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Abstract— The method of interval estimation (MIE) provides a
strategy for mean squared error (MSE) prediction of algorithm
performance at low signal-to-noise ratios (SNR) below estimation
threshold where asymptotic predictions fail. MIE interval error
probabilities for the Capon algorithm are known and depend on
the true data covariance and assumed signal array response.
Herein estimation of these error probabilities is considered
to improve representative measurement errors for parameter
estimates obtained in low SNR scenarios, as this may improve
overall target tracking performance. A statistical analysis of
Capon error probability estimation based on the data sample
covariance matrix is explored herein.

I. INTRODUCTION

Recent analysis of a maximum a posteriori penalty function

(MAP-PF) based tracker demonstrates the benefit of using

the Cramér-Rao bound (CRB) to represent the measurement

error in bearing estimates [1]. Low SNR, however, renders

the CRB an inadequate representation of measurement error

resulting in poorer performance of the tracking algorithm

[2]. As an example, Figure 1 shows the root mean squared

error (RMSE) performance of a bearing only Kalman filter

(KF) that received bearing measurements [from maximum-

likelihood (ML)] under low SNR conditions, but used the CRB

to represent their MSE. The KF predicts an RMSE that is more

optimistic than the actual RMSE realized by the tracker. The

goal herein is to use an improved measure of MSE for low

SNR scenarios as a means to (i) reduce the realized RMSE of

the KF, (ii) improve the tightness of KF prediction of RMSE,

and (iii) to make KF prediction more conservative in the low

SNR regime.

The method of interval estimation (MIE) is a technique

for extending asymptotic/high SNR predictions like the CRB

to lower SNR scenarios [3], [4]. MIE discretizes the integral

for mean squared error (MSE) based on the structure of the

underlying ambiguity function for parameter estimation. The

parameter estimate θ̂ of the true parameter θ1, for example,
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has MSE approximated by

E
{
(θ̂ − θ1)

2
}
�[

1−
M∑

m=2

Pe(θ̂ = θm|θ1)
]
σ2
ASYMP (θ1)

+
M∑

m=2

Pe(θ̂ = θm|θ1)(θm − θ1)
2

(1)

where σ2
ASYMP (θ1) is the asymptotic MSE (e.g. based on

the CRB or Taylor’s theorem), and Pe(θ̂ = θm|θ1) is the

error probability, providing a measure of the likelihood of the

parameter estimation algorithm choosing an estimate due to a

peak at θm when the true parameter value is θ1. Ultimately it

is desired to explore the improvement in tracking performance

MIE might provide for low SNR cases. The important enabler

for MIE is the interval error probability Pe(θ̂ = θm|θ1) that

identifies the boundary between the high SNR / asymptotic

region of performance and the low SNR region.

In practice one must rely on some data based estimate

of the error probability, as well as a data based estimate

of the asymptotic MSE. The goal of this paper is to assess

the statistical properties of a sample covariance based (SCB)

estimate of the Capon interval error probabilities. This will

allow quantification of the reliability of such an approach,

including e.g. how the number data samples affects the fidelity

of these probability estimates and what strategies are best for

such practical estimation.

II. STATISTICS FOR SCB ESTIMATE OF CAPON

ALGORITHM ERROR PROBABILITIES

Reference [4] provides the details of applying MIE to the

Capon algorithm [5]. Let the signal at angle θ have array re-

sponse v(θ) for an N sensor array; let the true data covariance

be R and sample covariance matrix (SCM) obtained from L
data observations be denoted R̂. Consider the Capon algorithm

evaluated at point θ:

PCapon(θ) =
1

L−N + 1
· 1

vH(θ)R̂−1v(θ)
. (2)

The two-point error probability facilitating application of MIE

is given by

PCapon
e (θa|θb) �

= Pr [PCapon(θa) > PCapon(θb)] . (3)

1842978-1-4244-9721-8/10/$26.00 ©2010 IEEE Asilomar 2010



Define parameters P+(F ), P−(F ), and Iab(F ) such that:

P±(F )
�
=

vH(θb)R
−1v(θb)± FvH(θa)R

−1v(θa)

2
and Iab(F )

�
= F

∣∣vH(θa)R
−1v(θb)

∣∣2 ; (4)

and also define λ±(F ), lλ(F ), and Sλ(F ):

λ±(F ) = P−(F )±
√

P 2
+(F )− Iab(F ),

lλ(F )
�
= −λ+(F )

λ−(F )
, Sλ(F )

�
= sign [λ−(F )] .

(5)

It can be shown that the exact pairwise error probability for

the Capon algorithm is given by [4]

PCapon
e (θa|θb) =

0.5 · {1 + Sλ(1)} − Sλ(1) · F [lλ(1), L−N + 2]
(6)

where F(x, J) is the cumulative distribution function (cdf) for

a special case of the complex central F statistic:

F(x, J)
�
=

xJ

(1 + x)2J−1

J−1∑
k=0

(
2J − 1
k + J

)
· xk. (7)

While eq(6) is exact, it is somewhat challenging to analyze

a data based estimate of this probability. Ignoring the apparent

statistical dependence between the two points PCapon(θ), θ =
θa, θb, however, yields a simple approximation of the error

probability that is surprisingly accurate in many scenarios:

Pr [PCapon(θa) > PCapon(θb)] �
Pr

[
aχ

2
L−N+1

bχ2
L−N+1

>
vH(θa)R

−1v(θa)

vH(θb)R−1v(θb)

]
= F

[
vH(θa)R

−1v(θa)

vH(θb)R−1v(θb)
, L−N + 1

]
�
= PCapon

ẽ (θa|θb).

(8)

The assumed independence of points θa, θb allows use of the

Capon-Goodman result [6], leading to a ratio of indepen-

dent chi-squared random variables that is known to be F -

distributed. Note that (8) is parameterized by a ratio of Capon

spectral points θa, θb. Define the ratio of SCB Capon spectral

estimates as the following random variable:

FΔ
�
=

vH(θa)R̂
−1v(θa)

vH(θb)R̂−1v(θb)
. (9)

The goal of this paper is first to assess the statistical properties

of the following SCB estimator of the Capon error probability:

P̂Capon
ẽ (θa|θb, FΔ) = F [FΔ, L−N + 1] (10)

and second to begin discussion of initial results for the

statistical analysis of a SCB estimate of the exact two-point

probability found in [4]. The pdf of FΔ is derived in [4] and

includes the affects of statistical dependence between points

θa, θb. Thus, the desired moments of P̂Capon
ẽ (θa|θb, FΔ) can

be obtained via numerical integration:

E

{[
P̂Capon
ẽ (θa|θb, FΔ)

]M}
=∫ ∞

0

PFΔ
(F )

[
P̂Capon
ẽ (θa|θb, F )

]M
dF.

(11)

The exact probability density function for P̂Capon
ẽ (θa|θb, FΔ)

can likewise be deduced with some additional effort.

Regarding (6), define the N × 2 matrix V = [v(θa)|v(θb)].
One can estimate λ±(F ) and lλ(F ) via the eigenvalues of the

2× 2 matrix

λ̂±(F ) =

λ1,2

{[ −F 0
0 1

]
(VHR̂−1V)−1

}
.

(12)

Since results apply regardless of how lλ(F ) is formed, the

condition number of (12) is chosen for convenience:

l̂λ(F )
�
= −

arg max
̂λ−,̂λ+

|λ̂(F )|

arg min
̂λ−,̂λ+

|λ̂(F )|
(13)

Let K = L − N + 2; It can be shown that its pdf is given

exactly by

l̂λ ∼ c · (l + 1)lK−2

(a1 − la2)2K−1

[
1 +

(
a1 − la2
la1 − a2

)2K−1
]

(14)

l ≥ 0 where the constants a1 and a2 are determined from R,V
and F ; also where sign(a2) = −sign(a1) and the normalizing

constant is given by

c =
22(K−1)(−a1a2)

KΓ(K − 1
2 )Γ(2K − 1)√

πΓ(K − 1)(a1 − a2)
. (15)

This paper will focus on the error probability estimator in

eq(10) given its relative simplicity. Analysis of a SCB estimate

of eq(6) will be the subject of future analysis.

III. NUMERICAL EXAMPLES

A. Statistics for Estimated Capon Error Probabilities

Using eq(11) one can explore the fidelity of using a SCB

approach to estimating error probabilities for the Capon al-

gorithm. Consider a bearing estimation scenario involving a

single planewave source and a set of signal bearing snapshots

x(l) ∼ CN [0, I + σ2
Sv(θT )v

H(θT )], l = 1, 2, . . . , L, for an

N = 18 element uniform linear array (ULA) with slightly less

than λ/2 element spacing. The array has a 3dB beamwidth of

7.2 degrees and the desired target signal is arbitrarily placed

at θT = 90 degrees (array broadside). The signal parameter

search space of interest is defined to be θ ∈ [60◦, 120◦]. Figure

2 illustrates the Capon error probability for the peak sidelobe

as a function of element level SNR for L = 1.5N, 3N ,

and 6N . Note that the approximation in eq(8) is illustrated

by the blue circle curves and is very accurate as it falls

nearly right on top of the exact error probability in eq(6)
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illustrated by the solid blue curve. The mean of the SCB

estimate P̂Capon
ẽ (θa|θb, FΔ) is illustrated by the red curve and

its standard deviation by the black dashed curves. Clearly, a

small bias persists even with increasing sample support L.

Analysis shows that this bias is the result of a SNR loss due

to reliance on an estimated covariance matrix. Surprisingly the

value of this bias is very weakly dependent on array size N
and sample support L. It is approximately ∼2dB for many

cases. When one corrects for this bias, a much better fit of the

statistics for P̂Capon
ẽ (θa|θb, FΔ) to the true value is obtained.

This improved fit is illustrated in the lower right image of

Figure 2 for the L = 3N case. The KF generates an estimate of

the signal power level σ2
S [2] that can be used to help apply this

correction in practice. It is also noteworthy that the variance

of the SCB estimates of probability decrease with increasing

SNR and increasing sample support L. Consequently, one can

expect increasing accuracy as the SNR increases toward the

threshold SNR.

B. Framework for Kalman Filter Sensitivity Analysis

How does the KF perform if the error bars (MSE estimate)

for the bearing measurements are optimistically small but the

bearing measurement is rather erroneous? One can explore

the sensitivity of the KF for varied levels of accuracy for

the MSE estimates it’s given for the bearing measurements

via simulation. Figure 3 illustrates via a block diagram the

framework for the KF analysis via simulation. First a target

bearing trajectory is generated based on a Markov model for

the bearing rate. Simulated array data can then be generated

based on this trajectory using one’s choice of target fluctuation

models. The Capon algorithm (or other, e.g. ML) can then

be applied to generate bearing estimates over time that can

be subsequently fed into the KF. One can then examine the

resulting RMSE of the KF as one varies the accuracy of the

MSE estimates that accompany the bearing measurements fed

to the KF.

The state vector within the Kalman filter is a three state

system composed of: target bearing, target bearing rate and

target received power. The target bearing rate is assumed to

have the form of a first order Markov random variable, while

the target received power is modeled as a random bias. The

target bearing is just the integral of the bearing rate. These

states are first represented in the form of a set of continuous

stochastic differential equations that are easily transformed

into a discrete set of difference equations [8].

The actual true target trajectory is generated as a single

realization of this same model for target bearing and bearing

rate. An example is shown in Figure 3. The two parameters

for the first order Markov for target bearing rate are the

time constant defined to be 1200 seconds, and the standard

deviation of the target bearing rate which is 3.5e-3 (deg/sec).

The time step is one second and the duration of the simulation

is 500 time steps. Measurements are processed at each time

step. The variance assigned to each measured Capon bearing

estimate is assigned either an asymptotic value based on

the Taylor series [7] (accounting for local errors) or a non-

asymptotic value based on MIE and defined by equation (1)

(accounting for both local and global errors).

The Kalman filter is run 5000 times, each time producing a

filtered target bearing and bearing rate which are compared to

the true trajectory to obtain average errors. The sample error

covariance from the 5000 Monte Carlo trials is compared to

the Kalman filters own predicted error covariance.

C. Kalman Filter RMSE Performance

Herein a simple N = 18 element horizontal line array that

measures data from a distant target near array broadside is

considered. The target bearing trajectory used for simulation

is shown in Figure 3. The bearing estimates are obtained

via the Capon algorithm where each estimate uses L = 2N
training samples in the covariance estimate. Figure 4 illustrates

the resulting RMSE performance of the KF for varied SNR

levels. The threshold SNR (element level) for this simulation

is ∼−8dB. The first plot in Figure 4 shows the KF RMSE

when the signal level is above threshold SNR. While only

visible in the other images there are four curves shown. The

solid curves show the true bearing RMSE realized by the KF

and the dashed lines show the KF’s prediction of the bearing

RMSE. The red lines are obtained when the MSE estimates

accompanying the Capon bearing estimates derive from Taylor

series [7] (asymptotic), and the blue lines are obtained when

the MSE estimates derive from MIE (non-asymptotic). The

second and third images in Figure 4 shows the performance

when the signal level falls below threshold. It is noteworthy

that for these low SNR signals the true KF bearing RMSE

has been reduced by using MIE and that the tightness of fit

between the true RMSE and the KF predicted RMSE improves

significantly. Lastly, use of MIE results in a KF predicted error

that is more conservative at low SNRs as desired.

IV. CONCLUSIONS

This paper explores the notion of using MIE to improve the

accuracy of MSE estimates attached to bearing measurements

fed to a Kalman filter (KF) tracker. MIE requires calculation of

error probabilities; therefore, a simple SCB estimate of these

probabilities was proposed and analyzed. It was found that

an SNR loss of ∼2dB was present and nearly invariant to

array size N and sample support L. Correcting for this bias

was shown to significantly improve the match between the

statistics of these estimated error probabilities and the true

values. It was also shown that the accuracy of these SCB

error probability estimate improves with SNR and sample

support, getting better as one approaches the threshold SNR

from below. A simulation framework was exploited to assess

the benefit of improved MSE estimates to the KF overall

performance. It is shown that for low SNR signals the true

KF bearing RMSE is reduced by using MIE and that the

tightness of fit between the true RMSE and the KF predicted

RMSE improves significantly. Use of MIE also results in a

more conservative prediction of error variance by the KF.

1844



True RMSE 
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SNR ~0dB 

CRB 

Fig. 1. Kalman filter performance: Below threshold SNR bearing estimates,
but CRB used to represent MSE

Future work will further explore the practicalities of such

an approach, as well as consideration of more dynamic target

trajectories with larger variations in SNR levels.
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ẽ (θa|θb, FΔ) for θa of peak sidelobe: N = 18

element ULA
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Fig. 3. Kalman filter sensitivity analysis framework
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