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Surface formulations of biophysical modeling problems offer attractive theoretical and
computational properties. Numerical simulations based on these formulations usually begin with
discretization of the surface under consideration; often, the surface is curved, possessing
complicated structure and possibly singularities. Numerical simulations commonly are based on
approximate, rather than exact, discretizations of these surfaces. To assess the strength of the
dependence of simulation accuracy on the fidelity of surface representation, here methods were
developed to model several important surface formulations using exact surface discretizations.
Following and refining Zauhar’s work �J. Comput.-Aided Mol. Des. 9, 149 �1995��, two classes of
curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and
solvent-excluded �molecular� surfaces. Numerical integration techniques are presented that can
accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating
the exactness of the surface discretizations and demonstrating the correctness of the presented
integration methods, a set of calculations are presented that compare the accuracy of approximate,
planar-triangle-based discretizations and exact, curved-element-based simulations of
surface-generalized-Born �sGB�, surface-continuum van der Waals �scvdW�, and boundary-element
method �BEM� electrostatics problems. Results demonstrate that continuum electrostatic
calculations with BEM using curved elements, piecewise-constant basis functions, and centroid
collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of
comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest
obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the
solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer
improved approximations with increasing discretization and associated increases in computational
resources. The results clearly demonstrate that the methods for approximate integration on an exact
geometry are far more accurate than exact integration on an approximate geometry. A MATLAB

implementation of the presented integration methods and sample data files containing
curved-element discretizations of several small molecules are available online as supplemental
material. © 2007 American Institute of Physics. �DOI: 10.1063/1.2743423�
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I. INTRODUCTION

Several important problems in molecular biophysics can
be modeled using boundary-integral equations or surface in-
tegrals over the molecular surfaces. Continuum electrostatics
models based on Tanford-Kirkwood theory1–4 give rise to
piecewise-constant-coefficient Poisson or Poisson-
Boltzmann partial differential equations that can be con-
verted to boundary-integral equations. The generalized-Born
model,5,6 commonly used to estimate electrostatic interac-
tions, can also be transformed to a surface formulation.7 Re-
cently, Levy et al. presented a continuum model for estimat-
ing the van der Waals interaction energy between a
molecular solute and surrounding aqueous solvent;8 this
model can also be converted to a surface integral.9

Surface formulations offer several advantages for nu-
merical computation. The unknowns in boundary-integral
equations span two rather than three dimensions, requiring
correspondingly fewer variables and, if computed using care-
fully designed algorithms, can use less computer resources.
In addition, exterior problems—those requiring discretiza-
tion of an infinite or semi-infinite volume domain—are re-
duced to problems over compact surface domains. For most
molecular problems of interest, the surfaces are complicated,
and closed-form expressions for the required integrals are
unavailable. Instead, a complicated surface is usually ap-
proximated as the union of a set of simpler subdomains over
which integration can be performed numerically or analyti-
cally. Commonly, these subdomains, which are referred to as
boundary elements, or panels, are planar triangles or quadri-
laterals. There exists a large body of literature devoted to the
evaluation of integrals over these domains �see, for example,
Refs. 10–13�.

In many physical modeling problems, the surfaces of
interest are curved, and piecewise-flat geometric approxima-
tions can introduce anomalies.14,15 Here, we are concerned
with biological macromolecule problems, where the surface
represents an atom or a collection of atoms, or the closest
approach of a sphere to such a collection. Our problems can
include thousands of atoms even for a moderately complex
molecule. For such complicated problems, it is difficult to
obtain a surface discretization, and integrating singular or
near-singular functions over these curved surfaces poses a
challenge. Numerical quadrature techniques have been de-
veloped for quadratically curved surfaces �defined by curves
along the element edges�16 and B splines,17,18 but relatively
few numerical integration techniques suitable for molecular
shapes have been presented.19,20 For boundary-element meth-
ods, improved accuracy is often achieved by using finer
boundary-element representations with a constant number of
basis functions per panel. Because these surface discretiza-
tions only approximate the true geometry, it is generally dif-
ficult to learn how much of the improvement is due to the
more accurate surface discretization and how much is due to
an improvement in the overall basis set used to approximate
the solution. Increasing the number of surface elements im-
proves both the basis set and the geometrical approximation,
and because it can be difficult to assess the relative impor-
tance of these effects, one cannot determine where effort

should be made to achieve an optimal �or even efficient�
trade-off between accuracy and computational expense.21

In this work we explore the impact of using exact
curved-element rather than planar-element discretizations of
the solute-solvent interface for several types of molecular
modeling problems. First, we define two classes of curved
boundary elements that can exactly represent three of the
most common molecular boundary definitions: molecular
surfaces, solvent-accessible surfaces, and van der Waals
surfaces.22–24 Second, we develop efficient numerical tech-
niques to evaluate singular and near-singular integrals over
the curved elements. Using these methods, we calculate
generalized-Born radii, solute-solvent van der Waals interac-
tion energies, and electrostatic components of solvation en-
ergies. Our work on curved boundary elements most closely
resembles the work of Zauhar19 and that of Liang and
Subramaniam.25 We present exact discretizations of solvent-
excluded surfaces, in contrast to the approximate solvent-
accessible surfaces of Liang and Subramaniam and the
smoothed solvent-excluded surfaces presented by Zauhar;
portions of the molecular surface that are self-intersecting are
removed from the discretizations, following the work of
Connolly.26 In addition, we describe numerical integration
techniques designed to treat the curved-element singular and
near-singular integrals required for numerical solution of the
boundary-integral equations. One of our more significant
findings is that if the accurate surface geometry is used, then
only relatively few discretization degrees of freedom are
needed to achieve high accuracy. Therefore, the very large
number of planar elements required to achieve high accuracy
in the overall solution is almost certainly a consequence of
the fact that very small planar elements are needed to accu-
rately represent the geometry.

In Sec. II we introduce several physical problems that
can be formulated as boundary-integral equations or as prob-
lems in integrating functions over solute-solvent interfaces,
and also briefly describe popular interface definitions and
discretization approaches. Curved elements that can exactly
represent the relevant boundaries are defined in Sec. III, and
in Sec. IV we present accurate and efficient numerical inte-
gration methods for these curved boundaries. Validation of
the surface discretizations and the integration techniques, as
well as comparisons between curved-element and planar-
element surface methods, are given in Sec. V. Conclusions
are in Sec. VI.

II. BACKGROUND

A. Surface formulations of biophysical problems

1. Molecular electrostatics

Figure 1 illustrates the mixed discrete-continuum elec-
trostatics model.2–4,27 The molecular interior is defined to be
a homogeneous region with low permittivity, denoted �I, and
the molecule’s charge distribution is taken to be a set of nc

discrete point charges, which are often located at the atomic
nuclei. In this low-permittivity region the electrostatic poten-
tial satisfies a Poisson equation with a charge density that is
a weighted sum of Dirac delta functions. The solvent region
exterior to the boundary � is taken to be a homogeneous
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medium with much higher permittivity than the interior,
which is denoted by �II, and a Debye screening parameter �.
In this exterior region, the potential is assumed to satisfy the
linearized Poisson-Boltzmann equation. The Richards mo-
lecular surface28 is commonly used to define the boundary �,
and is defined in Sec. II B. Ion-exclusion layers surrounding
the molecular surface may also be treated;29 integral-
equation formulations for such problems are outside the
scope of the current report, but we have developed them
elsewhere.30

The Poisson problem in the interior and the linearized
Poisson-Boltzmann problem in the exterior are coupled by
continuity conditions at the boundary.31 These coupled par-
tial differential equations can be converted to integral equa-
tions in several ways. Problems in nonionic solutions �those
with �=0 in the solvent region� can be solved using the
induced surface-charge method.32,33 When the ionic strength
is nonzero, Green’s theorem can be applied to derive either a
mixed first-second-kind integral formulation34 or a purely
second-kind formulation.35 Chipman36 has described and
compared these and other formulations. We present the
mixed formulation originally presented by Yoon and
Lenhoff.34

Applying Green’s theorem in both regions and applying
the continuity conditions gives the coupled integral equations

1

2
��r�� +

W
�

��r��
�GI

�n�r��
�r�;r��dA�

−
W

�

��

�n�r��
�r��GI�r�;r��dA�

= �
i=1

nc qi

�I
GI�r�;ri� , �1�

1

2
��r�� −

W
�

��r��
�GII

�n�r��
�r�;r��dA�

+
�I

�II
W

�

��

�n�r��
�r��GII�r�;r��dA� = 0. �2�

Here, r� is a point on the surface; r� is the integration vari-
able on the surface; n�r�� is the normal at r� pointing into
solvent; W denotes the principal value integral taken in the
limit as a field point approaches r� from the inside;31 ��r�
and �� /�n�r� denote the potential and its normal derivative
at the surface; qi is the ith of nc point charges and ri its
location; and GI�r ;r�� and GII�r ;r�� are the free-space
Green’s functions for the governing equations in the two
regions. Typically, GI�r ;r��=1/ �4��r−r��� and GII�r ;r��
=exp�−��r−r��� / �4��r−r���, which is the free-space
Green’s function for the linearized Poisson-Boltzmann equa-
tion.

To solve Eqs. �1� and �2� using a boundary-element
method, the solute-solvent boundary is discretized and the
surface variables are approximated as weighted sums of
compactly supported basis functions, where the weights are
selected so that the discretized integrals match a set of con-
straints �see, for example, Refs. 37 and 38�. In collocation
methods, the residual is forced to be exactly zero at a set of
points on the surface; in Galerkin methods, the residual is
required to be orthogonal to the basis functions. Using col-
location and piecewise-constant basis functions such that the
ith basis function is unity on the ith boundary element and
zero elsewhere, we form a dense block matrix whose entries
take the form

�
element j

K�ri;r��dA�, �3�

where ri denotes the collocation point associated with the ith
boundary element and K�r ;r�� is either a Green’s function or
a Green’s function derivative with respect to the surface nor-
mal at r�.

2. Surface-generalized Born

The generalized-Born �GB� model of solute-solvent
electrostatic interactions yields a more easily computed ap-
proximation to energies derived by solving the Poisson-
Boltzmann equation.5 The GB pairwise energy Ui,j between
charges i and j is given by

Ui,j = −
1

2
� 1

�II
−

1

�I
	 qiqj


rij
2 + RiRj exp�− rij

2 /4RiRj�
, �4�

where qi and qj are the charge values and Ri and Rj are the
Born radii. The Born radius Ri for an atom or group of the
solute is defined such that a sphere with radius Ri and cen-
trally located unit charge has solvation energy equal to that
of the entire molecule if qi=1 and qj =0∀ j� i.

Still et al. proposed an approach to calculating the Born
radius Ri by relating the volume integral

FIG. 1. A mixed discrete-continuum model for biomolecule electrostatics.
The surface � represents the dielectric boundary between regions with di-
electric constants �I and �II. Partial atomic charges are located in region I,
with illustrative charges q1 at r1 and q2 at r2. The Debye screening parameter
� is zero within region I and may be nonzero in region II. In work not
described here, an ion-exclusion layer may also be treated �Refs. 29 and 30�.
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�
Vint

1

�r� − ri�4dV� �5�

to the analytical expression for the solvation energy of a
centrally located charge in a spherical dielectric cavity.5 In
this equation, Vint is the volume of the solute interior and r�
denotes the integration variable. Similar expressions to cal-
culate Born radii have also been presented.7,39,40 Ghosh et al.
introduced the surface-generalized-Born �sGB� method,7 in
which an application of the divergence theorem converts Eq.
�5� to the surface integral

�
S

�r� − ri�Tn̂�r��
�r� − ri�4 dA�, �6�

where S denotes the dielectric boundary. For our calcula-
tions, we used the Richards molecular surface described in
Sec. II B.

3. Continuum van der Waals

Levy et al. described a continuum method to model the
van der Waals interactions between solute and solvent, as-
suming a constant solvent density and using a spherical
model for a water molecule.8 In this model, the interaction
energy is then expressed as an integral over the solvent vol-
ume,

UvdW = �
i=1

n ��
solvent

�wuvdW
�i� �r�dV�	 , �7�

where n denotes the number of atoms in the solute, �w the
bulk water number density, and uvdW

�i� �r� the van der Waals
potential between atom i and a water molecule located at a
distance r= �r�−ri� from the atom center ri.

Because the van der Waals potential is defined by the
distance from a water molecule center to an atom center, the
solvent-accessible surface22 is the natural solute-solvent
boundary definition for the integral in Eq. �7�. If the van der
Waals potential is modeled by the Lennard-Jones 6-12 func-
tion

uvdW
�i� �r� =

A�i�

r12 −
B�i�

r6 , �8�

then the divergence theorem applied to the integral in Eq. �7�
yields

�
V
�A�i�

r12 −
B�i�

r6 	dV = �
S

�

�n
� A�i�

90r10 −
B�i�

12r4	dS . �9�

B. Defining molecule-solvent interfaces

Figure 2 illustrates the three most prevalent definitions
for the solute-solvent boundary, using a two-atom example.
A molecule’s van der Waals surface, as shown in Fig. 2�a�, is
defined to be the boundary of a union of spheres. Each
sphere represents an atom centered at a particular location in
space and the sphere radius is set to the atom’s van der Waals
radius; for reduced-atom models such as the polar-hydrogen
CHARMM19 model,41 some spheres represent groups of at-

oms. The Lee and Richards solvent-accessible surface,22 de-
picted in Fig. 2�b�, is also a union of spheres; in this defini-
tion, each sphere’s radius is equal to the atom or group’s van
der Waals radius plus the radius of a spherical probe mol-
ecule that is rolled over the union of atoms. Both the van der
Waals and solvent-accessible surfaces can be constructed by
forming a union of “patches,” where each patch is the inter-
section of a given atom’s sphere with a set of half spaces.23

Richards28 defined the molecular surface, or solvent-
excluded surface, and Connolly23 presented an algorithm for
its analytical determination. As illustrated in Fig. 2�c�, the
molecular surface is defined by rolling a probe sphere over
the union of atomic spheres with van der Waals radii; the
surface consists of the set of points corresponding to the
probe sphere’s closest approach to the boundary of the union.
In this definition, the regions of the molecular surface that
correspond to probe positions at which the probe contacts the
sphere union at only one position are said to belong to the
contact surface; such convex, spherical surface patches are
called caps.23 In contrast, the reentrant surface comprises
regions that correspond to probe positions at which the probe
touches the sphere union at multiple points. Where the probe
touches two spheres of the union, its movement is restricted
by one degree of freedom; a toroidal piece of surface, or belt,

FIG. 2. Three definitions of solute-solvent boundaries, shown for a two-
atom case: �a� van der Waals surface, �b� the Lee and Richards solvent-
accessible surface, and �c� the Richards solvent-excluded �molecular� sur-
face. The dotted lines in �b� and �c� denote the van der Waals surface.
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is then produced as the probe rotates about the axis defined
by the two sphere centers. Where the probe touches the
union at three or more points, a concave spherical surface
patch is defined; this type of face is termed a pit. All three
types of surface patches, or faces, are bounded by circular
arcs, and molecular surfaces can be represented exactly as a
finite union of different instances of these surface patches.23

Many researchers have presented algorithms to dis-
cretize solvent-excluded and solvent-accessible
surfaces.19,42–50 These algorithms take as input the atom cen-
ters and their radii, as well as the probe-sphere radius, and
return a set of boundary elements that approximate the mo-
lecular or accessible surface. Surface approximation accu-
racy is usually improved by using more, but smaller, bound-
ary elements. Most work has focused on generating planar-
triangle-based surface discretizations, but several groups
have developed more sophisticated approaches. Zauhar and
Morgan have reported cubically curved elements,33,51 Juffer
et al. used cubic interpolation,35 Bajaj et al. used B-spline
patches,42 and Bordner and Huber used quadratically curved
elements.52 Zauhar has presented an approach to exactly dis-
cretize a smooth approximation to the molecular surface
such that the surface has a continuous normal.19 Liang et al.
found an exact solvent-accessible surface derived from alpha
shapes but solved problems on an exactly curved approxima-
tion to this surface.25,45,46 Our approach exactly discretizes
the Richards molecular surface using Connolly’s method,
and we solve problems on this exact representation using
numerical integration techniques specialized for these
surfaces.

III. SURFACE DISCRETIZATION

As discussed in Sec. II B, three common solute-solvent
boundary definitions can be represented as the union of por-
tions of toruses and spheres, where the surface construction
ensures that the boundaries between different surface patches
are formed by arcs of circles. In this section we define two
classes of curved surface elements that permit the exact dis-
cretization of the solute-solvent boundaries.

A. Toroidal element definition

A torus is defined by revolving a circle about an axis that
lies in the same plane as the circle; referring to Fig. 3, z is the
axis of revolution, and the dotted circle is being revolved

about this axis. The circle center, normal, and revolution axis
together define a local coordinate system, and it is useful to
describe the torus as having an outer radius c, which is the
shortest distance between the circle center and the revolution
axis, and inner radius a, which is the radius of the circle.
With z as the axis of revolution, we complete the coordinate
system by defining y parallel with the normal of the circle at
the revolution starting position, and the coordinate system
origin so that the circle center lies in the x-y plane. Given
such a coordinate system, two angular coordinates, � and �,
shown in Fig. 3 suffice to specify any point on the torus. The
angle � describes how far the circle has revolved about z, and
the angle � determines the point’s position on the circle at �,
defined such that �=0 points radially outward from the co-
ordinate system origin and �=� points radially inward. We
define a torus element as the portion of a torus with angular
coordinates �1	�	�2 and �1	�	�2. Any toroidal surface
patch on a solvent-excluded surface can be exactly dis-
cretized using such torus elements. One toroidal element is
shown in Fig. 3. The circle center, as it revolves around the
axis of revolution z, traces a circle, which is shown in black
in the figure. We number and define the edges of the torus in
a right-handed manner �i.e., the interior of the element is to
the left as one traverses the edges�. Because the toroidal
surface patches form part of the reentrant surface, the torus
element normal points into the finite volume enclosed by the
torus.

B. Spherical element definition

We define a generalized spherical triangle �GST� to be a
three-sided region of a sphere’s surface whose edges are
formed by three circular arcs.9 The arcs are not permitted to
intersect except at their end points, which are the vertices of
the generalized spherical triangle. Furthermore, the local in-
terior angles must be less than � radians. This definition
contrasts with a regular spherical triangle, whose arcs are
portions of great circles on the sphere. Figure 4 illustrates a
GST in which one arc is a portion of a small circle and the
others belong to great circles. The arcs are oriented and num-

FIG. 3. Specification of a torus and a torus element with 0	�	� /3 and
� /2	�	5� /6.

FIG. 4. A generalized spherical triangle �GST� with one bounding edge
belonging to the circle centered at the blue dot. The remaining edges belong
to great circles on the sphere.
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bered in a right-handed fashion, following standard math-
ematical convention. Convex spherical patches have a nor-
mal pointing away from the sphere center. Concave spherical
patches, which are formed only in solvent-excluded surfaces
at points where the probe sphere touches three or more atoms
simultaneously,28 have a normal pointing towards the probe-
sphere center, because the concave patch must point out into
the solvent region. Small-circle arcs are generally needed to
resolve the boundaries between different surface patches;19 if
only great-circle arcs are used to form element boundaries,
the elements intersect each other rather than meeting exactly
at the boundaries. Approximate curved-element discretiza-
tions of van der Waals and solvent-accessible surfaces can
also be generated by taking a triangularized surface and pro-
jecting the planar triangle edges out to the appropriate sphere
surfaces;25 the surface elements so generated have exact cur-
vature, but their edges are all arcs of great circles.

IV. CURVED-ELEMENT INTEGRATION METHODS

In this section, numerical techniques are presented to
evaluate integrals of the form


�r� = �
�

K�r;r��dA�, �10�

where � is either a toroidal or generalized spherical triangle
element, as defined in Sec. III. For the problems discussed in
this work, the function K�r ;r�� is singular at r=r� and decays
monotonically to zero as �r−r��→�. For smooth integrands
such as far-field integrals in which r is far from �, the inte-
gration may be performed using numerical quadrature. We
present specialized methods for smooth integrands in Sec.
IV A. Integrals for which r�� or is sufficiently close that
the integrand varies extremely rapidly �near-field integrals�,
require special techniques, which we present in Sec. IV B.

A. Far-field quadrature

When the evaluation point r in Eq. �10� is sufficiently far
from the domain of integration �, K�r ;r�� varies smoothly
over � and therefore relatively low-order numerical quadra-
ture provides accurate results. A qth-order quadrature rule
estimates the integral of a function f over a simple domain �
as a weighted sum of function evaluations at q specified
points in � as

�
�

f�x�dx � �
i=1

q

wif�xi� . �11�

The values wi are quadrature weights for the quadrature
points xi. Many types of quadrature rules are designed such
that they give exact or nearly exact results if the domain is
simple and the integrand is a sufficiently low-order polyno-
mial. For simple integration domains such as planar tri-
angles, well-established rules such as those presented by
Stroud10 offer excellent accuracy.

To integrate a function over a more complex domain �,
one typically determines a smooth coordinate transformation
M from a simple domain �, which has a known quadrature

rule, to the domain of integration �. Applying the chain rule
transforms the integral of Eq. �10� to the form


�r� = �
�

K�r;M�r̂����J�r̂���dÂ�, �12�

where r̂� denotes the integration variable in � and �J�r̂��� is
the determinant of the Jacobian of M at r̂�. A q-point quadra-
ture rule for the domain � allows Eq. �10� to be approxi-
mated as


�r� � �
i=1

q

wiK�r;M�r̂i����J�r̂i��� . �13�

Because the original integrand over � is multiplied in the
new integral by the Jacobian determinant �J�, it is essential
that the product of the original integrand and the coordinate
transformation be smooth; that is, K�J� should vary smoothly
over �. Such coordinate transformations for the curved ele-
ments presented in the preceding subsection are described
next.

1. Generalized spherical triangle coordinate
transformation

Zauhar has presented one coordinate transformation be-
tween a planar triangle and what we have defined as the
GST.19 We present an alternative. Figure 5 illustrates the co-
ordinate transformation from a simple domain �, the stan-
dard planar triangle of Fig. 5�a� with vertices
�0,0�T ; �1,0�T ; �0,1�T�, to the more complicated GST do-
main �, shown in top and side views in Figs. 5�b� and 5�c�.
The GST has been rotated so that the longest arc, labeled a1,
lies in a plane perpendicular to the x axis and the arc mid-
point lies in the y=0 plane. The standard triangle parametric
coordinates � ,��T are first mapped to the spherical coordi-
nate system �� ,��T, illustrated in Figs. 5�b� and 5�c�, and
then trivially transformed to Cartesian coordinates. The angle
� measures the angle from the positive x axis and the angle
� measures rotation about the x axis such that a point with
�=0 lies in the y=0 plane.

The reference triangle edge from v̂3= �0,1�T to
v̂1= �0,0�T is mapped to the GST edge from v3 to v1. Letting
��i ,�i�T denote the spherical coordinates of GST vertex vi, it
is clear that �1=�2. As shown in Fig. 5, every line of con-
stant � in the standard triangle is mapped to an arc of the
circle defined by �=�1+���3−�1�; restricting v3 to lie
above the z=0 plane ensures that every � defines a unique
circle and that every circle intersects the v2−v3 and v3−v1

arcs exactly once. For a given �, the arc end points are
defined by the intersection of the circle at elevation angle �
with the arcs a2 and a3. A point � ,��T in the reference
triangle is mapped to this arc by mapping the point’s para-
metric distance s= / �1−�� to a parametrized form of the arc
at � between a2 and a3. This mapping is guaranteed to exist
if the vertex v3 is further from the plane of arc a1 than any
other point on the arcs a2 and a3. The restrictions are im-
posed during surface discretization. Appendix B contains the
full derivation of the coordinate transformation and its
Jacobian.
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2. Toroidal element coordinate transformation

A torus element is isomorphic to a rectangle. A simple
mapping suffices to transform the unit rectangle, with verti-
ces �0,0�T ; �0,1�T ; �1,1�T ; �1,0�T�, to an arbitrary torus ele-
ment defined by �� ,�� ��� ��1 ,�2� ,�� ��1 ,�2��. For the
torus in Fig. 3, with outer radius c, inner radius a, centered at
the origin, and with axis of revolution along the z axis, the
Cartesian coordinates of a point at � ,��T in parametric co-
ordinates are

r = ��c + a cos����cos���
�c + a cos����sin���

a sin���
� , �14�

where �=�1+��2−�1� and �=�1+���2−�1�. The determi-
nant of the Jacobian is

�J� = a�c + a cos������2 − �1���2 − �1� . �15�

B. Near-field integration techniques

The integrands of interest have singularities as the evalu-
ation point approaches the domain of integration. As a result,
even high-order Gaussian quadrature rules fail to accurately
approximate the singular and near-singular integrals; more
sophisticated techniques are required. In this section we
present techniques for integrating the Laplace kernel
K�r ;r��=1/ �4��r−r��� and its normal derivative �K /�n�r��.
Appendix C describes how these methods may be adapted
for the linearized Poisson-Boltzmann, surface-generalized-
Born, and continuum van der Waals kernels.

1. Single-layer potential

The integral


�r� = �
�

1

4��r − r��
dA� �16�

is referred to as the single-layer potential because it repre-
sents the potential induced by a unit-density monopole
charge layer on the integration domain �. Accurate evalua-
tion of such integrals is fundamental to the accuracy of the
boundary-element methods as described here.

a. Spherical element single layer. When � is a general-
ized spherical triangle, the method of Wang et al. can be
applied to evaluate the integral in Eq. �16�.9,53 In this
method, the chain rule is used to replace the integral over the

GST of a given charge distribution f̂�r� with an integral of a
modified charge distribution f�r� over a planar domain �.
The domain � is chosen such that the potential induced by
the modified charge distribution f�r� can be accurately ap-
proximated using well-established techniques.13,54 For the
applications discussed in this paper, � is chosen so that the
reference domain � lies tangent to the GST at the GST cen-
troid. Figure 6 illustrates the approach. For uniform distribu-

tions on the GST �that is, f̂�r�=1�, the relation

�
�

G�r;r��dA� = �
�

G�r; r̂��f�r̂��dÂ�

= �
�

G�r; r̂���G�r;M�r̂���
G�r; r̂��

�J�r̂���	dÂ�

�17�

defines the reference-element monopole charge distribution
f�r�, which is the term in parentheses in the third integral that
exactly reproduces the curved-element induced potential. In
Eq. �17�, r̂� is a point in the flat element, M�r̂�� is its image
under the coordinate transformation from � to �, and J�r̂�� is

FIG. 5. �a� The standard unit triangle in parametric coordinate space. �b� A
GST viewed from the negative y axis. The angle � is measured relative to
the positive x axis. Each � is mapped to one plane with normal along the x
axis; the plane intersects the sphere and defines a circle. �c� A GST viewed
from the positive z axis. The dashed lines indicate the circle of intersection
between the sphere surface and the plane specified by �. The angle � speci-
fies the rotation about the x axis. The image of the standard-triangle vertices
under the coordinate transformation are labeled.
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the Jacobian of the mapping. Because the flat element is
tangent at the centroid and the sphere has constant curvature,
f�r� uniformly approaches �J� at the centroid, and the
smoothness of f�r� allows it to be represented approximately
using a low-order polynomial.53 The integrals over � can
then be computed as

�
�

G�r; r̂���G�r;M�r̂���
G�r; r̂��

�J�r̂���	dÂ�

� �
i,j

�i,j�
�

i� jG�r; r̂��dÂ�, �18�

where the polynomial coefficients are denoted by �i,j and
each monomial integral on the right-hand side can be calcu-
lated using the methods of Newman or Wang.13,54 The coef-
ficients �i,j� are found by least-squares solution of the Van-
dermonde matrix equation

�
1 1 �1 ¯ 1

k�1
l

1 2 �2 ¯ 2
k�2

l

] � ]

1 n �n ¯ n
k�n

l
��

�0,0

�1,0

]

�k,l

�
= �

�G�r;M�r̂1��/G�r; r̂1���J�r̂1��
�G�r;M�r̂2��/G�r; r̂2���J�r̂2��

]

�G�r;M�r̂n��/G�r; r̂n���J�r̂n��
� , �19�

where r̂i= �i ,�i�T denotes the ith of n sample points, and n
must be greater than the number of coefficients to be fitted.

The mapping M�r̂� from the flat reference element can
be defined in one of two ways. In the first, the flat element
edges are defined by casting rays from the sphere center
through the GST boundary arcs to the tangent plane. Bound-
ary arcs that are segments of great circles map to straight
lines in this projective transformation, and any arc belonging
to a small circle becomes a portion of a conic curve �either a
hyperbola or an ellipse�. The monomial integrals can then be
evaluated by analytical integration over a triangular domain,
followed by addition or subtraction, as necessary, of the re-
sult of numerical quadrature over the conic region.9 An al-
ternative method is to project the GST vertices to the tangent

plane, which defines a triangle. The mapping between this
reference triangle and the GST is then a composition of two
mappings: the first transforms the reference triangle to the
standard triangle, and the second transforms the standard tri-
angle to the GST. The first mapping is straightforward, and
methods for the second mapping have been presented in
Sec. IV A 1.

We emphasize that our selection of a flat reference ele-
ment that lies tangent at the GST centroid suffices for the
kernels specified in this work and for BEM approaches based
on piecewise-constant basis functions and centroid colloca-
tion; other problems may require that a reference element be
defined in relation to the evaluation point.53

b. Toroidal element single layer. When � is a toroidal
element, the previously described polynomial-fitting method
is difficult to apply because the torus surface has unequal
radii of curvature at most points. As a result, the ratio
G�r ;M�r̂��� /G�r ; r̂�� takes different limits depending on the
direction from which r� approaches r, and this phenomenon
necessitates the development of more complicated coordi-
nate transformations. Instead, recursive subdivision is ap-
plied to evaluate near-field integrals.55

The element integral is evaluated in one of two ways.
We denote the element centroid by rc and its area by A. If the
evaluation point r satisfies �r−rc��5
A, the element is split
into four subelements defined by equally dividing the angu-
lar ranges. The subelement integrations are then evaluated
independently. Further subdivision may be required, depend-
ing on the position of the evaluation point relative to the four
new centroids and the new element areas. The second near-
field integration method is applied when the evaluation point
lies at the element centroid �i.e., r=rc�. This case arises for
boundary-element-method problems solved using centroid-
collocation schemes. Symmetry in the � direction allows
these integrals to be evaluated for half the computational
expense of a full subdivision. For the molecular applications
described here, both subdivision integration methods halt the
subdivision when the divided elements have no edges longer
than 10−5 Å.

2. Double-layer potential

The double-layer integral


�r� = �
�

�

�n�r��
� 1

4��r − r��
	dA� �20�

represents the potential due to a unit-density dipole charge
layer on the domain. The approach of Wang et al. for double-
layer integrals cannot be used for singular integrals. The ratio
K�r ;M�r̂��� /K�r ; r̂�� is not defined on the reference element
because K�r ; r̂��=� /�n�r���1/4��r−r��� vanishes for all
r��r in the plane of the dipole layer.

We instead use the double-layer calculation presented by
Willis et al.,56 which extends the work of Newman.13 Recall
that the potential induced by a normally oriented dipole
charge layer of uniform density equals the solid angle sub-
tended by the integration domain at the evaluation point r.31

Exploiting this characteristic, Newman derived an analytic
expression for the double-layer potential induced by a uni-

FIG. 6. Schematic of the approach for evaluating the potential induced by a
distribution of monopole charge on a generalized spherical triangle. A planar
reference element viewed edge on �blue� is defined to be tangent to the
original GST �black solid arc� at the GST centroid. The reference element
vertices are defined to be the projection of the GST vertices to the plane
tangent to the GST centroid.
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form dipole distribution on a boundary element bounded by
straight line segments.13 Willis et al. extended Newman’s
work to uniform distributions on curved elements, noting
that the subtended solid angle can be found using
quadrature.56

Figure 7 illustrates this approach for evaluating the
double-layer potential in Eq. �20�. The evaluation point r is
translated to the origin and the coordinate system is rotated
so that the element centroid lies on the z axis. We define a
sphere of unit radius centered at the origin and cast rays from
the origin through the element edges to the sphere surface.
The projected edges define a region on the sphere, and we
find the desired solid angle by simply computing the
bounded area,

A = �
0

2� �
0

����

1 sin���d�d� = �
0

2�

�1 − cos�������d� .

�21�

Separating the integration into a sum of integrals over each
of the ne circular arcs that form the element boundary, and
changing variables from � to a parametric t along the arcs,
we have

A = �
i=1

ne �
0

1

�1 − cos����i�t����
d�i

dt
dt , �22�

where t is the parametric coordinate along the ith edge, and
�i�t� is the azimuthal angle of the point at position t along the
ith arc. Note that the element edges can be projected to the
sphere regardless of how the edges are positioned relative to
the unit sphere onto which they are projected. Figure 8 is an
illustration of this fact.

The directional character of the double-layer potential
deserves comment. The integral of Eq. �20� is discontinuous
as the evaluation point r approaches and passes through the
surface. The value of the integral is defined to be the limit as

r approaches the surface; when r��, therefore, the side
from which r approaches the surface will determine the value
of the integral. The two limits sum to 4�.31 By convention,
we assume that the integral has been taken as the evaluation
point approaches from the side opposite of the normal direc-
tion.

An alternate approach, applicable only to uniform distri-
butions, can also be taken. According to the Gauss-Bonnet
theorem,57 the area bounded by the projected arcs can be
determined following integration of the geodesic curvature
of the projected edges. Finally, we note that the approach at
Willis et al. is applicable not only to spherical and toroidal
surface elements but also to many other types of curved sur-
face elements.56

V. RESULTS

We have generated several curved-element discretiza-
tions using the process outlined in Appendix A and imple-
mented the numerical integration methods in both C and
MATLAB.71 Flat-triangular surface discretizations have been
produced using Connolly’s molecular surface package
�MSP�.58 We first present results that validate the surface
discretizations and the integration techniques; we then dem-
onstrate the advantages of curved-element surface methods
with several representative calculations on small molecules.
Far-field numerical integrations have been performed using
the 16-point quadrature rule presented by Stroud,10 and the
GST single-layer integrals have been approximated by fitting
to a fourth-order polynomial.

A. Problem geometries

1. Alanine tripeptide

The CHARMM molecular mechanics computer
program41 with the CHARMM22 parameter set59 was used
to generate two conformations of blocked alanine tripeptide
�two alanine residues with an acetylated N-terminus and
N-methylamide at the C-terminus�. One conformation takes
average � and � angles for a parallel � sheet ��=−119°,
�= +113°�; the other conformation takes the average angles
for a right-handed � helix ��=−57°, �=−47°�.60

FIG. 7. The Newman approach to calculating the potential induced by a
uniform distribution of a normally oriented dipole charge layer �Ref. 13�.
The cross at the center of the sphere denotes the point at which the potential
is to be determined; the thin arcs form the edges of a GST; the thick lines
represent the projection of the GST bounding arcs to the sphere. The double-
layer potential, which equals the solid angle bounded by the thick lines, is
directly proportional to the bounded area.

FIG. 8. Edges may be projected to the unit sphere regardless of their posi-
tion relative to it. �left� The edges are outside the unit sphere. �right� The
edges are interior to the unit sphere.
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2. Alanine dipeptide

Scarsdale et al. have presented energy-minimized atomic
coordinates for several conformations of the alanine
dipeptide,61 which is a single alanine residue blocked as
above. A set of curved-element surface discretizations at
varying refinement was generated using these coordinates,
PARSE radii,62 and a probe radius of 1.4 Å.

3. Barnase-barstar complex

The barnase-barstar complex of two proteins was chosen
to serve as a larger test case to demonstrate the correctness of
the surface discretization method and of the numerical inte-
gration methods. Coordinates were taken from Ref. 63 using
accession number 1BRS in the Protein Data Bank.64

B. Validating the surface discretization

The surface area of planar triangles as well as GST and
toroidal elements can be calculated analytically. Therefore,
the correctness of the presented curved-element discretiza-
tion approach may be demonstrated without involving nu-
merical integration.

The Gauss-Bonnet theorem57 was used to analytically
calculate the surface area of GST elements, following
Connolly.23 The theorem, when applied to a compact mani-
fold, relates the integral of the curvature over the surface to
the integral of the geodesic curvature of the boundary and
the corner angles. A generalized spherical triangle has con-
stant curvature over its surface, and its bounding arcs have
constant geodesic curvature; accordingly, its area may be

calculated analytically. For a toroidal element defined ac-
cording to Sec. III A the analytical area is

A = ���2 − �1��ac��2 − �1� + a2�sin��2� − sin��1���� . �23�

We generated both flat-element and curved-element sur-
face discretizations of several molecules at varying levels of
refinement, using the Richards molecular surface definition28

and the solvent-accessible surface. PARSE radii62 and a
1.4 Å probe radius were used for molecular surface genera-
tion and CHARMM22 radii59 were used for solvent-
accessible surfaces. The analytical areas calculated by Con-
nolly’s program MSP �Ref. 58� were used as a reference for
the calculated analytical areas of the planar-element and
curved-element discretizations. Tables I and II present the
molecular-surface and solvent-accessible-surface results.
These calculations, which incur no numerical approximation,
illustrate that even coarse curved-element discretizations
accurately capture the surface geometry. Similar results
�not shown� have been obtained for van der Waals surfaces,
which like the solvent-accessible surfaces have spherical but
not toroidal elements. It is especially noteworthy that planar-
element discretizations with significantly more elements than
their curved-element counterparts were not yet converged to
the correct surface area. The exact geometric description in-
herent to the presented curved-element methods could lead
to significantly more accurate numerical calculations than
those based on approximate-geometry planar-element dis-
cretizations.

C. Validating curved boundary-element integration

After verifying that the curved-element discretizations
accurately describe the desired surfaces, the numerical inte-

TABLE I. Comparison of discretized surface areas with analytical molecular �solvent-excluded� surface area.
Probe radius is taken to be 1.4 Å. All area quantities are in Å2 and have been rounded to the nearest 0.001 Å2.

Problem Analytical area

Method

Area of discretized surface

Flat Curved

No. of Elements Area No. of Elements Area

Atom
Coarsea 74 11.516 40 12.566
Mediumb 12.566 270 12.249 70 12.566
Finec 448 12.390 124 12.566

Parallel-� alanine tripeptided

Coarsea 684 230.965 1 326 241.642
Mediumb 241.642 1 944 238.450 1 781 241.642
Fine 2 904 239.617 2 923 241.642

Barnase-barstar complexe

Coarsea 29 728 7979.744 63 915 8269.077
Mediumb 8269.077 79 104 8188.538 88 860 8269.077
Finec 149 160 8407.962 133 676 8269.077

aMSP angle=1.0, NETGEN level=Very coarse.
bMSP angle=0.5, NETGEN level=Coarse.
cMSP angle=0.4, NETGEN level=Medium.
dStructure preparation is described in Sec. V A 1.
eFrom Ref. 63, entry 1BRS in the Protein Data Bank �Ref. 64�.
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gration methods presented in Sec. IV must also be validated.
Surface-area calculations, which entail the evaluation of in-
tegrals such as Eq. �10� with the simplest integrand
K�r ;r��=1, offer an excellent opportunity for this validation.
One can verify the correctness of the discussed coordinate
transformations by computing surface areas using the pre-
sented numerical quadrature techniques; as can be seen from
Eq. �12�, the surface area of an element is calculated as the
integral of the Jacobian determinant over the reference ele-
ment. Because the determinants vary smoothly over the ref-
erence domains, these integrals should be evaluated with
high accuracy; however, because the Jacobian determinants
are not actually low-order polynomials, the numerical results

are not expected to exactly match analytical results. Table III
lists the pit, belt, and cap areas calculated by analytical and
direct quadrature methods, and also by the polynomial-fitting
method for the pit and cap surfaces. The numerical and ana-
lytical results agree extremely well for coarse discretizations.
The smaller elements present in finer discretizations exhibit
less deviation from planarity; consequently, the Jacobians are
smoother and finer discretizations offer higher accuracy area
calculations when using polynomial fitting. The polynomial-
fitting method calculations, which are important for evaluat-
ing singular and near-singular integrals rather than for
smooth integrands, are included to demonstrate the accuracy
of the fitting procedure.

TABLE II. Comparison of discretized surface areas with analytical solvent-accessible surface area. Probe radius
is taken to be 1.4 Å. All area quantities are in Å2 and have been rounded to the nearest 0.001 Å2.

Problem Analytical area

Method

Area of discretized surface

Flat Curved

No. of Elements Area No. of Elements Area

Atom
Coarsea 74 66.334 40 72.382
Mediumb 72.382 270 70.554 68 72.382
Finec 448 71.368 124 72.382

Parallel-� alanine tripeptided

Coarsea 396 437.304 564 467.815
Mediumb 467.815 1 268 459.406 714 467.815
Finec 1 846 462.617 1 064 467.815

Barnase-barstar complexe

Coarsea 10 643 8785.722 20 053 9152.150
Mediumb 9152.150 31 800 9094.782 25 835 9152.150
Finec 87 178 9571.220 38 767 9152.150

aMSP angle=1.0, NETGEN level=Very coarse.
bMSP angle=0.5, NETGEN level=Coarse.
cMSP angle=0.4, NETGEN level=Medium.
dStructure preparation is described in Sec. V A 1.
eFrom Ref. 63, entry 1BRS in the Protein Data Bank �Ref. 64�.

TABLE III. Comparison of pit, belt, and cap areas computed by analytical, direct quadrature, and polynomial-
fitting methods, using the molecular surface discretizations of Sec. V B. All area quantities are in Å2 and have
been rounded to the nearest 0.001 Å2.

Problem Analytical

Method

Coarse Medium Fine

Direct Fit Direct Fit Direct Fit

Atom
Cap 12.566 12.566 12.567 12.566 12.566 12.566 12.566

Parallel-� alanine tripeptide
Pit 18.719 18.719 18.720 18.719 18.719 18.719 18.719
Belt 77.565 77.565 ¯ 77.565 ¯ 77.565 ¯

Cap 145.358 145.358 145.340 145.358 145.354 145.358 145.358

Barnase-barstar complex
Pit 2453.293 2453.240 2453.390 2453.292 2453.300 2453.293 2453.291
Belt 3195.626 3195.626 ¯ 3195.626 ¯ 3195.626 ¯

Cap 2620.158 2620.130 2619.698 2620.154 2620.056 2620.157 2620.137

014701-11 Integration by curved-element discretizations of molecule-solvent interfaces J. Chem. Phys. 127, 014701 �2007�

Downloaded 12 Apr 2012 to 18.51.1.228. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



D. Surface-generalized-Born calculations

The surface discretization and integration techniques
presented in this work have been used to calculate Born radii
using the surface-generalized-Born method introduced by
Ghosh et al.7 and surface formulations of the Grycuk39 and
Wojciechowski and Lesyng40 generalized-Born models. The

surface integrals associated with these calculations are never
singular because every evaluation point is the center of a
sphere. Figure 9 is a plot of the Born radii computed for the
alanine tripeptide in �-helical and parallel-� conformations
using a surface formulation of the Grycuk method; results
are shown for several levels of surface discretization. Shown
for comparison are the Born radii calculated by volume in-
tegration using a fine cubic grid. Note that the surface-
generalized-Born radii do not appreciably change as the dis-
cretization is refined. Similar results are obtained using the
method of Ghosh et al. and that presented by Wojciechowski
and Lesyng �data not shown�. The insensitivity of the calcu-
lated radii, and therefore energies, with respect to surface
discretization, illustrate one of the important advantages of
curved-element methods: excellent numerical accuracy can
be obtained with relatively few degrees of freedom, provided
that an accurate representation of the surface geometry is
used.

E. Continuum van der Waals calculations

The surface-continuum van der Waals formulation has
been implemented9 and tested for four of the alanine dipep-
tide conformations presented by Scarsdale et al.61 Solvent-
accessible surfaces were defined using OPLS all-atom radii65

and a probe radius of 0.85 Å, in accordance with the param-
etrization of Levy et al.8 for the TIP4P water model.66 The
Lennard-Jones coefficients for each surface integral of the
form in Eq. �9� were determined by appropriately mixing the
well depths � and the diameters � for each OPLS atom type
and the TIP4P water model. In Table IV are listed the ener-
gies computed using a volume method as well as curved-
element and planar-element surface methods. Volume inte-
grals were evaluated numerically, one atom at a time, using a
spherical grid. These results illustrate that high accuracy is
achievable with coarse discretizations provided that the dis-
cretizations accurately represent the problem under study.

F. Poisson-Boltzmann electrostatics problems

The electrostatic component of the solvation energy for
several small boundary-element systems has been computed
using the Yoon and Lenhoff integral formulation �Eqs. �1�
and �2�� and dense preconditioned GMRES.67 Larger sys-
tems must be solved using fast, kernel-independent BEM
algorithms such as the fast multipole method or

FIG. 9. Generalized-Born radii calculated by volume integration and by
evaluating surface integrals based on the GB model proposed by Grycuk
�Ref. 39�. The volume radii are plotted as large squares and the surface GB
radii are plotted with circles, triangles, crosses, and diamonds. �a� Alpha-
helix blocked alanine tripeptide. �b� Beta-sheet blocked alanine tripeptide.

TABLE IV. Solute-solvent van der Waals interaction energies estimated using a volume integration scheme and using a surface formulation of the continuum
van der Waals model of Levy et al. �Ref. 8� and curved surface elements. All energies are in kcal/mol and have been rounded to the nearest 10−4 kcal/mol.

Volume
c5

−10.1365
�R

−9.8917
c7eq

−10.0190
c7ax

−9.9199

No. of elements Energy No. of elements Energy No. of elements Energy No. of elements Energy

Surface 429 −10.1369 486 −9.8918 357 −10.0193 421 −9.9201
558 −10.1366 611 −9.8918 479 −10.0192 541 −9.9200
901 −10.1365 1 033 −9.8917 793 −10.0191 863 −9.9199

1 912 −10.1365 2 069 −9.8917 1 746 −10.0190 1 782 −9.9199
4 877 −10.1365 5 247 −9.8917 4 245 −10.0190 4 585 −9.9199
10 035 −10.1365 10 829 −9.8917 10 418 −10.0190 10 755 −9.9199
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FFTSVD.68–70 As described in Sec. II A 1, we have used
piecewise-constant basis functions and centroid collocation.
For all calculations, we assume that the solute region has
�I=4 and the solvent region has �II=80.

1. Spherical geometry

The solvation energy of a centrally located charge in a
spherical low-dielectric cavity can be computed analytically
if the Laplace equation holds in the solvent region, or nu-
merically using spherical harmonics if the linearized
Poisson-Boltzmann equation holds in the solvent region. Fig-
ure 10 illustrates the improved accuracy of curved-element
BEM relative to planar-element methods; Fig. 10�a� plots
convergence for nonionic solutions �i.e., �=0 Å−1� and Fig.
10�b� plots convergence to the analytical result when
�=0.124 Å−1.

2. Alanine dipeptide

Comparison of the alanine-dipeptide planar-element and
curved-element energies to their values at the finest discreti-

zations and plots of the absolute deviation as a function of
the number of elements are shown in Fig. 11.

These electrostatics simulations on small molecules
demonstrate that boundary-element method problems benefit
significantly in accuracy given the correct representation of
the dielectric interface. The ability of curved-element meth-
ods to reduce the needed basis set size to reach a target level
of accuracy suggests that surface representation error, not
basis set error, dominates modeling error.

G. Performance

Analytic methods exist to compute the single- and
double-layer potentials induced by a uniform or polynomi-
ally varying charge distribution on a planar element with
straight edges.12,13 These methods are extremely efficient:
potential computations involving a uniform charge distribu-
tion require only a single square root, natural logarithm, and
inverse tangent operation per edge, whereas an N-point
quadrature routine requires the calculation of N square roots.
Curved-element methods are significantly slower. Table V
lists the approximate number of panel integrals that can be
computed per second on a 3.0 GHz Pentium IV processor
using an implementation in C and the Intel C compiler with
full optimizations.

VI. DISCUSSION

We have defined two classes of compact, curved, two-
dimensional surface elements that can be used to exactly
describe arbitrary solute-solvent boundaries according to the
most commonly used boundary definitions. These curved-
element surface discretizations can be used in a number of
surface formulations of biophysical modeling problems. To
numerically evaluate the desired surface integrals over these
domains, we have described a set of accurate, efficient tech-
niques specialized for these domains. Computational results
illustrate the advantages of curved-element surface discreti-
zations relative to those based on planar triangles.

One significant advantage of the curved-element repre-
sentations is that the geometry of the discretized surface does
not change as the discretization is refined. In contrast, flat-
element discretizations describe different boundaries at dif-
fering refinements, as do curved-element discretizations
based on quadratic or cubic shapes. Curved-element methods
based on our discretizations, however, are limited only by the
accuracy of the integration method used, and, for boundary-
element method problems, also by the order of the basis
functions. The curved-element method presented here there-
fore offers an attractive approach for calculating Born radii
via the sGB method and for computing solute-solvent van
der Waals interactions using a continuum model. Further-
more, curved-element quadrature in the far field is as effi-
cient as far-field flat-element quadrature, because one can
use quadrature rules of the same order for both. As a result,
problems that require the evaluation of many more far-field
than near-field integrals can benefit significantly from
curved-element methods without undue increase in computa-
tional expense. Finally, as a practical matter, the integration
techniques presented in this work are straightforward to

FIG. 10. Convergence of solvation free energies for a centrally located
charge in a 1 Å sphere, calculated by BEM numerical solution of the Yoon
and Lenhoff integral equations. For both cases �I=4 and �II=80. �a� �
=0 Å−1. �b� �=0.124 Å−1.
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implement. A MATLAB �Ref. 71� implementation, as well as
planar- and curved-element discretizations of several small
molecules, are available online.72

Although the near-field integration techniques for curved
elements are significantly slower than those required for flat
elements,12,13 the extra accuracy afforded may be invaluable
for problems that require highly accurate solutions. Because

curved elements allow a significant reduction in the number
of unknowns, such discretizations provide a promising ap-
proach to reach a target level of accuracy given constraints
on computer memory. Application to protein studies are be-
ing pursued.30 These techniques can be extended to allow the
evaluation of more complicated integrals, such as the poten-
tial induced by a polynomially varying charge distribution on

FIG. 11. Solvation free energies for four conformers of the alanine dipeptide; atom centers are those presented in Ref. 61 and PARSE atomic radii and partial
charges have been used �Ref. 62�. �a� c5 geometry. �b� �R geometry. �c� c7ax geometry. �d� c7eq geometry.

TABLE V. Approximate number of panel integrals per second computable using a C implementation of the
presented techniques. All planar-triangle integrals have been computed by the methods of Hess and Smith �Ref.
12� or Newman �Ref. 13�. All far-field curved-element integrals have been computed using a 16-point quadra-
ture rule. Self-term and near-field GST integrals have been computed using the polynomial-fitting scheme.
Self-term and near-field toroidal element integrals have been computed by recursive subdivision. A single-layer
integral has been defined to be in the far field if the separation between the evaluation �field� point and the
curved element exceeds four times the length of the element’s longest edge; a double-layer integral is defined
to be in the far field if the separation exceeds twice the length of the longest edge.

Single layer ��1/ �r−r���dA� Double layer ��� /�n�r����1/ �r−r���dA�

Planar triangle GST Toroidal element Planar triangle GST Toroidal element

Self-term 1 570 000 21 400 70 1 510 000 3 400 2 400
Near field 1 570 000 20 700 5 100 1 630 000 25 800 18 600
Far field 1 570 000 860 000 900 000 1 570 000 440 000 460 000
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a curved element. Also, the curved-element discretization
procedure may be modified to allow the production of
coarser meshes.
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APPENDIX A: EXTRACTING CURVED PANEL
DISCRETIZATIONS

1. Accessible and van der Waals surfaces

Accessible and van der Waals surfaces can be described
by a set of spherical patches, where each patch represents a
solvent-exposed portion of an atom. When an atom �or a
probe-radius-expanded atom� intersects another, the two
sphere surfaces form a circle of intersection, and all the at-
om’s surface beyond the plane of this circle is buried inside
the other atom. Consequently, each spherical patch can be
described by an intersection of the sphere and a set of half
spaces, which are derived by analytically solving for the
planes of intersection between the given sphere and all the
intersecting spheres. To mesh a spherical patch, we first ob-
tain a high-quality flat triangular discretization using the pro-
gram NETGEN.71

NETGEN meshes surfaces based on a con-
structive solid geometry scheme in which geometries are
defined using boolean operations on primitives such as
spheres and half spaces.

Once the discretization is obtained, each planar triangle
is converted to a GST by assigning an arc center to each
edge. If an edge lies on one of the half-space planes, its arc
center is assigned to be the center of the circle of intersection
that defines the half space. Occasionally, coarse triangular
discretizations contain triangles whose edges lie on more
than one plane. These situations do not reflect the molecular
geometry but instead are a consequence of the NETGEN dis-
cretization procedure; such geometries are therefore dis-
cretized more finely. If a planar-triangle edge does not lie in
a half-space plane, the arc center is assigned to be the center
of the sphere; as a result, the corresponding GST arc is part
of a great circle. After forming the GST, it is checked to
ensure that it conforms to the definition presented in Sec.
III B. Specifically, it is ensured that the arcs only intersect at
their end points and that the internal jump angles are less
than � radians. If any GST fails these checks, the entire
spherical patch is rediscretized at a finer level.

2. Molecular surfaces

Molecular surfaces are discretized in two stages. In the
first stage, we increase the atomic radii by the probe radius
and use NETGEN to generate a solvent-accessible surface by

meshing the union of the expanded spheres. During the dis-
cretization process, NETGEN determines every point on the
accessible surface where three or more expanded atoms si-
multaneously intersect, as well as every circular arc gener-
ated by the intersection of two expanded sphere surfaces.
The intersection of three or more arcs becomes a fixed probe
position for the molecular surface. The probe position gen-
erates one or more concave-spherical patches of reentrant
surface because this point is simultaneously a probe-radius
distance away from three or more atoms. Each circular arc
connects two fixed probe positions along the intersection of
two expanded atoms. Because the arc is composed of points
equidistant from exactly two atoms, this arc indicates the
presence of a toroidal surface patch. The accurate determina-
tion of these features is valuable during the second stage of
discretization, in which the specified spherical and toroidal
patches are meshed directly.

a. Spherical contact patches

Spherical contact patches on molecular surfaces are gen-
erated for every solvent-exposed atom. The patches are
meshed similarly to the spherical patches on van der Waals
and accessible surfaces; however, contact patches on mo-
lecular surfaces are bounded by the half-space planes located
at sphere-torus intersections rather than at sphere-sphere in-
tersections. The positions of these shifted planes are com-
puted analytically by determining the point of tangency be-
tween the given sphere and the probe sphere when it
simultaneously touches each neighboring atom.

b. Spherical reentrant patches

Spherical reentrant patches are meshed by placing a
sphere of radius equal to the probe radius at each triple or
higher intersection point determined during the discretization
of the solvent-accessible surface. Recall that these intersec-
tion points are formed where multiple circular arcs meet, and
that these arcs represent toroidal patches. The spherical reen-
trant patch is therefore intersected with three or more half-
space planes, each of which represents a boundary between
the probe sphere and the toroidal patch extracted from the
corresponding circular arc.

Each plane is analytically defined by three points: the
center of the probe sphere and the centers of the two atoms
associated with the torus. When necessary, additional half-
space planes are generated from probe-probe intersections in
a manner similar to accessible surface meshing. Once the
probe sphere and half spaces have been identified, discreti-
zation proceeds identically to accessible spherical patch
meshing.

c. Toroidal patches

Each circular arc of the accessible surface is associated
with one toroidal patch on the molecular surface. The arc
traces out the path taken by the center of the sphere as it rolls
tangent to its two associated atoms. Therefore, the toroidal
patch is a portion of a torus centered at the analytical center
of the circle of intersection between the two expanded atoms
of the accessible surface. The torus’s principal x and y axes
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lie in the circle plane and the z axis is parallel to the vector
pointing between the atom centers. The torus’s inner radius a
is the probe radius, and the outer radius c is the radius of the
intersection circle.

If two probe positions terminate the accessible-surface
arc, the toroidal patch will be bounded in �. The range in � is
determined by fixing one torus principal axis to point from
the torus center to the first probe position and then by taking
the dot product of this axis with the vector pointing from the
torus center to the second probe position. If the accessible-
surface arc is not terminated by probe positions, the torus is
complete, and spans �0,2�� in the � direction.

The bounds on � are found by the following procedure.
First, specify an arbitrary probe position on the accessible-
surface circle of intersection. Then, compute the vector
pointing from the probe center to the center of the torus.
Take the dot product of this vector with one pointing from
the probe position to the center of each of the torus’s asso-
ciated atoms. Each dot product is the cosine of one of the
bounding angles �.

If the torus has an outer radius less than its inner radius
�i.e., c�a�, and if in addition the range in � overlaps the
range ��−arccos�c /a�, �+arccos�c /a��, then the toroidal
patch consists of two disconnected pieces of surface. The
two regions of such a self-intersecting torus are meshed
separately.

Once the bounds on the toroidal patch are determined,
the region is discretized into toroidal panels by dividing the
ranges of � and � into an integral number of pieces such that
the arc lengths of the panel edges are similar to those gener-
ated for GST panels.

APPENDIX B: COORDINATE TRANSFORMATION
FROM THE STANDARD TRIANGLE TO THE
GENERALIZED SPHERICAL TRIANGLE

In this appendix we describe how the parametric coordi-
nates � ,�� map to a point �x ,y ,z� on a GST, and how we
compute �J�, the determinant of the transformation Jacobian.
Figure 5 illustrates the spherical coordinate system; the co-
ordinate �� �0,�� describes the angle from the positive x
axis, and the coordinate �� �0,2�� describes the angle from
the positive z axis. The angles �start and �end are defined as
shown in the figure. For any point � ,�� we define a circle
C��� as shown; this circle is the set of points on the sphere at

���� = �start + ���end − �start� . �B1�

Obviously �� /�����=�end−�start. The intersection of C���
with the two arcs a2 and a3 produce two points r2 and r3,
which are defined to be at ��start��� ,����� and
��end��� ,�����. The � coordinate of the mapped point is set
to

��,�� = �start��� +


1 − �
��end��� − �start���� . �B2�

We have also the first derivatives

��

�
�,�� =

1

1 − �
��end��� − �start���� , �B3�

��

��
�,�� =

��start

��
��� +



1 − �
� ��end

��
��� −

��start

��
���	

+


�1 − ��2 ��end��� − �start���� . �B4�

Denoting the mapped point by r, and here we explicitly use
boldface type to denote vector variables, the Jacobian deter-
minant is

�J� = �dr

d
�

dr

d�
� , �B5�

where

dr

d
=

�r

��

��

�
+

�r

��

��

�
, �B6�

dr

d�
=

�r

��

��

��
+

�r

��

��

��
. �B7�

Trivially, we have

��

�
=

�end��� − �start���
1 − �

, �B8�

��

��
= �end − �start, �B9�

��

�
= 0. �B10�

The derivative �� /�� is more challenging to calculate. The
rotation angle �start, defined by the relation

�start��� = tan−1� y���
z���

	 , �B11�

has the first derivative

d�start

d�
=

1

1 + �y���/z����2

z�dy/d�� − y�dz/d��
z���2 , �B12�

where we have omitted adding the subscript start to the vari-
ables y and z, and the angle �end is defined analogously.

The derivatives dy /d� and dz /d� are defined by finding
the angle � such that r satisfies

r = rcenter + x cos��� + y sin��� , �B13�

where rcenter is the center of the circle defining the GST arc
and x and y form an orthonormal basis for the plane in which
the arc lies. We then find the needed derivatives by

dr

d�
= − x sin��� + y cos��� , �B14�

d�

d�
= � dx

d�
� dx

d�
	−1	−1

, �B15�

dr

d�
=

dr

d�

d�

d�
, �B16�

and taking the y and z components of dr /d�.
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APPENDIX C: CURVED PANEL INTEGRATION
TECHNIQUES FOR OTHER INTEGRANDS

1. Linearized Poisson-Boltzmann kernel

The single-layer linearized Poisson-Boltzmann integrals


�r� = �
�

e−��r−r��

4��r − r��
dA� �C1�

can be evaluated by decomposing the integral into a sum of
two easily computed integrals,69


�r� = �
�

1

4��r − r��
dA� − �

�

1 − e−��r−r��

4��r − r��
. �C2�

The first term is merely the single-layer Laplace integral,
whose calculation we have already discussed. The second
term is very smooth in the near field when the elements are
small compared to 1/�, and can therefore be integrated using
the quadrature schemes described in Sec. V B. In the far
field, the entire integral in Eq. �C1� can be computed easily
using direct quadrature.

Double-layer linearized Poisson-Boltzmann integrals can
be computed in an exactly analoguous fashion.

a. Surface-generalized-Born kernels

The surface-generalized-Born integrals all take the form
of Eq. �6� but with different exponents depending on whether
one begins from the volume formulations of Still et al., Gry-
cuk, or Wojciechowski and Lesyng.5,39,40 The required
curved-element integrals are all nonsingular because the
evaluation points are always sphere centers. The integrands’
rapid decay allows far-field quadrature to be used to compute
all needed interactions.

b. Continuum van der Waals kernels

The surface-continuum van der Waals method requires
evaluation of surface integrals of the form shown in Eq. �9�,
where again the evaluation points are always sphere centers.
The surface-continuum van der Waals integrals over the
solvent-accessible surface are therefore never singular, and
again far-field quadrature techniques may be used.
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