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Abstract. We define a class of Laplacians for multicommodity, undirected flow networks, and bound
their smallest nonzero eigenvalues with a generalization of the sparsest cut.
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1. Introduction. Spectral graph theory [6] offers powerful tools for analysis
and design of systems that are well modeled by graphs. However, many systems have
important features not captured by purely graphical descriptions. Flow networks [1, 22]
describe a wide variety of such systems, for example, electric power grids and commu-
nication networks, yet have a minimal level of detail additional to the underlying graph.
In this work, we apply spectral graph theory to flow networks. We formulate a class of
Laplacian matrix pencils for undirected, multicommodity flow networks and a Cheeger-
like parameter that generalizes the sparsest cut [25] and relate them with bounds similar
to the Cheeger inequality [5, 6, 8, 11]. When there are many commodities, finding the
correct eigenvalue entails solving a combinatorial optimization problem, for which we
formulate a semidefinite relaxation using the methodologies of [26] and [23].

2. Background.

2.1. The Laplacian of a graph and the Cheeger constant. We are given an
undirected, connected graph G with vertices V ðGÞ, edges EðGÞ, and corresponding ad-
jacency matrix A. The Laplacian of G is defined as L ¼ D − A, where D is a diagonal
matrix withDvv ¼ dv ¼

P
uAuv. The normalized Laplacian is L ¼ D−1∕ 2LD−1∕ 2, and its

eigenvalues can be written 0 ¼ λ0 < λ1 ≤ · · ·≤ λn−1 ≤ 2. The eigenvalues of L are
equivalent to those of the generalized eigensystem Lx− λDx ¼ 0, which is referred to
as the pencil ðL;DÞ; for convenience we use this notation [16].

Let f be a function assigning a complex value f ðvÞ to each vertex v, where the nota-
tion f denotes the vector of these values. The Rayleigh quotient of ðL;DÞ is

P
u∼vðf ðuÞ− f ðvÞÞ2P

v fðvÞ2dv
;

where the sum subscript u∼ v denotes summation over all pairs of vertices connected by
edges. The first nonzero eigenvalue, often called the algebraic connectivity [11], satisfies
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λ1 ¼ inf
f⊥D1

P
u∼vðfðuÞ− f ðvÞÞ2P

v f ðvÞ2dv
:

The Cheeger constant [5, 6, 8, 11], sometimes referred to as the conductance, is a
measure of the level of bottlenecking in a graph. It is defined as

h ¼ min
X

jCðX; X̄Þj
min ðvolðXÞ; volðX̄ÞÞ ;

where CðX; X̄Þ is the set of edges with only one vertex in X , jCðX; X̄Þj ¼ P
u∈X;v∈X̄Auv,

and volðXÞ ¼ P
v∈Xdv. h is related to the algebraic connectivity by what is known as the

Cheeger inequality

2h ≥ λ1 >
h2

2
:

2.2. Flow networks. A flow network is a weighted graph on which flows travel
between vertices by way of the edges [1, 22]. In this work we consider only undirected
flow networks. Suppose further that we have a multicommodity flow network with m
different types of flows or commodities [20] and that we are given a supply and demand
vector for each commodity i, pi, which satisfies

P
vp

i
v ¼ 0.

We denote the flow of commodity i from u to v by giðu; vÞ, and the weight of
the edge between u and v by cðu; vÞ, which we refer to as a capacity. In this work,
we equate capacities with edge weights such that the capacity of an edge, cðu; vÞ, is
identical to its weight in the graph adjacency matrix, Auv. We say that a flow network
is feasible if there exists a flow gi∶V ðGÞ× V ðGÞ → Rþ satisfying

P
m
i¼1 giðu; vÞ ≤

cðu; vÞ, and P
vgiðu; vÞ− giðv; uÞ ¼ piu.

For many purposes, a network with multiple sources and sinks can be reduced
to one with a single source and sink by introducing a supersource and supersink
[22], for example, maximizing the flow through a network. As will be seen in the next
section, this simplification is not compatible with our development, and so we allow as
many vertices as are in the network to be sources or sinks provided that the total flow is
conserved.

3. A flow-based Cheeger constant. We identify a quantity that measures bot-
tlenecking of flows rather than graphical structure and is, in fact, a generalization of the
sparsest cut [25]. We begin with the single commodity version. Define

q ¼ min
X

jCðX; X̄Þj
jPv∈Xpvj

:

The denominator is the flow that would be sent from X to X̄ in the absence of edge
capacities. By the max-flow min-cut theorem, the actual flow from X to X̄ can be
no greater than jCðX; X̄Þj [9, 21]. In fact, it is well known that q ≥ 1 is also a sufficient
condition for the existence of a feasible flow [13, 18]; an implication is that q is not NP-
hard when there is only one commodity.

Before discussing the multicommodity case, we give a brief example for which the
introduction of a supersource changes the value of q. Consider a three vertex line graph
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with p ¼ ½1;−2; 1�T and cð1; 2Þ ¼ 3 and cð2; 3Þ ¼ 2. Simple calculation gives q ¼ 2 and
CðX; X̄Þ ¼ cð2; 3Þ for this network. Now append a supersource with ps ¼ 2, connected
to vertices one and three by edges of unit capacity, and set p1 and p3 to zero. The optimal
q for the modified network is q ¼ 1, and furthermore the optimal cut has changed
so that vertices one and three are now on the same side. Hence the usual simplifi-
cation of multisource, multisink problems to single-source, single-sink problems is
not applicable here.

We now generalize q to multicommodity flow networks. Let κ ∈ f−1; 1gm and
pκv ¼

P
m
i¼1 κ

ipiv, where κi is element i of κ, and define

SðXÞ ¼ max
κ

X
v∈X

pκv:

Because the objective is linear in κ, it is equivalent to the continuous linear optimization
problem in which κ ∈ ½−1; 1�m. The purpose of the maximization is merely to ensure that
the net demand that would leave set X of each commodity has the same sign. We then
define the multicommodity version to be

q ¼ min
X

jCðX; X̄Þj
SðXÞ ;ð3:1Þ

which in matrix form is given by

q ¼ min
x∈f0;1gn;κ

xTLx

jxTPκxj
;ð3:2Þ

where Pκ is a matrix with pκ on the main diagonal and zeros elsewhere.
q also has the minimax network flow formulation

q ¼ min
κ

max
g;τ

τX
u∶u∼v

guv − gvu ¼ τpκv ∀ v

0 ≤ guv ≤ Auv ∀ u∼ v

− 1 ≤ κi ≤ 1 ∀ i.ð3:3Þ

Intuitively, we are optimally consolidating the supplies and demands into a single com-
modity, the maximum flow of which is equal to the minimum cut by the max-flow min-
cut theorem and the result of [13, 18].

4. Laplacians for flow networks. We now derive Cheeger-like inequalities for
eigenvalues of flow normalized Laplacians. Note that we have not assumed feasibility,
rather only that

P
vp

i
v ¼ 0 for each commodity i. The pencil ðL; PκÞ is a natural starting

point because its smallest magnitude eigenvalue is a continuous relaxation of q. How-
ever, it is defective, which is to say that an eigenfunction is missing. It has two zero
eigenvalues corresponding to the constant eigenfunction; in the simplest case of a
two vertex network, the eigenvalues provide no meaningful information.
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4.1. Variational formulation. We can see why ðL; PκÞ is defective by considering
the quotient

fTPκf

fTLf
:

It is undefined at f ¼ 1, but approaches infinity as f approaches 1 from any direction.
Now consider the perturbed pencil (Pκ, Lþ a11T ) for a > 0, the eigenvalues of which are
one over those of (Lþ a11T , Pκ): It is similar to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ a11T

p
Pκ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ a11T

p
, which can be

real symmetric because Lþ a11T is positive definite. By the Rayleigh–Ritz theorem [19],
the largest positive and negative eigenvalues satisfy

sup
f

fTPκf

fT ðLþ a11T Þf and inf
f

fTPκf

fT ðLþ a11T Þf :

As a approaches zero, the two eigenvalues will approach positive and negative infinity.
This is distinctly a consequence of 1 being in the null space of L and the fact that
1TPκ1 ¼ 0; were the latter not true, only one of the eigenvectors could converge to
1 and not cause the quotient to switch signs.

The zero eigenvalue of ðL;PÞ does have a generalized eigenfunction, as guaranteed
by the Jordan canonical form theorem [19]. Solving the equation ðL− 0PκÞx ¼ Pκ1
yields x ¼ L†pκ, where L† is the Moore–Penrose pseudoinverse of L.

We rectify ðL; PκÞ by adding an infinite rank-one perturbation. Consider either
of the pencils limb→∞ðLþ brrT ; PκÞ and limb→∞ðL; Pκ þ brrT Þ, where r ∈ Rn is not
orthogonal to 1. They will, respectively, have an infinite and a zero eigenvalue, both
corresponding to the eigenfunction r, and will share the remaining eigenvalues and
eigenfunctions.

Because both matrices of the pencil are real symmetric and the left matrix is posi-
tive definite, the eigenvalues and eigenfunctions are real and admit a variational char-
acterization. The magnitude of the smallest, which we denote μr

κ , has the variational
characterization

μr
κ ¼ limb→∞ inf

f

���� fT ðLþ brrT Þf
fTPκf

����
¼ inf

f⊥r

���� fTLffTPκf

����:ð4:1Þ

Define

μr ¼ min
κ

μr
κ :ð4:2Þ

Even for the simple case in which r is not a function of κ, a continuous relaxation
of (4.2) is not guaranteed to have a unique global minimum. This is evident from
the reciprocal

ðμrÞ−1 ¼ max
κ

sup
f⊥r

���� fTPκf

fTLf

����;
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which is the maximum of the pointwise supremum of a family of linear functions of κ,
and hence a convex maximization problem [4]. A consequence is that there is no easy
way of computing μr when there are many commodities; however, when the number
of commodities is small, it may be straightforward to guess the optimal κ, or simply
try all of the likely ones. Furthermore, convexity does guarantee that the optimal
κ is at a corner, and thus the continuous relaxation is equivalent to the binary
formulation.

4.2. Bounds on μr. We have the following Cheeger-like inequality.
THEOREM 4.1.

qjPvrvj
jPv∈X rv −

P
v∈X̄ rvj

≥ μr >
qhjPvrvj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

v dv
P

v jr2vj ∕ dv
p ;

where X is the vertex set associated with q and r ∈ Rn.
Proof. The structure of our proof for the most part follows that of the Cheeger in-

equality given in [6]. Although we assume unit capacities, the proof straightforwardly
extends to networks with nonnegative capacities by generalizing the definition of the
Laplacian to allow for weighted graphs.

We begin with the upper bound. Define the function

f ðvÞ ¼
8<
:

P
u∈X

ru if v ∈ X̄ ;

−
P
u∈X̄

ru if v ∈ X;

where X is the optimal vertex set associated with q. Let κ1 and κ2 be optimal for (3.1)
and (4.2), respectively. Substituting f into (4.1) gives

μr ≤ μr
κ1

≤
jCðX; X̄ÞjjðPv∈Xrv þ

P
v∈X̄ rvÞ2j

SðXÞjðPv∈XrvÞ2 − ðPv∈X̄ rvÞ2j

¼ qjPvrvj
jPv∈X rv −

P
v∈X̄ rvj

:

We now prove the lower bound. Let f be the eigenfunction of limb→∞ðLþ brrT ; Pκ2Þ
associated with μr

κ2 . Order the vertices in V ðGÞ so that jf ðviÞj ≤ jfðviþ1Þj for
i ¼ 1; : : : ; n− 1. For each i define the cut Di ¼ ffj; kg ∈ EðGÞ j1 ≤ j ≤ i < k ≤ ng,
and set

α ¼ min
1≤i<n

jDij
jPj≤i p

κ2
j j

:
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By definition, α ≥ q regardless of whether κ1 ¼ κ2. We have

μr ¼
����
P

u∼vðf ðvÞ− fðuÞÞ2 Pu∼v ðf ðvÞ þ fðuÞÞ2P
v f ðvÞ2pκ2v

P
u∼v ðf ðuÞ þ f ðvÞÞ2

����
≥

���� ðPu∼vjfðuÞ2 − f ðvÞ2jÞ2
2
P

v f ðvÞ2pκ2v
P

v f ðvÞ2dv

���� by Cauchy–Schwarz

¼
���� ð
P

ijf ðviÞ2 − f ðviþ1Þ2jjDijÞ2
2
P

v fðvÞ2pκ2v
P

v fðvÞ2dv

���� by counting

≥
���� ð
P

iðf ðviÞ2 − f ðviþ1Þ2Þαj
P

j≤i p
κ2
vj jÞ2

2
P

v f ðvÞ2pκ2v
P

v f ðvÞ2dv

���� by the definition of α

≥
����α2ðPiðfðviÞ2 − fðviþ1Þ2Þ

P
j≤i p

κ2
vjÞ2

2
P

v f ðvÞ2pκ2v
P
v
f ðvÞ2dv

���� by the triangle inequality

≥
���� q2ð

P
i f ðviÞ2ð

P
j≤i p

κ2
vj −

P
j≤i−1 p

κ2
vjÞÞ2

2
P

v f ðvÞ2pκ2v
P

v fðvÞ2dv

����
¼
���� q2ðPif ðviÞ2pκ2vi Þ2
2
P

v f ðvÞ2pκ2v
P

v f ðvÞ2dv

����
¼
���� q2

P
v fðvÞ2pκ2v

2
P

v fðvÞ2dv

����:
Switching to matrix notation and noting that μrfTPκ2f ¼ −fTLf , we simplify

further so that

μr ≥
q2fTLf

2μrfTDf
:

Multiplying through by μr and taking the positive square root, we have that

μr ≥ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTLf

2fTDf

s
≥ q

ffiffiffiffiffi
λr
2

r
;

where λr is the smallest eigenvalue of the pencil limb→∞ðLþ brrT ;DÞ.
λr may not be an intuitive quantity in some cases, so we also derive a slightly looser

but more revealing lower bound, which is a function of λ1 and thus h, by the Cheeger
inequality. Using similarity and the substitution l ¼ D1 ∕ 2f , we have

μr ≥ q

ffiffiffiffiffiffiffiffiffiffi
lTLl
2lT l

s
:

Because D1 ∕ 21 is in the null space of L, l in the numerator can be replaced with its
projection onto the orthogonal complement of D1 ∕ 21, which we denote projD1 ∕ 21⊥ðlÞ.
The minimum possible ratio of their lengths is given by

β ¼ min
c⊥D−1 ∕ 2r

kprojD1 ∕ 21⊥ðcÞk
kck ¼ min

c⊥D−1 ∕ 2r

kc− projD1 ∕ 21ðcÞk
kck :ð4:3Þ

The minimizing c is
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c̄ ¼ projD−1 ∕ 2r⊥ðD1∕ 21Þ ¼ D1∕ 21− projD−1 ∕ 2rðD1∕ 21Þ:

Substituting c̄ into (4.3), after some algebra, yields

β ¼ j1Trj
kD1∕ 21kkD−1 ∕ 2rk ¼ jPvrvjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

v dv
P

v r
2
v ∕ dv

p :

Let k be a vector the same length as l and parallel to projD1 ∕ 21⊥ðlÞ. We then have

μr ≥ qβ

ffiffiffiffiffiffiffiffiffiffiffiffi
kTLk
2lT l

s

≥ qβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1kkk2
2klk2

s

¼ qβ

ffiffiffiffiffi
λ1
2

r

>
qhβ

2
: ▯

4.3. Orthogonality constraints. It is important that the upper bound stays fi-
nite for all networks of interest; for some r, there are certain networks that will cause the
denominator to be zero, constituting an effective blind spot inμr. For analysis of a single
network, one might heuristically construct an r for which it is clear that this cannot
happen. Design and optimization, however, require that the upper bound remains finite
for all possible networks, or else an algorithm may simply seek out networks for which
the upper bound is infinite. We now examine several choices of r.

(i) The maximum possible lower bound is qh ∕ 2, which is attained by r ¼ D1.
Unfortunately, the upper bound then becomes

μD1 ≤
qvolðV ðGÞÞ

jvolðXÞ− volðX̄Þj ;

which is infinite if the sums of the degrees on either side of CðX; X̄Þ are equal.
This is reflected in μD1 as well: Consider a symmetric “dumbbell” network in
which two identical halves are connected by a single edge, and assume that all
vertices in one half are unit sources and in the other half unit sinks of a single
commodity. As the size of the halves is increased, it can be observed that μD1

grows despite q1 decreasing as one over the number of vertices.
(ii) q has a number of interpretations in which being larger is better, so we are

interested in choices for which it is the only nonconstant factor in the upper
bound. Let Y ⊆ X or Y ⊆ X̄ . If we choose r to be

δY
v ¼

�
dv if v ∈ Y;
0 if v ∈ Ȳ ;

the bound becomes
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q ≥ μδY >
qh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volðY Þ

volðV ðGÞÞ

s
:

This may be somewhat impractical for most choices of Y , particularly in con-
texts in which the edges and hence X can change. However, if Y is the sin-
gleton z, X need not be known, and volðY Þ is simply replaced by dz. The
formulation is simple in this case, but the dependence on the vertex z and
the potential 1 ∕

ffiffiffi
n

p
factor in the lower bound may be undesirable.

(iii) Rather than using a single orthogonality constraint, taking the minimum of
two eigenvalues can result in an upper bound that is always finite. For a ver-
tex set N , let Nþ (N−) denote the subset for which pκ1v > 0 (pκ1v < 0), v ∈ N ,
where κ1 is optimal for (3.1). Consider

sþv ¼
�
pκv v ∈ V ðGÞþ;
0 v ∈ V ðGÞ− and s−v ¼

�
pκv v ∈ V ðGÞ−;
0 v ∈ V ðGÞþ;

and set μs ¼ min fμsþ ;μs−g. The upper bound of the minimum of the two
resulting eigenvalues is

μs ≤ min

�
q
P

v∈V ðGÞþp
κ1
v

jPv∈Xþ pκ1v −
P

v∈X̄þ pκ1v j ;
−q

P
v∈V ðGÞ− p

κ1
v

jPv∈X− pκ1v −
P

v∈X̄− pκ1v j
�
:

Observe that

2SðXÞ ¼
����X
v∈X

pκ1v −
X
v∈X̄

pκ1v

����
≤

����X
v∈Xþ

pκ1v −
X
v∈X̄þ

pκ1v

����þ
����X
v∈X−

pκ1v −
X
v∈X̄−

pκ1v

����:

Because the numerators are equal, we have

μs ≤
q
P

vjpκ1v j
2SðXÞ ;

which is finite because SðXÞ is always greater than zero. Under certain con-
ditions, μs is bounded above by q, as shown in the computational example in
section 7.1 and by the following lemma.

LEMMA 4.2. Suppose V ðGÞþ ⊆ X or V ðGÞ− ⊆ X . Then μs ≤ q.
Proof. Let Pþ (P−) be a matrix with sþ (s−) on the main diagonal and zeros else-

where, and let x be the minimizer of (3.2). We have
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q ¼ xTLx

jxTPκ1xj

¼ xTLx

jxTPþxþ xTP−xj

≥ min

�
xTLx

xTPþx
;

xTLx

jxTP−xj
�

by the definiteness of Pþ andP−

≥ min

�
min

x∈f0;1g;x⊥s−

xTLx

xTPþx
; min
x∈f0;1g;x⊥sþ

xTLx

jxTP−xj
�

by the assumption

¼ min

�
min

x∈f0;1g;x⊥s−

xTLx

jxTPκ1xj
; min
x∈f0;1g;x⊥sþ

xTLx

jxTPκ1xj
�

≥ min

�
min
κ;x⊥s−

xTLx

jxTPκxj
; min
κ;x⊥sþ

xTLx

jxTPκxj
�

¼ min fμs− ;μsþg: ▯

(iv) Last we mention a complex orthogonality condition, for which the theory of
the preceding section does not hold. Define

tv ¼
�
pκv if pκv ≥ 0;
ipκv if pκv < 0:

Based on observation, we conjecture the following bound:

q
P

vjpκ1v j
2SðXÞ ≥ μt ≥ μs:

4.4. Calculation via orthogonal transformation. One method by which to nu-
merically compute μr using standard eigenvalue solvers is to approximate the limit of
the pencil with a large number in place of b. This can be unsatisfactory because if the
number is not large enough, the approximation is poor, while if it is too large numerical
inaccuracies may arise, particularly for large networks. An orthogonal transformation
can instead be used to obtain the exact answer.

Let R be an orthonormal matrix with first column equal to r ∕ krk. Because eigen-
values are invariant under orthogonal transformation, those of limc→∞ðRTLRþ
bRTrrTR;RTPκRÞ are identical to those of limc→∞ðLþ brrT ; PκÞ. Let L 0 and P  0 be
the respective bottom right n− 1 by n− 1 submatrices of RTLR and RTPκR. The ei-
genfunction with the infinite eigenvalue is the last column of RTLR, and hence the re-
maining eigenvalues (among which is μr) are given by the reduced pencil ðL 0; P  0Þ, which
can be solved by any generalized eigenvalue algorithm. We remark that when r ¼ δz,
this amounts to simply removing row and column z from L and Pκ.

5. An alternate relaxation of q. We now examine a slightly different formulation
of q and arrive at a quantity similar to μr

κ , but which scales as capacity over flow
squared. This has relevance in certain scenarios such as electrical current flow, which
is conserved in networks, yet is proportional to the square root of power.

Consider the minimization

min
x∈f0;1gn

xTLx

jxTpκj :
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If κ ¼ κ1, the minimum is q. Relaxing x to take on continuous values and introducing the
constraint jxTpκj ¼ 1 yields

γκ ¼ min
jxTpκ j¼1

xTLx

jxTpκjð5:1Þ

¼ 1

pκTL†pκ
:ð5:2Þ

We first make two observations: γκ is the sole finite eigenvalue of the pencil (L, pκpκT )
and the optimal x associated with γκ, L†pκ ∕ γκ, is proportional to the generalized eigen-
vector of the zero eigenvalue of ðL;PκÞ.

Let

γ ¼ min
κ

γκ;ð5:3Þ

and let κ3 be optimal. A continuous relaxation of κ is again of little value here: Because
L† is positive semidefinite, it becomes a concave minimization problem, for which there
will likely be multiple local minima.

We bound γ from above using q in the same fashion as μr.
LEMMA 5.1. Let X be the set that minimizes q. Then

γ ≤
q

SðXÞ :

Proof. Let

xðvÞ ¼
� 1

SðXÞ if v ∈ X;

0 if v ∈ X̄ :

Substituting x into (5.1), we have

γ ≤ γκ1

≤
jCðX; X̄Þj
SðXÞ2

¼ q

SðXÞ : ▯

We can draw further comparison with current flow by considering resistive power
loss in a direct current electrical network. Let p be the vector of currents entering and
exiting the network through the vertices. Define the admittance Laplacian LA to be
the Laplacian with admittance (one over resistance) edge weights. The total power
dissipated is

pTL†
Ap;

which is exactly 1 ∕ γ for the single commodity case.
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6. Semidefinite relaxations. When there are many commodities, the minimiza-
tions over κ in (4.2) and (5.3) can pose intractable combinatorial optimization problems.
Since its application to the max-cut problem [15], semidefinite programming [4, 29] has
seen wide usage in developing relaxations for NP-hard problems, the most pertinent
example here being the sparsest cut problem [2, 3, 14]. We apply the methodology
of [26] and [23] to (4.2) and (5.3) and obtain simple semidefinite relaxations of μr

and γ. As applied to the sparsest cut problem, these relaxations are less accurate than
those based on geometric formulations [2, 3], but constitute a new approach in approx-
imating the more general q.

6.1. μr. As shown in the previous sections, the orthogonality condition can be cho-
sen so that μr is a lower bound for q. We formulate a semidefinite programming relaxa-
tion of (4.2), which consequently is also a relaxation of q.

μr can be expressed in terms of semidefinite programming as the following minimax
problem:

min
κ

max
ξ

ξ

ξPκ ≼ limb→∞ Lþ brrT

− 1 ≤ κi ≤ 1 ∀ i.ð6:1Þ

As long as the graph is connected, h, q, and therefore μr are greater than zero, and
so (6.1) is strictly feasible. We can thus replace the inner maximization with its dual and
obtain the equivalent bilinear semidefinite program

min
κ;Z

TrLZ

Tr rrTZ ¼ 0

TrPκZ ¼ 1

0 ≼ Z

− 1 ≤ κi ≤ 1 ∀ i;ð6:2Þ

where Tr denotes the trace operator.
If the first constraint is dropped, we obtain the result of applying the original

max-cut relaxation of [14] to (3.2); this modification is, of course, always zero, as it cor-
responds to the defective pencil ðL; PκÞ. The first constraint makes the relaxation
nontrivial and can be designed according to section 4.

The second constraint of (6.2) is bilinear and hence nonconvex. We proceed to for-
mulate the simplest nontrivial relaxation within the framework of [23, 26]. Let Pi be a
diagonal matrix with pi, the vector of commodity i’s supplies and demands, on its main
diagonal. Note that Pκ ¼

P
m
i¼1 κ

iPi. Introduce a matrix Wi for each commodity i, and
substituteWi for each instance of the product κiZ . An additional constraint on eachWi

is constructed by taking the product of the last two constraints. The resulting semide-
finite relaxation is given by
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min
Z;Wi

TrLZ

Tr rrTZ ¼ 0

Tr rrTWi ¼ 0 ∀ i

Tr
Xm
i¼1

PiWi ¼ 1

0 ≼ Z

− Z ≼ Wi ≼ Z ∀ i.ð6:3Þ

As stated, (6.3) is an unwieldy relaxation due to the large number of new
variables introduced. When r is an indicator vector, we can reduce the size by recogniz-
ing that often most vertices are not sources or sinks of most commodities, for ex-
ample, in the sparsest cut problem, in which each commodity is attached to only two
vertices.

Let r ¼ δ1 (without loss of generality one can relabel the vertices so that any vertex,
e.g., that of maximum degree, is the first). DefineMi to be the set of vertices v for which
piv is nonzero. Let ZðMiÞ denote the jMij by jMij principal submatrix of Z induced by
the set Mi, and likewise let PiðMiÞ denote the corresponding jMij by jMij submatrix of
Pi. Note that the condition Z ≽ 0 implies that every principal submatrix of Z is positive
semidefinite. Again substituting a matrix Wi wherever κiZðMiÞ appears, we have the
equivalent semidefinite program

min
Z;Wi

TrLZ

Z11 ¼ 0

Wi
11 ¼ 0 ∀ i∶1 ∈ Mi

Tr
Xm
i¼1

PiðMiÞWi ¼ 1

0 ≼ Z

− ZðMiÞ ≼ Wi ≼ ZðMiÞ ∀ i.ð6:4Þ

If, given an optimal solution ~Z and ~Wi to (6.3) or (6.4), there exists ~κi ∈ ½−1; 1� such
that ~κi ~Z ¼ ~Wi (respectively, ~κi ~ZðMiÞ ¼ ~Wi) for each i, ~Z and ~κi are optimal for (6.2). In
general, however, the relaxation is not tight, so we suggest the following rounding heur-
istic: If Tr ~Wi > 0, set ~κi ¼ 1; otherwise set ~κi ¼ −1 for each i. Once ~κ is known, the
corresponding approximation to q is equal to the optimum of the linear program ob-
tained by removing the outer minimization of (3.3) and setting κ ¼ ~κ.

A natural question is whether linear relaxations can be directly formulated from
(3.3). Repeating the steps used to obtain (6.3) from (6.1), one can apply the relaxation
of [26] to the resulting bilinear program. We observed that a “second order” linear re-
laxation was uniformly zero; while higher order relaxations are possible, they are cum-
bersome in size, and furthermore it has been shown that the corresponding semidefinite
relaxations of [23] are more efficient and numerically superior [24].
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6.2. γ. The reciprocal of (5.3) can be written as

max
κ∈f−1;1gm

pκTL†pκ ¼ max
κ∈f−1;1gm

Xm
i¼1

Xm
j¼1

κiκjpiTL†pj:

A simple semidefinite relaxation in the fashion of [14] is

max
K

Xm
i¼1

Xm
j¼1

Kijp
iTL†pj

Kii ¼ 1 ∀ i

K ≽ 0.ð6:5Þ

7. Computational results.

7.1. One commodity. Although a substantial fraction of spectral graph theory
applications deal directly or indirectly with NP-hard combinatorial optimization pro-
blems, we first focus on the single commodity case, which for the most part falls within
the scope of linear programming and faster algorithms [1]. Our motivation comes from
the amenability of eigenvalues to certain techniques not shared by linear and semide-
finite programming, e.g., perturbation theory [27, 30].

We study the proximity of q to three variations ofμr from section 4.3 as functions of
size and edge density. The three eigenvalues considered are μs, μδz , and μδX , where z is
the vertex of largest degree and X is the minimizer of q. Relative error, defined
eðxÞ ¼ j1− x ∕ qj, is averaged over 1,000 randomly generated, 100-vertex flow networks
with unit capacities, which are generated as follows. An Erdös–Rényi random graph
with edge formation probability pER is sampled [10]; since pER directly determines
the expected number of edges, we use it as a parametrization of edge density. If the
graph is disconnected, a new one is drawn, since q and μr are trivially zero in this case.
For each graph, a random vector p of supplies and demands is drawn from the normal
distribution N ð0; I Þ, and then

P
vpv ∕ n is subtracted from each element so

that
P

vpv ¼ 0.
Tables 7.1 and 7.2 summarize the results. eðμδzÞ increases gradually, and eðμsÞ and

eðμδX Þ tend toward the same value, approximately approaching 0.12 from above and
below, respectively. As pER is increased, eðμδzÞ increases, but eðμsÞ and eðμδX Þ decrease.
We can see why this is so for eðμδX Þ by applying a basic result from spectral graph
theory. On a complete graph, λ1 ¼ n∕ ðn− 1Þ, and Theorem 4.1 reduces to
q ≥ μδX ≥ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volðXÞ ∕ 2ðn− 1Þ2

p
. It is common in this case for X to contain all but a

few vertices; when jX j ¼ n− 1, the lower bound is q ∕
ffiffiffi
2

p
. μs, which did not exceed

q in any trial, also exhibits error decreasing with pER.

7.2. Multiple commodities. We now examine the quality of the relaxation (6.4)
as a function of the number of commoditiesm and the number of vertices per commodity
nc. In each case, 100 30-vertex flow networks were randomly sampled as in the previous
example with pER ¼ 1 ∕ 2, and the mean relative error was computed for μδz , its semi-
definite relaxation, ~μδz , and the corresponding rounding approximation to q, ~q.
Semidefinite programs were solved using the convex optimization tool CVX [17] and
solver SeDuMi [28].
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Tables 7.3 and 7.4 show that as both m and nc are increased, the tightness of the
eigenvalue and semidefinite bounds do not change significantly, but the ultimate ap-
proximation error of ~q increases.

8. Conclusions and future work. We have defined a class of Laplacian matrix
pencils and a new cut parameter for undirected, multicommodity flow networks. The
parameter, which is a generalization of the sparsest cut, bounds the smallest magnitude
eigenvalue of each pencil via a Cheeger-like inequality. The eigenvalue is used to for-
mulate semidefinite relaxations, the quality of which is assessed in computational
examples.

There are a number of potential venues for further development. The most obvious
is the extension to directed flow networks; a Laplacian and a Cheeger inequality exists
for irreversible Markov chains [7, 12], but the formulation implicitly normalizes edge

TABLE 7.4
Mean relative errors on 10-commodity, 30-vertex networks as a function of nc.

nc 10 20 30

eð ~qÞ 0.066 0.12 0.19
eðμδz Þ 0.46 0.42 0.39
eð ~μδz Þ 0.47 0.43 0.40

TABLE 7.3
Mean relative errors on five-commodity per node, 30-vertex networks as a function of m.

m 4 8 12

eð ~qÞ 0.023 0.045 0.089

eð ~μδz Þ 0.46 0.47 0.46

eðμδz Þ 0.46 0.47 0.45

TABLE 7.1
Mean relative errors of each eigenvalue on single-commodity networks with pER ¼ 10∕ n as a function of

n.

n 100 200 300

eðμsÞ 0.14 0.13 0.12

eðμδz Þ 0.54 0.58 0.60

eðμδX Þ 0.11 0.12 0.12

TABLE 7.2
Mean relative errors of each eigenvalue on single-commodity, 100-vertex networks as a function of pER.

pER 1∕ 10 1∕ 2 9 ∕ 10

eðμsÞ 0.14 0.085 0.084

eðμδz Þ 0.54 0.70 0.73

eðμδX Þ 0.11 0.013 0.0016
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weights, precluding an edge capacity interpretation. Better relaxation constraints,
which do not necessarily correspond to eigenvector orthogonality conditions, are likely
to exist. To this end, flow network versions of other spectral graph theory results,
e.g., Poincaré and Sobolev inequalities [6, 8], may be useful in devising and perhaps
bounding them. The distributions of μr and γ under random sources and sinks have
many applications, for example, an electric power grid with intermittent wind or solar
generation [31].
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