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The Sound of Silence:

Observational Learning in the U.S. Kidney Market

Abstract

Mere observation of others’ choices can be informative about product quality. This paper

develops an individual-level dynamic model of observational learning, and applies it to

a novel data set from the U.S. kidney market where transplant candidates on a waiting

list sequentially decide whether to accept a kidney offer. We find strong evidence of

observational learning: patients draw negative quality inferences from earlier refusals in

the queue, thus becoming more inclined towards refusal themselves. This self-reinforcing

chain of inferences lead to poor kidney utilization despite the continual shortage in kidney

supply. Counterfactual policy simulations show that patients would have made more

efficient use of kidneys had the concerns behind earlier refusals been shared. This study

yields a set of marketing implications. In particular, we show that observational learning

and information sharing shape consumer choices in markedly different ways. Optimal

marketing strategies should take into account on how consumers learn from others.

Keywords: observational learning; learning models; informational cascades; herding;

quality inference; Bayes’ rule; dynamic programming; kidney allocation



1

1 Introduction

Maciej Lampe declared for the NBA draft at the perfect time. He was the rarest com-

modity in an NBA draft—a tall, young, European big man with a sweet shooting stroke.

He was seen as raw but full of potential, which made him a top ten pick in most experts’

projections, and as high as number five overall (www.nba.com, June 27, 2003). Unfortu-

nately, on draft day, the Miami Heat passed on Lampe at number five, and the bad news

started to snowball (sports.ESPN.go.com, June 26, 2003). Teams grossly overestimated

the risks in investing a first round pick on Lampe, allowing him to slip all the way to

the second round, at number 30 overall. Subsequently playing in BC Khimki Moscow,

Lampe was awarded as the MVP in the Russian Cup final in February 2008.

Maciej Lampe is not alone. In labor markets, an episode of unemployment is known

to dampen the success of job search, beyond what is justified by the job candidate’s

qualification. In housing markets, skepticism accumulates around the value of a property

as its “time on market” increases, forcing some sellers to relist their properties to break

this chain of negative inferences. In general, people frequently engage in “observational

learning,” drawing quality inferences from mere observation of peer choices: Restaurants

that maintain a sizable waiting list are often perceived to be of high quality; book buyers

pursue bestsellers; internet surfers swarm high click-volume contents. Marketers too

have woken up to the prevalence of observational learning, and have created innovative

promotional tactics to harness its magic. For example, to introduce the T68i phones

to the U.S. in 2002, Sony Ericsson sent trained actresses to bars and lounges with the

phones, in hopes that onlookers would notice and believe that they stumbled onto a hot

new product (Wall Street Journal, July 31, 2002). The goal of this paper is to empirically

model observational learning behavior and its impact on choices.

It is challenging, however, to empirically identify the existence and isolate the impact

of observational learning. First, observation of choices often coexists with other sources

of quality information such as word-of-mouth communication (e.g. Ellison and Fuden-

berg 1995, Godes and Mayzlin 2004, Mayzlin 2006), payoff experiences (e.g., Nelson 1970,

Erdem and Keane 1996, Camerer and Ho 1999, Villas-Boas 2004 and 2006, Hitsch 2006,

Narayanan, Chintagunta and Miravete 2007), and the supplier’s selection of marketing

mix variables (e.g., Moorthy and Srinivasan 1995, Wernerfelt 1995, Desai 2000, Anderson
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and Simester 2001, Guo and Zhao 2008). Second, even in markets where observational

learning plays a dominant role, the choice dynamics are often complex. For example, a

potential restaurant patron may not know whether those waiting in line had all indepen-

dently chosen this restaurant, or some had been attracted by the line itself. Depending

on the construction of the choice sequence, the quality inference can be vastly different.

This paper meets these challenges by studying observational learning in perhaps its

cleanest environment—the U.S. market of transplant kidneys. When a deceased-donor

kidney is procured, compatible transplant candidates are sorted into a queue follow-

ing a nationally implemented priority system. The kidney travels down the queue until

a patient is willing to accept it for transplantation. It is ideal to study observational

learning in this kidney market for the following reasons. First, decisions are sequential,

and the sequence is constructed through a commonly known process. Second, privacy

concerns and the limited decision time minimize the chance for between-patient commu-

nication. Meanwhile, observational learning is fully enabled in that all previous decisions

are observable—the fact that a patient is offered a kidney unambiguously implies that all

preceding patients on the queue have turned down this kidney. Third, the kidney market

is unlikely to be influenced by other primary mechanisms behind uniform social behavior,

such as sanctions of deviants, preference for social identification (e.g., Kuksov 2007), and

network effects (e.g., Yang and Allenby 2003, Nair, Chintagunta and Dubé 2004, Sun, Xie

and Cao 2004). In particular, kidneys do not contain the “public appearance value” that

partly explains the urge for possessing the right cell phone, choosing the right restaurant,

or sporting the right fashion gear.

This paper adopts a structural Bayesian approach to modeling observational learning.

While all patients on a queue observe the objective kidney quality measures (e.g., donor

age), each patient also receives a private quality signal (e.g., her physician’s recommen-

dation). If a kidney is passed on to the second patient, she knows that the first patient’s

private signal must have failed to reach a threshold determined by the first patient’s

utility function. The second patient can then apply Bayes’ rule to update her quality

perception of this kidney. Ceteris paribus, the first patient’s rejection decision lowers the

second patient’s perception of the kidney’s quality and hence her propensity to accept.

The second patient’s likely refusal in turn lowers the quality perception for subsequent

patients, triggering a herd of refusals down the queue. As a result, a kidney’s chance of



3

acceptance critically depends on its choice history as well as its intrinsic quality.

There are several advantages to the structural modeling approach.1 The pioneering

works of Banerjee (1992) and Bikhchandani, Hirshleifer and Welch (1992) have theoret-

ically proven that observational learning may lead to informational cascades and herd

behavior, where individuals rationally ignore their private information and repeat their

predecessors’ actions. Empirically documenting observational learning therefore often re-

lies on evidence of convergence in actions (e.g., Anderson and Holt 1997, Çelen and Kariv

2004).2 As the first study to structurally model observational learning at an individual

level, this paper does not require action convergence to identify observational learning.

In fact, by embedding sequential Bayesian updating in a choice model, we are able to

quantify the impact of observational learning from the continuous changes in posterior

valuation, which we recover from the discrete variation in observed choices. Furthermore,

this individual-level approach allows us to explicitly model how observational learning of

common values (such as kidney quality) is moderated by private values (such as patient-

donor tissue match). Last, the structural framework enables a set of policy experiments,

especially counterfactual comparison of an array of learning mechanisms.

The most common reason for patients to reject a kidney offer is that the kidney is

believed to be of marginal quality and that patients choose to wait for better kidneys

(United Network for Organ Sharing (UNOS) 2002 Annual Report). That is, kidney

adoption decisions involve dynamic tradeoff. For example, even if kidneys are believed to

be of poor quality when they reach the back of the queue, patients at the back of the queue

are also less likely to receive good kidneys in future. To model this inter-temporal tradeoff,

we cast quality learning in a dynamic choice setting where forward-looking patients seek

to maximize their expected discounted present value. This dynamic model allows us to

capture how patients’ decisions depend on the progression of their health conditions, their

chance of getting kidney offers in future, and the quality of these future kidney offers,

which in turn depends on other patients’ decision rule.

We find significant evidence of observational learning. At the first glance, even iden-

1Please see Chintagunta, Erdem, Rossi, and Wedel (2006) for discussion of the development and

application of structural models in marketing.
2Please see Bikhchandani, Hirshleifer and Welch (1998) for a review of the observational learning

literature.
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tical kidneys from the same donor are received much differently. While some kidneys

are accepted early on in the queue, their identical counterparts have to go far down the

line to find a transplant recipient. In other words, early rejections seem to considerably

influence subsequent decisions. After further controlling for patient-donor match, deteri-

oration of kidney quality when traveling down the line, patients’ option value of waiting,

and patients’ risk attitudes, model estimation confirms the significant impact of observa-

tional learning—on average, the further a kidney travels down the queue, the lower its

perceived quality. A competing explanation is that negative information about kidney

quality, although unobservable to the researcher, has lowered the acceptance propensity

of all patients. This explanation is modeled, estimated, and ruled out.

Another primary learning mechanism in social contexts is information sharing. Policy

permitting, a patient could have obtained private quality signals from her predecessors

who have evaluated and rejected the kidney. Observational learning and information

sharing have distinct choice implications. To see this, suppose a patient receives a fa-

vorable signal but decides to reject the kidney due to her higher standards. A unique

prediction of observational learning is that a rejection always (weakly) decreases subse-

quent patients’ quality perception. However, if this favorable private signal is shared with

subsequent patients, it may help them evaluate the kidney positively despite the rejection

decision. If the average of private signals reveals the true underlying value of a kidney,

when more signals aggregate, choices will converge to an efficient level. Indeed, policy

experiments show that patients would have made much more efficient decisions were they

able to communicate the reasons behind rejection decisions. This finding may help the

U.S. organ allocation system alleviate the urgent inefficiency problem, where “most of

the refused kidneys are of acceptable clinical value” despite the significant shortage of

transplant kidney supply (UNOS 2002 Annual Report).

An important message to marketers in general is that a product’s market performance

is more than a simple sum of sales. A small number of choices can be critical in deter-

mining product success, especially in categories with highly visible choices but limited

information sharing. Early adopters and marginal consumers are likely to be such piv-

otal influencers. Optimal marketing strategies should take into account whether and how

consumers learn from others.
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The rest of the paper is organized as follows. §2 overviews the U.S. kidney transplant

market and presents the data. §3 models three learning mechanisms—no social learning,

information sharing, and observational learning, and embeds these learning mechanisms

in a dynamic choice model of forward-looking patients. These models are estimated

in §4, where we find that the observational learning model explains the data best. A

competing model of public (i.e., available to all patients) quality information is ruled

out. §5 simulates and compares patient decisions under different learning mechanisms.

§6 discusses how the insights would apply to general markets. §7 concludes the paper

and suggests directions for future research.

2 The U.S. Kidney Market and Data

2.1 Overview of the U.S. Kidney Market

Each year more than 40,000 people in the United States develop end-stage renal diseases.

The two major treatments are dialysis and kidney transplantation. Dialysis requires at

least 9 to 12 hours of treatment at a dialysis center each week. Transplantation frees

patients from the inconveniences of dialysis and, if successful, offers a quality of life

comparable to one without kidney disease. Transplant kidneys come from either living

donors or deceased donors. While the former source is superior, the supply is limited

in the United States. As a result, more than half of donated kidneys are procured from

deceased donors.

Patients waiting for deceased-donor kidneys are placed on a waiting list administered

by the United Network for Organ Sharing (UNOS). When a kidney is procured, blood-

type compatible patients within the same organ procurement organization (OPO) are

sorted into a queue based on a UNOS point system. The Appendix provides details on

the queuing scheme, which is largely first-come-first-serve with local perturbations caused

by tissue match, high peak panel reactive antibody (PRA) measures, and juvenility.

The kidney is offered sequentially to patients in the queue until someone accepts it for

transplantation. During the search for transplant recipients, kidneys are kept frozen and

accumulate cold ischemia time. A long cold ischemia time may lead to inferior transplant

outcomes. Therefore, kidneys are normally discarded if not accepted within 48 hours.
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There has been an acute shortage of deceased-donor kidneys in the United States.

According to the 2006 Annual Report of the Organ Procurement and Transplantation

Network (OPTN), an organization administered by UNOS under contract with the U.S.

Department of Health and Human Services, 32,381 new end-stage renal diseases patients

in the U.S. joined the transplant waiting list in 2006, while only 10,659 deceased-donor

kidneys were transplanted in that year. Between 1992 and 2006, the number of people

on the national kidney waiting list grew from 22,063 to 65,199. Despite the short supply,

more than 10% of deceased-donor kidneys are discarded after being repeatedly refused by

transplant candidates. OPTN has identified the low kidney acceptance rate as a major

challenge to kidney allocation efficiency.

The alarming inefficiency of the current kidney allocation system has attracted sub-

stantial attention in academia. Studies suggest a number of solutions including paired

kidney exchange (e.g., Roth, Sönmez, and Ünver 2004) and restructuring the queuing

mechanism (e.g., Su and Zenios 2004). These studies have focused on system optimiza-

tion from the policy-maker’s perspective, and have left unexplored the micro-level patient

decision processes. While the most common reason for kidney refusal is that the current

offer is believed to be of marginal quality such that patients choose to wait for a better

kidney (UNOS 2002 Annual Report), it remains unknown how patients form this quality

perception. In fact, OPTN laments the fact that medical measures alone are insufficient

in predicting patient decisions:

“Although the effects of donor and recipient characteristics on kidney graft survival

have been documented, the relationship of these characteristics and center-specific

practices on organ acceptance rates is not well understood. We hypothesized that

variation in acceptance rates, beyond that which can be explained by recipient and

donor characteristics, exists among transplant programs, and that metrics could be

developed to quantify these behaviors.” (OPTN/SRTR 2006 Annual Report).

In this study, we investigate the underlying drivers of patient decisions, identify obser-

vational learning as an important factor behind the “variation in acceptance rates,” and

suggest policy changes to promote efficient kidney usage.
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2.2 Data

The data set for this study combines the national waiting list data from the UNOS 2002

Annual Report and the transplant detail data from the United States Renal Data System

2001 Annual Report. All analyses focus on the TXGC OPO, a major OPO in Texas

and one of the largest OPOs in the United States. Kidneys of different blood types

normally enlist different queues of patients due to blood-type compatibility screening.

This paper presents the statistics for blood-type A kidneys. The resulting sample includes

338 patients and 275 accepted kidneys. Kidneys arrive at the OPO at an average rate of

one per six days, which does not vary significantly over time (p = 0.141). An observation

is defined as one decision occasion where a patient is presented with the choice of whether

to accept a kidney. The sample contains 9,384 observations.

Table 1 presents the summary statistics of three classes of variables in the data.

Patient-specific variables include patient age, gender, race, employment status, income,

PRA measure, and number of years on dialysis. Kidney-specific variables include donor

age, gender, race, and queue information (e.g., queue position of the accepting patient).3

The most important patient-kidney interactive variables are the tissue match measures.

The dummy variables “0 Mismatch,” “0 Mismatch at DR,” and “1 Mismatch at DR”

indicate perfect, second-best, and third-best tissue match respectively (see the Appendix

for details), where perfect tissue match occurs only 0.4% of the time. Another important

patient-kidney interactive factor is the cold ischemia time a kidney has accumulated when

offered to a patient. The quality of a kidney may deteriorate as its cold time increases.

Notably, only 2.9% of kidney offers are accepted. In this data, a kidney can be

accepted by as late as the 77th patient in the queue. On average, a kidney is accepted by

the 34th patient, who has already turned down 15 previous offers and has waited 209 days

at the time of acceptance. Figure 1 shows kidney acceptance rates across positions in the

queue. Approximately 10% of patients at the top of the queue accept the kidney offer.

Subsequent analyses reveal that this acceptance rate is largely explained by perfect tissue

match, which advances a patient to the top of the queue. Patients from position 2 to

3Other clinical measures include patient body surface area, dialysis modality, comorbidities, donor

body surface area, and cause of death. Inclusion of these clinical measures does not significantly alter

the estimation results.



8

position 13 almost always reject the offer. The acceptance rate then increases moderately,

remains flat for most part of the queue, and rises sharply at the end. The larger variance

near the end of the queue results from a smaller number of observations falling in that

range: only 0.35% of observations fall beyond position 70.

Figure 1: Kidney Acceptance Rates across Queue Positions
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2.3 A First Evidence of Observational Learning: Acceptance of Same-Donor

Kidneys

A special feature of deceased-donor kidney donation is that sometimes both kidneys can

be retrieved from the same donor. Out of 275 kidneys in the sample, there are 58 pairs of

same-donor kidneys, each pair containing identical kidney-specific clinical measures and

therefore enlisting the same pool of eligible patients. If acceptance decisions are mainly

driven by these observable kidney and patient characteristics, same-donor kidneys should

exhibit close acceptance patterns.

To see if this is true, we separate the same-donor kidneys into two groups: Group

1 contains the 58 kidneys that are accepted earlier in the queue, and group 2 contains

their 58 identical counterparts. Figure 2 illustrates the divergence in acceptance patterns

between same-donor kidneys. The 58 pairs of same-donor kidneys are listed along the

horizontal axis, each pair adjacently placed. The vertical axis is the queue position of the
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accepting patient for each kidney. Even kidneys with identical clinical measures seem to

fare differently in their search for transplant recipients. On average, kidneys in group 1

are accepted by the 30th patient, while those in group 2 are accepted by the 45th patient.

The difference in the queue position of the accepting patient is significant (t = −4.212,

p = .000).

Figure 2: Divergence in Acceptance for Same-Donor Kidneys
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The distinct acceptance paths for same-donor kidneys suggest that patient decisions

may be systematically influenced by a force other than observable kidney and patient

characteristics. The data pattern is particularly suited to an observational learning ex-

planation: if patients infer inferior kidney quality from a rejection decision, refusals will

be self-reinforcing and will delay acceptance even further. This can be true even if a

patient turned down the kidney only due to momentary unavailability (which can be

modeled as an idiosyncratic utility shock). As an initial test of whether rejections are

self-reinforcing, we estimate a logit model where the dependent variable is whether each

patient accepts a kidney offer, and the independent variables include the number of times

the kidney has been rejected so far, as well as all observable patient and kidney charac-

teristics (including the kidney’s cold time). Consistent with the observational learning

hypothesis, the coefficient for the number of previous rejections is negative (−0.0138) and
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significant (p = 0.000).4

In fact, an ideal way to identify observational learning in the field is to compare the

adoption paths of two identical products and test for path dependence. Same-donor

kidneys represent one of the few commodities that satisfy this identicalness condition

in naturally occurring markets, and their diverging acceptance paths serve as a first

evidence of observational learning. In the following sections, we model observational

learning, identify its existence, and quantify its impact on choices.

3 A Dynamic Choice Model

This section develops a choice model where patients engage in observational learning, and

compares it with two other learning mechanisms: learning from private signals (no social

learning), and learning through information sharing. These learning models are cast in

a dynamic setting where patients make optimal tradeoff between accepting the current

kidney and waiting for future kidneys, given forecast of their future states of being.

3.1 Patients’ Dynamic Optimization Problem

Consider a discrete-time infinite-horizon dynamic optimization problem where a patient

chooses whether to accept a kidney offer in order to maximize her expected present

discounted value.5 Let i index patients and t = 1, · · · ,∞ index the kidney arrival time.

We consider the Markov Perfect Equilibrium where patients’ decisions only rely on payoff-

relevant state variables. Let Sit be a vector of all these state variables that are payoff-

relevant to patient i at time t, and dit be the decision variable that equals 1 if patient i

accepts kidney t and 0 if she rejects this kidney offer.

Once she accepts a kidney, a patient moves to the absorbing state of transplanta-

tion and receives an expected utility of EU(Sit) which captures her expected present dis-

4Although identical kidneys typically have an identical set of eligible patients, those who accept one

kidney drop out of the queue for its identical counterpart that arrives later. The logit model including

all observable attributes helps to control for such changes in queue composition.
5Practically, either the patient or the doctor can make the acceptance decision. This distinction,

however, does not conceptually alter the model. Throughout the paper, we refer to the decision-maker

as the patient.
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counted post-transplant payoffs. If she turns down the kidney, she incurs one period’s cost

of waiting C(Sit). Let δ denote the discount factor, V (Sit) denote a patient’s maximum

expected present discounted value given her current state Sit, and P(Si,t+1|Sit, dit = 0)

denote the transition probability of patient i’s state from time t to t + 1 given she rejects

kidney t. The Bellman equation for patient i’s dynamic optimization problem at time t

is:

V (Sit) = max{EU(Sit), −C(Sit) + δ

∫
Si,t+1

V (Si,t+1) P(Si,t+1|Sit, dit = 0) dSi,t+1} (3.1)

3.2 Utility Function and Quality Inference

3.2.1 Patients’ Utility Function

In this section, we specify the state variables contained in Sit and formulate EU(Sit), the

expected payoff from accepting a kidney offer. Let Uit(Sit) denote the utility for patient

i to accept the kidney arriving at time t:

Uit(Sit) = Xitβ + αθt − αρθ2
t + εit (3.2)

Xit is observable to both patient i and the econometrician, and contains a constant term,

the characteristics of patient i at time t, the attributes of kidney t, and the patient-

kidney match measures. β consists of the utility weight parameters associated with Xit.
6

Observable characteristics may not capture the kidney quality completely. Let θt represent

any unobservable (to both the patient and the econometrician) quality component of

kidney t, and let α be the associated utility weight. Note that since tissue match is the only

clinically significant “horizontal” match factor after blood-type compatibility screening

(Su, Zenios, and Chertow 2004), θt is conceptualized as a “vertical” quality component

that is of common interest to patients. Patients are allowed to be risk averse towards

quality uncertainty. Following Erdem and Keane (1996), we introduce the quadratic term

αρθ2
t to capture patients’ risk attitudes, where the risk coefficient ρ is positive if and only

if the patient is risk averse. For example, if ρ is positive, a patient’s utility function will

be concave in unobservable kidney quality. Her utility derived from the mean value of

6To keep the model computationally tractable, we do not estimate “parameter heterogeneity” among

patients but rely on the individual-level data to capture observable “attribute heterogeneity”.
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unobservable kidney quality is thus greater than the mean of the utilities derived from all

possible values of unobservable kidney quality. Last, εit denotes the idiosyncratic utility

shock encountered by patient i when evaluating kidney t. For example, a patient may

experience momentary inconveniences such as unfavorable physiological conditions which

prevent her from accepting instant transplant. Privately observed by patient i, εit is

assumed to follow an i.i.d. Gumbel distribution across patients and across kidneys.

We assume that patients know the distribution of θt across kidneys, which is assumed

to be i.i.d. normal with mean µ and variance σ2
θ :

θt ∼ N(µ, σ2
θ) (3.3)

In addition, patient i receives a private signal sit of the unobservable quality θt. One

example of such private signal could be the physician’s quality judgment drawing upon her

expertise. Indeed, although organ sharing societies in the United States have published

certain policies guiding the kidney allocation process, they have also stated that “this

policy, however, does not nullify the physician’s responsibility to use appropriate medical

judgment”(UNOS 2002 Annual Report). Without actual data on the signal content, we

assume the private signals to follow a conditional i.i.d. normal distribution around θt,

although the model can be extended to incorporate alternative signal distributions.7 In

other words, although private signals vary across individuals, a large-sample average of

7The assumption that private signals are continuous allows for the possibility that physicians com-

municate a fine gradation of quality judgment. For example, physician recommendations may convey

various levels of preferences. Alternatively, physicians may recommend patients to either accept a kidney

or reject it. Such binary signals can be modeled as a discrete manifestation of physicians’ latent eval-

uation of the kidney. Correspondingly, in the learning models presented in this paper, the conditional

probability of continuous signals given kidney quality is replaced by the conditional tail probability that

a physician’s latent evaluation exceeds or falls below her recommendation threshold given kidney quality.

The essence of Bayesian inferences underlying the learning models remains the same.
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these signals would be an unbiased indicator of the true quality:8

sit|θt ∼ N(θt, σ
2
s) (3.4)

As will be discussed later, α, σθ and σs cannot all be identified. However, we will keep

the notation separate throughout to trace the different role each parameter plays in the

learning process.

A patient’s inferred value of θt varies with the information accessible to her. In the

rest of this section, we model and compare this quality inference process corresponding

to three representative information structures: (1) no social learning, where a patient

updates her quality perception based on her knowledge of the prior distribution of θt

and her private signal sit; (2) social learning through information sharing, where in addi-

tion to the prior distribution and her own signal, a patient also acquires other patients’

private signals through, for example, truthful word-of-mouth communication; and (3) ob-

servational learning, where besides the prior distribution and the patient’s private signal,

others’ choice decisions contain information about the unobservable quality. Let Iit be

the set of aforementioned information that helps patient i infer the value of θt. Let Oit be

a dummy variable that equals 1 if patient i is offered a kidney at time t and 0 otherwise.

Lastly, let Zit denote patient characteristics that affect their cost of waiting. Zit will be

operationalized in §3.4. Patient i’s state variables at time t are therefore decomposed as

follows:

Sit = {Oit, Xit, Zit, Iit, εit} (3.5)

The expected payoff for patient i to accept kidney t is

EU(Sit) = E(Uit|Sit) = Xitβ + αE(θt|Iit)− αρE(θ2
t |Iit) + εit, if Oit = 1 (3.6)

8The variance of the private signals σ2
s may in theory change across kidney episodes. For example, by

evaluating kidneys repeatedly, a doctor’s precision in judgment may improve over time. To explore this

possibility, we stratify the sample into two subsamples based on a median split of the number of previous

offers a patient has received until her current decision. We estimate the model allowing the signal variance

for “experienced” patients (σ2
se) and “inexperienced” patients (σ2

si) to be different. The likelihood-ratio

test fails to reject the null hypothesis that σse = σsi (χ2(1) = 0.398, p = 0.528). In addition, it is

possible that unobservable quality and therefore private signals are correlated across identical kidneys

from the same donor. In the estimation we report, unobservable quality and private signals are treated

as independent across identical kidneys. A robustness check restricting unobservable quality and private

signals to be the same for identical kidneys yields close estimation results.
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where E(θ2
t |Iit) can be decomposed as E(θt|Iit)

2+E[(θt−E(θt|Iit))
2|Iit]. Therefore, calcu-

lating EU(Sit) boils down to inferring the posterior distribution of θt given Iit, which will

be modeled in the rest of this section. To complete the utility specification, we normalize

the deterministic part of patient i’s expected payoff to 0 when she does not receive a

kidney offer. That is,

EU(Sit) = εit, if Oit = 0 (3.7)

3.2.2 Quality Inference without Social Learning

A patient’s expected value of the unobservable quality θt is equal to the prior mean µ

if all she knows is the prior distribution of θt. However, she can fine-tune her quality

perception if she also receives a private signal. By Bayes’ rule (DeGroot 1970), the

posterior expectation of θt is a weighted average of the prior mean µ and the private

signal:

E(θt|Iit) =
σ2

θsit + σ2
sµ

σ2
θ + σ2

s

, Iit = {sit} (3.8)

Intuitively, the less accurate the private signal is, the more weight is assigned to the prior

quality perception.

3.2.3 Quality Inference through Information Sharing

A patient can further update her quality perception when she engages in social learning

and obtains private signals from other decision-makers.9 Let rit denote patient i’s position

in the queue for kidney t. For simplicity of presentation, we drop the subscript it. Suppose

a patient acquires private signals from all her r−1 predecessors, the posterior expectation

of θt is a weighted average of the prior mean µ and the sample average of these r signals:

E(θt|Iit) =
σ2

θ

∑r
j=1 sjt + σ2

sµ

r · σ2
θ + σ2

s

, Iit = {s1t, · · · , srt} (3.9)

The weight given to the prior decreases in r. That is, the more doctors a patient consults,

the more likely it is for her to trust the consensus. An analogy in new product diffusion is

9We assume truthful sharing of signals. However, this model can be extended to capture untruthful

communication if we can specify a structure for any signal distortion.
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that while innovators rely more on their prior quality knowledge, imitators may pay more

attention to product reviews. When r approaches infinity, the posterior expectation of θt

equals the average of all observed signals which, by the law of large numbers, approaches

the true value of θt. This convergence property is consistent with the common notion of

“the wisdom of crowds.”

Note that although patients can also share other information such as decisions, in this

setup only private signals matter to subsequent patients. Once a patient shares her signal,

her actual choice does not add information regarding the quality of this particular kidney.

It is possible though that a patients learns more about her predecessors by watching their

decisions, in which case previous decisions should be part of the information set. Such

dynamics are interesting to model in future research.

3.2.4 Information Sharing vs. Observational Learning

When communication is costly and others’ private signals unaccessible, mere observations

of others’ actual choices can be informative too. Before presenting the observational learn-

ing model, we first intuitively describe two key differences between (truthful) information

sharing and observational learning.

First, with information sharing, a rejection does not always lower expected quality

perceived by subsequent decision-makers. To see this, suppose the second patient is

offered a kidney. If the first patient does receive a good signal but rejects the kidney due to

poor tissue match, information sharing may actually increase the second patient’s inferred

quality. With observational learning, however, the second patient’s inferred quality can

only be lowered by the first patient’s rejection. This is because the first patient is more

likely to reject the kidney with worse private signals, which are more likely to occur with

worse kidneys. The second patient would therefore assign higher probabilities to low

kidney qualities by Bayes’ rule. Property 3 in the next section states this result formally.

Second, with information sharing, previous signals enter a patient’s quality evaluation

continuously (Equation 3.9). Therefore, extreme values of private signals are diluted in

a large sample, eliminating the existence of “pivotal” patients. In contrast, marginal

patients can be crucial in shaping subsequent choices with observational learning. This

is because a patient’s quality inference is discontinuous in her predecessors’ signals under
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observational learning due to the discrete nature of choices. To see this, suppose patient

one is on the margin but chooses acceptance over rejection. Patient two would then infer

that patient one’s private signal must have been “favorable enough.” Suppose alterna-

tively that patient one receives an infinitesimal negative perturbation in her private signal

and therefore marginally prefers rejection. This new decision only changes patient one’s

own utility infinitesimally. However, patient two’s inferred region of the first signal now

becomes the lower tail of the distribution, which decreases patient two’s quality expecta-

tion discontinuously. If patient two in turn switches to rejection, patient one’s marginal

decrease in private signals can be amplified into chain of rejections down the queue.

These fundamental differences lead to the prediction that choices are ultimately driven

by quality with information sharing, but are sensitive to initial choices and marginal

choices with observational learning. In the kidney market, the queue ends whenever

the kidney is accepted. Therefore, observational learning is asymmetrical in the sense

that only observations of rejections influence subsequent patients. Such a market is

likely to generate excessive rejections. In the following sections we model observational

learning and explore whether it indeed triggers excessive rejections of kidneys. In §6 we

discuss a set of aggregate predictions that distinguish between information sharing and

observational learning in general markets.

3.2.5 Quality Inference through Observational Learning

In this section, we formally model quality inferences when a patient observes all her

predecessors’ decisions, but does not know the precise reason behind each decision. The

information set for patient in position r becomes Iit = {d1t, · · · , dr−1,t, srt}. In the kidney

market, the fact that the patient in position r is offered the kidney implies that {d1t =

· · · = dr−1,t = 0}. However, the model below can be extended to accommodate a generic

permutation of acceptance/rejection decisions in the sequence, and apply to other markets

where a product can be accepted by multiple consumers.

The First Patient

The first patient decides whether to accept kidney t based on her own signal s1t. Her
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posterior expectation of θt is

E(θt|s1t) =
σ2

θs1t + σ2
sµ

σ2
θ + σ2

s

Note that the expected utility from accepting the kidney increases with the private signal

s1t. At the same time, a patient’s current private signal does not affect the utility she

can derive from accepting a future kidney offer. This is because private signals are drawn

independently around the true unobservable quality (by Assumption 3.4), which in turn

is drawn from an independent pool (by Assumption 3.3). Therefore, the first patient

accepts kidney t if and only if s1t ≥ B1t, where B1t is the cutoff signal that solves the

indifference condition:

EU(S1t) = −C(S1t) + δ

∫
S1,t+1

V (S1,t+1) P(S1,t+1|S1t, d1t = 0) dS1,t+1

with EU(S1t) given by Equation 3.6.

The Second Patient

The second patient infers θt based on two pieces of information: the rejection decision

of the first person d1t = 0, and her private signal s2t. By Bayes’ Rule, the posterior density

of θt is proportional to the product of the conditional (on θt) density of the observed data

and the prior density of θt:

p(θt|d1t = 0, s2t) ∝ p(d1t = 0, s2t|θt) · p(θt)

The first patient’s cutoff B1t determines the informativeness of her decision. However,

B1t is not directly observed by the second patient. For example, she does not observe

whether the first patient has turned down the kidney due to poor tissue match or despite

good match, even though the quality implications are vastly different. Fortunately, the

nationally publicized queuing policies provide patients with “distributional” knowledge

of the queue. In fact, a patient is often on a queue with the same set of peer patients.

For instance, patients would know that the top of the queue tends to be associated with

better tissue match and longer waiting time. Therefore, we assume the second and all

subsequent patients to know the distribution of B1t, denoted as G(B1t). One sufficient

condition for this assumption to hold is common knowledge of the distribution of patient



18

and kidney attributes among the first patients in the line, of the distribution of patients’

idiosyncratic utility, and of the transition probability P( · | · ). It follows that

p(d1t = 0, s2t|θt) =

∫
p(s1t < B1t, s2t|θt) dG(B1t)

Since the private signals s1t and s2t are conditionally (on θt) independent, the condi-

tional probability of the joint event that the first signal is below B1t and the second event

equals s2t is the product of the conditional probabilities of these two events:

p(s1t < B1t, s2t|θt) = p(s1t < B1t|θt) p(s2t|θt) = Φ(
B1t − θt

σs

) φ(
s2t − θt

σs

)

where Φ(·) and φ(·) are the c.d.f. and p.d.f. of the standard normal distribution respec-

tively. Consequently, the posterior density of θt can be written as

p(θt|d1t = 0, s2t) ∝ φ(
s2t − θt

σs

) φ(
θt − µ

σθ

)

∫
Φ(

B1t − θt

σs

) dG(B1t) (3.10)

The second patient’s posterior expectation of quality θt is

E(θt|d1t = 0, s2t) =

∫
p(θt|d1t = 0, s2t) θt dθt∫
p(θt|d1t = 0, s2t) dθt

where the denominator serves as a normalizing factor to ensure that the posterior density

of θt integrates to one.

Other things being equal, the higher s2t, and the lower G(B1t) in the sense of first-

order stochastic dominance, the higher the second patient’s expected quality of kidney t.

This can be seen from equation 3.10: both a larger B1t and a larger s2t shift more weight

to θt values towards the upper tail of its posterior distribution. The intuition is that the

second patient will infer higher kidney quality when she receives a more favorable private

signal, and when she knows that the first patient rejected the kidney only due to her high

standards. Since E(θt|d1t = 0, s2t) increases in s2t, the second patient’s decision rule can

also be characterized by a cutoff strategy. She accepts the kidney if and only if s2t ≥ B2t,

where B2t is the private signal value that makes her just indifferent between acceptance

and rejection:

EU(S2t) = −C(S2t) + δ

∫
S2,t+1

V (S2,t+1) P(S2,t+1|S2t, d2t = 0) dS2,t+1
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A Generic Patient

The third patient draws quality inference in the same way as the second patient,

knowing that the second patient’s rejection decision had been partially triggered by the

first patient’s rejection. In general, after observing r− 1 previous rejection decisions and

her own signal, patient r’s posterior expected value of θt is

E(θt|d1t = · · · = dr−1,t = 0, srt) =

∫
p(θt|d1t = · · · = dr−1,t = 0, srt) θt dθt∫
p(θt|d1t = · · · = dr−1,t = 0, srt) dθt

(3.11)

where

p(θt|d1t = · · · = dr−1,t = 0, srt) =

φ( srt−θt

σs
) φ( θt−µ

σθ
)
∫
· · ·

∫ ∏r−1
j=1 Φ(

Bjt−θt

σs
)dG(B1t, · · · , Br−1,t)

(3.12)

The patient in position r accepts kidney t if and only if srt ≥ Brt, where Brt solves

the indifference condition

EU(Srt) = −C(Srt) + δ

∫
Sr,t+1

V (Sr,t+1) P(Sr,t+1|Srt, drt = 0) dSr,t+1 (3.13)

The posterior expected quality has a set of clean properties. For simplicity of presen-

tation, let hrt = E(θt|d1t = · · · = dr−1,t = 0, srt) represent the posterior expected quality

from observational learning:

Property 1 The higher a patient’s private signal, the higher her expected quality: ∂hrt

∂srt
>

0.

Property 2 The higher previous patients’ acceptance standard, the higher the expected

quality: Let G and G′ be any two cumulative distribution functions of previous patients’

acceptance standards. hrt(G) > hrt(G
′) if G first-order stochastically dominates G′.

Property 3 Other things being equal, a rejection decision always (weakly) decreases sub-

sequent patients’ expected quality: If srt = sr+1,t, then drt = 0 ⇒ hr+1,t ≤ hrt.

Properties 1 and 2 can be shown in the same way as for the second patient. To

see why Property 3 holds, notice from Equation 3.12 that when srt = sr+1,t, p(θt|d1t =
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· · · = dr,t = 0, sr+1,t) differs from p(θt|d1t = · · · = dr−1,t = 0, srt) in the integrand by

Φ(Brt−θt

σs
), which gives more weight to lower values of θt for any Brt < ∞. Therefore,

hr+1,t is lower than or equal to hrt when patient r rejects kidney t. Intuitively, if both

patients have witnessed the r − 1 previous decisions, the additional rejection decision

seen by patient r + 1 can only (weakly) decrease her expected quality of the kidney

unless she receives a sufficiently favorable private signal. It can be similarly shown that,

other things being equal, an acceptance decision always (weakly) increases subsequent

decision-makers’ expected quality.

Note that Property 3 pertains to contexts such as the kidney market where match-

related attributes (in particular, tissue type) are observable to patients. Property 3 may

not hold if choices are driven by match and if match attributes are yet to be learned.

For example, suppose two decision-makers are known to have opposite taste preferences.

One person’s rejection signals that the product is more likely to match the other person’s

tastes. In those scenarios, rejection may subsequently spur more acceptance.

It can be seen from the derivation so far that patients’ inter-temporal tradeoff affects

kidney adoption in at least two ways. A patient’s option value of waiting depends on her

chance of receiving future kidney offers and the quality of these kidneys. Meanwhile, the

same patient’s quality perception of the current kidney offer depends on the acceptance

standards of her predecessors, which in turn depend on their forecast of the future. To

precisely model the dynamics, next we develop the transition probability of patients’

dynamic optimization problem.

3.3 Transition Probability

The overall transition probability of patients’ dynamic optimization problem is decom-

posed as P(Si,t+1|Sit, dit = 0) = P(Oi,t+1, Xi,t+1, Zi,t+1, Ii,t+1, εi,t+1|Oit, Xit, Zit, Iit, εit, dit =

0). The following three features of the state space help simplify this transition probability.

First, since the idiosyncratic utility εit is i.i.d. across both patients and time, it is

exogenous to the choice variable and orthogonal to all other state variables. Therefore,

its transition is independent of the transition of all other state variables: P(Si,t+1|Sit, dit =

0) = P(εi,t+1) · P(Oi,t+1, Xi,t+1, Zi,t+1, Ii,t+1|Oit, Xit, Zit, Iit, dit = 0).
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Second, since private signals are drawn from an i.i.d. distribution around θt, which in

turn is distributed independently over time, private signals are uncorrelated over time.

Therefore, without social learning Ii,t+1 is independent of Iit. With information sharing,

Iit contains rit private signals. With observational learning, Iit contains rit − 1 rejections

and one private signal. Therefore, for both information sharing and observational learn-

ing, given Oi,t+1, the statistical dependence between Ii,t+1 and Iit is transmitted entirely

through the statistical dependence between ri,t+1 and rit: P(Oi,t+1, Xi,t+1, Zi,t+1, Ii,t+1|Oit, Xit, Zit, Iit, dit =

0) = P(Oi,t+1, Xi,t+1, Zi,t+1, si,t+1, ri,t+1| Oit, Xit, Zit, rit, dit = 0).

Third, the current offer status Oit and the current decision dit do not affect Xi,t+1

or Zi,t+1, which contains exogenous variables. Neither do they affect si,t+1, which will

be independently redrawn in period t + 1. In addition, since the UNOS priority system

does not punish kidney refusals, future queue position ri,t+1 does not depend on Oit or

dit. Last, the chance for patient i to receive a kidney offer in period t + 1 is sufficiently

determined by Xi,t+1, Zi,t+1 and ri,t+1, and does not directly rely on her state or deci-

sion at time t. Altogether, P(Oi,t+1, Xi,t+1, Zi,t+1, si,t+1, ri,t+1|Oit, Xit, Zit, rit, dit = 0) =

P(Oi,t+1, si,t+1|Xi,t+1, Zi,t+1, ri,t+1) · P(Xi,t+1, Zi,t+1, ri,t+1|Xit, Zit, rit).

In combination, the overall transition probability of the state space can be written as

P(Si,t+1|Sit, dit = 0) =

P(εi,t+1) · P(Oi,t+1, si,t+1|Xi,t+1, Zi,t+1, ri,t+1) · P(Xi,t+1, Zi,t+1, ri,t+1|Xit, Zit, rit)
(3.14)

The first component P(εi,t+1) is simply the p.d.f. of the Gumbel distribution. The

second component depends on individual equilibrium choice probabilities, which will be

developed in Section 3.4. The last component can be estimated from the data (see the

Online Appendix for details).

3.4 Choice Probabilities

Assume a patient’s cost of waiting is determined by her current state and an idiosyncratic

utility shock εiot. That is

C(Sit) = Zitγ + εiot, Zit ⊆ Sit (3.15)

where Zit contains patient i’s number of years on dialysis, income, and employment status.

These variables may affect the patient’s health status and well-being while waiting, and
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capture her opportunity cost of time.10

Given the i.i.d. Gumbel assumption of the idiosyncratic utility shocks, the probability

of patient i accepting kidney t given her current state is

Pr(dit = 1|Sit) =
eEU(Sit)

eEU(Sit) + e−C(Sit)+δ
R

V (Si,t+1) P(Si,t+1|Sit,dit=0) dSi,t+1
(3.16)

Data on patients’ private signals, such as the physician’s recommendations, would be

ideal to have but is often unavailable to the researcher. To circumvent this problem, the

private signals are integrated out to evaluate the acceptance probabilities of a kidney.

Given quality θt, signals about kidney t are conditionally independent, so are patients’

acceptance probabilities for kidney t. Denote as Pr(Rt|θt) the conditional probability

that kidney t of true unobservable quality θt is accepted by the patient in position Rt:

Pr(Rt|θt) =
Rt−1∏
i=1

∫
Pr(dit = 0|Sit)φ(

sit − θt

σs
)dsit

∫
Pr(dRt,t = 1|SRt,t)φ(

sRt,t − θt

σs
)dsRt,t(3.17)

where Pr(dit = 0|Sit) = 1− Pr(dit = 1|Sit).

Meanwhile, neither the patients nor the researcher knows the true unobservable quality

θt. Therefore, the unconditional probability of kidney t being accepted at position Rt is

Pr(Rt) =

∫
Pr(Rt|θt) φ(

θt − µ

σθ

) dθt (3.18)

It remains to develop the second probability component on the right-hand side of

equation 3.14. Assume patients have rational expectations so that P(Oit, sit|Xit, Zit, rit)

equals the equilibrium joint probability for the patient in position rit to reach an offer

status Oit and to receive a private signal sit. Importantly, the chance of being offered

a kidney and the chance of receiving signal sit are correlated through the unobservable

quality θt:

P(Oit = 1, sit|Xit, Zit, rit) =∫
[
∏rit−1

j=1

∫
Pr(djt = 0|Sjt) φ(

sjt−θt

σs
)dsjt]φ( sit−θt

σs
)φ( θt−µ

σθ
) dθt

(3.19)

Also, the higher the unobservable quality of the kidney, the less likely that the kidney

will reach a patient far down the queue. This idea is captured by a patient’s probability

10Inclusion of other patient characteristics as waiting cost determinants does not change the estimation

results qualitatively.
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of not receiving a kidney offer:

P(Oit = 0|Xit, Zit, rit) =∫
[1−

∏rit−1
j=1

∫
Pr(djt = 0|Sjt) φ(

sjt−θt

σs
)dsjt]φ( θt−µ

σθ
) dθt

(3.20)

4 Model Estimation

4.1 Estimation Procedure

The dynamic choice model is estimated using the nested fixed point algorithm (Rust

1987). For each set of parameter values, an “inner” algorithm computes the value function

and evaluates the likelihood function. An “outer” algorithm then searches for the set of

parameters that maximize the likelihood function.

4.1.1 Computing the Value Function

Let EV (Sit) denote the total future discounted value patient i expects to receive when

she turns down kidney t. That is,

EV (Sit) =

∫
Si,t+1

V (Si,t+1) P(Si,t+1|Sit, dit = 0) dSi,t+1 (4.1)

The Bellman’s equation becomes V (Sit) = max{EU(Sit), −C(Sit) + δEV (Sit)} accord-

ingly. Given the i.i.d. Gumbel assumption of the idiosyncratic utility shocks, EV (Sit) can

be rewritten as (Rust 1987):

EV (Sit) =

∫
Si,t+1

ln[eEU(Si,t+1) + e−C(Si,t+1)+δEV (Si,t+1)] P(Si,t+1|Sit, dit = 0) dSi,t+1 (4.2)

As discussed in the Online Appendix, the state space relevant to solving EV (·) is

discrete and can be much simplified thanks to the high degree of independence among

the state variables in this data. Let K denote the dimension of the state space, and Π

a K ×K Markov transition matrix in which the (r, c) element represents the transition

probability from state r to state c. (Please see the Online Appendix for the construction

of Π.) The discrete representation of the value function becomes

EV (·) = Π · ln[eEU(·) + e−C(·)+δEV (·)] (4.3)
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where EV (·), EU(·), and C(·) are all K×1 vectors with the rth element being the function

value evaluated at the rth state. The value function EV (·) is then solved iteratively using

standard fixed point algorithms.

4.1.2 Evaluating the Log-likelihood Function

Given EV (·) for each state, the choice probability in Equation 3.16 can be rewritten as

Pr(dit = 1|Sit) =
eEU(Sit)

eEU(Sit) + e−C(Sit)+δEV (Sit)

The probability of kidney t being accepted in position Rt, Pr(Rt), thus follows as given

by Equation 3.18. Note that the value function and these probabilities are derived for

a given set of parameters. Let ∆ denote the parameter vector to be estimated. The

log-likelihood associated with kidney t is a function of ∆:

LLt(∆) = ln Pr(Rt|∆) (4.4)

Last, let T denote the total number of kidneys offered in the sample, the log-likelihood

function for the entire sample is

LL(∆) =
T∑

t=1

LLt(∆) (4.5)

The log-likelihood function includes high dimensional integrals, and is evaluated us-

ing the simulated maximum likelihood method. (Please see the Appendix for detailed

procedures to formulate the simulated likelihood function.)

4.2 Identification

Parameter Identification: To summarize, the parameters to estimate include patients’

utility weights associated with the patient and/or kidney characteristics that determine

the utility from accepting the kidney offer (β), patients’ utility weights associated with

the cost of waiting (γ), patients’ utility weight associated with the unobservable quality

(α), patients’ risk aversion coefficient (ρ), the prior mean of the unobservable kidney

quality (µ), the prior standard deviation of the unobservable kidney quality (σθ), the

standard deviation of the private signals (σs), and the discount factor (δ).
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The utility weight parameters β and γ are identified from the exogenous variation in

patient, kidney, and patient-kidney interactive characteristics. α is identified from the

systematic variation in choice decisions after the observable patient/kidney characteristics

are controlled for. The identification of ρ relies on the functional form restrictions in the

model: by assuming a functional form for the prior unobservable quality distribution and

for the conditional signal distribution, we are able to specify the posterior variance in the

unobservable quality, and isolate the effect of ρ from the magnitude of the impact of this

posterior variance on risk-adjusted preferences (see also Coscelli and Shum 2004).

The parameters µ, σθ, and σs together shape the learning process. The prior mean

µ affects the choices among patients on the top of the queue who do not engage in

observational learning. However, since Xit includes a constant term, the intercept term

in β cannot be separately identified from µ. We set µ to zero. The idea is to capture the

fixed value of transplantation through the intercept and to measure the mean value of

a particular kidney from the other observable attributes, with the unobservable quality

adding fluctuations around this mean. Note that α, σθ and σs cannot be all identified

simultaneously. The intuition is that the relative precision of prior quality and signals

determines the shape of the learning path, while α captures the remaining scaling effect.

Therefore, we restrict σθ to be 1 and estimate α and σs as free parameters.

Last, we fix the value of δ at 0.95 due to the usual difficulties in estimating the discount

factor in forward-looking dynamic models (see Erdem and Keane 1996). Altogether, the

set of parameters to be estimated are ∆ = {β, γ, α, ρ, σs}.

Observational Learning and Queue Position: Since the amount of (negative) obser-

vational learning monotonically increases down the queue, it is crucial to isolate observa-

tional learning from other queue-position-related factors. We try to keep the identification

of observational learning clean in the following ways. First, the same kidney may be of

different quality when it reaches the 30th patient than when it was with the 1st patient.

We capture this within-kidney quality variation across positions by the “cold time” vari-

able, which measures the time from when a kidney was retrieved from the donor until

when it reaches the patient. Second, queue position is completely determined by a set

of exogenous variables, which are observable to the econometrician and are controlled for

in the analyses. Third, due to the queuing policy, a patient’s queue position fluctuates
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across kidney episodes. This variation enables us to observe choices of the same patient

with different amounts of observational learning, and thus separately identify observa-

tional learning from patient-specific heterogeneity. Fourth, as information accumulates

along the queue, the precision of the posterior quality varies across queue position. This

may create additional cross-position variation in utilities if patients are not risk neutral.

We capture this variance by adding a flexible risk adjustment component in the utility

specification. Last, patients in different positions of the queue may have systematically

different prospects of future kidney offers. Modeling patients’ dynamic tradeoff helps to

rule out potential confounds from the inter-temporal dimension.

4.3 Alternative Models

In addition to observational learning, we specify four alternative models, each corre-

sponding to a different behavioral account of patients’ decision making processes. All five

models are embedded in the dynamic choice setting.

No Quality Uncertainty: In this basic model, patients make decisions based on observ-

able attributes only, either because quality is fully certain, or because quality uncertainty

does not affect their utilities. This is equivalent to restricting α in the full observational

learning model to 0. As a result, σs and ρ cannot be identified in this model.

Public Quality Information: Causality claims for socially correlated choices demand

extra caution (see Manski 1993). If there exist common contextual factors which the

econometrician neither observes nor accounts for, choice conformity can be spuriously at-

tributed to social contagion.11 For example, Van den Bulte and Lilien (2001) re-analyze

the classic diffusion study Medical Innovation (Coleman, Katz, and Menzel 1966) and

discover that the adoption of tetracycline turns out to be driven by marketing efforts

rather than social contagion as previously speculated. Manchanda, Xie and Youn (2008)

separate the effects of marketing communication and interpersonal communication, and

find that both affect adoption. In the NBA draft example at the start of the paper,

inferences could coexist with rumors about the player’s caliber that spread among teams.

In our data, one major competing explanation for repeated kidney refusals is the exis-

11See Villas-Boas and Winer (1999) for a general discussion of how the correlation between independent

variables and the error term can bias parameter estimates in choice models.
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tence of (negative) kidney quality information which is publicly known to patients but is

unobserved by the researcher. This competing explanation can be modeled by restricting

σs to 0 in the full observational learning model. It follows that θt represents the public

quality information unobserved by the researcher, and the model essentially becomes one

with random kidney effects. Therefore, given the functional form assumption, the test

between public quality information and observational learning becomes the parameter

test of whether σs = 0. Note that since there is no quality uncertainty, ρ is not identified

in this model.

No Observational Learning: In this competing account of the decision process, pa-

tients ignore previous rejections and infer kidney quality using the prior and their private

signal only as if they were the first in the queue, as specified in Equation 3.8. Note that

since every patient updates the prior only once, the variance of the posterior is identical

across patients. Therefore, the risk adjustment in the acceptance utility cannot be iden-

tified separately from the intercept. We do not estimate ρ as a free parameter but fix its

value at 0.

Information Sharing: Although information sharing does not exist in the data by

institutional design, we estimate this model for comparison purpose. The quality updating

rule is specified in Equation 3.9.

4.4 Estimation Results

4.4.1 Goodness of Fit and Model Selection

Table 2 reports the parameter estimates and model fit statistics of the observational

learning model and the four alternative models. Observational learning fits the data best

with the highest log-likelihood. In particular, the nested models “no quality uncertainty”

and “public information” are both rejected (likelihood-ratio statistic = 31.602, p = 0.000;

likelihood-ratio statistic = 27.164, p = 0.000 respectively). Indeed, the estimate of α

in the observational learning model differs from 0 at the p = 0.000 level, which means

that uncertain kidney quality does affect patients’ decisions. The estimated σs in the

observational-learning model is also significantly different from 0 (p = 0.000), which rules

out the competing explanation of public kidney quality information, given the functional
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form assumption.

The “no social learning” and “information sharing” models are not nested models

of observational learning. The Akaike information criterion (AIC) selects observational

learning as the best model. In fact, due to the significant signal variance, quality in-

ference by simply observing one’s own signal is noisy, which necessitates social learning.

The information sharing model fits better than no social learning. Note that information

sharing does not exist in the data. The better fit comes from the additional risk com-

ponent; because the posterior variance under information sharing declines with queue

position and because the corresponding risk coefficient is negative (meaning patients are

risk seeking by definition), other things being equal, the back of the queue would have

lower acceptance utility—a pattern in the same direction of observational learning. The

estimated utility weight associated with the unobservable quality, α, is more significant

in the observational learning model than in the alternative models. One explanation is

that since the quality inference processes specified in the observational learning model is

more consistent with the data, it assumes higher explanatory power.

4.4.2 Parameter Estimates

All five models yield similar parameter estimates for the observable attributes. In par-

ticular, older patients are more likely to accept a kidney offer. There is no significant

effect of patient’s number of years on dialysis, which is included to control for medi-

cal urgency, need for transplant, and dialysis-induced status quo bias. As expected, good

tissue match increases the acceptance propensity; perfect issue match increases it dramat-

ically. Interestingly, a longer cold time is associated with higher acceptance rates across

all models. This coefficient should better be interpreted as a correlation rather than a

causal effect. One possibility is that patients take longer time to evaluate “marginally

acceptable” kidneys, but are able to reject obviously poor kidneys immediately. Con-

sistent with this interpretation, cold time and queue position are negatively correlated

(correlation coefficient = −0.127, p = 0.035).

Figure 3 illustrates at the micro level how inferred quality changes along the queue.

For illustrative purpose, we take one representative kidney, fix unobservable quality at

zero, draw random signals and calculate each patient’s inferred unobservable quality us-
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ing the parameters estimates from the observational learning model. In the absence of

social learning, inferred unobservable quality fluctuates with private signals, but shows a

smaller variance due to the stickiness of the prior quality perception. With information

sharing, inferred unobservable quality quickly converges to the true value. With observa-

tional learning, inferred unobservable quality still responds to private signals, but declines

noticeably towards the end of the queue.

Figure 4 shows the impact of observational learning at the aggregate level. It plots

the average inferred unobservable quality across queue position. As expected, overall

the inferred quality declines down the queue, as doubts about quality accumulate with

repeated refusals. Interestingly, the shape of patients’ inferred quality curve shows how

heterogeneity in acceptance standards create heterogeneity in the pace of learning. Among

patients at the top of the queue, 10.91% have perfect tissue match, compared to 0.35%

across all patients. A rejection in spite of perfect match contains a strongly negative

message, lowering the inferred quality significantly from position 1 to position 2. After

that inferences slow down. This is because patients near the top of the queue tend to have

longer waiting time, and are likely to keep their priority in the queue at the next offer.

Therefore, they can afford to wait for the “ideal kidney,” and their refusal reveals little

information about their private signals. This is consistent with the fact that patients in

positions 2 to 12 almost always reject (see Figure 1). Moving down the line, when the

kidney keeps being rejected by patients with lower queue priority and lower acceptance

standards, negative quality inference escalates. However, as more patients reject partly

because their predecessors have done so, refusals become less informative. Consequently,

observational learning slows down again near the end of the queue.

The impact of acceptance standards on quality inference calls for rethinking of the

conventional need-based allocation mechanisms for scarce resources. By giving priority

to people with the most need, efficiency is enhanced conditional on acceptance. However,

in the possible case of refusal despite urgent need, others may draw strongly negative

quality inferences which slow down the utilization of scarce resources.
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5 Counterfactual Simulations of Alternative Learning Mecha-

nisms

In this section, we use parameter estimates obtained from the observational learning

model to simulate patients’ kidney acceptance decisions under two counterfactual learning

mechanisms. One is if there were no social learning and each patient only followed her

private signal. The other is if each patient were able to share the private signals of

all her predecessors. We then compare the decision quality of these mechanisms and

observational learning.

We make 10,000 random draws from the distribution of unobservable kidney qual-

ity, and match each up with one random draw of observable kidney attributes from the

data. Each simulated kidney draw is assigned a queue of eligible patients based on the

UNOS point system. These patients then receive independent private signals conditional

on the draw of unobservable kidney quality. Finally, each decision is assigned a ran-

dom idiosyncratic utility shock. We use the “first best” case of complete information

as the benchmark to assess the decision quality of each learning mechanism. That is,

we define optimal patient decisions as those dictated by true kidney quality, assuming it

is observable to patients. We then simulate patients’ decisions under different learning

mechanisms.

We first compare the prescriptive accuracy of these learning mechanisms. We define

“hit rate” as the percentage of decisions consistent with those indicated by complete

information, assuming each patient has the choice over each kidney.12 Information sharing

achieves a hit rate of 97.26%, higher than the 89.10% with observational learning (p =

0.000), which in turn is higher than the 88.17% without social learning (p = 0.000).

Out of all decisions, the percentage of type I errors, where a patient rejects a kidney

while complete information prescribes acceptance, is 10.08% with observational learning,

12Alternatively, we can remove a simulated kidney draw from the queue once it is accepted. However,

this may lead to biased measures of decision accuracy. For example, suppose complete information

indicates that a kidney is accepted at position 20, while observational learning delays acceptance until

position 40. If we truncate the queue after position 20, it will appear that observational learning achievers

a hit rate of 95%, which can be an overstatement because any decision mistakes after position 20 are not

captured.
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3.89% without social learning, and 1.33% with information sharing. The percentage of

type II errors, where a patient accepts a kidney while complete information prescribes

rejection, is 7.94% without social learning, 1.41% with information sharing, and 0.82%

with observational learning.

One limitation of hit rate is that it does not measure the valence of decision mistakes.

Also, since the above hit rate analysis is conditional on each patient receiving the current

kidney offer, it does not capture the possibility that better kidneys might have been

accepted early in the queue. To address both problems, we study patients’ ex ante

expected utility under different learning mechanisms. For each learning mechanism, a

kidney is removed from the queue once it is accepted. If a patient accepts a simulated

kidney offer, she earns the acceptance utility based on true kidney quality; if she rejects

an offer or does not receive one, she earns the discounted value of her future expected

utility net of waiting costs, taking her transition probabilities into account. The average

of a patient’s utility (given her choice and offer status) across simulated kidney draws

yields the ex ante expected utility of this patient for this learning mechanism.

Figure 5 plots patients’ average ex ante expected utility across queue positions. Gen-

erally, patients’ ex ante expected utility decreases along the queue, as good kidneys are

less likely to reach the back of the line. The only exception is in position one. Be-

cause some patients are advanced to the top due to perfect tissue match with the current

kidney, they are not guaranteed the same priority when the next kidney arrives. These

patients therefore enjoy lower rejection utilities, which in turn reduces the average ex ante

expected utility at the top of the queue. Among the three learning mechanisms, infor-

mation sharing generates the highest expected utility. In fact, the expected utility curve

with information sharing is almost identical to that with complete information. Patients

are worse off with observational learning, and are the worst off without social learning.13

As a measure of aggregate patient welfare, the total ex ante expected utility across all

patients is 102.641 with complete information, 102.179 with information sharing, 88.550

with observational learning, and 64.911 without social learning. The difference in average

13Importantly, in simulating decisions without social learning, we assume that patients know their

positions in the queue. That is, although patients judge the quality of the current kidney offer as if they

were first in the queue, they rationally know that in future they are less likely to receive good kidneys

if they are far down the line. Alternatively, if patients näıvely believe that they will be the first in the

queue in future, they may overestimate their ex ante expected utility.



32

ex ante expected utility is insignificant between complete information and information

sharing (p = 0.191), but significant between all other learning mechanisms (p = 0.000).

The best decision quality generated by information sharing is anticipated because it

represents the most informative mechanism among the three. With observational learn-

ing, patients also draw information from previous rejections. However, repeated observa-

tions of rejections may bias quality inferences downwards. This explains the frequent type

I decision errors with observational learning. Without social learning, patients further

ignore the information contained in previous rejections. In particular, patients ignore the

fact that good kidneys are ex ante less likely to remain available. As a result, they make

frequent type II decision errors.

An imperative of organ allocation in the U.S. is to improve the usage efficiency of

kidneys. The dominant problem is the high volume of type I decision errors, where “most

of the refused kidneys are of acceptable clinical value.” The policy experiments suggest

that facilitating information sharing among patients can help achieve this goal. A plat-

form could be set up where patients exchange their concerns for turning down the kidney

offer, should confidentiality regulations permit. This enhanced decision transparency can

limit over-interpretation of previous refusals, and prevent excessive rejections down the

line. Note that although suppressing social learning also increases acceptance, it creates

the opposite problem of overusing low quality kidneys. Whether organ allocation author-

ities should suppress social learning (for example, by offering kidneys simultaneously to a

batch of patients) depends on whether they aim to maximize kidney usage or maximize

aggregate patient utility.

6 Discussion: Implications for Other Markets

This paper models and finds evidence of observational learning from the kidney market.

The results bear direct relevance to other markets of single non-divisible goods which

can be consumed by a single buyer. Examples include labor markets, housing markets,

auctions, business-to-business contracting, journal publications, child adoptions, and mar-

riages. In these markets, mere “availability” signals lesser quality, although the signal

may be exaggerated. Credibly communicating the reasons behind availability facilitates

future transactions. In particular, marketers of these goods may want to emphasize it if
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availability is caused by non-quality reasons such as stringent adoption standards, taste

mismatch, high prices, and circumstantial restrictions.

More generally, observational learning affects choices if peer decisions convey relevant

quality information. This paper highlights the critical difference between observational

learning and information sharing (for example, through truthful word-of-mouth commu-

nication) in shaping choices. As two major ways of social learning, observational learning

and information sharing are often intertwined in practice with their effects studied in

combination. For example, most diffusion models focus on forecasting product adoption

paths that are jointly fueled by observations and communications (e.g., Bass 1969, Horsky

and Simon 1983, Narasimhan 1989, Talukdar, Sudhir and Ainslie 2002, Golder and Tellis

2004). It is therefore often unclear which force is the main driver of sales and what the

optimal marketing strategies should be. This paper suggests two aggregate predictions

that differentiate observational learning and information sharing in general marketplaces.

First, if consumers’ private information collectively reveals the true value of a product,

information sharing as a signal averaging mechanism will ensure that the ultimate success

of a product reflects its quality. If choices are instead driven by observational learning,

mass behavior can sometimes depart from what the underlying values would prescribe. As

a result, the quality of popular products may turn out to be surprisingly low. For example,

one major criticism of today’s user-moderated web sites such as Digg.com is that stories

promoted to the front page for their popularity are frequently found to carry poor content.

Indeed, hits and misses can crucially depend on how the product is initially received by

the market. The business book The Discipline of Market Leaders is believed to have

made the bestseller list despite lackluster reviews because the authors secretly bought

back 50,000 copies at book release (Bikhchandani, Hirshleifer and Welch 1998). Beyond

the ethical debate surrounding such promotional tactics, a general message to marketers

is that the early stage can be critical in shaping a product’s life cycle, especially in

categories such as apparel, automobile, and digital music where choices are highly visible.

For these categories, the impact of observational learning should be factored into dynamic

marketing decisions such as advertising timing, introductory pricing, and targeting.

Second, market dynamics under observational learning can be sensitive to the choices

of a few pivotal consumers. While diffusion paths driven by information sharing tend to
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follow a smooth trajectory, those shaped by observational learning can be turbulent with

abrupt changes in mass behavior triggered by small events. It is likely, for example, that

observational learning has powered the unanticipated rejuvenation of Hush Puppies in the

mid 1990s, the sudden rave of text messaging despite little promotion, and the whimsical

rise and fall of fashion ideals. While injecting significant unpredictability into the market,

observational learning also offers marketers ample opportunities to orchestrate large-scale

changes with a limited budget. For example, marketing resources spent on marginal

customers and visible users may bring disproportionate returns to the firm, although the

exact amount of returns depends on how consumers strategically react to such marketing

tactics.

7 Concluding Remarks

Mere observation of others’ choices can be a quality signal. This paper studies observa-

tional learning in the U.S. deceased-donor kidney market, where transplant candidates on

a waiting list sequentially decide whether to accept a kidney offer. The fact that a patient

receives a kidney offer implies that all patients before her in the queue have turned down

the same kidney. However, confidentiality does not allow between-patient communication

of the reasons for the refusals.

We model observational learning at the patient level. Kidney quality is not perfectly

observed. However, each patient has private information on kidney quality, such as her

doctor’s opinion. Suppose the second patient is offered a kidney. She can infer that the

first patient’s private signal is not favorable enough. She then uses this information and

her private signal to update her quality perception following Bayes’ rule. Without sharing

the exact concerns, the first patient’s refusal can only (weakly) lower the second patient’s

inferred quality, thus increasing her probability of refusal as well. Consequently, refusals

can be self-reinforcing, causing an otherwise acceptable kidney to be wasted.

The data shows aggregate patterns consistent with observational learning. Even iden-

tical same-donor kidneys are received much differently; some of them are accepted early

on in the queue while their identical counterparts have to travel far down the line to find

a willing recipient. At the same time, the U.S. kidney allocation organizations lament

the poor kidney acceptance rate which is lower than what the observable patient and
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kidney characteristics could justify. We estimate the observational learning model using

disaggregate data, controlling for patient-donor match, deterioration of kidney quality

while traveling down the line, unobservable (to the researcher) kidney quality informa-

tion, patients’ risk attitudes and prospects of future kidney offers. We find evidence of

observational learning, where inferred quality indeed declines towards the back of the

queue. We then simulate patient choices in two counterfactual scenarios, one without

social learning, and the other with information sharing. Patients make more efficient

decisions with information sharing, and worse decisions without social learning. The

findings suggest that facilitating communication among patients can help improve kidney

utilization.

A general message to marketers is that mass behavior can be shaped by the choices of

a few. Therefore, how to manage observational learning to marketers’ benefits becomes

an important managerial question, especially in markets where choices are immediately

visible while information sharing lags behind. Early adopters, visible lead users, and

marginal consumers can all be critical determinants of product success.

This study suggests a way to model observational learning in the field. Technically,

observational learning becomes relevant when decisions are at least partially sequential

and are not sufficient statistics of decision-makers’ private information (Banerjee 1992).

Below we discuss several possibilities of extending the observational learning model to

more complex marketplaces.

First, decisions may not always be sequential. The pace of learning will vary with

the timing of decisions. For example, suppose a new laptop model has achieved success

among technology enthusiasts who make independent purchase decisions. The rest of the

population can then infer higher quality than if the early wave itself was formed through

observational learning. In other words, by delaying observational learning, marketers

may subsequently create a fast rising herd. The optimal timing to enable observational

learning would be interesting to explore, given that timing itself can signal quality.

Second, in general markets observational learning may drive the herd in both ways.

Product success is path-dependent rather than a simple sum of per-period sales. For

example, declining sales following an early rave communicates a different quality image

than delayed popularity following a slow start. The model we present can be extended
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to accommodate any permutation of adoption/rejection decisions along the sequence.

An interesting question remains though on how marketers should allocate promotional

resources across time, given strategic consumer reactions.

Third, it is often uncertain how many people have actually made a decision. For

example, a consumer may not know whether sluggish sales is due to lack of awareness

or lack of preference. This is analogous to the “attribution story” of the kidney market,

where a patient may not know whether a refusal is due to mismatch or a poor signal.

Future studies can model awareness as a moderator of quality inferences and a strategic

marketing decision variable.

Last but not least, observational learning often coexists with information sharing

(Chen, Wang, and Xie 2009). It would be important to understand how they interact.

Also, it would be interesting to distinguish between observational learning and simple

mimicking, which may generate similar behavior although they represent distinct behav-

ioral mechanisms.
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8 Appendix

8.1 The Queue Construction Process

UNOS oversees 90 organ procurement organizations (OPOs) throughout the United States.

An OPO is an organization which concentrates its organ procurement efforts within a geo-

graphic territory. When a kidney is procured by an OPO, blood-type compatible patients

within this OPO are selected and sorted into a queue based on a point system that UNOS

launched in 1995.14 Specifically, the UNOS point system constructs the queues based on

the following four criteria. First, priority is given to patients with longer waiting time. A

patient receives 1 point for each year spent on the waiting list. Second, priority is given to

patients who have better tissue match with the donor. The tissue type is determined by

six proteins at six loci, namely, A1, A2, B1, B2, DR1 and DR2. A “mismatch” occurs at

a locus if the patient and the donor have different protein types there. A patient receives

infinite points if there is no mismatch at any of the six loci (perfect tissue match), 2

points if there is no mismatch at the DR loci (second-best tissue match), and 1 point if

there is one mismatch at the DR loci (third-best tissue match). Third, priority is given

to patients with higher peak panel reactive antibody (PRA) measures, who are subject

to higher risk of graft failure. Peak PRA ranges between 0 and 1. 4 points are given

to patients whose peak PRA are greater than 80%. Fourth, priority is given to patients

below 18 years of age who have higher risk of graft failure. Patients below 11 receive 4

points, and those between 11 and 18 get 3 points.

For each kidney, eligible patients are ranked in descending order of total UNOS points.

In practice, the continued shortage of kidneys has lengthened the average waiting time,

making it the dominant factor in determining the queue. Meanwhile, only a small fraction

of patients qualify for criteria two to four. (See Table 1 for the percentages in the sample of

this study.) As a result, the UNOS point scheme is converging to a first-come-first-served

priority system (Su and Zenios 2004). In this data, patients’ current queue position and

next-period queue position are significantly positively correlated (ρ = .803, p = .000).

14A small fraction of patients register at multiple OPOs. According to the UNOS 2002 Annual Report,

5.74% of patients on the national waiting list sign up with two OPOs, 0.30% sign up with three, 0.02%

four, and none above four. This study does not model multiple registration, but treats each OPO as one

separate waiting list.
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8.2 Formulating the Simulated Log-likelihood Function

The log-likelihood function involves high dimensional integrals. First of all, the cutoff

sequence {Bit} is only stochastically known to subsequent patients. Therefore, to form

her quality inference, a patient needs to evaluate Equation 3.12 by integrating over the

joint distribution G(B1t, · · · , Br−1,t). We approximate this integral by taking N random

draws from the joint distribution of B1t, · · · , Br−1,t, evaluating the integrand at these

draws, and taking the mathematical average:

1

N

N∑
n=1

r−1∏
j=1

Φ(
Bn

jt − θt

σs

)

where Bn
jt is obtained by solving patient j’s indifference condition (Equation 3.13) given

an nth draw from the joint distribution of Xjt, Zjt, εjt and εjot. (Technical details on how

to solve the cutoff sequence recursively are available upon request.) Note that the cutoff

sequence only depends on the joint distribution of patient and kidney characteristics

and idiosyncratic utility shocks, but not on the actual signals. Therefore, {Bit} can be

solved recursively independent of {sit}. This property allows us to perform simulation in

separate modules: the total number of simulation draws needed to form the log-likelihood

is linear in, rather than multiplicative of, the number of signal draws and cutoff draws.

Given the random cutoff draws, the posterior expected quality with observational

learning, hrt, can be approximated as

ĥrt(srt,∆) =
1
D

∫
φ(

srt − θt

σs
) φ(

θt − µ

σθ
)

1
N

N∑
n=1

r−1∏
j=1

Φ(
Bn

jt − θt

σs
) θt dθt

where

D =

∫
φ(

srt − θt

σs

) φ(
θt − µ

σθ

)
1

N

N∑
n=1

r−1∏
j=1

Φ(
Bn

jt − θt

σs

) dθt

Evaluating ĥrt(srt, ∆) involves one-dimensional integration over θt, which is numerically

implemented using Gaussian quadratures.

After knowing ĥrt(srt, ∆), the expected utility and hence the probability for patient i

to accept kidney t can be calculated based on Equation 3.16. Denote this probability as

P̂ r(dit = 1|sit, ∆), which is a function of the draw of private signal sit and ∆. Last, to
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evaluate Pr(Rt|∆), the private signals need to be simulated:

P̂ r(Rt|∆) =
1

L

L∑
l=1

{
Rt−1∏
i=1

[
1

M

M∑
m=1

(1− P̂ r(dit = 1|slm
it , ∆))]

1

M

M∑
m=1

P̂ r(dRt,t = 1|slm
Rt,t, ∆)}

The specific procedure is to make L random draws from the distribution of θt for each

kidney t. Label the lth draw θl
t. Given each θl

t, the private signals are conditionally

independent. Let eit denote the deviation of actual signal sit from θl
t. eit follows an i.i.d.

normal distribution with mean 0 and variance σ2
s . Make M draws from the distribution

of eit and label the mth draw em
it . It follows that slm

it = θl
t + em

it . This procedure maintains

the signal correlation for the same kidney.

Finally, the simulated log-likelihood function to maximize is

L̂L(∆) =
T∑

t=1

ln P̂ r(Rt|∆)
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Table 1: Summary Statistics

Patient-specific variables (N=338)

Variable Mean Std. Dev. Min Max
Patient age 47.059 14.342 4 79
Patient age =< 11* 0.018 0.132 0 1
11 < Patient age =< 18* 0.018 0.132 0 1
Patient_female* 0.340 0.474 0 1
Patient_Caucasian* 0.790 0.408 0 1
Patient_unemployed* 0.559 0.497 0 1
Income ($1,000) 30.733 11.789 6.399 86.254
PRA > 80%* 0.018 0.132 0 1
# Years on dialysis 1.649 2.025 0 13

Kidney-specific variables (N=275)

Variable Mean Std. Dev. Min Max
Donor age 32.186 15.483 0 73
Donor_female* 0.447 0.498 0 1
Donor_Caucasian* 0.895 0.308 0 1
Accepting patient: position in queue 34.124 19.406 1 77
Accepting patient: # previous offers 15.455 23.994 0 166
Accepting patient: # days waiting 209.440 206.311 1 1272

Patient-kidney interactive variables (N=9384)

Variable Mean Std. Dev. Min Max
0 mismatch* 0.004 0.059 0 1
0 mismatch at DR* 0.038 0.190 0 1
1 mismatch at DR* 0.406 0.491 0 1
Cold time 8.877 7.034 0.016 43
Accept* 0.029 0.169 0 1

* dummy variable which equals 1 if the statement in the variable name is true, and 0 otherwise
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Table 2: Estimation Results
      

 No Quality Public  No Social Information Observational 
Parameters Uncertainty Information Learning Sharing Learning 

 (α = 0 ) (
s

σ = 0)       

Intercept 0.000  -0.001  -0.001  -0.001  0.000  
Patient Age 0.023 ** 0.023 ** 0.023 ** 0.016 ** 0.015 ** 
Patient_Female 0.008  0.018  0.027  0.019  0.009  
Patient_Caucasian -0.245  -0.205  -0.194  -0.283  -0.284  
Patient Income 0.000  0.000  0.000  0.000  0.000  
Patient_Unemployed -0.026  -0.006  -0.002  -0.007  -0.039  
# Years on Dialysis  -0.014  -0.002  0.000  -0.002  -0.008  
PRA > 80% -0.784  -0.317  -0.284  -0.273  -0.491  
Patient Below 11 0.935  0.976  0.991  0.919  0.920  
Patient Bw 11 & 18 1.325  1.209  1.218  1.278  0.726  
Donor Age 0.000  0.000  0.000  0.000  0.000  
Donor_Female 0.159  0.127  0.118  0.043  0.053  
Donor_Caucasian -0.142  -0.113  -0.096  -0.127  -0.284  
0 Mismatch 6.396 **** 6.838 **** 6.832 **** 6.858 **** 6.004 **** 
0 Mismatch at DR 1.487 **** 1.462 *** 1.441 *** 1.956 *** 1.474 *** 
1 Mismatch at DR   0.186  0.158  0.144  0.630  0.442 * 
Cold Time 0.075 ** 0.078 ** 0.078 ** 0.093 ** 0.104 ** 
Utility Weight on Unobs. α  ----  0.001 ** 0.003 ** 0.172 ** 2.260 **** 

Signal Noise 
s

σ  ----  ----  0.000  0.208 ** 0.524 **** 
Risk Coefficient ρ  ----   ----   0  ---- -0.011 * 0.003   

# Observations 9384  9384  9384  9384  9384  

# Parameters 17  18  19  20  20  

LL -913.732  -911.513  -911.397  -908.323  -897.931  

AIC 1861.464  1859.026  1860.794  1856.646  1835.862  
           

 
* P < 0.10 ** P < 0.05 *** P < 0.01 **** P < 0.001 
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Figure 3: Quality Inference—Example of One Kidney
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Figure 4: Quality Inference—Aggregate Effect
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Figure 5: Policy Experiments: Patients’ Ex Ante Expected Utility
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