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Abstract

Diabatic states have a long history in chemistry, beginning with early valence bond pictures

of molecular bonding and stretching through the construction of model potential energy surfaces

to the modern proliferation of methods for computing these elusive states. In this review we

summarize the basic principles that define the diabatic basis and demonstrate how they can be

applied in the specific context of constrained density functional theory. Using illustrative examples

from electron transfer and chemical reactions, we show how the diabatic picture can be used to

extract qualitative insight and quantitative predictions about energy landscapes. The review closes

with a brief resumé of the challenges and prospects for the further application of diabatic states in

chemistry.
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Key Terms

• Adiabatic State An eigenstate of the Born-Oppenheimer electronic Hamiltonian.

• Diabatic State An electronic state that does not change character as a function of molec-

ular geometry.

• Diabatic Coupling The matrix element of the electronic Hamiltonian between two dif-

ferent diabats: Vij = 〈Ψi|Ĥel|Ψj〉.

• Density Functional Theory A means of determining the ground state properties as a

functional of the electron density.

• On-the-Fly Any technique wherein molecular energies and forces are calculated as

needed rather than being inferred from precomputed values.

Important Acronyms

• CDFT Constrained Density Functional Theory

• CDFT-CI Constrained Density Functional Theory- Configuration Interaction

• CT Charge Transfer

• DCT Dielectric Continuum Theory

• DFT Density Functional Theory

• ET Electron Transfer

• FAAQ Formanilide-Anthraquinone

• MD Molecular Dynamics

• QM/MM Quantum Mechanics/Molecular Mechanics

• VB Valence Bond
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Summary Points

• Diabatic states provide an intuitive means of describing bonding by, for example, decom-

posing the wavefunction into ionic and covalent contributions.

• Diabats provide smooth potential energy surfaces that correspond to well-defined “prod-

uct” and “reactant” channels.

• Mathematically, one cannot construct a set of strictly diabatic states out of a set of

adiabats. As a result, there are many approximate prescriptions for diabats available

to chemists.

• Constructive approaches facilitate the application of diabatic states in on-the-fly dynam-

ics.

• CDFT provides a practical constructive route for obtaining approximate diabats in large

molecular systems.

• Diabatic states provide a framework for obtaining quantitative predictions about ET

dynamics and chemical reaction rates.
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I. INTRODUCTION

Qualitatively, a diabatic electronic state is one that does not change its physical character

as one moves along a reaction coordinate. This is in contrast to the adiabatic, or Born-

Oppenhimer, electronic states which change constantly so as to remain eigenstates of the

electronic Hamiltonian. A classic example of the interplay between diabatic and adiabatic

pictures is given by sodium chloride dissociation (Figure 1). Here, the ground adiabatic

state is thought of as arising from the avoided crossing between an ionic and a covalent

state. The adiabatic state thus changes character - transforming from Na-Cl to Na+-Cl− as

the bond gets shorter - while the ionic and covalent configurations play the role of diabatic

states.
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FIG. 1: NaCl dissociation in the diabatic and adiabatic representations. The ionic (green) and

covalent (blue) diabatic states maintain the same character across the potential energy surface,

while the adiabatic states (black) change.

Diabatic electronic states play a role in a variety of chemical phenomena but are, at the

same time, under-appreciated by many chemists. For example, diabats are often used in the
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construction of potential energy surfaces because they are smooth functions of the nuclear

coordinates [1–3]. In spectroscopy, diabatic states are invoked to assign vibronic transitions

and rationalize the rates of interstate transitions [4–6]. When describing electronically ex-

cited dynamics more generally, diabatic states are advantageous because they typically have

a small derivative coupling, simplifying the the description of electronic transitions [7–11].

In scattering theory, diabatic states connect to clearly-defined product channels [12–14].

Finally, diabatic states play a qualitative role in our understanding of molecular bonding

[15–17] (as illustrated by the NaCl example above), electron transfer [18, 19] and proton

tunnelling [20–22]

This review article is intended as an introduction the basic concepts about how diabatic

states are constructed and how they are used to describe chemical phenomena. After a

summary of different definitions of diabatic states - and in particular why so many competing

definitions exist - we focus on a particular definition based on constrained density functional

theory (CDFT). We show how CDFT-derived diabatic states are computed in practice and

discuss several illustrative chemical applications.

II. STRICT DIABATS CANNOT BE OBTAINED FROM ADIABATS

Of central importance to the study of diabatic electronic states is the idea of a strictly

diabatic basis (SDB)[23]. By definition, for a set of strict diabats, |Φi〉, the derivative

coupling between any two states vanishes at every possible nuclear configuration, R:

dij(R) ≡ 〈Φi|
∂

∂R
Φj〉 = 0 ∀ i, j,R (1)

This definition is in line with our qualitative idea that diabatic states do not change when

the nuclei move (e.g. the derivative is zero). Given an arbitrary set of M adiabatic states,

|Ψi〉 - say, a few important electronic states involved in a photochemical reaction - it would

clearly be desirable to develop a formula for a set of M strictly diabatic states that span

the same Hilbert space as the given adiabats. That is to say, one would like to have a set of

orthonormal states that satisfy Eq. 1 and for which

|Φi(R)〉 =
∑
j

Aij(R)|Ψj(R)〉 (2)

for some matrix A. The matrix A is called the adiabatic-to-diabatic transformation matrix,

for obvious reasons[24, 25].
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If states of this form could be obtained, they would clearly provide the most rigorous

definition of diabatic states; one would simply need to specify the set of “interesting” adia-

batic states, and then the corresponding diabatic states could be automatically determined.

Unfortunately it is not generally possible to create an SDB from a given adiabatic basis[23]

(See Sidebar).

Sidebar:Proof that one cannot create an SDB from a given adiabatic basis.

First write down the non-adiabatic coupling between the adiabatic states

τij(R) ≡ 〈Ψi(R)| ∂
∂R

Ψj〉. (3)

It is important to note that once the adiabatic states have been chosen, τ is fixed and cannot be

changed. Now, write Eq. 1 in terms of τ and A:

〈Φi|
∂

∂R
Φj〉 = A†τA + A†∇A = 0

→ τA +∇A = 0 (4)

Which can be considered the condition that determines the correct A once the couplings are

known[24, 25]. We now take the derivatives of Eq. 4 with respect to R. After some manipulation,

and exploiting the fact that mixed partial derivatives must be the same independent of the order

in which they are taken, we obtain

∇× τ = τ × τ. (5)

This relationship is called the “curl condition” and it specifies a restriction that must be satisfied

by τ if one hopes to construct an SDB out of the given set of adiabatic states. Unfortunately, this

condition is not satisfied for the Born-Oppenheimer eigenstates of real molecules, except under

rare circumstances[23, 26].

This result has a significant impact on how we approach diabatic states. One has the

common situation where there is an ideal mathematical construction for diabatic states

(SDBs) but no way of realizing this ideal in practice. Thus, if one wants diabatic states

for a particular application, one must weaken the search criteria in one of two ways. One

either looks for weakly diabatic states (i.e. ones that almost satisfy Eq. 5) that span a

given adiabatic space, or one looks for strictly diabatic states that almost span the desired

space. One expects that approximate diabats will be good descriptors of chemistry insofar
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as they faithfully reproduce the strict diabats, and the approximations can be made better

and better if one allows more and more states.

III. STRATEGIES FOR OBTAINING DIABATIC STATES

Given the results of the previous section, it is clear that we will need to make approx-

imations to obtain practical diabatic states. As a rule, theoretical chemists enjoy making

approximations, and thus it comes as no surprise that we have many, many subtly different

ways of obtaining diabatic states for real systems. Broadly, these approaches can be broken

down into two categories: techniques that try to deduce the best set of diabatic states from

a given set of adiabats and those that attempt to construct diabatic states directly. The

emphasis of this review is constructive methods, but in order to understand these techniques

in context, we briefly summarize the most popular alternatives.

A. Deductive Strategies

• Minimize the Coupling If one cannot entirely remove the derivative couplings between

diabatic states (Eq. 1) then one obvious strategy is to try to make the couplings as

small as possible - typically in a local sense. The original proposal along these lines

is due to Baer [24, 25] who proposed picking an arbitrary set of diabatic states at a

reference point, R0 and then integrating Eq. 4 along a path (say, a reaction path)

to obtain states that locally are strict diabats. This procedure turns out to be very

computationally demanding, in part because it requires the derivative couplings at

every point.

• Slowly Varying States Often one is looking for diabatic states that simply “do not

change very much” from one point to another. The best established method in this

family is the block diagonalization (BD) approach [27]. Here, one performs a unitary

rotation in configuration space that block diagonalizes the electronic Hamiltonian,

while leaving a target set of diabatic states as similar as possible to a reference set

of states[28, 29]. It can be shown that this procedure minimizes the `2 norm of the

derivative coupling (|d|2 = min) in the vicinity of the reference point[30]. Other

techniques in the same spirit include: enforcing configurational uniformity, so that
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each diabatic wavefunction is predominantly constructed from a fixed set of electronic

configurations [31, 32]; regularizing adiabatic states to remove the divergent portion

of the coupling [33, 34]; and the fourfold way, which combines many of the positive

features of the above methods [35, 36]. As a starting point, these techniques require a

very accurate description adiabatic states and are thus typically used in conjunction

with high-level CI calculations.

• Eigenstates of a Physical Observable By far the oldest form of diabatization is the

Mulliken-Hush (MH) approach [37, 38] to electron transfer. Here, the approximate di-

abatic states are defined using purely spectroscopically observable information (tran-

sition energy, transition dipole µ12 and change in dipole ∆µ). This approach can be

generalized to deal with multiple states in a way that only involves adiabatic quanti-

ties [39, 40] if one defines the diabatic states as the eigenstates of the dipole moment

operator [39, 41]. Similarly, one can deal with multiple charge centers and/or exci-

tation energy transfer by defining the diabatic states to be the maximally localized

wavefunctions in real space [42, 43]. In each case, one realizes that the eigenstates of

any fixed physical observable (such as the dipole or localization) will not change much

as molecules rearrange, and thus form a transferable set of diabatic states. While

computationally convenient, these techniques are typically only applied to electron-

and energy-transfer problems.

B. Constructive Strategies

• Valence Bond Theory Although not widely publicized, Pauling’s idea of resonance

structures within valence bond (VB) theory[44] provides a natural definition of di-

abatic states[45, 46]. For example, bonding in NaCl involves two resonance struc-

tures - |Na+ Cl−〉 and |Na : Cl〉 - which clearly have diabatic character from an elec-

tron transfer perspective. Allyl Radical has two structures - |CH2 = CH− ĊH2〉 and

|ĊH2 − CH = CH2〉 - that place the double bond in a fixed location irrespective of

which C-C bond is actually shorter. The VB-diabatic connection has been used to

describe SN1 reactions [47], proton-coupled electron transfer [48], and is the basis for

the molecular orbital VB [49] and empirical VB [16, 17] methods. It is important

to realize that, in order to get accurate diabatic states (i.e. in order to get diabatic
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states that can faithfully reproduce the lowest several adiabats) it is often desirable

to include more than the minimal number of diabatic states suggested by chemical

intuition [50].

• Density Constraints In many cases, diabatic states can be clearly identified based on

their density - ionic states like |D+ A−〉 will have excess electron density on one side of

the molecule, while a covalent state like |D↑ A↓〉 will have excess spin density on one

side. Thus, suitable diabatic states can be obtained by optimizing the wavefunction

subject to a constraint on the density. This concept is the basis of the frozen density

functional method [51, 52] as well as the constrained DFT approach [53] detailed in

the following section. Applying constraints is conceptually simpler than decomposing

the wavefunction in terms of VB states, but can be computationally more challenging

since it requires separate self-consistent calculations for each diabatic state.

IV. CONSTRAINED DENSITY FUNCTIONAL THEORY OF DIABATIC

STATES

As a concrete example, we now focus on the specific choice of using density constraints

to define diabatic states and outline the steps that must be taken to represent the electronic

Hamiltonian, Hel, in the constrained diabatic basis.

A. Obtaining diabatic states

By definition, we choose each diabatic state to be the lowest energy state of the system

subject to a constraint on the density. For concreteness, it is good to have an example in

mind, and we will use the |D+ A−〉 state of the formanilide-anthraquinone (FAAQ) molecule

(Figure 2) as an illustration. This particular charge transfer excited state has been identified

spectroscopically as having a very long lifetime (>900 µs) in DMSO solution. [54].

Step 1: Fragment Selection One must define a group of atoms whose

charge/spin/electronic state one wants to constrain. Typically, this is done by

chemical intuition, so that in the case of FAAQ, aniline (C6H6NH) is identified as the

donor while anthraquinone (COC14H7O2) is the acceptor.
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FIG. 2: Obtaining the D+A− state of FAAQ. a) One chooses which atoms belong to the acceptor.

The atomic partition operator then divides space between the fragments, as illustrated by the

dividing surface. b) Apply a constraint potential. Changing the Lagrange multiplier changes the

depth of the potential and controls the number of charges on the acceptor. c) A ground state

calculation in the presence of the optimal potential results in exactly one excess electron (red) on

the acceptor and one excess hole (blue) on the donor.

Step 2: Defining the Constrained Observable In practice, there are any number of

physical observables that one might constrain to create diabatic states: the dipole

moment, the magnetic moment, the local spin state .... In the case of a charge transfer

state, the obvious thing to constrain is the fragment charge [55]. But how do we define

the fragment charge? Mulliken [56], Löwdin [57], Bader [58], Becke [59] and Hirshfeld

[60] populations all provide useful but non-unique prescriptions for partitioning charge

amongst different atoms within a molecule. For practical purposes, one must make

an arbitrary choice at this stage and verify later that this choice does not materially

affect the predictions. To this end, we might choose Becke’s partitioning wherein the

charge on the acceptor is given by

NA =

∫
wA(r)(ρα(r) + ρβ(r))dr ≡

∫
wA(r)ρ(r)dr (6)

where ρ is the electron density and wA is the Becke weight operator that determines

the charge on the acceptor. By design, wA(r) is nearly unity in regions of space near

the acceptor, and nearly zero in regions of space near the donor[59] (See Figure 2). For

the case of FAAQ, one clearly wants NA = −1.0 so that the net charge on the acceptor
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is -1. At the end of the calculations of Step 3 this choice will lead to the lowest energy

state such that the the Becke partial charges of all the atoms in the acceptor sum to

precisely -1.0.

Step 3 Constrained Minimization In order to obtain the lowest energy state subject to

the constraint in Eq. 6, one introduces a Lagrange multiplier, VA, and looks for the

stationary point of

W [ρ, VA] = E[ρ] + VA

(∫
wA(r)ρ(r)dr−NA

)
(7)

where E[ρ] is the electronic energy one is trying to minimize. One could apply this

formalism to coupled cluster, reduced density matrix, or many body perturbation

theory energy functions[61]. However, in Eq. 7 we specialize to the case of density

functional theory both because it is relatively fast, and also because in principle it can

give the exact energy of the system under any density constraint [53]. The stationary

condition for VA ( ∂W
∂VA

= 0) just enforces the constraint (Eq. 6). Meanwhile, in a Kohn-

Sham (KS) framework, the stationary condition with respect to the density gives a

Schrödinger equation for the KS orbitals:(
−1

2
∇2 +

∫
ρ(r′)

|r− r′|
dr′ + vxc(r) + VAwA(r)

)
ψi(r) = εiψi(r) (8)

where vxc is the exchange-correlation potential and ψi are the KS orbitals. Thus

we see that the Lagrangian introduces an additional constraint potential, VAwA(r),

that controls the charge on the acceptor (see Figure 2). The optimal value of VA is

determined implicitly: the correct value of VA modifies the KS equations in such a way

that the resulting density (ρ(r) ≡
∑

i |ψi(r)|2) satisfies Eq. 6. Because the implicit

optimization is strictly a maximization, the simultaneous optimization of ρ and VA

can be accomplished in a similar amount of time to a standard ground state DFT

calculation [61, 62]. Thus, in this constrained scheme, the diabatic states are obtained

as adiabatic ground states of the system under an alternative potential.

This prescription can be simply generalized to deal with charge[55, 61, 62] and/or spin[63–

66] constraints on an arbitrary number of fragments. We have implemented the above three

step procedure into the NWChem[67] and Q-Chem[68] program packages. The result is that

the user can specify not only the positions of the atoms, but also the the charge and spin on
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any selected groups of atoms within the molecule. The fact that these are modified ground

state calculations facilitates analytic force evaluation [55] as well as seamless integration into

QM/MM and continuum electrostatic models of solvation.

Applying these steps to obtain both neutral (|D A〉) and charge transfer (|D+ A−〉) con-

figurations for FAAQ using B3LYP[69] in the 6-31G* basis and COSMO[70] to describe

solvation in DMSO, we find a relaxed charge transfer energy ∆G=2.31 eV, which is in ex-

cellent agreement with the experimental measurement of 2.24 eV [54, 55]. Thus, constraints

can be a quantitative tool for obtaining diabatic states in realistic molecules.

B. Computing the diabatic coupling

In the diabatic basis, the couplings, Vij = 〈Ψi|Ĥ|Ψj〉, play an analogous role to the

derivative couplings in the adiabatic basis - both terms determine the rate of transitions

between electronic states - but the diabatic couplings have the advantage of not requiring

wavefunction derivatives. An accurate, simple expression for the diabatic coupling is par-

ticularly important because there are no quasi-classical formulae for Vij. For example, the

diabatic energies can quite often be estimated using classical expressions like the Rehm-

Weller equation[71]. At the same level of theory, Vij arises purely from quantum tunneling

- the exponential tail of the donor wavefunction overlaps with the acceptor and vice versa -

which has no classical counterpart. Thus, the diabatic coupling depends sensitively on the

distance between the interacting fragments and their relative orientations, and a complete

picture depends crucially on estimating it[72, 73].

Vij also allows us to completely specify Hel in the diabatic basis. For example, for two

diabatic states

Hel ≡

 E1 V12

V12 E2

 . (9)

The energies, Ei are can be obtained directly from CDFT and only V12 is unknown. Note

that, because they are eigenstates of different Hamiltonians, the pure constrained states

are not orthogonal (〈Ψ1|Ψ2〉 ≡ S 6= 0). If one is interested in the diabatic coupling itself,

physically one requires some orthogonal set of diabatic states - otherwise the overlap between

the wavefunctions will be interpreted as a spurious coupling. A unique orthogonalization

arises if all the diabatic states are specified by different averages of the same partition
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operator, ŵ (e.g. if all the diabats have distinct charge/spin states for a single fragment

within the molecule). In this case, one can look for the generalized eigenvectors, d, of

Wd = nSd and then H→ d†Hd. These states are orthogonal and can be used to compute

the coupling. To be clear, we will refer to the coupling in the non-orthogonal basis as Vij

while for the orthogonal coupling, we will use Hij. In either case, the adiabatic states are

defined by the generalized eigenequation

Hc =

 E1 V12

V12 E2

 c1

c2

 = ε

 1 S

S 1

 c1

c2

 ≡ εSc. (10)

In the present context, the challenge in computing 〈Ψi|Ĥ|Ψj〉 using constrained DFT

is that DFT only gives us access to the energy and density of each diabatic state - the

wavefunction is never constructed [74]. Hence, we will need to make an approximation to

evaluate Vij. Toward this end, we note that for constrained diabatic states, each diabat (i)

is an eigenstate of the Hamiltonian in its own alternative potential (Viŵi)

Ĥ + Viŵi|Ψi〉 ≡ Ĥi|Ψi〉 = Fi|Ψi〉 ≡ (Ei + ViNi)|Ψi〉 ∀i (11)

where Ei, Vi and Ni are the diabatic energy, associated Lagrange multiplier and specified

constraint value, respectively, for the ith diabat - all of which are provided directly by

constrained DFT. This allows us to re-write the diabatic coupling in the suggestive form

[75]

〈Ψi|Ĥ|Ψj〉 =
1

2
〈Ψi|Ĥi−Viŵi+Ĥj−Vjŵj|Ψj〉 =

Fi + Fj
2
〈Ψi|Ψj〉−

1

2
〈Ψi|Viŵi+Vjŵj|Ψj〉 (12)

Thus, the many-body matrix elements of Ĥ in the diabatic basis can be reduced to a

combination of zero-body (i.e. wavefunction overlap) and one-body (constraint potential)

matrix elements. Eq. 12 contains the physical insight that the coupling between diabats

only depends on the overlap between them (first term) and the potential required to create

them (second term).

At this stage, we make an approximation and use the KS determinants |Φi〉 in place of

the exact diabatic states |Ψi〉 in Eq. 12. This is certainly an approximation, but it is one

that works surprisingly well in practice[75]. For example, if we examine hole transfer in the

mixed valence system Zn+
2 as a function of the Zn-Zn distance, we expect that the tunneling

matrix element will decay exponentially[40]. Using B3LYP and a large basis [40, 76] one
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finds values for Hij that differ by <150 cm−1 from the corresponding BD predictions for

5Å < R < 9Å [40]. The differences can largely be attributed to the underlying electronic

structure - the BD used CASSCF, whereas the CDFT results use B3LYP. Thus the present

prescription for Hij appears to be adequate for the coupling of well-separated fragments.

V. APPLICATIONS

A. Electron Transfer
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FIG. 3: A) In solution, the electron transfer reaction coordinate is dominated by solvent reorgani-

zation. The free energy landscape can be characterized by the driving force (∆G), measuring the

energy released, and reorganization energy (λ), measuring the structural relaxation energy. B) If

∆G < λ the reaction is in the normal regime and the rate increases with ∆G, but C) if ∆G > λ

the reaction is inverted and the rate decreases with increasing ∆G

Diabatic states play a critical role in the theory of electron transfer (ET) (See Figure 3)

[19, 77]. One first posits the existence of reactant and product diabatic states where the

electron is localized on the donor and acceptor, respectively. Reactions are then typically

characterized by the thermodynamic driving force, ∆G, and the reorganization energy, λ,

of the diabatic free energy surfaces. The latter quantity measures the “stiffness” of the

molecular framework - which can often be inferred from the Stokes shift of the charge

transfer absorption/emission bands [78]. If we assume that the free energy surfaces are

perfect parabolas with the same curvature (equivalent to assuming the system responds
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linearly), it is easy to work out that the activation energy for ET is ∆G‡ = (∆G + λ)2/4λ

leading to a rate[79, 80]:

kET ∝ |HDA|2
1√

4πλkT
e−∆G‡/kT = |HDA|2

1√
4πλkT

e
−(∆G+λ)2

4λkT . (13)

There are many generalizations of this simple formula that account for anharmonic free

energy surfaces [81], adiabatic electron transfer [82] and quantum nuclear effects [83]. In the

present article, we will be interested in a more basic question: given that Eq. 13 or one of its

generalizations is appropriate for a given problem, how can one compute accurate diabatic

ET states and extract from those states parameters like ∆G and λ? That is to say, how do

we translate the cartoon (Figure 3) into a calculation?

The use of constrained DFT to answer this question traces its roots back to Wesolowski

and Warshel’s [51, 52] idea of using a frozen density to describe the charge distribution of

each diabatic state. More recent work has used constrained DFT (or the related concept of

penalty function DFT) to define the diabatic potential surface, which can then be explored to

estimate ∆G and λ [55, 84]. To do this, we need to define the reaction coordinate. Figure 3A)

illustrates the physical picture[85]: when the electron is on the donor(acceptor), the solvent

orients to stabilize the electron on the donor (acceptor). The transition state involves a

fluctuation of the solvent that untraps the electron and initiates transfer. This picture leads

to several reasonable choices for the reaction coordinate: one can choose the equilibrium

solvent polarization [85], the fractional degree of electron transfer (D−1+q A−q) [86], or the

energy gap (∆E = ED −EA) [87] between reactants and products. In what follows, we will

show preference toward the last definition, which has certain formal advantages [88].

Once the diabatic states have been defined, the key remaining decision for condensed

phase ET is how one treats the solvent. In some sense, the presence of solvent actually

validates the use of diabatic states, so some care needs to be taken here [89]. Broadly

speaking, there are two paths to choose from: implicit models - where the solvent is replaced

by a fictitious continuous medium - and explicit models - where many discrete solvent

molecules are included in the simulation. In order to compute ∆G ≡ Geq
D − G

eq
A and λ ≡

Gneq
A − Geq

A . one requires three free energies: 1) Geq
D - the equilibrium free energy of the

donor state 2) Geq
A - the equilibrium free energy of the acceptor state 3) Gneq

A - the free

energy of the acceptor state in the ensemble of nuclear configurations (qD) most favorable

for the donor. The first two are obviously equilibrium properties, while Gneq
A requires a non-
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equilibrium Frank-Condon approximation, wherein the nuclear positions are all fixed by the

donor ensemble but the solute and solvent electrons are relaxed in the acceptor electronic

state. We now briefly review how these free energies are computed in the presence of solvent.

1. Implicit Solvent

At a basic level, an implicit solvent model has two steps. First, one carves out a spa-

tial cavity around the solute molecule(s). Second, one fills the space outside the cavity

with a dielectric medium, which represents the solvent. Because a dielectric can respond

to the molecular charge distribution inside the cavity, this prescription provides a crude

approximation to the electrostatic interaction between solvent and solute. This dielectric

continuum theory (DCT) has a long history within chemistry. In the days before computers,

these models were popular primarily because they can provide simple, analytic formulae for

the solvation energy of a molecule [82, 85, 90, 91]. As time has progressed, these models

have become more and more sophisticated [92–95] so that modern DCT is considered a

computational and essentially predictive model of both chemical and biological phenomena.

The advantage of using DCT in describing electron transfer is that it vastly reduces

the number of degrees of freedom one must explore because the solvent molecules have been

“integrated out”. Thus, one can compute equilibrium free energies like Geq
D or Geq

A directly by

optimizing the the geometry of FAAQ with the electron constrained to be on the donor (D A)

or acceptor (D+ A−) in the presence of the solvent dielectric. Since analytic gradients of the

energy are readily calculated in constrained DFT, geometry optimizations of this type are

straightforward and the positions of individual solvent molecules need never be considered

[55]. Applying this prescription to FAAQ using B3LYP/6-31G*/COSMO calculations, we

obtain ∆G = 2.31 eV which, as noted above, is in excellent agreement with experiment

(∆G = 2.24 eV). Similarly, for a ferrocene adduct of FAAQ (Fc-FAAQ) the computed ∆G

goes down to 1.02 eV, still in excellent agreement with the experiment at 1.16 eV[54, 55].

In order to compute λ one requires Gneq
A , which is somewhat tricky to obtain in a

continuum model. The difficulty is that, because we have integrated out all the solvent

degrees of freedom, it is challenging to freeze the solvent nuclei while allowing the sol-

vent electrons to relax. To overcome this, one assumes the solvent dielectric has a “fast”

component(ε∞ ≈ n2
opt) arising from electronic polarization, and a total dielectric (ε0) which

16



captures electronic+nuclear response. Each dielectric, ε = ε∞, ε0, interacts with the solute

through a reaction field V0 [92]

V0 = −g(ε0)Vsolute ≡ −
ε0 − 1

ε0
Vsolute (14)

where Vsolute is the potential of the solute on the boundary (B) of the cavity[96]. From

Eq. 14, we identify the “slow” field as

Vslow = (g(ε0)− g(ε∞))Vsolute (15)

which simply interprets the slow part as the difference between the total and fast compo-

nents. In order to compute Gneq
A , then, one first performs a calculation with the electron on

the donor and obtains Vslow. One then performs a calculation at the same geometry with

the electron on the acceptor and two fields: 1) A static field of Vslow and 2) A polarizable

continuum with dielectric ε∞. These two fields reflect, respectively, the nuclear part of the

solvent (which is frozen) and the electronic part (which responds). Finally, denoting the

acceptor electron density and potential by ρA, V A and similarly for the donor [97]

Gneq
A ≡ E[ρA]− 1

2
g(ε∞)

∫
B

V A(r)ρA(r)dr−
∫
B

Vslow(r)ρA(r)dr +
1

2

∫
B

Vslow(r)ρD(r)dr. (16)

If we apply this prescription to FAAQ and Fc-FAAQ using B3LYP/6-31G*/COSMO

calculations, we obtain λD = λA =.6 eV for FAAQ and λD = λA =.8 eV for Fc-FAAQ. These

results are qualitatively consistent with the experimental observation that FAAQ is in the

inverted regime, so that λ � ∆G, while Fc-FAAQ undergoes rapid charge recombination,

which implies ∆G ≈ λ [54]. However, the results are quantitatively incorrect: one infers a

value of λ ≈ 1.45eV from the experimental kinetics, which is much higher than either DCT

prediction. The disagreement likely has to do with the fact that modern DCT is heavily

parametrized toward equilibrium properties, with relatively less attention paid to the type

of non-equilibrium solvation involved here. To obtain a more consistent results away from

equilibrium, one turns to explicit models.

2. Explicit Solvent

Explicit solvent models offer manifold advantages over implicit models: one can directly

probe reaction dynamics; one obtains information about the entire free energy surface; and
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one can obtain parameter free ab initio predictions of free energies. The downside is that

explicit solvent calculations are 1,000 to 1,000,000 times as expensive as their implicit coun-

terparts and the rapidity with which results can be obtained is thus somewhat hindered.

The seminal papers in the field use classical force fields to describe the diabatic potential

energy surfaces, in which case the calculations are much faster. These investigations estab-

lished rate expressions [98–100], mapped out the free energy surfaces [87, 101], validated the

reaction coordinate [102, 103] and predicted qualitative reaction dynamics [86, 104].

More recently, advances in computer speed have opened the possibility of exploring the

diabatic ET energy landscape in explicit solvent using DFT. [63, 66, 84, 105–110]. The

general prescription for these simulations is illustrated in Figure 4, again for the example

of FAAQ in DMSO. First, one performs several long molecular dynamics (MD) trajectories

for each diabatic state in the presence of solvent in order to properly sample the energy

landscape. These simulations would be virtually impossible with a deductive prescription

for the diabatic states - which would require derivatives of excited state wavefunctions and/or

the identification of a reference structure. For constrained DFT, one merely requires ground

state energy derivatives to perform the relevant on-the-fly Born-Oppenheimer-like dynamics

[55]. For example, in the simulations in Figure 4, the solvent was modeled by a polarizable

force field and the diabatic states of FAAQ were determined by constrained B3LYP/3-21G.

The technical details of the computations can be found elsewhere[110]. However, note that

a traditional fixed-charge model of the solvent (as opposed to the polarizable approach used

here) would result in severe overestimation of the reorganization energy [110, 111] essentially

neglecting all the “fast” component of the dielectric response.

Once the MD simulations are complete one harvests a large number of independent

snapshots from the trajectories and computes the energy of both diabatic charge states at

every snapshot. By performing this procedure for the neutral and CT trajectories of FAAQ,

one obtains the two energy gap distributions displayed in Figure 4c) and 4d), respectively.

Finally, one can obtain the free energy surfaces from

GX(∆E) ≡ −kT lnPX(∆E) X = CT or N. (17)

In Figure 4e) we present a simplified fit of this type wherein GN and GCT are assumed

parabolic with the same curvature. Under these circumstances, GN and GCT are determined

entirely by ∆G and λ, facilitating a direct comparison to the Marcus picture. We find that
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FIG. 4: Sampling the ET energy landscape with explicit solvent. a) One first computes several

long MD trajectories, with the solute in either the neutral (pictured) or CT state. A movie of one

such trajectory is available in the supporting material. b) One monitors the energy of each diabat

as a function of time and collects statistics on the energy gap (∆E = ECT −EN ) from the neutral

(c) and CT (d) trajectories. Here, the histograms show accumulated data, while the lines are a

maximum likelihood fit. e) Finally, the free energy, G of each state is computed from the log of

the probability computed in parts c) and d). All energies are in eV.

∆G ≈ 3.1 eV for FAAQ, which is too high compared to experiment primarily because a

small basis (3-21G) has been used for the electronic structure. It is anticipated that similar

simulations in a 6-31G* basis would be more in line with experiment Meanwhile, we obtain

λ ≈ 1.4 eV - which is in excellent agreement with experiment (λ ≈ 1.45 eV). A larger basis

would likely have little effect on λ because it primarily reflects the geometry of the system,

which should be less sensitive to the electronic basis. It thus appears that implicit models

offer a fast and reasonably accurate means of predicting equilibrium properties of the diabats

(like ∆G), but that they should be supplemented by explicit solvent when out-of-equilibrium

behavior (like reorganization) is of interest.
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B. Chemical Reactions

The diabatic picture employed for electron transfer can also be applied to more general

reactions. Instead of “donor” and “acceptor” electronic states, one posits “product” and

“reactant” diabats that exist at all points along the reaction coordinate. This diabatic

framework is the basis of empirical VB theory [16, 17] and has been used to analyze SN1[47]

and SN2[112] reactions, as well as proton transfer [21]. Once the diabatic states are defined,

one is typically interested in computing the corresponding adiabatic energies by solving

the generalized eigenvalue problem in Eq. 10 at every nuclear configuration. One can then

predict activation energies and transition pathways as well as decompose the transition state

electronic structure into “reactant” and “product” contributions. In this section, we will

briefly touch on some recent work in our group that attempts a systematic description of a

wide range of reactions using the reactant/product division within constrained DFT.

The first task, of course, is to construct the reactant and product diabatic states.

The task at hand is more challenging than for ET because in a typical chemical reac-

tion, atoms are exchanged between the reactant and product molecules. Thus, while

one can reasonably bin atoms as part of the “donor” or the “acceptor” fragment in

an ET reaction, the same will not generally be true in, say, an SN2 reaction. We

have recently shown this obstacle can be overcome if one assumes that the reactant

state density should resemble the superposition of the densities of the reactants[110,

113]. To be concrete, suppose one is interested in a nucleophilic substitution reaction:

ClCH3 + F− 
 [Cl- -CH3- -F]− 
 Cl− + CH3F.

Clearly, the reactant state should formally have zero charge (q = 0) and no net spin (S = 0)

on the ClCH3 group and [q = −1,S = 1/2] on F−. Likewise, the product state should have

Cl(q = −1, S = 1/2) and CH3F(q = 0, S = 0). Now, we realize that the formal charges

and spins will be precise when the fragments are well-separated, but these values are not

expected to be accurate constraints at the transition state, where the fragments overlap

significantly.

To obtain the correct constraint values for the reactant state (an equivalent procedure

is followed for the product) one generates a promolecule density ρ̃R by superimposing the

densities of ClCH3 and F−, calculated separately with their formal charges and spins and at
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FIG. 5: Constructing reactant and product diabatic states for F− + CH3Cl ↔ FCH3 + Cl−. a)

The atoms are divided according to the reactants and products b) DFT calculations are performed

on the isolated fragments c) The fragment densities are added together d) The apparent charge (N)

and spin (S) for each fragment are determined by integrating the population weight function wi(r)

against the summed densities e) Constrained DFT calculations are performed with the computed

N+S constraints to arrive at the reactant and product diabats.

the same level of theory as the final calculation, i.e.

ρ̃σR(r) = ρσClCH3
(r) + ρσF−(r) (σ = α, β). (18)

Note that the ClCH3 fragment internal geometry is identical to the geometry of said fragment

within the full calculation. The reactant charge and spin constraints of a given fragment

(X=ClCH3,F−) are then obtained from ρ̃R using the weight function, wX associated with

the same fragment. Thus

qX =

∫
wX(r)[ρ̃αR(r) + ρ̃βR(r)]dr, SX =

∫
wX(r)[ρ̃αR(r)− ρ̃βR(r)]dr. (19)

qX and SX are then used in a CDFT calculation to build the desired reactant state, as

illustrated in Figure 5.
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This diabatic procedure generalizes to any AB+C→A+BC reaction. Further, solving

Eq. 10 typically gives better adiabatic reaction barrier heights than those obtained from

the unconstrained ground state, as illustrated in Table I. Here, we consider the standard

set of reaction barriers collected by Truhlar and coworkers [114] using both standard DFT

and the CDFT- configuration interaction (CDFT-CI) energy of Eq. 10 using the diabatic

prescription described above for reactant and product states. We see that the CDFT-CI

results are typically significantly better than their unconstrained counterparts, particularly

with less accurate functionals[110]. Only for B97-2, which already gives fairly accurate

barrier heights, do the limitations of our diabatic prescription become apparent. The clear

improvement in the CDFT-CI barrier heights can be traced to two sources. First, we note

that a large fraction of the error in DFT barrier height predictions is known to arise from

electron self-interaction error (SIE)[115, 116]. Because the constraints force the electrons to

localize in every underlying diabatic state, the effects of SIE on the CDFT-CI results are

mitigated[62, 64], improving the barrier heights. Second, by including a small CI within

the calculation, CDFT-CI is able to include some of the static correlation that is missing

in standard functionals[117], leading to a more stable description of bond breaking at the

transition state.

TABLE I: Summary of the mean absolute error (MAE) of barrier heights. The numbers in paren-

thesis represent the total number of barrier heights in each data set. Numbers in black are CDFT-CI

results. All energies are in kcal/mol.

PBE B3LYP B97-2

hydrogen transfer (36)

MAE 9.7 3.8 4.6 3.0 3.6 4.0

heavy atom transfer (12)

MAE 14.9 7.6 8.5 2.3 3.4 4.7

nucleophilic substitution (16)

MAE 6.9 2.3 3.4 1.3 1.4 2.9

all (64)

MAE 10.0 4.2 5.1 2.5 3.0 3.9
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It is important to note that this same diabatic prescription can be used not only to obtain

accurate results, but to physically interpret the results as well. For example, we can use

the same CDFT-CI approach to treat bonding in LiF if we consider four diabatic states:

Li+F−, Li↑F↓, Li↓F↑ and Li−F+. One finds that this prescription gives a very accurate

description of the adiabatic dissociation curve (See Figure 6) when compared to an accurate

OD(2) calculation [118, 119]. However, the CDFT-CI calculation also allows us to break the

adiabatic state down into contributions from the various ionic and covalent contributions.

Thus we see that LiF is, indeed, primarily covalent beyond the capture radius of 5.4 Å, but

that Li+F− becomes dominant as the bond becomes shorter.

-6

-5

-4

-3

-2

-1

 0

 1

 2

 1  2  3  4  5  6  7

B
in

d
in

g
 E

n
e
rg

y
 (

e
V

)

Distance (Ang)

Adiabatic 

Neutral 

CT 

Accurate 

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7

W
e

ig
h

t

Distance (Ang)

W
e
ig

h
t 

CT 

Neutral 

FIG. 6: (Left) Dissociation curves of LiF with various approximate methods. (Right) Weights of

configurations in the CDFT-CI (B3LYP) ground state. The ground state rapidly switches from

neutral to ionic at the capture radius for Li+F− (R=5.4 Å).

VI. CONCLUSIONS

In this review we have briefly highlighted the role diabatic states have in our qualitative

understanding of chemistry as well as the fundamental equations that allow diabats to be

used for quantitative prediction. The non-existence of strictly diabatic states leads to a

variety of essentially diabatic states, each of which can be an appropriate description of

chemistry under the right circumstances. For concreteness, we have focused here on the use

of density constraints for the definition of diabats and have shown how the electronic energy,

nuclear forces and diabatic coupling can be obtained in this particular representation. We
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also illustrated how these diabatic states can be used for both the description of electron

transfer chemistry and the prediction of reaction barrier heights.

Moving forward, we see an expanding role for diabatic states in the area of reaction dy-

namics - in particular excited state dynamics. Constructive strategies such as valence bond

or constrained DFT techniques offer direct access to diabatic potential energy surfaces with-

out recourse to the corresponding adiabats. Thus, energies, forces and molecular properties

can easily be computed on-the-fly, facilitating MD simulation of large systems. Thus, in the

case of electron transfer, one is already able to propagate trajectories on individual diabatic

surfaces to sample the free energy landscape (See Figure 4) even when one of those states

is not the ground state.

Future Issues

• Ideally, one would also like to create a less arbitrary construction of diabatic states that is still

computationally inexpensive. At present, constrained DFT requires the identification of fragments

and the (non-unique) choice of atomic populations. A prescription that automatically optimizes

the fragment choice and the atomic populations based on energy minimization would clearly be

preferable. In this area, the ideas of partition theory [120, 121] might provide a way forward.

• The results obtained so far indicate CDFT-CI gives accurate adiabatic ground state potential

energy surfaces. The CI eigenequation (Eq. 10) also provides excited states. Under what

circumstances are the excitation energies accurate?

• One would like to generate trajectories that allow quantum transitions between the diabatic

electronic states. These simulations could employ, for example, surface hopping [122], multiple

spawning [123] or generalized Langevin [124] techniques to describe the quantum transitions.

Simulations of this type would be instrumental in directly predicting electron transfer kinetics

from the dynamics.

Even without any further theoretical advances (see Future Issues) in our understanding

of diabatic states, the existing technology is well-positioned to answer important chemical

questions. The applications presented here have necessarily been by way of illustration and

validation of the concepts involved. However, it should be clear that the same steps outlined

above could be used in the description of ultrafast photoinduced ET in solution [125] or

at interfaces [126] as well as in the description of reaction barriers in electrochemical[127],
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photovoltaic [128] and photosynthetic [129] architectures. Thus, we see that while diabatic

state have their historical origins in the qualitative description of chemistry, these same states

promise to play an active role in the future of computational and theoretical chemistry.
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Brief Annotations

•Ref. 1 Presents an extensive introduction to the use of diabatic states in modeling vibronic

dynamics.

•Ref 15 An enduring classic. Highlights the important contributions of the valence bond

picture of chemical binding.

•Ref. 16 An article many years ahead of its time that introduces the empirical VB concept.

•Ref. 19 A broad review of the relevance of ET in chemistry and biology.

•Ref. 45 A unique perspective on the role of VB in chemistry.

•Ref. 55 Presents the connection between CDFT and ET.

•Ref. 75 Introduces the definition of the diabatic coupling in CDFT.

•Ref. 77 An approachable introduction to electron transfer in chemical physics.
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FIG. 1: NaCl dissociation in the diabatic and adiabatic representations. The ionic (green) and

covalent (blue) diabatic states maintain the same character across the potential energy surface,

while the adiabatic states (black) change.

FIG. 2: Obtaining the D+A− state of FAAQ. a) One chooses which atoms belong to the acceptor.

The atomic partition operator then divides space between the fragments, as illustrated by the

dividing surface. b) Apply a constraint potential. Changing the Lagrange multiplier changes the

depth of the potential and controls the number of charges on the acceptor. c) A ground state

calculation in the presence of the optimal potential results in exactly one excess electron (red) on

the acceptor and one excess hole (blue) on the donor.

FIG. 3: A) In solution, the electron transfer reaction coordinate is dominated by solvent reorgani-

zation. The free energy landscape can be characterized by the driving force (∆G), measuring the

energy released, and reorganization energy (λ), measuring the structural relaxation energy. B) If

∆G < λ the reaction is in the normal regime and the rate increases with ∆G, but C) if ∆G > λ

the reaction is inverted and the rate decreases with increasing ∆G

FIG. 4: Sampling the ET energy landscape with explicit solvent. a) One first computes several

long MD trajectories, with the solute in either the neutral (pictured) or CT state. A movie of one

such trajectory is available in the supporting material. b) One monitors the energy of each diabat

as a function of time and collects statistics on the energy gap (∆E = ECT −EN ) from the neutral

(c) and CT (d) trajectories. Here, the histograms show accumulated data, while the lines are a

maximum likelihood fit. e) Finally, the free energy, G of each state is computed from the log of

the probability computed in parts c) and d). All energies are in eV.
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FIG. 5: Constructing reactant and product diabatic states for F− + CH3Cl ↔ FCH3 + Cl−. a)

The atoms are divided according to the reactants and products b) DFT calculations are performed

on the isolated fragments c) The fragment densities are added together d) The apparent charge (N)

and spin (S) for each fragment are determined by integrating the population weight function wi(r)

against the summed densities e) Constrained DFT calculations are performed with the computed

N+S constraints to arrive at the reactant and product diabats.

FIG. 6: (Left) Dissociation curves of LiF with various approximate methods. (Right) Weights of

configurations in the CDFT-CI (B3LYP) ground state. The ground state rapidly switches from

neutral to ionic at the capture radius for Li+F− (R=5.4 Å).

TABLE I: Summary of the mean absolute error (MAE) of barrier heights. The numbers in paren-

thesis represent the total number of barrier heights in each data set. Numbers in black are CDFT-CI

results. All energies are in kcal/mol.

PBE B3LYP B97-2

hydrogen transfer (36)

MAE 9.7 3.8 4.6 3.0 3.6 4.0

heavy atom transfer (12)

MAE 14.9 7.6 8.5 2.3 3.4 4.7

nucleophilic substitution (16)

MAE 6.9 2.3 3.4 1.3 1.4 2.9

all (64)

MAE 10.0 4.2 5.1 2.5 3.0 3.9

38



!
"
#
$
%
&' $

%
&$

!
"
#
$

%
&' $

!
"
$

%
&$

N
a
-C

l 
D

is
ta

n
c
e
 

Energy 

!
"
$

39



V
A
w
A
(r
)!

a
) 

b
) 

c
) 

40



D
-
A

-
 

D
-
-
A

 

R
e
a
c
t
io

n
 

G
 

e
- 

e
- 

e
-  

!
"

!
G

 

!
"

!
G

 

A
) 

B
) 

C
) 

41



 0 1 2 3 4 5

 0
 1

 2
 3

 4
 5

 6
 7

E (eV)

T
im

e
 (

p
s
)

 0

 0
.2

5

 0
.5

 0
.7

5 1

 3
.5

 4
 4

.5
 5

P(!E)

!
E

 (
e

V
)

 0

 0
.2

5

 0
.5

 0
.7

5 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

P(!E)

!
E

 (
e

V
)

 0 1 2 3 4 5 6 7

 0
 1

 2
 3

 4
 5

 6
 7

Free Energy (eV)

!
E

 (
e

V
)

E
C

T
 

E
N

e
u

t 

P
N
(!

E
) 

P
C

T
(!

E
) 

G
C

T
 

G
N
 

G
N
=

-k
T

 l
n
P

N
 

G
C

T
=

-k
T

 l
n
P

C
T
 

"
=

1
.4

 e
V

 

a
) 

b
) 

c
) d
) 

e
) 

42



43



-6-5-4-3-2-1 0 1 2

 1
 2

 3
 4

 5
 6

 7

Binding Energy (eV)

D
is

ta
n
c
e

 (
A

n
g

)

A
d

ia
b

a
ti
c
 

N
e

u
tr

a
l 

C
T

 

A
c
c
u

ra
te

 

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 2
 3

 4
 5

 6
 7

Weight

D
is

ta
n
c
e
 (

A
n
g
)

Weight 

C
T

 

N
e

u
tr

a
l 

44


