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Model-Based Data Integration in Clinical Environments

Thomas Heldt and George C. Verghese

Abstract— As a result of improved hospital information-
technology infrastructure and declining costs of storage media,
vast amounts of physiological waveform and trend data can now
be continuously collected and archived from bedside monitors in
operating rooms, intensive care units, or even regular hospital
rooms. The real-time or off-line processing of such volumes
of high-resolution data, in attempts to turn raw data into
clinically actionable information, poses significant challenges.
However, it also presents researchers — and eventually clin-
icians — with unprecedented opportunities to move beyond
the traditional individual-channel analysis of waveform data,
and towards an integrative patient-monitoring framework, with
likely improvements in patient care and safety. We outline some
of the challenges and opportunities, and propose strategies
for model-based integration of physiological data to improve
patient monitoring.

I. INTRODUCTION

Advances in sensor technology, computer power, and
digital storage media permit increasingly copious amounts
of clinical data to be continuously collected and archived,
not only as part of specific research projects but also during
the routine clinical management of patients [1]. For example,
archiving a full patient-day of eight waveform signals, trend
information, and monitoring alarms in uncompressed format
might be well less than 200 MB, though much smaller
storage requirements can even be achieved with adequate
compression. The collection and storage of large volumes
of high-resolution waveform and trend data from bedside
monitors is therefore no longer a rate-limiting step in sci-
entific investigations or clinical practice, and vendors have
begun marketing commercial products that provide for such
options. However, despite the availability now of overwhelm-
ing amounts of clinical data, the use of this data in typical
clinical decision making has not advanced correspondingly
over the past decades.

Although the interfaces may be more sophisticated, what
the bedside monitor presents to the clinician is still quite
basic information. The monitor might pull together and
displays signals from various devices, each dedicated to a
particular measurement modality; it may generate and plot
maxima, minima, and simple short-term averages of these
signals where appropriate; and it implements alarms and
alerts that are usually only based on single-channel analysis.
The analysis is most sophisticated in the case of ECG-derived
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critical alarms, but otherwise is largely based on checking
simple high/low threshold conditions.

The clinical staff currently gathers data from disparate
sources (monitors, lab results, radiology reports, clinical
notes, ...), retrospectively screens the data for important
events, and uses clinical experience to synthesize the in-
formation and formulate differential diagnoses and treat-
ment plans. This obviously puts an enormous burden on
the staff. Consequently, most of the data gathered is only
screened for overt, clinically important abnormalities, and –
in the absence of such events – is rapidly lost from active
consideration, even if it is archived. This leads to neglect
of potentially valuable information that could otherwise be
used to understand the integrity of the patient’s physiological
systems. Ever more pressing, therefore, is the need to aid
clinicians in turning the vast amounts of raw data into
clinically actionable information – preferably in real-time –
to improve the efficiency, efficacy, timeliness, and safety of
clinical decision-making [2], [3].

This problem of data overload is most prevalent in oper-
ating rooms and critical-care units, where multiple channels
of very dynamic waveform data are acquired at high rates
and continuously streamed to bedside monitors, as well
as to nurses’ central stations. However, current monitoring
technology is largely focused on data display, and on sep-
arately analyzing individual channels of data to generate
trends and alarms. Thus, the task of extracting important
but subtler waveform features, and the synthesis of such
information across multiple data channels in order to ar-
rive at a comprehensive assessment of patient state, falls
to the clinician where humanly possible, but otherwise is
unsupported. Current monitoring technology tends to ignore
the functional relationship among physiological variables,
and the consequent redundancy of information, though these
could be leveraged to reduce false monitoring alarms [4],
and to extract physiological parameters more robustly.

Here, we advocate the interpretation of monitoring data
in the context of appropriately chosen mathematical models
derived from physiological understanding. We summarize
our vision of model-based data integration, give specific ex-
amples of model-based approaches to aid clinical monitoring,
and point to current research challenges in systematically
obtaining models (often reduced models from more detailed
ones) that are well structured for the task at hand. We also
outline some practical impediments to model-based data in-
tegration in the critical care and perioperative environments.
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II. MODEL-BASED DATA INTEGRATION

Mechanistic mathematical models reflect our understand-
ing of the functional relationships among the variables and
parameters that determine the overall behavior of the system
under investigation. Such models provide the opportunity
to estimate unmeasured model variables and parameters
from experimental data, possibly in real-time. The level of
abstraction or detail of the model is chosen with an eye
on the characteristics of the data streams that the model is
intended to represent. Conversely, the knowledge that data
of better quality could allow more to be inferred from a
particular model might cause one to attempt the collection
of better data (for instance at a higher sampling rate, and/or
with more amplitude resolution, and/or with more attention
to characterizing and filtering out various sources of noise).

By casting our understanding of physiology and patho-
physiology in the mathematical framework of deterministic
or stochastic dynamical systems, we enable quantitative
predictions to be made, and to be compared against re-
sults from clinical measurements. In the context of model-
based integration of bedside monitoring data, mathematical
modeling provides constraints that may allow us to relate
readily observable data streams (such as waveforms of ECG,
arterial blood pressure, or cerebral blood flow velocity) to
physiological variables and parameters that are unmeasured
but more directly reflective of changes in pathological state
(such as cardiac output, cardiac contractility and ejection
fraction, peripheral resistance, or intracranial pressure).

Augmenting the number of available monitoring signals
through model-based estimation of unmeasured physiolog-
ical quantities can permit more comprehensive monitoring.
This might in turn allow earlier differentiation of competing
diagnoses, more timely identification of disease progression
or deterioration, and more accurate titration of therapy.

III. MODELING CHALLENGES

Among the challenges in model-based patient monitoring
are the following:

• careful time-stamping of data obtained from different
devices;

• automated assessment of signal quality as a function of
time, so estimation is only attempted where the data
permits it to be done with confidence;

• determination of suitable model structures and estima-
tion algorithms for the available data and estimation
objectives;

• validation of estimation results;
• presentation to and acceptance by clinicians.

We address some of these and related issues below and in the
sections that follow (though not in the same order as listed
above).

Mathematical models of physiological systems tend to be
built at a level of complexity that captures the system’s dy-
namic behavior over a wide range of time and length scales.
Modules might be added that represent more of the relevant
physiology, in attempts to improve the fit of the models

to particular experimental data. The Physiome Project, for
example, advocates a multiscale modeling approach to inte-
grate experimental data from the subcellular to the organism
level [5]. However, increasing the complexity of a model
can also significantly work against its usefulness in other
respects: parameter values are harder to pick reliably, because
many different combinations of parameter values can lead to
model responses that are essentially indistinguishable, given
the level of noise in the data; simulation times are increased;
and it becomes difficult to understand in a fundamental way
what parts of the model — and ultimately what aspects of the
physiology — actually contribute to a particular dynamic re-
sponse, and how. Appropriately reducing the complexity of a
model may actually make for a more effective representation
of experimental data, particularly for real-time monitoring
applications.

It would be desirable to have a systematic methodology
for exploring complex models from this point of view: to
deduce where aggregation or simplification or reduction of
a model may be possible or required; where refinement or
elaboration might be desirable or necessary; and how to then
accomplish these tasks in a way that preserves the physio-
logical interpretability of the model. Though the literature
does not provide anything quite so comprehensive, there are
approaches and tools that can be useful [6], and some of these
are outlined in the next section. By contrast, the most widely
studied model-order reduction schemes in the current control
literature [7] make no attempt to preserve the interpretability
of the variables and parameters that specify the reduced-order
model, thus limiting their applicability in clinical monitoring
and decision-making processes.

IV. EXAMPLES OF MODEL-BASED APPROACHES
TO PATIENT MONITORING

While a general theory is currently lacking, specific
examples of model-order reduction and model-based data
integration for clinical monitoring have been successfully
implemented. We give three examples, labeling them in
each case by the analytical approach that underlies the
construction of the reduced model. Analytical approaches
that are not mentioned in more detail here, but that can
provide powerful structural insights into a model, include the
use of participation factors [6], [8] to analyze the linear, time-
invariant model obtained by linearizing a nonlinear, time-
invariant model around an equilibrium point.

A. Subset Selection

As mentioned above, mathematical representations of
physiological systems can often be quite elaborate, including
tens if not hundreds of states and parameters that need to be
specified. A classic example is the Guyton model of cardio-
vascular and fluid-electrolyte regulation [9]. Consequently,
a discrepancy commonly exists between the high resolution
and rich dynamic behavior of the model, and the limited
dynamic behavior of the small number of measurements that
can be made. This disparity leads to parameter estimates that
are overly sensitive to even slight variations (noise) in the
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experimental data, if one attempts to estimate all or a large
number of the model parameters.

It turns out that in many such cases the parameter space
can be systematically split into two groups: a small set of
parameters that can be estimated robustly; and the remaining
parameters being less reliably identifiable and therefore fixed
at a priori values. Fixing a large fraction of parameters at
nominal values will introduce a bias in the resultant estimates
of the remaining parameters. The advantage to be gained,
however, is the robust identification of this remaining small
number of parameters, which significantly influence the fit
of the model output to the available data.

An algorithm for such subset selection has been described
in [10] and evaluated by [11], in the context of understand-
ing the hemodynamic response to changes in posture. The
full model in [11] contained over 140 parameters. Subset
selection identified four significant parameters that could be
identified reliably from time series of heart rate and arterial
blood pressure recorded during changes of posture.

B. Averaging

Sometimes one might be interested in isolating the dy-
namic behavior on a particular time scale, rather than car-
rying forward the full dynamic response of a model. In
particular, one might not be interested in the instantaneous
value of a particular physiological variable, but rather in the
response of the variable’s short-term average to perturbations
in model parameters. This is especially the case for the cyclic
or quasi-periodic waveforms typically found in physiological
settings. Such responses generally tend to occur over time
scales that are large compared to the fastest characteristic
time constant in the model. In these cases, a cycle-averaged
model that tracks the cycle-to-cycle dynamics rather than
the intra-cycle dynamics seems desirable [12], [13]. One
might expect simulation times to be reduced, and the cycle-
averaged model to exhibit a structure that simplifies the anal-
ysis of its dynamic behavior. Frequency selective averaging
generalizes the notion of averaging to isolate dynamics at
particular frequencies [14].

The work in [15], [16] applied cycle-averaging to the
well-known Windkessel model, to use intra-beat and inter-
beat information of the arterial blood pressure waveform for
beat-by-beat estimation of cardiac output and total periph-
eral resistance. The earlier work in [17] exploited beat-to-
beat variability in a different way to estimate these same
quantities.

C. Time-scale Separation

In some circumstances, one seeks to keep track of dynamic
responses on two very different time scales: a very fast
dynamic behavior associated with “fast variables;” and a
very slow response of “slow variables.” Following standard
singular perturbation methods [18], we can consider the slow
variables to be essentially constant over the time scale of
the fast dynamics. Conversely, the fast variables can be
considered to have settled to a quasi-steady-state over the
characteristic time scale of the slow dynamics.

The work in [19], [20] exploited this idea when developing
a model-based data-integration and estimation algorithm that
uses peripheral arterial blood pressure and cerebral blood
flow velocity measurements to noninvasively estimate in-
tracranial pressure and cerebrovascular resistance and com-
pliance. Since the time scale for cerebrospinal fluid formation
is very long compared to the characteristic time constant
of cerebrovascular blood flow, mean intracranial pressure
can be considered constant within a beat, but varying from
beat to beat. The resulting model is considerably simpler
than that of [21]. Intra-beat waveform analysis yields the
desired parameters of resistance, compliance and intracranial
pressure, whose estimation on a sliding window allows
variations in the estimates from one beat to the next.

V. TECHNICAL CHALLENGES

Apart from the model-reduction challenges outlined above,
several technical challenges exist in implementing a model-
based patient monitoring paradigm in critical care and peri-
operative care environments.

A key technical problem relates to integrating data from
multiple bedside monitoring devices into a single computer
for time-locked archiving or real-time processing. Most mod-
ern stand-alone bedside monitoring devices do not provide
analog or digital output streaming of raw or processed
data. Rather, they might provide the option to save raw
or processed data to a local hard drive for later recovery
and analysis. Since manufacturers generally do not provide
an option for sending an external timing signal into these
monitoring devices, time-locked data streaming or time-
locked data archiving from all bedside monitoring devices
is therefore generally impossible at present.

Apart from this lack of interoperability, a further major
obstacle for research and implementation in advanced patient
monitoring is the proprietary format by which each vendor
stores its data. Vendors tend to be very reluctant to make their
data formats available to researchers. An inordinate amount
of time is therefore spent on decoding individual proprietary
data formats to get to the raw data that is being recorded by
the device.

Many bedside monitors were designed years ago, when
the bandwidth of the hospital information technology in-
frastructure and storage capacity were much more limited
than today. Consequently, compromises were made with
regards to the sampling frequency and amplitude resolution
of waveforms that were streamed or archived. Some hemody-
namic monitors, for example, stream data at comparatively
low sampling rates (∼ 100 Hz) and amplitude resolution
(≤ 10 bits), though the sampling frequency and amplitude
resolution internal to the monitor are generally much higher.
Such reduced data quality can be rather limiting even for
routine applications for neonates and premature neonates, in
whom heart rates commonly hover above 150 beats/minute.
Furthermore, algorithms that rely on analyzing fine intra-
cycle features of waveforms might encounter suboptimal per-
formance due to quantization errors or insufficient temporal
resolution of the streamed data.
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Fig. 1. Multiparameter recording from a patient in critical care (from
the MIMIC-II database, [1]). Significant artifacts exist in all recorded
waveforms. Top to bottom: three channels of ECG, arterial blood pressure,
pulmonary artery pressure, plethysmogram, respiration.

In the development phase of our model-based algorithms,
we have also encountered the more mundane problem of
clinical staff needing to be sensitized to steps that are critical
to making use of archived data, e.g. logging the medical
record number or name of the patient into the bedside
monitoring devices, and discharging the patient from the
monitors at the end of their hospital stay. This is needed
for matching of data from bedside monitors with other
clinical information from the hospital’s electronic medical
record systems, e.g., associating information on medication
or intervention with a particular record.

Finally, waveform data — especially the pressure and flow
waveforms — tend to be noisy and prone to artifacts, see
Figure 1. Automated signal-quality assessment is therefore
an important pre-processing step in developing model-based
patient monitoring algorithms [2]. Some very promising
work in the area of multi-signal processing has begun to
address the problem of automated signal processing and vali-
dation for the arterial blood pressure waveform [4], and some
extensions have been applied to the electrocardiogram [22].

VI. CONCLUSIONS

The abundance of physiological waveform data from a
patient’s bedside provides the opportunity to extend the
current monitoring framework (focused on single-channel
analysis) to one that interprets the available data in the
context of physiological models that encapsulate our current
understanding. We thereby harness functional physiological
relationships to estimate unmeasured but physiologically im-
portant variables, and thus augment the information available
to the care provider for improved rational clinical decision
making. A primary research challenge in the field of model-
based patient monitoring is the development of structured
model-reduction methodologies that preserve the clinical
interpretability of the variables and parameters in reduced
models. Such interpretability is imperative for model-based
methods to be adopted clinically. Technical impediments to
this program include: proprietary data formats; the lack of

interoperability of different bedside monitors; and the lack of
accurate time synchronization of different devices. Despite
these challenges, however, we are convinced that model-
based data integration and interpretation will improve the
way clinicians diagnose, track, and treat disease conditions
in data-rich clinical environments.
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