, we have the EFIM for the agent’s
position as (65), shown at the bottom of the next page.

When the condition in (22) is satisfied for the functions
’s: 1) , 2) , 3) ,

and 4) , we can approximate the expectation of each
function over in (65) by the function value at the expected
position . Hence, the EFIM in (65) can be expressed as

28Note that the size of��� and��� for LOS signals and NLOS signals are

different for the same � . Indeed, ���� and ���� are not associated with � ,
and hence they are in the same form as��� and��� for LOS signals in (63a).
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where is the angle from anchor to , and is given by
(66), shown at the bottom of the page. Note that all functions
are evaluated at .

APPENDIX IV
PROOFS OF THE RESULTS IN SECTION IV

A. Proof of Theorem 3

Note that this proof also incorporates the a priori channel
knowledge. In the absence of this knowledge, the corresponding
results can be obtained by removing that characterizes the a
priori channel knowledge.

Since and are deterministic but unknown, the joint like-
lihood function of the random vectors and can be written as

Note that , and the FIM from
can be expressed as (67), shown at the bottom of the page,

where , , and

, in which

Block matrices , , and correspond to the th an-
tenna in the array, and they can be further decomposed into
block matrices corresponding to each anchor

and

where and ,

and , in which
.

Similar to the proof of Theorem 2 in Appendix III-C, the FIM
from observation can be obtained as (68), shown at the bottom
of the page, where

and

correspond to the th antenna as defined in (44).

(65)

(66)

...
...

. . .

(67)

...
...

. . .

(68)
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The overall FIM is the sum of (67) and (68). By applying
the notion of EFI, we have the EFIM for the position and
the orientation as follows:

(69)

where is given by (70), shown at the bottom of the page.
Note that in the absence of a priori channel knowledge,

the above result is still valid, with the RII of (70) degen-
erating to (71), shown at the bottom of the page, where

.

B. Proof of Proposition 3

Since is always positive semidefinite, we need to simply
prove that there exists a unique such that .

Proof: Let be an arbitrary reference point, and

where , and and denote the
relative distance in and directions, respectively. Then,
corresponding to can be written as a sum of two parts

where corresponds to

and

Hence, corresponding to the reference position is given by

(72)

and can be written as

(73)

Since , we have if and only if

implying that there exists only one , and hence only one ,
such that . Therefore, the orientation center is unique.

C. Proof of Corollary 5

Proof: We first prove that the SOEB is independent of the
reference point . It is equivalent to show that the EFI for the
orientation given by (27) equals the EFI for the orientation based
on , given by

Let . From (72) and (73), we have
, and hence

On the other hand, we also have

Therefore, we can verify that the EFI for the orientation in (27)

(74)

(70)

LOS

NLOS

(71)
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This shows that the EFI for the orientation is independent of the
reference point, and thus is the SOEB.

We next derive the SPEB for any reference point given in (32).
The EFIM in (69) can be written, using (72) and (74), as

Using the equation of Shur’s complement [66], we have

(75)

Since the translation can be represented as

where is a constant angle, we have . Then,
by taking the trace of both sides of (75), we obtain

D. Proof of Proposition 5

Proof: Take the array center as the reference point, and
we have

Consequently

implying , i.e., the array center is the orientation center.

APPENDIX V
PROOFS OF THE RESULTS IN SECTION V

A. Proof of Theorem 4

In the presence of a time offset, the FIM can be written as
(76), shown at the bottom of the page, where

...
...

. . .

Applying the notion of EFI, we obtain the EFIM

where is given by (63b), and another step of EFI leads to (34)
and (35).

B. Proof of Theorem 5

We consider orientation-unaware case, whereas orientation-
aware case is a special case with a reduced parameter set. The
FIM using an antenna array can be written as (77), shown at the
bottom of the page, where , and

...
...

. . .

(76)

...
...

...
. . .

(77)
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...
...

...
. . .

(78)

(79)

(80)

is given by (78), shown at the top of the page. Applying the
notion of EFI to , we obtain the EFIM in (37).

C. Proof of Corollary 8

We incorporate the a priori knowledge of the array center and
orientation into (37), and obtain the EFIM in far-field scenarios
as (79), shown at the top of the page. Recall that in far-field sce-
narios, , implying that
and . Also, we have and

for all , and hence the EFIM can be written as (80),
shown at the top of the page, where and is a function of

.
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