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Abstract

We study real-time electron dynamics in a molecular junction with a variety of approximations

to the electronic structure, toward the ultimate aim of determining what ingredients are crucial

for the accurate prediction of charge transport. We begin with real-time, all-electron simulations

using some common density functionals that differ in how they treat long-range Hartree-Fock

exchange. We find that the inclusion or exclusion of non-local exchange is the dominant factor

determining the transport behavior, with all semilocal contributions having a smaller effect. In

order to study non-local correlation, we first map our junction onto a simple Pariser-Parr-Pople

(PPP) model Hamiltonian. The PPP dynamics are shown to faithfully reproduce the all-electron

results, and we demonstrate that non-local correlation can be readily included in the model space

using the generator coordinate method (GCM). Our PPP-GCM simulations suggest that non-local

correlation has a significant impact on the I-V character that is not captured even qualitatively by

any of the common semilocal approximations to exchange and correlation. The implications of our

results for transport calculations are discussed.
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I. INTRODUCTION

Experiments in the past two decades have examined the unique electron transport proper-

ties of single-molecule electronic devices1–31 generating significant theoretical interest. Lan-

dauer and Büttiker provided the first qualitatively correct description of single-molecule

transport in terms of molecular conductance channels weakly coupled to scattering states in

the metal leads32–36. Although the model was originally described in a one-electron frame-

work, the nonequilibrium Green’s function (NEGF) method allows one to derive a Landauer-

like expression for the exact many-particle system37. The difficulty of obtaining the exact

NEGF subsequently led to numerous attempts to approximate transport using the NEGF in

conjunction with semiempirical38,39, ab initio40, density functional theory (DFT)41–48, and

model Hamiltonian49–51 methods. Such approximate NEGF methods currently dominate

the literature on single-molecule conductance calculations.

Recently, an alternative microcanonical prescription for describing electron transport has

been proposed52,53. Here, the entire junction (molecule+leads) begins in equilibrium and one

monitors the real-time response of the junction to a time-dependent applied bias. The benefit

of this framework is that it only requires the time-dependent density - as opposed to the

full NEGF - to describe the direct current response exactly52,53. Further, the exact density

is in principle available from time-dependent DFT (TDDFT)54 making a microcanonical

TDDFT approach to conduction an attractive possibility. To date, this framework has been

applied both formally52,53,55 and practically56–58 in electron transport simulations.

We have previously used real-time TDDFT to study transport in molecular wires using

common approximations to the exchange-correlation (xc) functional59,60. We have demon-

strated, in agreement with several other studies61–66, the sensitivity of both spin and charge

currents to the choice of xc functional. Unfortunately, common approximations in TDDFT

do not form a convergent hierarchy, so that it is not possible to say with certainty that one

functional gives uniformly better results than another. Thus, the wide variety of predictions

obtainable with standard TDDFT makes it practically impossible to identify which func-

tionals, if any, give an accurate description of transport. This ambiguity is particularly acute

given that simulations and experiment in this field often disagree by one to two orders of

magnitude62,64. The situation can be ameliorated by using wavefunction-based techniques40,

but because the microcanonical picture requires such calculations be performed on the en-
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tire molecule+leads system - often containing several hundred atoms - correlated ab initio

investigations along these lines are simply not feasible. One is thus left with significant

uncertainty as to the best way to simulate electron transport in molecular junctions.

In this article, we critically examine a number of approximate microcanonical simulations

in order to determine which ingredients are required to obtain electron transport dynamics.

For simplicity, we focus on a single model junction (see Fig 1). First, we simulate the conduc-

tance using a variety of semilocal and hybrid density functionals and find that the predicted

current-voltage curves depend only on the fraction of non-local Hartree-Fock exchange in-

cluded in the functional. The presence or absence of semi-local exchange or correlation has

a negligible effect on the system at any bias. This is consistent with the fact that, at zero

bias, the resistance only depends on the infinite-ranged part of the xc potential62,67. In order

to assess the impact of non-local wavefunction-based correlation on transport, we first map

our TDDFT results on to a Pariser-Parr-Pople (PPP) model Hamiltonian. We then employ

the generator coordinate method (GCM) to rapidly incorporate non-local correlation within

the model space. We find that non-local correlation significantly increases the transport

gap and can even increase the charge currents in the ballistic regime. This behavior is not

reproduced by any of the semilocal xc functionals we have tested. We therefore conclude

that, at a fundamental level, non-locality is required in both the exchange and correlation

functionals if one wants to obtain an accurate description of transport. The article concludes

with some discussion of the physical implications of these results.

II. CONDUCTANCE IN A MODEL JUNCTION

All the calculations presented in this article concern the model junction depicted in

Figure 1. This molecular wire has been designed to mimic the lead-molecule-lead geometries

typically used in experiments. The leads are represented by long conjugated trans-polyenes,

containing 48 carbon atoms each. The molecular “device” is a trans-butadiene residue,

connected to the leads via two saturated CH2 segments. The system is designed in such

a way that the coupling of the molecular device to the leads is rather weak, because the

conjugation is interrupted by the CH2 groups, leading to poor overlap of the π orbitals.

Although the chain of C–C σ-bonds is not interrupted, the electrons in the σ-orbitals are

typically much less mobile.
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In order to model the conductance of the junction, we use the “microcanonical” picture of

transport52,53. We first determine the ground state of the entire leads+molecule junction at

the desired level of theory (e.g. DFT or model Hamiltonian). Then, at time t = 0 the wire is

subjected to a bias potential of the form shown in Figure 1, which pushes the system out of

equilibrium. We then monitor the difference between the number of charges on the left and

right leads, N(t) ≡ 1
2
(NL(t)−NR(t)), as a function of time using any of a variety of methods

(e.g. TDDFT) for real time electron propagation. We note that a method like TDDFT,

which in principle yields the exact time-dependent density, can give the exact N(t)52,53.

N(t) contains significant information about the dynamical response of the junction -

including impedance56 and counting statistics59. However, for the purposes of this article, we

will be most interested in the steady state conductance of the junction, which is also the aim

of NEGF techniques. Because our system is closed, any current can only last a finite amount

of time - a finite current acting for an infinite amount of time would result in an infinite

number of electrons being transferred. Thus, we can never obtain a true current-carrying

steady state in our microcanonical simulations. However, in running these simulations one

empirically finds that N(t) typically behaves as shown in Figure 2. After some transient

relaxation time, the current, I = dN
dt

, settles down to a relatively constant value, as shown

by the linear fit between 1 and 5 fs. As long as the leads are chosen to be large enough, it is

only at much longer times that the current through the wire reverses itself (e.g. around 15

fs in Figure 2). The primary limitation here is numerical: computationally one is limited to

some maximum system size, which leads to a finite lifetime for the quasi-steady state, and

ultimately leads to statistical uncertainty in the fitted current. For example, in Figure 2 one

would obtain a slightly different current if one fitted from 5 fs to 10 fs than if one fitted from

1 fs to 5 fs and neither result could be considered wrong. It has been shown recently57,59,68

that, with existing computational resources, these numerical uncertainties can be minimized

so that the currents obtained in this microcanonical picture agree essentially quantitatively

with the true steady state currents. In particular, for the wire studied here we have verified

that if the size of the leads is reduced by half the quasi-steady state current is unaffected.

The quasi-steady state survives for a shorter period of time, and the statistical uncertainties

are concomittantly larger, but the fitted currents are consistent for shorter leads.

In order to probe the current-voltage behavior, we employ a straightforward scheme: we

apply a series of voltage biases of different magnitudes, V . For each bias, we propagate
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the electrons to obtain N(t). From the quasi-steady state current, we extract I. Finally, an

I−V plot is obtained by plotting the values of I thus obtained against the applied bias. This

entire procedure is illustrated in Figure 3. At this point it is important to realize that the

only uncontrolled approximation we make in this procedure relates to the level of electronic

structure theory we use to determine and propagate the initial state. The focus of what

follows, then, is the impact of approximations to the electronic structure on the predicted

currents. In particular, we will focus on determining the correct I-V curve for our model

wire and establish what level of theory one needs to employ to get the right answer.

III. REAL-TIME DENSITY FUNCTIONAL CONDUCTANCE SIMULATIONS

First, we simulate the conductance of our junction using direct real time TDDFT prop-

agation of the electron density.56–58,69 The details of our implementation are presented

elsewhere.59,60 Briefly, our algorithm integrates the time-dependent Kohn-Sham equations

i
∂

∂t
ψKS

i (t) = ĤKS[ρ(t)]ψKS
i (t) (1)

in a Gaussian basis using a second-order Magnus propagator implemented in a development

version of the Q-Chem software package.70 As has been done previously, the bias potential is

defined using the Löwdin partition scheme, multiplying the partitioning functions by +V/2

for atoms in the source lead and −V/2 for atoms in the drain. The real-time scheme has

the advantage that it provides a rigorous prediction of currents at any bias, whereas the

NEGF-DFT techniques47,48,71 are only formally correct for the near-equilibrium low bias

case.

All practical DFT methods for molecular conductance rely on common approximations

to the exchange-correlation (xc) energy. The particular choice of the xc functional has been

shown to dramatically affect the results of conductance calculations.64–66,72–74 This existing

work has primarily been focused on the low-bias behavior, but two important conclusions

can be drawn. First, the self-interaction error (SIE) present in commonly employed local

and semilocal xc functionals is extremely harmful for conductance simulations. As a direct

consequence of SIE, semilocal functionals erroneously predict metallic transport even in

insulating molecules in weak contact with the leads64,66,74. At the same time, it can be

shown that at zero bias the xc contribution to the conductance depends only on the induced
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shift in vxc infinitely deep in the leads.62,67 For a semi-local functional, this shift must be

zero because the density deep in the leads is unaffected by the bias. Thus, at low bias, one

expects a semilocal correction to vxc to have negligible effect on the transport. In order to

address these issues, we have performed real-time TDDFT simulations on the model junction

with a variety of functionals that differ in the ways they incorporate non-locality and SIE.

For the test system shown in Fig. 1 and using the methodology described in Section II,

we compute the I-V curves using four different electronic structure methods: 1) the local

density approximation (LDA) 2) a global hybrid of LDA with 50% of the Hartree-Fock-

type exchange, which we call “Half&Half” 3) Hartree-Fock (HF) theory and 4) long-range

corrected LDA (LC-LDA) which combines the short-range LDA exchange75,76 with the long-

range HF exchange. In LC-LDA, the standard error function is used to split the Coulomb

operator into short- and long-range parts, and the range-separation parameter ω = 0.5

Bohr−1 is used, which has been shown to work well in many cases.77,78 The LDA, Half&Half,

and LC-LDA xc functionals all include the uniform electron gas correlation functional of

Vosko, Wilk and Nusair79 commonly known as VWN5.

We have optimized the geometry of the junction with B3LYP/6-31G(d). To save time in

the conductance simulations, most of our calculations use the minimal STO-3G basis set for

the leads and a larger 6-31G(d) basis set for the molecular device and the CH2 groups. Since

our model system does not directly simulate any real-world experimental setup, the minimal

basis set should suffice for the description of the leads, which simply serve as a source and

a drain of electrons. To assess the effect of the choice of the basis set for the leads, we have

performed a few calculations using 6-31G(d) for the entire system and compared them to

the calculations using the mixed basis described above. The results, given in Fig. 4, show

that the qualitative shapes of the I-V curves are not affected by the choice of the leads’

basis set. As we replace 6-31G(d) by STO-3G on the leads, we observe a decrease in the

current at larger voltages. This can be explained by the fact that the STO-3G basis set is

more restricted and less diffuse, which effectively results in weaker coupling.

Fig. 5 compares the I-V curves obtained with four electronic structure methods. LDA

predicts a nonzero current even for very small applied voltages (V ≈0.1 a.u.). The Half&Half

hybrid gives nonzero average current only for V > 0.2 a.u. HF and LC-LDA yield nonzero

current only for V > 0.4 a.u. The I-V curve obtained with LC-LDA is very similar to the

HF result, both qualitatively and quantitatively. These results are consistent with the band
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gap predictions for an isolated butadiene molecule obtained with the various functionals.

LDA predicts a very small gap ( 0.15 a.u.), Half&Half predicts a much larger gap ( 0.29

a.u.), and HF and LC-LDA predict the largest gaps (0.44 and 0.42 a.u., respectively). One

expects this, because in both situations the reduction of the gap is linked to the presence of

SIE in the approximate exchange correlation functionals.64,80–82

Fig. 5 clearly illustrates a well-known64 problem of LDA: in the weakly-coupled limit,

LDA gives too large currents at low voltage biases. This problem is attributed to SIE and

lack of the proper derivative discontinuity. The Half&Half hybrid yields an I-V curve that is

shifted halfway in-between the LDA and HF curves (see Fig. 5). This is expected since the

Half&Half exchange functional is a linear combination of LDA and HF exchange. LC-LDA

hybrid combines LDA and HF in a very different way, preserving the correct long-range

behavior of the exchange potential. As evidenced by the results in Fig. 5, this correct long-

range behavior is crucial for the description of the electronic transport in a molecular device

weakly coupled to the leads. Finally, we note that LC-LDA includes local correlation,

whereas HF has none. Inclusion of local correlation appears to have very little effect on

the conductance at any bias. Taken together, these observations essentially extend the

conclusions of Refs.62,67 to finite bias: at any value of V it is only the non-local portion of

the xc functional that influences the charge transport. In commonly used functionals, only

the exchange has a non-local component, and so the exchange plays a decisive role in the

transport predictions

IV. MODEL HAMILTONIAN CONDUCTANCE SIMULATIONS

A. The PPP Model Hamiltonian

Because the conductance curves show such a strong variability with the choice of xc

functional, it is not possible to conclusively determine the correct form of the I-V curve

from the data above. Among the four methods represented in Fig. 5, one might consider

the LC-LDA and HF results to be the most realistic since HF and LC-LDA are free (or

nearly free) of SIE. But neither of these include any effects of non-local correlation, and it

is entirely possible that the effects of non-local correlation counteract all or part of the non-

local exchange contribution. To put it another way, it is possible that a semi-local functional
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might actually give a better prediction through cancellation of errors between SIE and the

missing part of the correlation energy. To settle this uncertainty, one would like to perform

wavefunction-based simulations of the conductance. Unfortunately, with commonly used

quantum chemistry techniques (e.g. MP2 or CCSD) this is not computationally feasible for

a junction of this size. However, if we first map the dynamics onto a model Hamiltonian we

can vastly reduce the number of degrees of freedom, making highly accurate wavefunction

predictions possible.

Toward this end, we attempt to reproduce the conductance results of the full TDDFT and

TDHF dynamics with those generated by the Pariser-Parr-Pople (PPP)83–86 model. PPP is

an effective tool for modeling charge transport in π-conjugated systems38,39,87–89. Further,

we have recently shown60 that, given the proper parameters, PPP can do an excellent job

of reproducing the real-time conduction predictions obtained in more sophisticated TDDFT

simulations.

In the PPP picture, one models the π electrons by including only the pz orbitals on each

carbon atom in the conjugated chain. Thus, for our junction we will have N = 48+4+48 =

100 orbitals in the model space. The PPP Hamiltonian is:

Ĥ = −
N−1∑
j=1
σ=↑,↓

βjj+1

(
ĉ†jσĉj+1σ + ĉ†j+1σĉjσ

)
−

N∑
jk

Γjkn̂j +
1

2

∑
jk

Γjkn̂jn̂k, (2)

Γj,k =

(
r0 |j − k| + 1

g

)−1

, n̂j ≡
(
ĉ†j,↑ĉj,↑ + ĉ†j,↓ĉj,↓

)
.

The three terms in Eq. 2 correspond to electron hopping between sites, electron-nuclear

attraction and electron-electron repulsion, respectively. We set r0 = 2.647, g = 0.55 and fix

the hopping parameter βj,j+1 to the constant value β0 = 0.16 as long as j and j + 1 both

belong to either a lead or the molecule. These values have been shown to reproduce the

TDDFT predictions of both charge and spin dynamics of conjugated carbon chains quite

well60. Meanwhile, if j belongs to the molecule and j+1 to a lead (or vice versa) the hopping

parameter is reduced to a value of βGap = 0.024 to reflect the reduced overlap between the

pz orbitals separated by a saturated CH2 unit. Reasonable variations in the magnitude of

of βGap have little effect on the shape of the I-V curve, but have a significant impact on the

magnitude of the overall current.
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B. Non-local Exchange in the PPP model

In order to be sure that the PPP model contains the proper physics, one would like

to obtain PPP-based models that reproduce the different TDDFT results above (LDA,

Half&Half, HF, LC-LDA). The PPP-HF model is easiest to develop. One first approximates

the wavefunction as a Slater determinant, Ψ(t), constructed out of N occupied spin orbitals

ψi(t). These orbitals are written as linear combinations of the localized pz orbitals:

ψi(t) =
∑

α

cαi (t)pα
z . (3)

After some algebra (see, for example,Ref. 60) one finds the orbital coefficients, ci, satisfy

iċi(t) = F[c]ci(t) (4)

with the effective one-electron Hamiltonian

Fij[c] = hij +

N∑
k

ΓjkPkkδij − 1

2
ΓijPij (5)

were P ≡ 2
∑occ

i cic
†
i is the noninteracting one particle density matrix. The first term in

Eq. 5 corresponds to the bare one-body Hamiltonian, while the second and third terms

represent Coulomb and exchange interactions, respectively. The PPP-TDHF equations can

be solved in strictly analogous fashion to the TDDFT equations in the previous section. To

obtain currents, we apply a bias using the Löwdin partition functions, propagate the orbitals

via Eq. 4 using Magnus integration and obtain a current from the quasi-steady state slope

of N(t).

In order to obtain analogs for the various density functionals within the PPP model, we

begin with the working hypothesis that only the non-local part of the xc functional matters.

On this basis, one would conclude that LDA - which has no non-local xc part - should be

represented by an effective Hamiltonian of the form of Eq. 5 with the non-local exchange term

removed (PPP-LDA). Continuing along this line of thought, one obtains PPP-Half&Half by

multiplying the exchange term by 1
2

and PPP-LC by multiplying Γjk in the exchange term

by erf(0.5rjk). On the one hand, these are drastic approximations because one neglects all

the effects of local exchange and correlation. On the other hand, this picture is certainly

consistent with the results of the previous section and previous work60,62,64,66,67,74 and so one

anticipates it may be effective.
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Fig. 6 compares the I-V curves calculated using the PPP models described above with

those calculated using TDDFT with various functionals. We note that, like the TDDFT

methods, the PPP results show a gap between V = 0 and the first appearance of current.

Furthermore, the change in the size of gap with the amount of exact exchange mirrors

the result calculated with all-electron methods. We find the largest conductance gap with

100% exact exchange methods (HF) and the smallest gap with methods that include no

exact exchange (LDA). The 50% exact exchange methods (Half&Half) show an intermediate

gap. Finally, like the all electron results, the long range corrected method (PPP-LC) is

quantitatively very similar to PPP-HF. We note that in each case, the all electron methods

show a monotonic increase in current after turn-on, while the PPP results tend to saturate.

This difference is likely due to the absence of any orbitals besides the pz orbitals in the PPP

calculations. While unimportant at low biases, the σ orbitals will play a significant role at

higher bias, leading ultimately to a discrepancy between the methods for large values of V .

Finally, we note that the quantitative differences between the PPP and TDDFT(TDHF)

turn-on voltages could be adjusted somewhat by changing the electron repulsion parameter

g.

Overall, the strong qualitative agreement between the PPP model and the TDDFT results

points toward two conclusions. First, it provides further evidence that non-local exchange

dominates the conductance behavior of these functionals. We have completely neglected local

xc-contributions to obtain the PPP-LDA, PPP-Half&Half and PPP-LC results. The fact

that these are even remotely correct suggests that the local contributions are small compared

to the dominant HF exchange contribution. Second, these results strongly suggest that the

PPP model, while simple, contains enough physics to describe influence of exchange and

correlation on transport in these junctions.

C. Correlated Conductance of the PPP model

Now that we have validated our model Hamiltonian and examined the importance of non-

local exchange, we would like to answer the question: what effect does non-local correlation

have on the conductance? We will address this point using a time-dependent version of

the generator-coordinate method (GCM). The GCM was first introduced by Wheeler and

Hill to describe correlation in nuclear matter.90,91 More recently, the GCM has been used to
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make connections between DFT and wavefunction-based approaches to correlation.92,93 For

a time independent problem, the fundamental idea is to write the target wavefunction, Ψ,

as a linear transformation of a continuous set of states:

|Ψ〉 =

∫
c(η)|Φ(η)〉dη. (6)

Here |Φ(η)〉 is some approximate wavefunction and the variable η could be any continuous

parameter that deforms Φ. In order to determine the optimal ground state Ψ, one solves

the Wheeler-Hill (WH) equation for the coefficients, c(η):∫
[H(η; η′) −ES(η; η′)] c(η′)dη′ = 0 (7)

where H(η; η′) ≡ 〈Φ(η)|Ĥ|Φ(η′)〉 and S(η; η′) ≡ 〈Φ(η)|Φ(η′)〉 are the matrix representa-

tions of the Hamiltonian and overlap, respectively. The GCM can also be used to describe

correlated dynamics.93 Here one writes the time-dependent GCM wavefunction, Ψ(t), as

|Ψ(t)〉 =

∫
c(t; η)|Φ(η)〉dη (8)

where the time evolution of the coefficients, c(t; η), is governed by the time-dependent WH

(TD-WH) equation ∫ (
Hb(η; η

′) − i
∂

∂t
S(η; η′)

)
c(t; η′)dη′ = 0. (9)

The physical picture in the GCM model is that, while the approximate Φ(η) may not provide

an accurate picture of either the ground state Ψ or Ψ(t), one expects that the set of all Φ(η)

will provide a good basis for expanding the true solutions. For example, while each Φ(η)

might be a single determinant, the correlated state Ψ can in principle involve an infinite

number of determinants.

In practice, Eq. 7 is discretized by choosing a fixed set of deformations {ηi}. The WH

equation is then equivalent to a nonorthogonal configuration interaction (CI) calculation in

the space spanned by the states |Φi〉 ≡ |Φ(ηi)〉:

H · c = ES · c. (10)

The Hamiltonian matrix, H, has elements Hij ≡ 〈Φ(ηi)|Ĥ|Φ(ηj)〉 and the overlap matrix ,

S, is defined by Sij ≡ 〈Φ(ηi)|Φ(ηj)〉. Meanwhile, the TD-WH equation can be rearranged

to:

i
∂

∂t
c(t) = S−1 · H · c(t) (11)
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which can be integrated using standard numerical integration techniques. Like any CI

method, the GCM is exact if enough discrete deformations are included. In practice, the

GCM with even a few ηi can describe correlated ground state properties extremely well.92

In our case, we want to describe the wavefunction as a function of two obvious deformation

parameters: potential bias (V ) and time (τ). Thus we write the time dependent GCM

wavefunction in terms of the group parameter η = {V, τ}:

|Ψ(t)〉 =

∫
c(t; η)|Φ(η)〉dη =

∫
c(t;V, τ)|Φ(V, τ)〉dV dτ. (12)

Here, |Φ(V, τ)〉 is an approximate (e.g. HF or DFT) wavefunction propagated for a time τ in

a potential bias V . We can then determine the ground state in the absence of the potential

by the analogous WH equation:

∫
(H(V, τ ;V ′, τ ′) − ES(V, τ ;V ′, τ ′)) c(0;V ′, τ ′)dV ′dτ ′ = 0. (13)

Here H(V, τ ;V ′, τ ′) ≡ 〈Φ(V, τ)|Ĥ|Φ(V ′, τ ′)〉 and S(V, τ ;V ′, τ ′) ≡ 〈Φ(V, τ)|Φ(V ′, τ ′)〉. Given

that the system starts in the ground state (Eq. 13) we can also follow the time evolution in

the presence of a bias potential, Vb, by solving the TD-WH equation:

∫ (
Hb(V, τ ;V

′, τ ′) − i
∂

∂t
S(V, τ ;V ′, τ ′)

)
c(t;V ′, τ ′)dV ′dτ ′ = 0, (14)

where Hb(V, τ ;V
′, τ ′) ≡ 〈Φ(V, τ)|Ĥ+ V̂b|Φ(V ′, τ ′)〉 is the matrix representation of the Hamil-

tonian in the presence of the bias. To be clear, in the above equation t and Vb correspond

to the physical time and physical bias potential in the simulation, while V, τ, V ′ and τ ′

correspond to the deformation parameters used as generator coordinates. It is important

to recognize that this realization of TD-GCM does not assume that TDDFT or TDHF

provides a good picture for the dynamics. Rather, one assumes that the TDDFT/TDHF

wavefunctions with different biases and evolved for different times provide a good basis for

expanding the true time-dependent wavefunction. In this respect, the present formulation of

time dependent GCM is somewhat more flexible than previous versions.93 Like the canonical

version, the TD-GCM is exact if enough determinants are included in the expansion.

TD-GCM provides a powerful and flexible means of examining explicit non-local corre-

lation effects on electron dynamics. Here, we perform microcanonical transport simulations

using the above TD-GCM formalism as follows. 1) The integral form for the wavefunction

(Eq. 12) is discretized in both time, τi, and potential, Vj. Because there are 100 orbitals
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and 50 electrons in our PPP model of the junction, a complete CI calculation would require

approximately (100
50 )2 ≈ 1028 determinants. Clearly it is impossible to include even a small

fraction of these states in our TD-GCM space. At this point, the choice of basis states in

TD-GCM becomes significant: the TDDFT evolution used to generate the basis states nat-

urally selects only configurations that are important to the dynamics. In practice, we find

that ≈ 30 time points and ≈ 300 biases (for a total of only 30 × 300 ≈ 104 determinants)

gives essentially converged results. We also find that faster convergence is achieved if differ-

ent potentials are applied to the ↑ and ↓ electrons (V ↑
j �= V ↓

j ) in a spin-unrestricted fashion.

We suspect this relates to the difficulty of representing open shell singlet configurations in

terms of closed shell basis states. 2) We solve for the lowest eigenvector of H (Eq. 10) and

use this as the initial state for all subsequent propagation. To solve the eigenvalue problem,

we first transform to an orthogonal basis by pre- and post-multiplying by S−1/2. 3) The

time evolved coefficients, c(t), under the bias, Vb, are obtained from Eq. 11 by constructing

the time evolution operator U(t) ≡ exp [−i(H + Vb)t] in the orthogonalized basis. 4) Using

the thus computed c(t) one computes the time evolution of N(t). A linear fit of N(t) versus

t in the quasi-steady state region gives the predicted current I for the present bias. 5) Steps

3&4 are repeated for several voltages to generate an I-V curve.

Using the above prescription for the PPP model of the junction in Figure 1, we obtain

the GCM results shown in Figure 7. For comparison, the PPP results from Fig. 6 are

also reproduced in Figure 7. The GCM results in this figure were obtained from a basis

of 600 potentials with −1 < 1
2
(V ↑ + V ↓) < 1, −0.1 < 1

2
(V ↑ − V ↓) < 0.1 and 32 times, τ ,

with −24 fs < τ < 24 fs. There are a total of 19,200 determinants, but similar results

could be obtained with the GCM space is reduced by 50%. Further, the propagation in this

example was performed with PPP-HF, although again similar results could be obtained with

other functionals. The striking feature of the TD-GCM results is that the transport gap

is actually somewhat larger than that that predicted by TDHF. This trend is opposite the

effect predicted by any of the semilocal xc functionals. Those functionals tend to significantly

narrow the gap if less than 100% long range exact exchange is included, and have negligible

impact otherwise. Thus, none of the commonly used functionals provides an appropriate

treatment of electron correlation in these junctions. This trend in the transport gap is at

odds with the typical expectation for band gaps: usually, while semilocal functionals severely

underestimate gaps81,82, 100% non-local exchange overestimates them94. We attribute the
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unusual behavior in this case to the fairly large on-site repulsion value of g = .55 a.u. in these

polyethylene wires, which places the system very near a Mott insulator transition95. In a

Mott insulator, every site becomes strictly singly occupied in the ground state and only the

spin on each site varies: | ↑↓↑ ...〉. In order to induce transport in the Mott regime, one site

must become doubly occupied, which incurs a penalty of g relative to the all-singly occupied

configuration. Thus, if our system were a true Mott insulator the gap would be g = .55 a.u.,

which is actually quite close to the transport gap predicted in the GCM calculations. Thus

we conclude that, in the GCM calculations, the transport gap is larger because the correlated

ground state is more Mott-like than the HF one.

The second obvious feature of the GCM results is that after the gap is overcome, the

currents are somewhat larger in the correlated calculations. We note that there is a fair bit

of uncertainty in the correlated currents because the N vs. t plots for GCM are much less

linear than they are for HF. An example of this is illustrated in Fig. 8. Clearly, the GCM

results show long-time oscillation superimposed on a generally linear trend. The persistent

oscillation in N(t) might be evidence of a long-lived quasi-bound state on the molecule96,

but we have not been able to verify this possibility. In any case, the variation of N(t) makes

precise estimation of the true steady-state current difficult. We have chosen to use the

short-time data (e.g. the first 2.5 fs in Fig. 8) to tabulate the currents in Fig. 7, since this

avoids any potential complications from finite-size effects at long times. If we had instead

chosen to average over a long time interval (e.g. over the first 6 fs in Fig 8) the overall

currents would be smaller - similar in magnitude to the HF results, in fact. However, if we

fit over the longer interval, the computed GCM transport gap also becomes even larger (.65

a.u.) because the oscillations tend to wash out any directed charge flow when the current is

small. Thus, while the GCM result in Fig. 7 should be viewed as somewhat imprecise, one

conclusion is unavoidable: nonlocal correlation shifts the I-V curve opposite the direction

predicted by semilocal DFT.

V. CONCLUSIONS

In this article we have examined the impact of common approximations to exchange and

correlation on the simulation of electron transport through molecular junctions. We use the

prototypical device shown in Figure 1 as a model system, and employ the microcanonical

14



picture of real-time electron transport to study the conductance with various approxima-

tions to the electronic structure. The microcanonical picture has the advantage that it

is in principle exact for any formalism, such as TDDFT, that produces the exact density.

Real-time TDDFT simulations with different approximate xc functionals reveal that only

the non-local Hartree-Fock exchange has any significant impact on transport - the choice of

local functional has only a marginal effect. These observations are consistent with previous

results concerning the zero-bias conductance of a junction.62,67 In order to examine the influ-

ence of non-local correlation on transport, we first map the molecular junction onto a PPP

model Hamiltonian. We demonstrate that appropriately parametrized PPP dynamics pro-

vide a reasonably faithful description of the TDDFT charge currents obtained with different

xc functionals. Meanwhile, because of the simplicity of the PPP model, the complicated

effects of non-local correlation can be easily incorporated using the generator coordinate

method. We find that non-local correlation actually tends to widen the transport gap in

our model junction, whereas all commonly used approximate xc functionals narrow the gap.

Thus, conductance could be something of a worst-case scenario for semilocal xc functionals,

which are most successful when there is a partial cancellation between nonlocal exchange

and nonlocal correlation. In the particular model studied here, these two nonlocal energy

components shift the gap in the same direction, so that partial neglect of one of these terms

is bound to lead to large errors.

Our work has a number of implications in the ongoing search for accurate methods for

predicting molecular electron transport properties. First, our results strongly suggest that

most existing approximate functionals significantly overestimate the current in molecular

devices because they rely on local approximations. Typical metal-molecule-metal junction

experiments are performed in the tunneling regime, which corresponds to the low bias region

in this paper. In this situation, nearly all the functionals predict low currents, but the ones

with larger transport gaps will produce exponentially smaller currents. We find that by

far the dominant factor in determining the transport gap is the non-local part of the xc

functional. Second, our results show that non-local correlation can also effect the current

in the ballistic regime, where the bias is large enough to push an electron on or off the

molecule. For this specific case, we find that correlation significantly reduces the resistance

of the junction (i.e. the current goes up) toward ballistic transport.

Moving forward, our findings suggest several avenues for future research. First, it should
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be noted that all our conclusions have been drawn from a single test system. It will be

very interesting to see how these results change, or if they change at all, for a more realistic

molecular junction such as the Gold-BDT-Gold junction that is used as a common test case

of molecular transport. Calculations of this sort are underway in our group. Second, our

findings argue for increased investigation of non-local density functionals in conductance

simulations. We have here demonstrated that a fully non-local exchange model - as in

LC-LDA - can provide a significant improvement in DFT transport predictions. It would

be extremely interesting to explore the analogous influence of truly non-local correlation

methods. For example, one would expect that a method like GW-BSE97 or EOM-CC98

should significantly improve DFT transport predictions. A more computationally practical

approach might be given by TD current DFT99,100, where at least some degree of density non-

locality can be encoded by the local current.61,101,102 It is our expectation that investigations

along these lines will lead to advances both in the accurate prediction of electron transport

and the accurate description of electronic structure using wavefunction- and density-based

techniques.
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FIG. 1: Schematic representation of the model system and the voltage bias.

FIG. 2: Number of charges transferred from left to right as a function of time in the model junction.

The system begins in the ground state and a bias is applied at time zero. After a transient period

of a few hundred attoseconds, a quasi-steady state is achieved. This steady state lasts until the

charge in the leads is depleted at around 15 fs. Steady state currents can be obtained from the

slope of N vs. t as illustrated by the broken line. These results are with TD-LDA and a voltage

bias of 0.2 a.u., but similar physics prevails for all methods in this article.

FIG. 3: By running simulations at several voltages (left) and performing linear fits to the quasi-

steady state region for each N versus t curve, a current-voltage plot is obtained (right). These

results were obtained with LDA on the model junction. The same prescription is followed to obtain

I − V curves for all methods in this article.

FIG. 4: Comparison of the I-V curves obtained using the 6-31G(d) basis set on the entire system

with the I-V curves obtained using a mixed basis set (STO-3G on the leads, 6-31G(d) elsewhere).

FIG. 5: The I-V curves computed with four different methods. The STO-3G basis set is used for

the leads and 6-31G(d) for the rest of the model system.

FIG. 6: Current-voltage plots calculated using several all electron (left) and PPP (right) methods.

Analogous all electron and PPP method pairs are given the same color and line type.

FIG. 7: Current-voltage plots calculated using several PPP methods. The non-local correlation

present in the GCM calculations results in qualitative changes in the current.
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FIG. 8: Number of electrons transferred in TD-GCM and TDHF calculations at a fixed bias of

V=.74 a.u.. The correlated results show persistent oscillations not present in the uncorrelated

results.
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