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ABSTRACT 

The ability to detect small microearthquakes and identify their P and S phase arrivals is a 

key issue in hydrofracture downhole monitoring because of the low signal-to-noise ratios. 

We apply an array-based waveform correlation approach (matched filter) to improve the 

detectability of small magnitude events with mechanisms and locations similar to a 

nearby master event. After detecting the weak events, we use a transformed spectrogram 

method to identify the phase arrivals. We have tested the technique on a downhole 

monitoring dataset of the microseismic events induced by hydraulic fracturing. We show 

that, for this case, one event with a signal-to-noise ratio around 6dB, which is barely 

detectable using an array-stacked short-time average/long-time average (STA/LTA) 

detector under a reasonable false alarm rate, is readily detected on the array-stacked 

correlation traces. The transformed spectrogram analysis of the detected events improves 

P and S phase picking. 
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INTRODUCTION 

Low-permeability oil reservoirs and gas shales are problematic to produce, often 

requiring multiple stages of hydraulic fracturing in order to create connected pathways 

through which hydrocarbons may flow. During hydrofracturing, many induced 

microearthquakes occur. These induced microearthquakes are extremely important for 

mapping the fractures and evaluating the effectiveness of hydraulic fracturing. Their 

locations are used to determine fracture orientation and dimensions, which is further used 

to optimize the late-stage treatment (Walker, 1997; Maxwell and Urbancic, 2002; Philips 

et al., 2002). Microearthquake locations also provide helpful information on reservoir 

transport properties and zones of mechanical instability, which can be used for reservoir 

monitoring and new well planning (Kristiansen et al., 2000; Willis et al., 2008; Willis et 

al., 2009). In this paper, we propose a systematic approach to improve the low-magnitude 

hydrofracture event detection and phase identification. 

Most microearthquakes are small and often are hard to detect. A noisy borehole 

environment further complicates the detection process. For downhole monitoring, as is 

the case for our study, additional difficulties for event location come from the limited 

receiver geometry, where usually only one monitoring well is available. In this case, 

additional information on wavefront propagation direction must be obtained to constrain 

the event azimuth (De Meersman et al., 2009; Eisner et al., 2009a).  Although S-wave 

polarization has been proposed to compute the event azimuth (Eisner et al., 2009b), most 

methods still rely on P-wave polarization. However, most hydrofracture events typically 

radiate smaller P-waves than S-waves. Therefore, identification of the weak P-wave 

arrivals is crucial for downhole microearthquake location. The quality of P-wave arrival 
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picking determines the precision of earthquake locations (Pavlis, 1992), and the accuracy 

of event azimuth relies heavily on the P-wave vector (Eisner et al., 2009a).  

In earthquake seismology, waveform correlation of strong events, known as master 

events, is used to detect weaker events (Gibbons and Ringdal, 2006; Michelet and Toksöz, 

2007). These correlation-based detectors are especially useful to lower the detection 

threshold and increase the detection sensitivity. Previous studies have also shown that the 

correlation detector can be effective as long as the separation between the master event 

and the target event is less than the dominant wavelength (Gibbons and Ringdal, 2006; 

Arrowsmith and Eisner, 2006; Michelet and Toksöz, 2007).  In this study, we adapt the 

method to hydrofracture monitoring by choosing a master event and using it as our cross-

correlation template to detect small events, which share a similar location, fault 

mechanism and propagation path as the master event (Eisner et al., 2006).  We compare 

the single component, single geophone correlation detector with an array stacked three-

component (3-C) correlation detector. A significant improvement results from array 

stacking and matching the polarization structure. Moreover, the array stacking of 

correlation traces suffers no coherence loss and requires no knowledge of the velocity 

model as is the case with a conventional beam of array waveforms dependent on a plane-

wave model (Kao and Shan, 2004).     

To locate the detected events, we need to identify their P- and S-wave arrivals. 

Typically the STA/LTA type algorithm is used to pick P- and S-wave arrivals (Earle and 

Shearer, 1994). The problem with this algorithm is that it is very sensitive to background 

noise level, which can change significantly during hydraulic fracturing. We propose a 

transformed spectrogram based approach to identify P- and S-wave arrivals where the 
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influence of high background noise is reduced. This method can act as an initial picking 

of P- and S-wave arrivals. The transformed spectrogram picking results can be further 

refined using an iterative cross-correlation procedure proposed by Ronen and Claerbout 

(1985), Rowe et al. (2002). 

 

METHODOLOGY 

Correlation detector 

The seismic waveforms observed at any receiver can be modeled as a convolution of 

the source, medium and receiver response (e.g. Stein and Wysession, 2002):  

 ,                                                   (1) 

where is the recorded seismic data, and                                                     

represent the source wavelet, medium Green’s function and receiver response, 

respectively. Thus, nearby events sharing a similar source mechanism will have similar 

waveforms observed at the same receiver (Arrowsmith and Eisner, 2006). This is the 

basis for the cross-correlation detector. Once a master event with a good signal-to-noise 

ratio is identified by the standard STA/LTA detector, it can be used as the master event to 

cross-correlate with the nearby noisy record. If the 3-C waveforms of the master event 

are denoted as : 

,           (2)                             

where component index is  geophone index is  is the starting 

time of the master event. The inner product between   and is defined 

as 
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,                (3) 

and the single-component, single-geophone correlation detector is given by Gibbons and 

Ringdal (2006), 

 .        (4) 

Data redundancy contained in the array and three components can be utilized by 

introducing another two forms of correlation detector, that is, 

  ,                                           (5) 

.                                        (6) 

Equation 5 represents the single-component, array-stacked correlation detector (Gibbons 

and Ringdal, 2006). Equation 6 gives the three-component, array-stacked correlation 

detector. We will see later in this paper that stacking across the array and three 

components brings additional processing gain which will facilitate the detection of events 

with low signal-to-noise ratios. It is worth pointing out that for detection purposes, the 

stacking of correlation traces is performed without move-out correction. An implicit 

assumption is that we are dealing with events close to the master event. On the other hand, 

the move-out in the  across the array can be used to locate events relative to 

the master event if sufficient receiver aperture is available, such as the surface monitoring 

case with a two-dimensional receiver coverage (see Eisner et al., 2008).     

A high cross-correlation coefficient on ,  or  indicates 

the arrival of a microseismic event. A simple threshold for the cross-correlation 

coefficient serves as an efficient event detector. A further advantage of this detection 
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method is that the master event can be updated with time to capture the fracture 

propagation. 

 

Transformed spectrogram phase picking  

The correlation detector determines the occurrence of microseismic events. To locate 

the events, P and S arrivals must be picked at each 3-C geophone. Weak P arrivals pose a 

special challenge for time picking. To alleviate this problem, we use a transformed 

spectrogram approach to enhance weak P arrivals and to facilitate the P and S phase 

picking. We apply the multi-taper method, proposed by Thomson (1982), to calculate the 

spectrogram. The basic idea of the multi-taper spectrogram is that the conventional 

spectral analysis method suppresses the spectral leakage by tapering the data before 

Fourier transforming, which is equivalent to discarding data far from the center of the 

time series (setting it to small values or zero). Any statistical estimation procedure which 

throws away data has severe disadvantages, because real information is being discarded. 

The multi-taper method begins by constructing a series of orthogonal tapers, and then 

applies the tapers to the original data to obtain  sets of tapered data. Because of the 

orthogonality of the tapers, there is a tendency for the  sets of tapered data to be nearly 

uncorrelated. If the underlying process is near-Gaussian, those  sets of tapered data are 

therefore nearly independent. Thus, the sum of Fourier transforms of these  sets of 

tapered data will give us an unbiased, stable and high-resolution spectral estimate. The 

multi-taper spectrogram is then differentiated with respect to time to enhance the phase 

arrival. Next, a transformed spectrogram is formed by multiplying the differentiated 

spectrogram with the original spectrogram to highlight two features of a phase arrival: 
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high energy increase and high energy (Gibbons et al., 2008). Mathematically, let the 

spectrogram estimate within time window be , the transformed 

spectrogram can be expressed as:  

,                  (7) 

 .                                        (8) 

The characteristic function of this transformed spectrogram is defined over the signal 

frequency range as:  

                                          (9) 

where is the number of frequency points over the microseismic signal frequency range 

. The expression for   is a multiplication of two terms: the first differential 

term represents the energy change from the previous time window to the current 

time window , while the second term gives the energy within the current time 

window. The normalized spectrogram  ensures a positive value of the second 

term in equation 7 so that  is a monotonically increasing function with respect to 

the first energy change term. Therefore, the two positive peaks on , which 

highlight the two features of a phase arrival: high energy and high energy increase, will 

give the P- and S-wave arrivals. Furthermore, considering P- and S-waves may have 

different signal-to-noise ratios (SNR) on different components, this transformed 

spectrogram phase picking approach is applied to all 3 components. The P- and S-wave 

arrivals are identified on the transformed spectrogram of the component that has the 

maximum SNR. 
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FIELD DATA EXAMPLE 

A microseismic survey was performed during the hydraulic fracturing stimulation of 

a carbonate reservoir in Oklahoma. An 8-level three-component geophone array was 

deployed in the monitoring well at a depth from 1385 m (4545 ft) to 1492 m (4895 ft), 

where we refer to the shallowest as level 1 and the deepest as level 8. The treatment well 

is approximately 440 m (1450 ft) away from the monitoring well. The perforation was 

conducted at a depth of 1530 m (5030 ft).  Figure 1a shows a segment of the continuous 

microseismic record. Unfortunately, level 8 failed to work, so only waveforms from 7 

levels are available. Figure 1b shows that the most energetic part of low-frequency noise 

is concentrated mainly below 75 Hz. Additional signal spectral analysis demonstrates that 

most signal energy is below 300 Hz. Therefore, a band-pass filter of  Hz was 

applied to the raw data to get an enhanced signal as shown in Figure 1c. Figure 2 shows 

the three components (Z, X, Y) of the band-pass filtered data. The band-pass filtered data 

in Figure 2 show several microseismic events. The three largest events, noted as event 1, 

2, and 3 with S-wave arrivals on level 1 at approximately 19.3 s, 8.3 s, and 28.0 s, are 

detected by the standard STA/LTA event detection algorithm. Another two smaller 

events (event 4, 5) around 13.5 s and 2.3 s are noticeable, but are hard to detect by the 

single-geophone STA/LTA detector. To calculate the signal-to-noise ratio (SNR) of these 

5 events, we define:  

 ,                          (10) 

where  and  denote the -th component data of the event and noise segment 

recorded at the -th receiver, with  and  being microseismic signal and noise 
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window length. The calculated SNRs for event 1-5 on the band-pass filtered data are 15.3 

dB, 12.4 dB, 11.7 dB, 6.5 dB and 6.1 dB, respectively.  

The largest event around 19.3s is selected as the master event. Figure 3 shows the 

vertical component (the Z component) cross-correlation template, where both P- and S-

wave arrivals are included. We apply three forms of correlation detector to the three-

component data in Figure 2. Figure 4b gives the one-geophone one-component 

correlation result (Level 1, the vertical component), while Figure 4c and 4d gives the 

array-stacked correlation traces using the vertical component only and all three 

components respectively. Compared to the band-pass filtered data on Figure 4a, the one-

geophone one-component correlation detector does not increase the SNR, which indicates 

the existence of some correlated noise. Figure 4c, however, gives better SNRs for two 

weak events 4 and 5 by stacking the vertical component correlation traces across all 7 

geophones. The noise correlation level has decreased from 0.2 in Figure 4b to 0.05 in 

Figure 4c after cross-geophone stacking. The correlation level for the weakest event 5 in 

Figure 4c is 0.45. This means that, by stacking the one-component correlation traces, the 

SNR for the weakest event 5 has increased from 6.1 dB in Figure 4a to 19.0 dB in Figure 

4c. Figure 4d represents the array-stacked correlation traces across all three components. 

The noise correlation level further decreases to 0.03. The SNR for the weakest event 5 

increases to 22.5 dB in Figure 4d. This additional 3.5 dB SNR gain over Figure 4c comes 

from matching in polarization structure by using all three components. Even for the 

master event (i.e. the strongest event), the SNR on the 3-C array-stacked correlation 

detector has been boosted from the original 15.3 dB in Figure 4a to 30.4 dB in Figure 4d. 

Two weak events 4 and 5 are easy to identify in Figure 4d.  
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For comparison, we also apply the STA/LTA detector to the array-stacked three-

component data. Before stacking, a moveout correction is used to align the waveforms 

from different geophones. Here the moveout is estimated by cross-correlating the master 

event waveform segments between geophone pairs. Figure 4e gives the sum of three 

single-component STA/LTA ratios of the stacked band-pass filtered data after the 

moveout correction. The STA and LTA window lengths are selected to be 3 and 15 times 

the dominant period (16 ms and 80 ms). While events 1, 2, 3 and 4 clearly stand out in 

Figures 4e, event 5 is hard to detect under a reasonable false alarm rate. The SNR of the 

weakest event 5 increases from 6.1 dB to 14.6 dB. This 8.5 dB SNR gain, resulted from 

moveout corrected array-stacking, is smaller than the 16.4 dB gain in the 3-C array-

stacked correlation detector. Moreover, a spurious event around 14.8 s (labeled as ‘*’ in 

Figure 4e) is actually caused by the large noise recorded mainly by geophones 4 and 3 

(Figure 2), which is not seen in the correlation detector (Figure 4d). This demonstrates 

the utility of the array-stacked correlation detector over the array-stacked STA/LTA 

detector. The three-component array-based correlation detector can effectively enhance 

the SNR of small microseismic events, and therefore is suitable to detect small-

magnitude events with waveforms similar to a master event. In practice, we can use the 

STA/LTA detector to identify several large events, which can then be used as master 

events to detect their nearby weak events.      

For each detected event, we use the multi-taper based transformed spectrogram 

approach as described in equations 7-9 to identify the P- and S-wave arrivals and 

compare them to standard STA/LTA picks (Earle and Shearer, 1994). We calculate the 

characteristic function  to pick the P- and S-wave arrivals on each 3-C 
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geophone for each detected event. Here  is set as the microseismic signal 

frequency range,  Hz. The method is applied to all three components to get the 

optimal P- and S-wave arrival picks. The P- and S-wave arrivals can be picked either 

separately from the component which has the best P- and S-wave SNRs or together from 

the sum of  over all three components. In our study, both methods give 

similar P- and S-wave picks. For level 1 geophone, Figure 5 compares the manual picks 

(solid line), transformed spectrogram picks (dash line) and STA/LTA picks (dash-dot 

line) for the master event. P- and S-waves have the highest SNR on the horizontal and 

vertical component separately. Thus, the P-wave arrival is determined from the horizontal 

component, while the S-wave arrival is obtained from the vertical component. For this 

large event, the arrivals given by both methods are close to the manual picks, signifying 

that we can use STA/LTA detector to identify master events and determine . The 

arrivals identified by the peaks on  are close to the onset of phase arrivals, 

while the STA/LTA picks tend to give the peak arrival times. For the weakest event, as 

shown in Figure 6, the STA/LTA picks have little agreement with manual picks due to 

the high noise level, while the transformed spectrogram picks are consistent with manual 

picks.  This illustrates that the transformed spectrogram facilitates picking of weak phase 

arrivals. The noise level has less influence on the characteristic function due to the 

differentiation term in equation 7. The shape of the characteristic function depends on the 

signal energy distribution over the time and frequency, and the window length . The 

choice of  depends on the balance between the sharpness of the P and S peaks (i.e. the 

resolution of arrival picks) and the occurrence of spurious peaks. From our experience, 

three to four times the dominant period is a good value.     
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CONCLUSIONS 

In this paper, we have proposed a systematic approach for hydrofracture event 

detection and phase picking. By field test, we have demonstrated that once a large event 

is detected by the standard STA/LTA detector, it can be used as the master event. A 

three-component array-stacked correlation detector using this master event template can 

effectively increase the detectability of nearby small-magnitude events. Unlike 

conventional array stacking of the waveform data from one single event, the array 

stacking of correlation traces between two close events suffers no coherence loss and 

requires no knowledge of the velocity model. Under the same false alarm rate, the array-

stacked correlation detector gives better results than array-stacked STA/LTA detector, 

because the correlation detector uses full waveform information. The three-component, 

array-stacked processing is superior to a single-component, single-geophone correlation 

detector. The processing gain increases with the increased number of geophones. The 

limitation of the correlation detector is that it is only capable of detecting the events that 

are within one dominant wavelength from the master event. However, this limitation 

could be alleviated by updating the master event. For phase picking, we applied the 

transformed spectrogram approach to identify the weak arrivals. The P- and S-wave 

arrivals are picked from the component that has the highest signal-to-noise ratio for P- 

and S-wave vector separately.  The transformed spectrogram captures two features of a 

phase arrival in the time-frequency domain: high energy and high rate of energy increase; 

therefore it improves phase picking. Detection and phase identification of small-

magnitude microseismic events have potential for not only hydrofracture monitoring but 

also reservoir surveillance. 
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FIGURE CAPTIONS 

Figure 1: (a) A 32s raw vertical velocity data record from a three-component downhole 

geophone array. (b) Amplitude spectrum of the panel in (a) after summing over all traces. 

(c) The panel in (a) after [75, 300] Hz band-pass filtering.   

Figure 2: [75, 300] Hz band-pass filtered velocity data: (a) Z component (same as Figure 

1(c)), (b) X component, (c) Y component (Events 1, 2, 3 are detected by the STA/LTA 

detector, with event 1 selected as the master event for the correlation detector. Events 4 

and 5, although visible, are hard to detect by the single-geophone STA/LTA detector.).   

Figure 3: Master event waveform as the cross-correlation template (vertical component 

of event 1 as shown in Figure 2(a)).  

Figure 4: (a) [75, 300] Hz band-pass filtered vertical velocity data from geophone 1. (b) 

One-component, one-geophone correlation detector output. (c) One-component, array-

stacked correlation detector output. (d) Three-component, array-stacked correlation 

detector output. (e) Three-component, array-stacked STA/LTA detector output. 

Figure 5: Comparison of manual picks (solid line), transformed spectrogram picks (dash 

line), and STA/LTA picks (dash-dot line). (a) P-wave arrival picks on band-pass filtered 

X component data from geophone 1 for event 1 (the master event). (b) S-wave arrival 

picks on band-pass filtered Z component data from geophone 1 for event 1. (c) 

Characteristic function, as specified in equation 9, for the X component 

data, where P-wave arrival is identified as the first major peak.  (d) for the 

Z component data, where S-wave arrival is identified as the second major peak. (e) 

STA/LTA function for X component data. (f) STA/LTA function for Z component data. 
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Figure 6: Comparison of manual picks (solid line), transformed spectrogram picks (dash 

line), and STA/LTA picks (dash-dot line). (a) P-wave arrival picks on band-pass filtered 

X component data from geophone 1 for event 5 (the weakest event). (b) S-wave arrival 

picks on band-pass filtered Z component data from geophone 1 for event 5. (c) 

Characteristic function, as specified in equation 9, for the X component 

data, where P-wave arrival is identified as the first major peak.  (d) for the 

Z component data, where S-wave arrival is identified as the second major peak. (e) 

STA/LTA function for X component data. (f) STA/LTA function for Z component data. 
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