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The future space-based gravitational wave detector LISA will be able to measure parameters of

coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated

that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic

spin-induced precession modulates the waveform in a manner which can break degeneracies between

parameters, in principle significantly improving how well they are measured. Recent studies have

indicated, however, that spin precession may be weak for an important subset of astrophysical binary

black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine

how well a binary’s parameters can be measured when its spins are partially aligned and compare results

using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading

quadrupole order. We find that the weakened precession can substantially degrade parameter estimation.

This degradation is particularly devastating for the extrinsic parameters sky position and distance. Absent

higher harmonics, LISA typically localizes the sky position of a nearly aligned binary a factor of �6 less

accurately than for one in which the spin orientations are random. Our knowledge of a source’s sky

position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic

counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By

including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which

most of the binary’s parameters are measured can be substantially improved. In some cases, parameters

can be measured as well in partially aligned binaries as they can be when the binary spins are random.

DOI: 10.1103/PhysRevD.84.022002 PACS numbers: 04.80.Nn, 04.30.Db, 04.30.Tv

I. INTRODUCTION

The coalescence of massive black hole binaries is a
primary source for the future space-based gravitational
wave (GW) detector LISA.1 LISA will be able to detect
such sources with extremely high signal-to-noise ratio
(SNR) * 1000 at low redshift (z� 1), as well as with
moderate, but still reasonable, SNR �10 at extremely
high redshift (z� 20) [1]. Estimated event rates for these
sources vary widely based on formation scenarios but tend
to predict roughly tens of sources per year, with �1 as a
pessimistic estimate and �100 as an optimistic one [2].
(The actual detection rate will, of course, tell us much
about the formation of black hole binaries and the growth
of massive black holes in the universe.)

While the detection of gravitational waves from these
sources will certainly be interesting for its own sake,
attention has turned in recent years to the capabilities of
LISA as a true astronomical observatory. Many papers
[3–7,9–20] have investigated just how well LISA can
measure the parameters of the binaries it detects. This is
often done using the Fisher-matrix method [20,21], which
essentially measures the local curvature of the posterior
probability distribution for parameters in the vicinity of the
maximum. Parameters for which the posterior is more

strongly curved (i.e., which more strongly affect the wave-
form) are measured more accurately than those for which
the posterior is only weakly curved. Correlations between
parameters are also extremely important. When two
parameters are strongly correlated, it is difficult to ‘‘detan-
gle’’ the influence of one on the waveform over the other.
This means that the accuracy with which both parameters
are measured is controlled by the one which is most poorly
determined.
Recent studies have considered how well parameters can

be measured while doing the actual data analysis problem
of removing signals from noise [22]. In effect, these studies
simulate the parameter extraction process with enough
detail to uncover issues such as multiple extrema of the
posterior surfaces which are missed by the simpler (and
cruder) Fisher analyses. Such ‘‘realistic’’ studies are typi-
cally much more CPU-intensive and cannot easily study
parameter measurement issues over a broad swath of as-
trophysically important parameter space. Both families of
studies have substantially advanced our understanding of
LISA’s science reach in the past 5 or so years.
Some parameters that are especially interesting are the

intrinsic system properties, namely, the masses and spins
of the black holes. Masses can be measured extremely well
in the best cases [with a relative error of �10�3

for individual masses and �10�5 for the chirp mass M �
m3=5

1 m3=5
2 =ðm1 þm2Þ1=5]. Spins are not measured quite1http://lisa.nasa.gov
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so well but are still expected to be determined with percent-
level accuracy. By measuring these parameters for many
systems, one can construct a merger history of black holes,
and by extension, their host galaxies, learning much about
galaxy formation, black hole formation, AGN feedback,
and so forth.

We are also interested in measuring parameters extrinsic
to the system, namely, its position on the sky and its
luminosity distance. With the position and distance (con-
verted into an approximate redshift), astronomers can
search the sky for probable electromagnetic counterparts
to the gravitational wave events. Various types of counter-
parts have been proposed, from signals during the inspiral
[23], to bright flashes at the time of merger [24] (or even
reductions in luminosity [25]), to long-delayed afterglows
[26]. The different scenarios arise because the behavior of
gas around an inspiraling binary system is not well under-
stood. Avery different kind of electromagnetic counterpart
can be produced by a kicked remnant black hole that
triggers a telltale sequence of stellar disruptions [27].
(Tidal disruption of stars may also allow us to flag the
presence of a binary long before it enters the LISA band,
allowing a better understanding of the space density of
massive black hole binaries [28].) If a counterpart can be
identified, the electromagnetic information can be com-
bined with the gravitational information to reveal more
about the astrophysics of the system. Counterparts may
also make it possible for binary black holes to be used as
probes of the cosmological distance-redshift relation, since
the electromagnetic redshift and gravitational distance are
determined independently [7]. Unfortunately, finding a
counterpart, even if a unique signature does exist, will
not be easy. The typical error windows for LISA are
� tens of arcminutes on a side at the end of inspiral,
reduced from several square degrees in the weeks and
months before merger. Still, this localization does give
large survey telescopes like LSST (field of view �10
square degrees) a chance to study a particular area of the
sky with advance warning [29].

One particularly important result in the study of LISA’s
science capabilities was the discovery that including spin
precession effects in the waveform model typically im-
proves the accuracy of parameter measurement [5,9].
Spin precession arises because of geodetic and gravito-
magnetic general relativistic effects [30,31]. The orbital
plane of the system also precesses in order to preserve the
total angular momentum on time scales shorter than the
radiation reaction time. Together, these precessions modu-
late the amplitude and phase of the waveform, breaking
correlations between certain sets of parameters and im-
proving how well the members of those sets can be mea-
sured. The greatest improvement is to the measured masses
of a binary’s members (accuracy typically improved by
1–2 orders of magnitude). The measured sky position
angles and distance to the source are all improved by about

half an order of magnitude, reducing the size of the sky
position pixel in which one must search for a counterpart
by a factor of �10 (or the 3D voxel volume by a factor
of �30).
The precession of one of the spins in a binary, to 1.5

post-Newtonian order and averaged over an orbit,2 is given
by

_S1 ¼ 1
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2þ 3

2

m2
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ffiffiffiffiffiffiffi
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2
ðS2 � L̂ÞL̂

�
� S1; (1.1)

where S1 and S2 are the two spins, m1 and m2 are the two
masses, M ¼ m1 þm2 is the total mass, � ¼ m1m2=M is

the reduced mass, L̂ is the direction of the orbital angular
momentum, and r is the orbital separation in harmonic
coordinates. It is clear that precession is maximal when the
spins of the system are orthogonal to the orbital angular
momentum and to each other and vanishes when the spins
and orbital axis are aligned. In [9] (hereafter Paper I), it
was assumed that the relative orientation of the spins and
the orbital angular momentum was completely arbitrary.
The results of that paper are summarized in a series of
histograms describing parameter measurement accuracy
when the various angular momentum vectors are allowed
to point in any direction.
Recent studies have shown, however, that accreting gas

in a system may evolve the spin in such a way that the spins
are at least partially aligned with each other and with the
orbit [32,33]. The degree of alignment depends on the
temperature of the gas: In ‘‘hot gas’’ models, which have
polytropic index � ¼ 5=3, the spins align within 30� of the
orbital axis. ‘‘Cold gas’’ models with � ¼ 7=5 align even
more thoroughly, to within 10� [33].
Does spin-induced precession, now constrained by ini-

tial conditions, still break degeneracies as efficiently as
described in Paper I? Any degradation in parameter mea-
surement capability could have a strong effect on the
ability to find electromagnetic counterparts. The results
of [9,13,15] may be biased toward gas-free ‘‘dry’’ mergers,
severely underestimating localization errors in gaseous
‘‘wet’’ mergers—the very systems which we are most
likely to see electromagnetically. The effect of alignment
on mass and spin measurements is also interesting (though

2The validity of averaging over an orbit can be quickly
checked by comparing the precession time scale Tprec with the
orbital time scale Torb. For an equal-mass system, these time
scales are roughly equivalent when r� 7M=8, where M is total
mass. The orbit-averaged approximation is therefore quite good
for most of the inspiral waveform but will begin to break down
as we approach r� ð2–3ÞM. At these radii, the post-Newtonian
approximation breaks down as well, so our use of the precession
equations there is best considered to be qualitatively indicative
of the relevant physics, if not numerically exact.
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arguably less so, since even a factor of several degradation
for these parameters would still imply excellent accuracy).

The goal of this paper is to answer the question posed
above. We do so with a Fisher-matrix analysis of parameter
measurement for binaries whose spins are partially aligned
according to two wet merger models: hot gas, which aligns
the spins and orbit to within 30�, and cold gas, which aligns
to within 10�. We demonstrate that this degree of align-
ment can substantially degrade parameter accuracy but that
one can ‘‘repair’’ much of this degradation by using the
‘‘full’’ waveform model, including harmonics beyond the
leading quadrupole. In what follows, we will use the terms
‘‘gas-free’’ or ‘‘dry’’ interchangeably with the term ‘‘ran-
dom spins,’’ ‘‘hot gas’’ interchangeably with the phrase
‘‘spins aligned within 30�,’’ and ‘‘cold gas’’ interchange-
ably with the phrase ‘‘spins aligned within 10�.’’ We also
sometimes write ‘‘30� alignment’’ as shorthand for ‘‘spins
aligned within 30�,’’ and likewise for ‘‘10� alignment.’’
(The two distributions contain systems with alignments
less than 30� or 10�, although with a bias toward the upper
end of the allowed range.)

The outline of the paper is as follows. We begin in Sec. II
by describing the operation of our code, including the
production of binary black hole waveforms, the LISA
response, the noise model, and how we construct the
Fisher matrix. We focus on changes from Paper I, leaving
detailed description of the theory to that paper.

In Sec. III, we then present results for parameter errors in
wet mergers, examining both ‘‘hot’’ and ‘‘cold’’ models.
We compare these results to the case of dry mergers, in
which spin orientations are chosen to be completely ran-
dom with respect to each other and to the orbital angular
momentum. It should be emphasized that throughout
Sec. III, we consider only the leading quadrupole piece
of the gravitational waveform (the so-called ‘‘restricted’’
post-Newtonian approximation). As expected, we find that
spin alignment largely degrades LISA’s ability to measure
parameters. As a rough rule of thumb, we find that extrinsic
parameters (sky position angles and luminosity distance)
are measured a factor of �1:5–2 less accurately for 30�
alignment and a factor of �2–3 less accurately for 10�
alignment. In the second case, alignment eliminates most
of the advantage gained by adding precession in Paper I.
We find that the impact upon measured masses and spins
depends strongly on mass ratio, with degradation by a
factor �1–3 at 30� alignment, and a factor �1–9 at 10�
alignment. We find a handful of cases in which partially
aligned binaries actually do better than the randomly ori-
ented systems. As we describe in Sec. III, this is due to
alignment increasing these systems’ average SNR.

To combat this degradation, we introduce another
degeneracy-breaking effect. Much early work in LISA pa-
rameter estimation made use of the restricted waveform
model, inwhich only the quadrupole harmonic of the orbital
phase was included and only the leading ‘‘Newtonian’’

amplitude term was used with this harmonic (although the
phase was constructed to high post-Newtonian order). This
was done because the quadrupole harmonic dominates
signal power, while the phase is the primary source of
information about the signal. However, it has since been
shown by several groups that including higher harmonics
(and their post-Newtonian amplitudes,making the so-called
full waveformmodel) also breaks degeneracies and reduces
parameter errors [10–12,14]. The magnitude of the effect is
comparable to the improvement seen by including spin
precession. Recently, Klein et al. have presented an analysis
combining both spin precession and higher harmonics [16].
A similar analysis, based on an earlier version of our own
code, was conducted by the LISA Science Team to
investigate the science reach of the LISA mission; the
results of this study are summarized in Ref. [34].
In Sec. IV, we replace the leading quadrupole waveform

with the full waveform. For the case of random spins, our
answers can be compared (with some caveats) to the results
of [16]. We also compute the errors for wet, partially
aligned binaries with the full waveform. When higher
harmonics are included, parameter errors for partially
aligned binaries are often no worse, or even better, than
for the case of random spins and no higher harmonics. In
these particular cases, higher harmonics can more than
make up for the degraded impact of spin precession. We
find this degree of improvement for the minor axis of the
sky position error ellipse and for the luminosity distance in
a majority of (mass) cases. The improvement is not quite so
good for the major axis: Although higher harmonics can
reduce errors by factors of �2 or more, this often does not
completely make up for the loss of precession, especially at
10� alignment. Errors in the measured spin behave simi-
larly to the major axis—their measurement is improved,
but not enough to fully compensate for the impact of
aligned spins. By contrast, we find that higher harmonics
always improve mass measurements beyond what can be
done with random spins alone. In fact, partial alignment in
many cases improves mass measurements, thanks to in-
creased SNR in these cases.
We also briefly take a more detailed look at the relative

improvement from spin precession, higher harmonics, and
their combination. We confirm previous results that, for
extrinsic parameters, the impact of the combined effects is
not substantially greater than the impact of each effect
alone. For mass errors, the higher harmonics dominate,
with precession being almost irrelevant for the full wave-
form. For spin errors, however, the two effects do seem to
be independent, with the combined improvement approxi-
mately equal to (or greater than) a simple multiplication of
the individual improvements.
We conclude in Sec. V by summarizing our results and

discussing additional studies that must be done before the
question of LISA parameter estimation is fully understood.
Throughout this paper, we use geometrized units in
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which G ¼ c ¼ 1. A useful conversion factor is that
1M� ¼ 4:91� 10�6 s ¼ 1:47 km.

Since this paper was originally written, budget con-
straints have caused a rescoping of the LISA mission,
and the mission that eventually flies may differ from the
‘‘classic’’ configuration considered here. We continue to
focus our analysis on measurements using LISAClassic for
two reasons. First, the design of the rescoped mission is in
flux. Until a design is fixed and its associated sensitivity
known, we cannot study how well it will make measure-
ments. Second, our goal is to make comparisons with
previous studies that were based on the classic design. As
such, it is most appropriate for us to use this design as well.
We note that our conclusions should be robust in the sense
that the general trends we find regarding the impact of
spins and higher harmonics will be relevant to any LISA-
like design (at least for designs that have five or six links,
so both waveform polarizations can be simultaneously
measured).

II. PARAMETER ESTIMATION CODE

The code used in this paper is a version of the MONTANA-

MIT code used by the LISA Parameter Estimation Taskforce

[34], updated with some new features and bug fixes.3 In this
section, we describe the relevant features of the code,
especially how it differs from the code of Paper I [9]. We
refer the reader to Paper I for more detailed discussion of
the waveform and parameter estimation theory.

A. Massive black hole binary waveform

The waveform from a massive black hole binary coales-
cence is traditionally divided into three distinct phases:
(1) the inspiral of the two holes, which can be described
by the post-Newtonian expansion of general relativity;
(2) the merger of the two holes into a common event
horizon, describable only by full numerical relativistic
simulations; and (3) the ringdown of the final hole into
the stationary Kerr solution, which can be described by
black hole perturbation theory. In this work, we consider
only the inspiral, which for LISA sources can last for
months to years, accumulating large amounts of SNR and
parameter information. Because of this fact, as well as the
ease of using the post-Newtonian approximation, inspiral-
only waveforms have traditionally been used in most,
though not all, LISA parameter estimation studies.
Ringdown information was first studied on its own by
Berti, Cardoso, and Will [8]. More recently, McWilliams
et al. added both the merger and ringdown to the inspiral,
albeit for nonspinning binaries with an a priori known
mass ratio [17,19]. They showed that the merger can add

a significant amount of parameter information, about a
factor of 3 improvement in measurement accuracy for all
parameters but mass. Work in progress will consider the
impact of an unknown mass ratio, as well as spins.
The inspiral waveform can be described by 17 parame-

ters: the masses of the black holes, m1 and m2; their
dimensionless spins, �1 ¼ jS1j=m2

1 and �2 ¼ jS2j=m2
2;

the spin angles at some particular reference time t0,
cos�S1ðt0Þ, cos�S2ðt0Þ,�S1ðt0Þ, and�S2ðt0Þ; the orientation
angles of the orbital angular momentum at t0, cos �Lðt0Þ
and �Lðt0Þ; the eccentricity e; the periastron angle �; the
position of the binary on the sky, cos �N and �N; the
luminosity distance DL; a reference time tref (possibly
different from t0); and a reference phase �ref ¼ �ðtrefÞ.
In this work, we assume quasicircular orbits, eliminating e
and � and reducing the parameter set to 15. This assump-
tion is also quite common, since radiation reaction has long
been expected to circularize binaries [35]. It should be
noted, however, that recent studies indicate that gas
[36,37] and/or stellar interactions [38] may cause binaries
to retain a small, but significant, residual eccentricity when
they enter the LISA band. Recent work by Key and Cornish
[18] investigates the impact of this residual eccentricity
using a nontrivial extension of our code.
In Paper I, we used the post-Newtonian parameters tc

and �c as the reference time tref and phase �ref . These
parameters are, respectively, the time and phase when the
post-Newtonian frequency formally diverges. However,
Paper I made a slight error in determining the post-
Newtonian frequency and phase. To understand this error
and how to correct it, begin with the time derivative of
orbital angular frequency ! ¼ 2�forb (shown here to sec-
ond post-Newtonian order)

d!

dt
¼ 96

5

�

M2
ðM!Þ11=3

�
1�

�
743

336
þ 11

4
�

�
ðM!Þ2=3

þ ð4�� �ÞðM!Þ þ
�
34103

18144
þ 13661

2016
�

þ 59

18
�2 þ 	

�
ðM!Þ4=3

�
; (2.1)

where � ¼ �=M is the reduced mass ratio, � is a spin-
orbit coupling term, and 	 is a spin-spin coupling term.
Exact expressions for � and 	 are given in Paper I.
Equation (2.1) must be integrated once to obtain !ðtÞ and
twice for the orbital phase �orbðtÞ. When the spins do not
precess, this integration can be done analytically to some
specified post-Newtonian order. In Paper I, the analytic
results were used, but with the time-dependent expressions
for � and 	 plugged in at the end of the process. This is
technically not correct: The time-dependent spins should
be inserted into (2.1), and then that expression should be
numerically integrated to produce !ðtÞ and�orbðtÞ. This is
not difficult, only requiring two additional differential
equations in the Runge-Kutta solver of Paper I. However,
it means that tc and�c are no longer acceptable references,

3We note that the codes used in [34] were all found to produce
the same answers provided they used the same noise models, the
same signal cutoffs, and so on. Our code has been well-tested in
as much as other codes had the same features to compare against.
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since the numerical integrator cannot reach infinite fre-
quency. We describe our current approach momentarily.

Another change from the code used in Paper I is in the
choice of cutoff frequency for the inspiral. In Paper I, the
inspiral was stopped at the frequency of the Schwarzschild
innermost stable circular orbit (ISCO), r ¼ 6M. This as-
sumption is poor for two reasons. First, while r ¼ 6M is
the ISCO for a test particle orbiting a single Schwarzschild
hole of mass M, the dynamics of the two-hole system are
much more complex, and the transition to plunge and
merger is not so well-defined. Second, we are considering
Kerr black holes, for which even in the point-particle limit
the innermost stable orbit can vary from r ¼ 9M to r ¼ M
depending on the spin of the hole, with a concomitantly
wide variation in the ISCO frequency. A better solution is
to stop the inspiral at the minimum energy circular orbit
(MECO), the orbit which minimizes the expression for
post-Newtonian energy [39]:

E¼��

2
ðM!Þ2=3

�
1� 1

12
ð9þ�ÞðM!Þ2=3

þ 8

3M2

��
1þ3

4

m2

m1

�
L̂ �S1þ

�
1þ3

4

m1

m2

�
L̂ �S2

�
ðM!Þ

þ
�
1

24
ð�81þ57���2Þ

þ 1

�M4
ðS1 �S2�3ðL̂ �S1ÞðL̂ �S2ÞÞ

�
ðM!Þ4=3

�
: (2.2)

The MECO is known to be a better approximation to the
inspiral-plunge transition than the ISCO, and it properly
takes spins into account.

Using the MECO gives us a better reference point for
our time and phase than the coalescence time and phase tc
and�c described above. We choose t0 ¼ tref ¼ tMECO and
�ref ¼ �MECO and then integrate the spin, frequency, and
phase evolution equations backwards from the MECO to
t ¼ 0. The backwards integration provides stability in the
Fisher-matrix calculation: We align the waveforms when
they are largest, thus making it easier to introduce slight
perturbations.

As seen in Eq. (2.1), we calculate the phase out to second
post-Newtonian (2PN) order. (By numerically integrating
(2.1) to obtain !ðtÞ and �orbðtÞ, we specifically are choos-
ing the ‘‘TaylorT4’’ PN approximant [40].) We integrate
the spin precession equations out to 1.5PN order, which
includes 1PN spin-orbit and 1.5PN spin-spin terms. It is
worth noting that all of the relevant quantities are known to
higher post-Newtonian order. Work in preparation shows
that including terms beyond the order we include here only
causes a slight quantitative change in the accuracy with
which parameters are measured [41]. In Sec. III, we use the
restricted post-Newtonian approximation, in which we
only consider the quadrupole term (� ¼ 2�orb) with its
lowest order, Newtonian amplitude. In Sec. IV, we use the
full post-Newtonian waveform, which includes all harmon-
ics to 2PN order in amplitude.

B. LISA response and noise

The LISA response used in this paper differs from the
response used in Paper I. For signals which do not reach
above 3� 10�3 Hz, we use the same low-frequency ap-
proximation used in that paper. In this approximation, we
ignore the transfer functions which arise due to the finite
arm lengths of the detector. This approximation is very
inaccurate above f� 3� 10�3 Hz. With the addition of
higher harmonics, many signals now reach into this range
where the transfer functions become important.
The full LISA detector response is somewhat compli-

cated to model. Three existing codes provide the full
response: the LISA Simulator [42], Synthetic LISA [43],
and LISACode [44]. Interfacing with one of these codes
would significantly slow our analysis, making it difficult to
perform large Monte Carlo studies over our parameter
space. We seek a simpler response function which includes
the finite arm length transfer functions but ignores some of
the more complicated issues.
The three LISA spacecraft follow eccentric orbits

around the Sun at 1 AU. The individual orbits combine
in such a way that the LISA constellation maintains, at first
order in orbital eccentricity, an equilateral triangle forma-
tion. By going beyond this leading order, one finds that the
arm lengths vary by a small amount on monthlong time
scales. The variation in LISA arm lengths is the reason for
the development of time delay interferometry (TDI)
techniques [45] to eliminate laser phase noise, which can-
cels exactly in equal-arm interferometers like LIGO. In our
detector model, we approximate the constellation as hav-
ing arm lengths that are equal at all times. Our model
detector is a ‘‘rigid’’ equilateral triangle.
The other complexity in the full LISA response is that

the spacecraft move during the measurement, causing ‘‘-
point-ahead’’ effects which must be taken into account. We
assume instead an ‘‘adiabatic’’ detector, in which for each
time that we require the detector response, the detector is
considered to be motionless for that time. The spacecraft
then adiabatically move to their next position for the next
sample point. This rigid, adiabatic approximation is known
to be equivalent to the full response up to very high
frequency (� 500 mHz) and thus is appropriate for our
Fisher-matrix analysis [42].
For the rigid, adiabatic approximation, the code pro-

duces Michelson variables X, Y, and Z as defined in [43],
Eqs. (10) and (11). Note that these are technically not TDI
variables. Since we do not have to subtract phase noise,
there is no need to include another pass through the inter-
ferometer (cf. the ‘‘real’’ TDI variables in Eq. (13) of [43]).
They do contain the same information, though, so we may
refer to them as (pseudo, equal-arm) TDI Michelson var-
iables in this paper. From them, we can construct noise-
orthogonal TDI variables A, E, and T, defined as

A ¼ 1

3
ð2X� Y � ZÞ; (2.3)
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E ¼ 1ffiffiffi
3

p ðZ� YÞ; (2.4)

T ¼ 1

3
ðX þ Y þ ZÞ: (2.5)

A, E, and T are used to calculate the SNR and the Fisher
matrix. Note that, as defined in Eqs. (10) and (11) of [43],
these are fractional-frequency variables. We can convert
them to equivalent strain by integrating the signal in the
frequency domain and then multiplying by c=ð4�LÞ. For
the low-frequency case, we use the Michelson signal X and

the noise-orthogonal signal ðX þ 2YÞ= ffiffiffi
3

p
. These combina-

tions are denoted hI and hII in Paper I (which in turn
follows the convention of Cutler [3]). The low-frequency
approximation is constructed so that these signals are al-
ready expressed as equivalent strain.

The LISA noise power spectral density SnðfÞ comprises
two parts, instrumental noise and confusion noise due to
unresolved white dwarf binaries in the Galaxy.
Instrumental noise consists of both position noise, due to
photon shot noise and other effects along the optical path,
and acceleration noise, due to proof mass motion. The total
instrument noise in theA andE (strain) channels is given by

Sn;AE ¼ 1

3L2

�
ð2þ cos xÞSpðfÞ þ ð1þ cos xþ cos2 xÞ

�
�
4SaðfÞ
ð2�fÞ4

�
1þ

�
10�4 Hz

f

����
; (2.6)

and the T (strain) noise is given by

Sn;T ¼ 1

3L2

�
ð1�cosxÞSpðfÞ

þ1

2
ð1�cosxÞ2

�
4SaðfÞ
ð2�fÞ4

�
1þ

�
10�4 Hz

f

����
: (2.7)

Here L ¼ 5� 109 km is the LISA arm length, x ¼
2�fL=c, SpðfÞ ¼ 3:24� 10�22 m2=Hz is the position

noise budget, and SaðfÞ ¼ 9� 10�30 m2=s4=Hz is the
acceleration noise budget. For the low-frequency approxi-
mation, we can calculate similar expressions for the
two noise-orthogonal channels and then take cos x ¼ 1,
although this attention to detail makes little difference for
the frequencies of interest. Notice that the position noise and
acceleration noise are both assumed to be white, with no
frequency dependence. However, because it is expected that
LISA’s acceleration noise performance will degrade some-
what from this white form below 10�4 Hz, we have also
added a ‘‘pink’’ acceleration noise term, with a slope of f�1.

Confusion noise is constructed from the residuals of a fit
to the Galaxy [46] in the Mock LISA Data Challenge [22].
An approximate analytic expression for the confusion
noise can be found in [18], Eq. (10). It is added to instru-
ment noise for the A and E channels (or the orthogonal
low-frequency channels) to obtain the total noise. It is not

added to the T channel because it occurs only at low
frequency, where that channel adds nothing to the analysis.
Finally, although it is not expressed explicitly in (2.6)

and (2.7), we enforce a low-frequency cutoff of
3� 10�5 Hz and do not include any contribution from
the signal below that frequency in our analysis. (This
frequency is the lowest frequency at which LISA is
planned to have good sensitivity to gravitational waves;
though it will have sensitivity to sources at lower frequen-
cies, the noise characteristics below f ¼ 3� 10�5 Hz
cannot be guaranteed.)

C. Construction of the Fisher matrix

The Fisher matrix �ij is defined as

�ij ¼
�
@h

@�i

��������
@h

@�j

�
; (2.8)

where h is the gravitational wave signal, �i are the 15
parameters which describe it, and

ðajbÞ ¼ 4Re
Z 1

0
df

~a�ðfÞ~bðfÞ
SnðfÞ (2.9)

is a noise-weighted inner product. The inverse of the Fisher
matrix is the covariance matrix, which contains squared
parameter errors along the diagonal and correlations else-
where. To calculate the Fisher matrix, we need the wave-
forms in the frequency domain. In Paper I, we actually did
all calculations in the frequency domain by using the sta-
tionary phase approximation. This approximation relies on
a separation of time scales and is known to be quite good
for nonspinning binaries, where the inspiral time scale Tinsp

is much larger than the orbital time scale Torb. However,
when precession is included in the waveform, an additional
time scale Tprec comes into play, with Tinsp > Tprec > Torb.

We have seen that with precession, the stationary phase
approximation tends to smooth out sharp features in the
Fourier transform, potentially reducing the information
content. The problem becomes worse as the impact of
precession increases (i.e., with higher spin values, or for
highly nonaligned spins and orbit). To avoid introducing
any errors due to this approximation, we here calculate our
waveforms in the time domain and then perform a fast
Fourier transform (FFT) to bring them into the frequency
domain.
This approach has two major limitations. First, it is

much slower than the stationary phase approach, since
we need to calculate many time samples to observe
Nyquist sampling requirements and we then need to com-
pute the (FFT). Second, the FFT assumes a periodic signal.
Because we have a finite signal which looks much different
at the end than at the beginning, we must introduce some
kind of window in order to taper the signal to zero at the
beginning and end. We use a Hann window (actually half a
Hann window at each end of the signal). This window
substantially reduces ‘‘ringing,’’ or spectral leakage
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problems. However, it also cuts out part of the signal. This
is particularly unfortunate for the strongly chirping inspi-
ral, since much of the signal power is contained in the last
few cycles. By windowing the signal, we lose some of this
power. This may cause our SNR and errors to be smaller
and larger, respectively, than they would be for a ‘‘real,’’
physical signal. The best solution to this problem would be
to include the merger and ringdown portions of the signal,
allowing it to fade to zero in a physical, not artificial, way.
For now, we must simply accept the windowing as part of
the definition of the (unphysical) inspiral-only waveform.

III. PARAMETER ESTIMATION IN
PARTIALLYALIGNED BINARIES:

ONLY THE QUADRUPOLE HARMONIC

Here we describe the parameter estimation capabilities
of LISAwithout including the influence of higher harmon-
ics. In order to consider a wide range of LISA sources, we
choose only three parameters explicitly, the two masses of
the system and the luminosity distance. For the masses, we
consider a variety of systems ranging in total mass from
2� 105M� to 2� 107M�, with a mass ratio from 1–10. On
the other hand, we consider only sources at z ¼ 1, corre-
sponding to a luminosity distance of 6.64 Gpc using our
choice of cosmological parameters. Errors at other red-
shifts can be constructed using the errors at z ¼ 1. We note
that the results at masses m1 and m2 and redshift z0 can be
simply related to the results at masses m1ð1þ z0Þ=ð1þ zÞ
and m2ð1þ z0Þ=ð1þ zÞ and redshift z. This is because all
time scales in the system are derived from the masses.
Since time scales are lengthened (frequencies shortened)
by the cosmological redshift, a binary at higher redshift
behaves like a binary at lower redshift but with a higher
mass. The quantity mð1þ zÞ is generally called the red-
shifted mass, where m is the mass measured locally at the
rest frame of the binary. (When we quote masses in this
paper, we always mean the rest-frame mass, remembering
that when put into the waveform formulas of Paper I, they
must be multiplied by 1þ z.) The amplitude of the waves
at redshift z0 is decreased by a factor 
 ¼ DLðzÞ=DLðz0Þ
over the corresponding binary (i.e., the binary with the
same redshifted mass) at redshift z. This increases the
errors by 1=
 over that corresponding signal.

The other 12 parameters of the system are generated
essentially at random, with 1000 different Monte Carlo
realizations. For example, tMECO is chosen from within an
assumed three-year mission time, meaning that some early
binaries will have abnormally short signals for a given
mass. Spin magnitudes are chosen uniformly between 0
and 1, and �MECO is chosen uniformly between 0 and 2�.
Cosines of angles are chosen uniformly between�1 and 1,
while longitudinal angles are chosen uniformly between
0 and 2�. In the case of random spins (as in Paper I), the
procedure is then complete. In the case of partially aligned
spins, the main focus of this paper, we use the randomly

generated parameters to integrate the spin precession equa-
tions backwards from the MECO to t ¼ 0. We assume
that any alignment at t ¼ 0 is solely due to gas. If either
of the resulting spin-orbit angles is greater than the model’s
restriction (30� or 10�), we randomly select new spin
orientation angles (at MECO) and try again. This procedure
guarantees that all sources will have the desired amount of
alignment at the start of the signal. However, our sample
will include some sources (� 30%) which move out of
alignment by MECO. Since these sources generally precess
more strongly than the others, they tend to improve the
overall distribution of parameter errors, especially for spin
magnitude.
Figure 1 shows a histogram of the Monte Carlo results

for a binary with m1 ¼ 106M� and m2 ¼ 3� 105M�. We
show the major axis of the sky position error ellipse, 2a,
comparing the cases of randomly aligned spins to spins
restricted to be aligned within 30� (for hot gas) and 10�
(for cold gas) of the orbital angular momentum. We see
that partial alignment of the spins and orbital angular
momentum degrades LISA’s localization capability. For
the partially aligned cases, the shapes of the histograms
resemble the strongly peaked ‘‘no precession’’ results of
Paper I more than the roughly flat random-spin histogram.
The medians of the distributions also increase: While
randomly oriented binaries have a median major axis of
34.8 arcminutes, systems aligned within 30� have a median
2a of 62.3 arcminutes. For 10� alignment, this degrades
further to 90.5 arcminutes. This is a factor of 2.6 degrada-
tion from the case of random alignment, just short of the
factor�3 improvement seen in Paper I when precession is
introduced into the waveform model. In essence, by
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FIG. 1. Distribution of 2a, the major axis of the sky position
error ellipse, for binaries with randomly aligned spins (dotted
line), spins restricted to within 30� of the orbital angular mo-
mentum (dashed line), and spins restricted to within 10� of the
orbital angular momentum (solid line). Here m1 ¼ 106M�,
m2 ¼ 3� 105M�, and z ¼ 1.
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restricting the spin angles to within 10� of the orbital
angular momentum, we have eliminated almost all of the
advantage gained from including precession effects in the
waveform.

Figure 2 shows results for the minor axis of the sky
position error ellipse,4 2b. The results are similar: The
median value of 2b increases from 24.6 arcminutes for
random spins to 40.6 arcminutes for 30� alignment and
to 58.6 arcminutes for 10� alignment. Together with the
results for the major axis, these numbers imply that the
total sky position area increases by a factor >6 when
binaries have closely aligned angular momentum vectors,
strongly impacting the ability of LISA to find electromag-
netic counterparts to the GW signal.

Table I shows the major and minor sky position axes for
a range of masses, in the random-spin, hot gas, and cold gas
cases. We see that degradation of a factor �2–3 between
the ‘‘no gas’’ and ‘‘cold gas’’ (10� alignment) cases occurs
rather consistently for different masses and mass ratios.

The other extrinsic parameter of interest is the luminos-
ity distance DL. Figure 3 shows the fractional errors in DL

for different degrees of spin alignment. Again, we see that
restricting the spin angles dramatically affects measure-
ment: The median of 5:24� 10�3 for random spin orien-
tation doubles to 1:01� 10�2 when the spins are aligned
within 30� and nearly triples to 1:36� 10�2 when the
spins are aligned within 10�. However, this particular
degradation is almost certainly immaterial, at least at low
redshift, since the error remains much smaller than the
�5% error produced by weak gravitational lensing at
z� 1. For sources at higher redshift, this degradation
may be more important. Table II shows luminosity distance

errors for different masses. Like the sky position, the
degradation is about a factor of �1:5–2 for 30� alignment
and �2–3 for 10� alignment. Note that for the larger
masses we consider, the degradation pushes the GW dis-
tance error to a value comparable to or even larger than the
weak lensing error.
We now turn to the intrinsic parameters of the system, its

masses and spins. Figs. 4 and 5 show the errors in the two
black hole masses for the three cases we consider. Medians
of �m1=m1 are 4:84� 10�3 for the random-spin case,
5:70� 10�3 for a system with hot gas, and 8:23� 10�3

for a system with cold gas. For�m2=m2, these numbers are
3:84� 10�3, 4:54� 10�3, and 6:55� 10�3, respectively.
The impact of partially aligned spins does not seem to be as
strong on the masses as on the sky position; the mass errors
change by less than a factor of 2. In Paper I, we looked at
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FIG. 2. Same as Fig. 1, but for the minor axis 2b.

TABLE I. Median sky position major axis 2a and minor axis
2b, in arcminutes, for binaries of various masses at z ¼ 1, in the
‘‘no gas’’ (random-spin), ‘‘hot gas’’ (30� alignment), and ‘‘cold
gas’’ (10� alignment) cases.

m1ðM�Þ m2ðM�Þ
No gas Hot gas Cold gas

2a 2b 2a 2b 2a 2b

105 105 27.0 16.4 40.7 25.7 53.8 35.1

3� 105 105 17.5 11.7 30.1 17.9 53.7 34.8

3� 105 3� 105 33.3 19.0 45.9 27.1 63.1 42.4

106 105 23.3 18.3 35.9 21.6 61.6 38.4

106 3� 105 34.8 24.6 62.3 40.6 90.5 58.6

106 106 56.9 37.5 87.7 57.2 105 68.3

3� 106 3� 105 39.0 33.6 57.0 36.8 105 68.1

3� 106 106 45.5 32.4 83.3 49.0 131 77.9

3� 106 3� 106 71.9 43.6 126 75.6 168 106

107 106 47.3 40.2 70.7 46.6 132 83.7

107 3� 106 67.3 45.3 131 75.7 234 143

107 107 160 84.8 281 136 581 323
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FIG. 3. Same as Fig. 1, but for the fractional error in luminos-
ity distance, �DL=DL.

4Note that unlike in Paper I, the results for 2b do not feature a
long tail of small errors. We have confirmed that this effect was
caused by a bug in the code used in Paper I.
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precession improvements not in individual masses but in
chirp mass and reduced mass, where we saw factors of�10
and �100–1000 improvement, respectively. Clearly, re-
stricting the spin directions does not remove this entire
improvement; even a limited amount of precession appears
to significantly aid mass determination. We can check this
assertion using our new code by running a case with only
1� alignment between the spins and the orbit. We find that
the 10� results improve on the 1� results by a factor of 3.
By contrast, the sky position and distance errors differ by
only 15–20%.

Table III shows the results for different masses. We see a
much stronger dependence on mass ratio here than for the
extrinsic parameters. For example, while the cold gas
degradation is less than a factor of 2 for the (roughly) 3:1
mass ratio case considered in Figs. 4 and 5, it reaches a
factor of �9 for the equal-mass case m1 ¼ m2 ¼ 105M�.
This is unusual, since precession is known, at least for

extrinsic parameters, to have a stronger impact for unequal
masses due to increased complexity in the signal. It is
possible that the lack of this complexity essentially ‘‘gives
away’’ that the masses are equal, making them easier to
determine from the extremely well-measured chirp mass.
Interestingly, there are some examples of 10:1mass ratio

systems that break our general trend; in these cases, we find
that partially aligned spins actually do better than random
spins. This seemingly counterintuitive result can be ex-
plained by our choice of the minimum energy circular orbit
(MECO) as the waveform cutoff. Binaries with aligned
spins have a smaller MECO (with a corresponding high
inspiral cutoff frequency) and thus accumulate more SNR
than those with spins out of alignment (as many in the
random-spin sample will be). Figure 6 shows the SNR for
all three cases in a 10:1 binary. We see that the SNR is
substantially larger for the partially aligned cases (medians
of 2588 and 2592, for 30� and 10�, respectively) than the
randomly aligned case (median of 1445). Even though
these binaries precess less, the increase in SNR makes up
for it in parameter estimation. It is worth noting that this
effect could also be of use in detecting and measuring
particularly high-mass binaries. For randomly chosen
spins, such a binary might be mostly or completely out
of the LISA band. However, if the spins are aligned by
interactions with gas, the MECO frequency will be pushed
into band.
Finally, we consider how restriction of spin angles af-

fects measurement of spin magnitudes; Figs. 7 and 8 show
these results. For �1, the median varies from 4:55� 10�3

for no gas to 5:38� 10�3 for hot gas to 1:31� 10�2 for
cold gas. For �2, the situation is similar; the medians are
1:48� 10�2 (no gas), 1:72� 10�2 (hot gas), and 5:11�
10�2 (cold gas). Although the spin errors are degraded by
partial alignment, the amount of degradation is somewhat

TABLE II. Same as Table I, but for the fractional error in
luminosity distance, �DL=DL.

m1ðM�Þ m2ðM�Þ No gas Hot gas Cold gas

105 105 4:16� 10�3 7:97� 10�3 0.0130

3� 105 105 2:59� 10�3 6:03� 10�3 0.0101

3� 105 3� 105 5:54� 10�3 9:23� 10�3 0.0121

106 105 3:67� 10�3 5:92� 10�3 0.0113

106 3� 105 5:24� 10�3 0.0101 0.0136

106 106 9:37� 10�3 0.0137 0.0175

3� 106 3� 105 5:58� 10�3 9:19� 10�3 0.0147

3� 106 106 7:06� 10�3 0.0130 0.0191

3� 106 3� 106 0.0137 0.0207 0.0279

107 106 7:67� 10�3 0.0135 0.0242

107 3� 106 0.0129 0.0243 0.0429

107 107 0.0441 0.0613 0.0974
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FIG. 4. Same as Fig. 1, but for the fractional error in mass,
�m1=m1.
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FIG. 5. Same as Fig. 1, but for the fractional error in mass,
�m2=m2.
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curbed by the contribution of binaries which precess away
from alignment before MECO. In addition, the errors at
10� alignment are roughly an order of magnitude better
than at 1� alignment. Similar to the situation with mass
measurements, even a small amount of precession can have
a huge impact on measuring spin.

Table IV gives spin errors for a broader range of masses.
Like the mass errors, there is a strong dependence on mass
ratio. In this case, however, the worst degradation occurs
not for equal masses, but for 3:1mass ratios, with factors of
up to 4 increases in ��1 and factors of up to 6 increases
in ��2. The 10:1 cases show some degradation at 10�
alignment, but many cases are slightly improved at
30� alignment. As in the case of mass measurements
(cf. Table III), this can be attributed to the increased SNR
for aligned binaries.

TABLE III. Same as Table I, but for the mass errors �m1=m1 and �m2=m2.

m1ðM�Þ m2ðM�Þ
No gas Hot gas Cold gas

�m1=m1 �m2=m2 �m1=m1 �m2=m2 �m1=m1 �m2=m2

105 105 3:23� 10�3 3:24� 10�3 9:84� 10�3 9:84� 10�3 0.0284 0.0284

3� 105 105 3:02� 10�3 2:45� 10�3 3:95� 10�3 3:20� 10�3 5:94� 10�3 4:83� 10�3

3� 105 3� 105 4:50� 10�3 4:50� 10�3 0.0129 0.0128 0.0327 0.0328

106 105 2:72� 10�3 1:90� 10�3 1:90� 10�3 1:32� 10�3 2:22� 10�3 1:55� 10�3

106 3� 105 4:84� 10�3 3:84� 10�3 5:70� 10�3 4:54� 10�3 8:23� 10�3 6:55� 10�3

106 106 8:05� 10�3 8:05� 10�3 0.0197 0.0197 0.0475 0.0475

3� 106 3� 105 5:81� 10�3 4:01� 10�3 4:49� 10�3 3:07� 10�3 5:10� 10�3 3:51� 10�3

3� 106 106 0.0121 9:73� 10�3 0.0165 0.0132 0.0233 0.0187

3� 106 3� 106 0.0239 0.0237 0.0536 0.0533 0.109 0.109

107 106 0.0176 0.0118 0.0167 0.0109 0.0205 0.0133

107 3� 106 0.0431 0.0336 0.0581 0.0447 0.0924 0.0713

107 107 0.381 0.388 0.424 0.423 0.967 0.971
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FIG. 6. Signal-to-noise ratio for binaries with randomly
aligned spins (dotted line), spins restricted to within 30� of the
orbital angular momentum (dashed line), and spins restricted to
within 10� of the orbital angular momentum (solid line). Here
m1 ¼ 106M�, m2 ¼ 105M�, and z ¼ 1.
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FIG. 7. Same as Fig. 1, but for the error in spin magnitude,
�1 ¼ jS1j=m2
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FIG. 8. Same as Fig. 1, but for the error in spin magnitude,
�2 ¼ jS2j=m2
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IV. PARAMETER ESTIMATION IN
PARTIALLYALIGNED BINARIES:
INCLUDING HIGHER HARMONICS

We now move beyond the leading quadrupole waveform
to the full waveforms. Post-Newtonian corrections to the
waveform amplitude are included up to 2PN order, includ-
ing both additional quadrupole terms (� ¼ 2�orb) and
subleading (‘‘higher’’) harmonics beyond the quadrupole.
For example, the barycentric waveform hþðtÞ can be writ-
ten up to 1PN order in the amplitude as

hþðtÞ ¼ 2�x

DL

�
ð1þ c2i Þ cos 2�orb þ x1=2

si
8

�m

M
½ð5þ c2i Þ

� cos�orb � 9ð1þ c2i Þ cos 3�orb	 þ x

�
� 1

6
ð19

þ 9c2i � 2c4i � �ð19� 11c2i � 6c4i ÞÞ cos 2�orb

þ 4

3
s2i ð1þ c2i Þð1� 3�Þ cos 4�orb

��
; (4.1)

where x ¼ ðM!Þ2=3, ci ¼ cos ðL̂ � n̂Þ, si ¼ sinðL̂ � n̂Þ, and
�m ¼ m1 �m2. Here we see both extra harmonics and a
1PN correction to the quadrupole harmonic. Note that the
odd harmonics only contribute if m1 � m2; just like spin
precession, higher harmonic corrections are more complex
for unequal masses. Further terms (including the � polar-
ization) can be found in [47] (albeit with some differences
in sign convention).

It has been shown that higher harmonic corrections can
improve parameter estimation much like spin precession
does [10–12,14]. In the case of higher harmonics, degen-
eracies are broken due to the different sky position depen-
dence of each harmonic. However, these studies did not
include precession and so could not comment on how
the two effects would combine. More recently, both
effects were included in a parameter estimation study by
Klein et al. (Ref. [16]). Their results demonstrate that
including both precession and higher harmonics improves

measurement accuracy, but, at least for extrinsic variables
(sky position and distance), the combined improvement is
not as drastic as the improvement from each effect on its
own. This indicates that at least in some cases, precession
and higher harmonics encode similar information. We
might therefore expect that in partially aligned binaries
for which spin precession exists but is suppressed, the
inclusion of higher harmonics may make up for this
suppression and restore much, if not all, of the lost pa-
rameter estimation capability. In this section, we test that
expectation.
Figure 9 shows the major axis of the sky position error

ellipse for the same binaries as Fig. 1, except with higher

TABLE IV. Same as Table I, but for the spin magnitude errors ��1 and ��2.

m1ðM�Þ m2ðM�Þ
No gas Hot gas Cold gas

��1 ��2 ��1 ��2 ��1 ��2

105 105 0.0217 0.0210 0.0311 0.0310 0.0391 0.0388

3� 105 105 3:18� 10�3 7:61� 10�3 4:98� 10�3 0.0155 0.0125 0.0467

3� 105 3� 105 0.0321 0.0315 0.0390 0.0382 0.0430 0.0417

106 105 1:30� 10�3 0.0355 1:05� 10�3 0.0225 2:22� 10�3 0.0358

106 3� 105 4:55� 10�3 0.0148 5:38� 10�3 0.0172 0.0131 0.0511

106 106 0.0534 0.0505 0.0655 0.0645 0.0774 0.0753

3� 106 3� 105 2:38� 10�3 0.0601 1:70� 10�3 0.0499 3:24� 10�3 0.0659

3� 106 106 9:92� 10�3 0.0186 0.0111 0.0264 0.0252 0.0787

3� 106 3� 106 0.134 0.125 0.197 0.198 0.234 0.232

107 106 4:86� 10�3 0.124 3:69� 10�3 0.180 7:03� 10�3 0.231

107 3� 106 0.0266 0.0446 0.0298 0.0852 0.0652 0.191

107 107 1.69 1.54 1.28 1.31 1.86 1.87
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FIG. 9. Distribution of 2a, the major axis of the sky position
error ellipse, for binaries with randomly aligned spins (dotted
line), spins restricted to within 30� of the orbital angular mo-
mentum (dashed line), and spins restricted to within 10� of the
orbital angular momentum (solid line). Here m1 ¼ 106M�,
m2 ¼ 3� 105M�, and z ¼ 1. Higher harmonics are now in-
cluded in the waveform model.
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harmonics now added to the waveform model. The median
value of 2a for random-spin, gas-free systems is 21.7
arcminutes. Comparing to the leading quadrupole wave-
form value of 34.8 arcminutes, we see that higher harmon-
ics do indeed add some additional information not
contained in precession. The difference between the two
values is a factor �1:6, consistent with the results of [16].
For partially aligned systems, the shape of the plot shows
that the higher harmonics have had an important effect;
both partially aligned histograms look much more like the
roughly flat random-spin case than the strongly peaked
histograms shown in Fig. 1. The median is 28.2 arcminutes
for hot gas and 32.7 arcminutes for cold gas. Both results
are great improvements on the leading quadrupole wave-
form values (factors�2:2 and 2.8, respectively), indicating
that the inclusion of higher harmonics has indeed ‘‘made
up’’ for the loss of some spin precession. Both results
are actually better than the leading quadrupole, gas-free
result of 34.8 arcminutes. In this case, a full waveform
with a small amount of precession does better than a
leading quadrupole waveform with potentially significant
precession.

Figure 10 shows the results for the minor axis 2b, with
medians 16.1 arcminutes for random spins and 13.7 arcmi-
nutes for both 30� and 10� alignment. These are all better
than the leading quadrupole, random-spin result of 24.6
arcminutes. More interestingly, we see that when higher
harmonics are included, the ‘‘cold gas’’ and ‘‘hot gas’’
errors are smaller than the ‘‘no gas’’ errors. As discussed
in the previous section, this is due to the improvement in
SNR in the aligned case. Higher harmonics break degen-
eracies well enough that it is more beneficial to have
partially aligned binaries with more SNR and less preces-
sion than randomly aligned binaries with less SNR and
more precession.

Table V shows results for a variety of masses. All show
improvement from Table I; however, the improvement
is not always as strong as in the case discussed above
(m1 ¼ 106M�, m2 ¼ 3� 105M�). Bold text indicates
cases in which the errors match or improve upon the results
from the leading quadrupole waveform for random spins.
Italics indicate errors which are worse, but by no more than
10%. Because of statistical issues, these cases could very
well be ‘‘bold’’ in a different Monte Carlo run, so we will
consider them as such for purposes of summarizing the
results. While hot gas (30� alignment) systems achieve this
particular benchmark for a majority of mass cases, cold gas
(10� alignment) systems do not. Cold gas systems do,
however, meet it for a majority of mass cases if only the
minor axis is considered; 2b generally fares better than 2a.
Both axes exhibit cases where errors are smaller with
alignment than without, the minimum sometimes occur-
ring in a ‘‘sweet spot’’ of 30� alignment and sometimes at
10� alignment. In general, errors are better for larger mass
ratios. This is to be expected because both higher harmon-
ics and precession have a more complicated structure
for larger mass ratios. Finally, the improvements are worst
for the smallest masses, where the higher harmonics
(except the cos�orb terms, which are technically ‘‘lower’’
harmonics) begin to go out of band.
Figure 11 shows the results for luminosity distance

errors �DL=DL. Here the medians are 3:20� 10�3,
3:20� 10�3, and 3:54� 10�3 for the no gas, hot gas,
and cold gas cases, respectively. Again, these are all better
than the leading quadrupole, no gas value of 5:24� 10�3,
as we might expect since distance determination is strongly
tied to sky position determination. Table VI gives the
results for various masses. Most cases beat the leading
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FIG. 10. Same as Fig. 9, but for the minor axis 2b.

TABLE V. Median sky position major axis 2a and minor axis
2b, in arcminutes, for binaries of various masses at z ¼ 1, in the
‘‘no gas’’ (random-spin), ‘‘hot gas’’ (30� alignment), and ‘‘cold
gas’’ (10� alignment) cases when higher harmonics are included
in the waveform model. Bold entries are those that do better than
the no gas case when higher harmonics are ignored (i.e., Table I).
Italic entries do worse than that case, but only by 10% or less.

m1ðM�Þ m2ðM�Þ
No gas Hot gas Cold gas

2a 2b 2a 2b 2a 2b

105 105 21:8 12:3 30.3 14:2 35.6 15:9
3� 105 105 14:3 9:67 19.9 10:1 31.0 13.2

3� 105 3� 105 26:2 16:2 30:4 18:3 39.1 25.6

106 105 14:0 11:9 13:7 9:25 17:6 9:69
106 3� 105 21:7 16:1 28:2 13:7 32:7 13:7
106 106 48:1 32:0 60.4 37:1 53:0 32:4
3� 106 3� 105 29:1 25:8 25:7 20:0 35:8 24:4
3� 106 106 36:0 26:8 48.2 27:4 58.2 30:2
3� 106 3� 106 63:5 39:8 103 58.1 109 66.5

107 106 36:7 32:4 38:9 27:4 54.7 31:3
107 3� 106 45:0 32:8 65:1 33:0 82.7 36:5
107 107 114 65:6 144 80:1 228 115
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quadrupole, no gas values of Table II or come within 10%.
That is, except for the lowest mass systems, using the full
waveform essentially always brings the distance errors for
aligned spins back to the level of random spins. In this
respect, distance errors are similar to (and even a bit better
than) the minor axis of the sky position error ellipse.
Finally, as with sky position, some mass cases feature
errors which decrease as spins become aligned.

Figs. 12 and 13 show the results for masses m1 and m2.
The medians for �m1=m1 are 1:44� 10�3 (no gas),
1:17� 10�3 (hot gas), and 1:24� 10�3 (cold gas). For
�m2=m2, these are 1:15� 10�3 (no gas), 9:32� 10�4 (hot
gas), and 9:85� 10�4 (cold gas). These are all significant
improvements on the leading quadrupole, no gas case,
about a factor of 3–4. It seems that for mass errors, higher
harmonics are more useful than spin precession.

This conclusion is supported by Table VII. Here we see
that every case is significantly improved over the leading

quadrupole, random-spin result. The effect is strongest at
higher masses, where the improvement can be an order of
magnitude or more. This is due to the well-known effect of
higher harmonics on higher mass signals: Normally these
signals are only in band for a short amount of time. The
inclusion of higher frequencies keeps the signal in band
longer, allowing for the accumulation of more phase and
better mass determination. The improvement is also
greater for equal masses, similar to what was seen in
Sec. III for precession.
While the extrinsic parameter errors were only occa-

sionally reduced by partial alignment, this phenomenon
occurs almost always for mass errors. This might be ex-
pected, since the effect showed up previously for mass
errors (in Table III) even without higher harmonics to
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FIG. 11. Same as Fig. 9, but for the fractional error in lumi-
nosity distance, �DL=DL.

TABLE VI. Same as Table V, but for the fractional error in
luminosity distance, �DL=DL.

m1ðM�Þ m2ðM�Þ No gas Hot gas Cold gas

105 105 3:83� 10�3 5:95� 10�3 7:23� 10�3

3� 105 105 1:89� 10�3 2:88� 10�3 4:05� 10�3

3� 105 3� 105 4:16� 10�3 4:78� 10�3 5:45� 10�3

106 105 2:07� 10�3 1:66� 10�3 2:12� 10�3

106 3� 105 3:20� 10�3 3:20� 10�3 3:54� 10�3

106 106 7:16� 10�3 7:62� 10�3 7:48� 10�3

3� 106 3� 105 4:01� 10�3 3:29� 10�3 3:77� 10�3

3� 106 106 5:38� 10�3 6:23� 10�3 6:79� 10�3

3� 106 3� 106 0:0115 0.0139 0.0152

107 106 5:69� 10�3 5:69� 10�3 7:42� 10�3

107 3� 106 7:69� 10�3 9:02� 10�3 0:0121
107 107 0:0223 0:0270 0:0302
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FIG. 12. Same as Fig. 9, but for the fractional error in mass,
�m1=m1.
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FIG. 13. Same as Fig. 9, but for the fractional error in mass,
�m2=m2.
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help break degeneracies. In general, the difference in mass
accuracy between gas environments is relatively small.
Partial alignment of spins does not affect mass determina-
tion as long as the signal model includes higher harmonics;
such alignment may even help measure mass, at least
slightly.

Finally, Figs. 14 and 15 present the errors in spin mag-
nitude. These figures clearly show that higher harmonics
do not help spin errors as much as spin precession does.
This is to be expected, as the spin magnitudes drive the
precession but do not appear in the higher harmonic am-
plitudes. Any gain in spin accuracy due to higher harmon-
ics is a result of improvement in other parameters (such as
the masses) which are correlated with the spins. For �1, the
median errors are 2:20� 10�3 for no gas, 3:01� 10�3 for
hot gas, and 6:88� 10�3 for cold gas; for �2, these num-
bers are 1:21� 10�2, 1:45� 10�2, and 3:33� 10�2.
While these errors represent improvements (up to a factor

of �2) over their leading quadrupole waveform counter-
parts, it is worth noting that for this ‘‘fiducial’’ case, spins
are the only parameters for which the cold gas errors with
higher harmonics do not improve upon the no gas errors for
the leading quadrupole waveform. (Recall, however, that
for other masses, sky position and distance errors do not
always achieve this benchmark.) Table VIII shows the
results for various masses. The cold gas error only beats
the no gas, leading quadrupole error in a few cases.
We conclude this section by looking more directly at the

impact of different degeneracy-breaking effects on pa-
rameter errors. Figure 16 shows multiplicative improve-
ment factors (i.e., ratios of errors) when either precession,
harmonics, or both effects are included in the waveform.
For this purpose, we consider binaries with 10� alignment
to represent ‘‘no precession’’ and those with random spins
to represent ‘‘precession.’’ (Remember, though, that even
10� alignment permits enough precession to significantly

TABLE VII. Same as Table V, but for the mass errors �m1=m1 and �m2=m2.

m1ðM�Þ m2ðM�Þ
No gas Hot gas Cold gas

�m1=m1 �m2=m2 �m1=m1 �m2=m2 �m1=m1 �m2=m2

105 105 1:22� 10�3 1:21� 10�3 1:16� 10�3 1:16� 10�3 1:24� 10�3 1:24� 10�3

3� 105 105 1:29� 10�3 1:04� 10�3 1:43� 10�3 1:16� 10�3 1:77� 10�3 1:44� 10�3

3� 105 3� 105 6:14� 10�4 6:13� 10�4 5:37� 10�4 5:35� 10�4 5:12� 10�4 5:14� 10�4

106 105 1:32� 10�3 9:19� 10�4 9:23� 10�4 6:39� 10�4 1:10� 10�3 7:64� 10�4

106 3� 105 1:44� 10�3 1:15� 10�3 1:17� 10�3 9:32� 10�4 1:24� 10�3 9:85� 10�4

106 106 1:27� 10�3 1:28� 10�3 7:64� 10�4 7:65� 10�4 7:25� 10�4 7:21� 10�4

3� 106 3� 105 2:50� 10�3 1:73� 10�3 1:47� 10�3 1:00� 10�3 1:62� 10�3 1:12� 10�3

3� 106 106 3:06� 10�3 2:45� 10�3 2:55� 10�3 2:05� 10�3 2:65� 10�3 2:13� 10�3

3� 106 3� 106 2:04� 10�3 2:03� 10�3 1:48� 10�3 1:48� 10�3 1:47� 10�3 1:47� 10�3

107 106 4:52� 10�3 3:04� 10�3 3:17� 10�3 2:08� 10�3 3:55� 10�3 2:35� 10�3

107 3� 106 4:04� 10�3 3:12� 10�3 3:56� 10�3 2:73� 10�3 4:21� 10�3 3:28� 10�3

107 107 5:05� 10�3 4:90� 10�3 4:17� 10�3 4:01� 10�3 4:50� 10�3 4:18� 10�3

10
−4

10
−3

10
−2

10
−1

10
0

0

20

40

60

80

100

120

140

FIG. 14. Same as Fig. 9, but for the error in spin magnitude,
�1 ¼ jS1j=m2
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FIG. 15. Same as Fig. 9, but for the error in spin magnitude,
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TABLE VIII. Same as Table V, but for the spin magnitude errors ��1 and ��2.

m1ðM�Þ m2ðM�Þ
No gas Hot gas Cold gas

��1 ��2 ��1 ��2 ��1 ��2

105 105 0:0155 0:0157 0:0178 0:0178 0.0286 0.0280

3� 105 105 1:79� 10�3 6:18� 10�3 3:09� 10�3 0.0118 7:03� 10�3 0.0275

3� 105 3� 105 0:0207 0:0211 0:0247 0:0243 0.0335 0.0335

106 105 6:43� 10�4 0:0196 6:21� 10�4 0:0137 1:61� 10�3 0:0263
106 3� 105 2:20� 10�3 0:0121 3:01� 10�3 0:0145 6:88� 10�3 0.0333

106 106 0:0311 0:0326 0:0385 0:0396 0.0603 0.0590

3� 106 3� 105 1:07� 10�3 0:0373 8:64� 10�4 0:0218 2:24� 10�3 0:0408
3� 106 106 3:90� 10�3 0:0153 5:29� 10�3 0.0221 0.0129 0.0551

3� 106 3� 106 0:0664 0:0669 0:0932 0:0899 0.172 0.171

107 106 1:75� 10�3 0:0552 1:67� 10�3 0:0482 4:03� 10�3 0:0872
107 3� 106 6:03� 10�3 0:0295 0:0111 0.0557 0:0264 0.140

107 107 0:495 0:525 0:548 0:581 1:08 1:08
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FIG. 16. Factors by which measurement accuracy improves for different parameters when various degeneracy-breaking effects are
included in the signal: spin precession (SP), higher harmonics (HH), and both (SPþ HH). We also show the product of the individual
precession and harmonic improvements (SP*HH); this represents the naive limit by which the two effects would improve measurement
accuracy if their individual improvements simply combined. Each point represents one of the 12 mass cases, arranged in order from
left to right as they read top to bottom in Tables I, II, III, IV, V, VI, VII, and VIII.
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impact mass and spin estimation.) We also show the prod-
uct of the individual improvements from precession and
harmonics. This naive limit describes how the improve-
ments would combine if each effect were completely
uncorrelated from the other.

For extrinsic parameters (represented in the figure by 2a;
results for 2b and DL are very similar), the results confirm
what was known previously. While including both preces-
sion and harmonics improves errors more than one effect
alone, the total improvement falls well short of the naive
expectation. In essence, a degeneracy can only be broken
once. For mass (shown on a log scale), the same is true, but
with the special feature pointed out above: Once harmonics
are included, they essentially dominate mass accuracy
determination. Spin precession is then a small liability,
because the associated misaligned spins reduce SNR. For
spin errors, on the other hand, the combined improvement
due to both effects does roughly match the naive expecta-
tion. In the case of �1, the improvement is actually greater
than the product of the individual improvements. Different
behavior for spin magnitudes is to be expected, since the
information about spin contained in harmonics is very
indirect. This information is therefore independent of any
information derived directly from precession.

V. CONCLUSIONS

Past work has shown that both spin precession and
higher harmonics improve LISA’s ability to measure the
parameters of merging massive black hole binaries.
Though these two effects produce similar degeneracy-
breaking effects and similar improvements to measurement
errors, there is one key difference between the two: Higher
harmonics are always present in the signal (although the
strength of odd harmonics depends on mass ratio). Spin
precession, on the other hand, may be highly attenuated for
physical reasons, namely, the partial alignment of spins
due to interaction with gas. In this paper, we have studied
how this partial alignment affects parameter measurement
errors.

Initially ignoring the impact of higher harmonics, we
found that sky position and distance are measured a factor
of �1:5–2 less accurately for systems aligned within 30�
(due to hot gas) and �2–3 less accurately for systems
aligned within 10� (due to cold gas). A degradation of
�3 would correspond to an order of magnitude decrease in
LISA’s ability to localize a source on the sky and a half
order of magnitude decrease in the ability to localize it in
redshift space. Since systems with gas, whether hot or cold,
are the most likely to produce electromagnetic counter-
parts, this means that the results of Paper I and [13,15]
strongly overestimate our ability to find these counterparts.
Mass and spin measurements are also degraded by spin
alignment, in some cases by factors up to �9. However,
because the masses and spins are already measured quite
well, the degradation is not as harmful.

Adding higher harmonics to the signal substantially
improves these results. In some cases, measurement errors
for aligned systems can be brought below the error level for
random spin orientations without higher harmonics. For
the mass measurements, this improvement happens in
every case. The minor axis of the sky position error ellipse
and luminosity distance achieve this benchmark less often,
though still in the majority of cases, while the major axis
and the spin magnitudes do not fare as well. Sometimes
parameters are actually determined a bit better for aligned
spins than for random ones thanks to the increased SNR
measured for aligned spin systems. For mass measure-
ments, this happens in almost every case we considered.
Although studies like [16] and this one are starting to

finalize expectations for LISA’s parameter estimation capa-
bilities, several avenues of research into the problem still
remain. First is the issue of including proper astrophysical
information, such as the possibility of partially aligned
spins, when analyzing LISA science. Another example is
the recent realization that eccentricity may need to be
included in the waveform model (with a first analysis by
Key and Cornish [18]). In order to make reliable estimates
of LISA’s science capabilities, future studies must continue
to incorporate the newest astrophysical developments. It
will also be useful to turn the problem around and ask what
LISA measurements of properties like spin alignment can
tell us about the surrounding gas (or lack thereof). It may be
possible, from the gravitational waves alone, to predict the
nature of an electromagnetic counterpart or to make state-
ments about a binary’s environment in case a counterpart is
missed. We plan to study this issue in more detail in the
future.
Lacking from our Fisher-matrix-based study is an inves-

tigation of how the spin-alignment priors of the hot, cold,
and dry scenarios may affect parameter estimation. In a
more thorough Bayesian analysis, the range of spin align-
ments for each model can be included as priors. Bayesian
model selection can then be used to identify the model that
best describes the data. For cold gas mergers, the tight
priors on the spin-orbit alignment would translate into
improvements in the parameter estimation over what we
have found here. Thus, the spin-alignment priors can help
put back some of parameter recovery accuracy that is taken
away by the suppression of the spin precession. We are
currently investigating this issue.
An obvious avenue for LISA parameter estimation stud-

ies is the improvement of the waveform model. While the
inspiral is nearly complete, the study of the merger is just
beginning. In the next few years, complete inspiral wave-
forms from codes like this one will be joined to effective-
one-body waveforms for the late inspiral, fits to numerical
models of the merger, and perturbative ringdowns to give a
complete LISA waveform for analysis purposes. While
such studies have begun [17,19], they do not yet include
spins. Including the merger and ringdown is critical; not
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only do they provide a great deal of SNR and parameter
information, but they also provide a physical tapering of the
waveform. The results of this paper unfortunately do not
always quantitatively match those of Paper I and [16] when
appropriate, primarily because the earlier studies use the
stationary phase approximation while we taper the signal
and apply an FFT. In essence, despite the use of the MECO,
we are applying an earlier cutoff and losing some informa-
tion about our parameters. When the complete signal is
used, choices of cutoff will become irrelevant, and different
results should agree more readily. Of course, for this paper,
exact error estimates are not the end goal; instead, we have
aimed only to show general behavior and trends which are
independent of any shift in the baseline error values.

Finally, the Fisher-matrix formalism itself must be
checked to make sure it is correct with complicated wave-
forms and large numbers of parameters. We plan to carry
out a comparison between this code’s results and those
obtained by exploring the full posterior probability using
Markov Chain Monte Carlo techniques [48–51]. Early
results have shown that the Fisher matrix is indeed still
valid in most regimes—a relief given that Markov Chain

Monte Carlo techniques cannot as easily survey a plethora
of sky locations and orientations—but the full parameter
space has not been explored. It is clear, however, that care
must be taken with all three areas, astrophysics, general
relativity, and statistical analysis, before a final picture of
LISA science capabilities can be established.
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Reynolds, and J. D. Schnittman, Astrophys. J. 700, 859
(2009).
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