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Abstract 

 This article assesses the accuracy of the ∆SCF method for computing low-lying HOMOLUMO transitions in 

organic dye molecules.  For a test set of vertical excitation energies of 16 chromophores, surprisingly similar accuracy is 

observed for time-dependent density functional theory (TDDFT) and for ΔSCF density functional theory.  In light of this 

performance, we reconsider the ad hoc ΔSCF prescription and demonstrate that it formally obtains the exact stationary 

density within the adiabatic approximation, partially justifying its use.  The relative merits and future prospects of ∆SCF for 

simulating individual excited states are discussed.   

 

I.  Introduction  

 Small conjugated organic dyes have found widespread use: from lasers, paints and inks to more 

exotic technologies such as dye-sensitized solar cells
1-3

 organic light-emitting devices
4-7

, organic 

transistors
8
, and organic solar cells

9, 10
.  The performance of these materials relies heavily on the careful 

tuning of their electronic properties.  Consequently, there is growing interest in the development and 

application of computational methods for characterizing electronic excitations in condensed-phase 

organic materials
11, 12

. 

 Among the earliest approaches to this challenge were semi-empirical molecular orbital methods 

such as CNDO
13

 and PPP
14

.  As computational resources expanded, ab initio methods such as TDHF 

and CIS became feasible for molecules of moderate size
15

.  None of these methods are expected to give 

quantitative results, but often they are sufficient to predict trends. More recently, methods like 

CASSCF
16

 and EOM-CC
17

 have been developed, which promise quantitative results for excited states. 

Unfortunately, at present, these are too expensive for routine use on organic dyes that typically have 

50-100 atoms.  A modern method that offers a good compromise between accuracy and efficiency is 
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time dependent density functional theory (TDDFT)
15, 18, 19

. 

 TDDFT within the adiabatic approximation
20, 21

 has been the workhorse method for computing 

excitation energies in organic molecules over the last decade.  TDDFT excitation energies with 

commonly employed exchange-correlation functionals are usually accurate to within 0.3 eV for 

localized valence excitations in organic molecules
22

.  However, TDDFT is less reliable for excitations 

with long-range character, such as Rydberg
23, 24

 and charge transfer excitations
25, 26

, as well as 

excitations in large conjugated molecules
27-29

.  Recently developed long-range corrected functionals 

have addressed these issues with promising success
30-33

.  Several time-independent alternatives for 

computing excitation energies within a DFT framework have been proposed
34-36

, but many of these 

methods pose significant implementation challenges
37

 or are too computationally expensive compared 

to TDDFT. 

The ΔSCF-DFT (or simply ΔSCF) method, one of the earliest such time-independent methods
38

, 

is straightforward to implement and offers low computational cost.  This method is also known in the 

literature as excited state DFT
39

 or constrained DFT
40

 (not to be mistaken for the method of the same 

name
41

 in which constraints are applied to the density).  The ΔSCF procedure employs non-Aufbau 

occupations of the Kohn-Sham orbitals to converge the SCF equations to an excited state that might 

have other states of the same symmetry beneath it.  Because SCF algorithms are geared towards energy 

minimization, they can sometimes cause a collapse to these lower-energy states during the SCF 

iterations.  Techniques such as the maximum overlap method
42

 have been developed to address these 

convergence issues, thereby rendering the ΔSCF method an efficient potential alternative to TDDFT for 

excited state geometry optimizations and molecular dynamics.  Analytical excited state Hessians, which 

are needed to obtain infrared or vibrationally resolved electronic spectra, are also readily accessible 

from the ΔSCF approach, in contrast to the current situation for TDDFT.  ΔSCF was recently identified 

as the fourth-order correction to a constrained variational approach to TDDFT
43

, but here we focus on 
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its use as a stand-alone method. 

Although ΔSCF has gained some traction recently as a DFT-based alternative to TDDFT for 

excited states
24, 42, 44-46

, the performance and range of validity of the method remain poorly understood.  

This paper addresses this gap in understanding in two ways: first, by comparing excitation energies 

computed by TDDFT and ΔSCF with experimental values for a representative set of conjugated organic 

molecules; and second, by providing new insight into the approximations that are made when 

computing excitation energies from ΔSCF. 

 The rest of the paper is arranged as follows.  First, we construct a set of organic dye molecules 

that we use as a benchmark test set.  Next, we present TDDFT and ΔSCF excitation energies and 

discuss the performance of the two methods relative to experiment.  We find that the two approaches 

are quite comparable, which we find surprising given the lack of formal justification for ∆SCF. We 

therefore spend some time in the discussion examining the theoretical underpinnings of TDDFT and 

∆SCF in order to determine if there might not be a deeper reason for the success of ∆SCF.  Finally, we 

conclude our analysis and suggest some potential future directions. 

 

II.  Test set 

 It is of course impossible to construct a single test set that characterizes the quality of a given 

functional for excited states.  The wide variety of behaviors of different functionals for Rydberg 

states
23

, charge transfer states
26

, excited states of conjugated organic molecules
26, 28-30, 47

, and core 

excitations
42, 48

 suggests a more modest goal: to design a test set that assesses a functional’s utility for a 

given purpose.  Because of our interest in organic electronics, we are most keenly interested in testing 

TDDFT and ∆SCF for the low-lying singlet excited states of common dye molecules.  Other test sets 

consisting of small conjugated organic molecules have been constructed to assess the performance of 

TDDFT, with typical errors of roughly 0.2-0.3 eV for the best-performing functionals
33, 49, 50

.  Our 
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chosen test set is tabulated in Figure 1.  In each case the Eex is the energy of the lowest maximum in the 

experimental absorption spectrum. 

 There were a number of criteria that we used to select the molecules in the test set.  First, they 

were required to have significant absorption in the visible. This typically requires extensive  

conjugation over most of the molecule resulting in low-lying →* transitions. Further, as can be 

seen in Figure 1, all of the excitations are predominantly HOMO → LUMO.  This restriction is not 

essential, but leads to more robust ∆SCF convergence than, say, HOMO→LUMO+1 would.  The 

single-reference character of the excited states helps us circumvent the general problem that some 

excited states require a multireference approach.  We make no restriction on the degree of charge 

transfer present in the excited state.  However, in order to mitigate solvatochromic effects, we selected 

molecules for which experimental absorption spectra are available in gas phase, thin film, or nonpolar 

solvent.  Ideally, all of the experimental results would be in gas phase, but this restriction would only 

leave us with five molecules in our test set, which would be insufficient.  We therefore must accept 

some degree of inequivalence between the experimental observable (absorption maximum in a weak 

environment) and the calculated quantity (vertical excitation in the gas phase).  We should note that 

methods exist to attempt to correct theoretical gas phase excitation energies for dielectric
51

 and 

vibrational
52

 effects to obtain solvent-corrected 0-0 excitation energies, but such shifts will in any case 

be smaller than the errors due to the approximate nature of the density functional. 

 Despite the fact that all of the molecules satisfy the criteria given above, our test set includes 

molecules covering a wide range of current applications.  Some molecules are found in biological 

systems (1, 8, 9, 13, 14), others are used for organic electronics (2, 3, 4, 15, 16), and some as synthetic 

organic dyes (5, 6, 7, 10, 11, 12).  Thus we have made an effort to select a structurally diverse set of 

molecules that can answer the question: how accurate are ΔSCF and TDDFT for organic dyes? 
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dye Structure environment Eex  (eV) % H → L Ref. 

1 

 
pentanes 

2.50 100.0 
53

 

2 

 

gas phase 
1.82 95.3 

54
 

3 

 

gas phase 1.88 91.9 
54

 

4 

 

thin film 3.46 97.5 
55

 

5 

 

toluene 2.87 95.7 
56

 

6 

 

thin film 2.59 99.5 
57

 

7 

 

thin film 3.55 99.6 
58

 

8 

 

gas phase 2.01 95.2 
59

 

 
 

 

Figure 1a.  Test set, molecules 1 through 8: chemical structure, absorption maximum measured in 

the specified environment, and TD-B3LYP HOMO → LUMO character of the lowest singlet excited 

state. 
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dye Structure environment Eex  (eV) % H → L ref. 

9 

 
gas phase 

2.36 99.7 
59

 

10 

 

thin film 
2.26 98.0 

60
 

11 

 

thin film 2.58 98.6 
61

 

12 

 

thin film 2.11 74.6 
62

 

13 

 

benzene 1.94 72.1 
63

 

14 

 

gas phase 2.01 57.0 
64

 

15 
 

trichlorobenzene 3.21 98.0 
65

 

16 

 

trichlorobenzene 2.06 100.0 
65

 

 

Figure 1b.  Test set, molecules 9 through 16: chemical structure, absorption maximum measured in 

the specified environment, and TD-B3LYP HOMO → LUMO character of the lowest singlet excited 

state. 
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III.  Computational methods 

 All geometries were optimized at the B3LYP/6-31G* level in the gas phase.  TDDFT and ΔSCF 

excitation energies were computed in the 6-311+G* basis set with an array of exchange-correlation 

functionals.  An SRSC pseudopotential was employed for Zn
66

.  The functionals were chosen because 

of their widespread use, and the hybrid functionals intentionally represent a wide variation in the 

fraction of exact (Hartree-Fock) exchange.  The ΔSCF calculations include two additional M06 

functionals
67

 for which TDDFT excitation energies were unavailable.  An additional functional consists 

of 60% PBE exchange and 40% Hartree-Fock exchange with PBE correlation and will be denoted 

PBE4.    

  The ΔSCF procedure was carried out as follows.  Starting with the molecular orbital 

coefficients of the ground state as an initial guess, the Kohn-Sham equations were solved using a 

modified SCF procedure in which the lowest N − 1 orbitals and the (N + 1)
th

 orbital were occupied at 

each update of the density matrix.  The shifting of orbital energies during this procedure occasionally 

caused the density to collapse to the ground state.  In these cases, the maximum overlap method
42

 

provided a way to retain the target configuration through convergence. 

 The non-Aufbau electronic state obtained from this procedure is not a spin eigenfunction.  To 

obtain the energy of the singlet excited state, we use the common spin purification formula
38

 


 EEES 2  

Both the spin-mixed () and spin-pure energies are of interest, so we include both in our analysis.  All 

computations were performed with a modified version of the Q-Chem 3.2 software package
68

. 

 

IV.  Results 
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 Deviations of computed TDDFT and ΔSCF vertical excitation energies from experiment are 

presented in Table 1, with a more detailed description of the PBE0 results in Table 2.  Typical mean 

absolute errors (MAE) in TDDFT excitation energies are 0.3 eV, with B3LYP and PBE0 outperforming 

their counterparts with greater or lesser exact exchange.  The magnitude of these deviations is in line 

with that observed in previous TDDFT benchmarking studies
22,69

. 

 For ΔSCF with spin purification, the results parallel the TDDFT results quite closely for all 

functionals: B3LYP and PBE0 perform best, with similar MAE and RMSD to those of the 

corresponding functionals in the TDDFT approach. This similarity suggests an argument in favor of 

applying the spin purification procedure.  In keeping with Becke's assertion that the fraction of exact 

exchange reflects the independent-particle character of the system
70

, the appropriate fraction of exact 

exchange in Kohn-Sham DFT should be characteristic of the system, not of the method (TDDFT, 

ΔSCF, or another approach) chosen to compute excitation energies.  Of course, it is also convenient 

from a practical standpoint that TDDFT and spin-purified ΔSCF perform similarly for the same 

functionals. 

The energy of the mixed state in ΔSCF systematically underestimates experimental energies 

when the employed functional possesses a conventional fraction of exact exchange (20-30%).  

Functionals with twice as much exact exchange (BH&H and M06-2X) give mixed states that are more 

accurate, performing comparably to the best functionals for TDDFT excitation energies. The 

satisfactory performance of spin-contaminated ΔSCF with a larger fraction of exact exchange can be 

interpreted as a convenient cancellation of errors.  The energy of the mixed state underestimates the 

singlet energy by half the singlet-triplet splitting.  The addition of surplus exact exchange 

systematically increases the singlet-triplet gap.  Therefore, the energy of the mixed state tends to 

increase with increasing exact exchange.  At least on average, one can thus raise the fraction of exact 

exchange such that the energy of the mixed state with surplus exact exchange matches the energy of the 
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pure singlet with the original functional.  Functionals with roughly 50% exact exchange achieve this 

cancellation in our test set. 

 

 
 

  

 Mean Error  MAE   RMSD  

Functional  TDDFT ΔSCFmixed ΔSCFpure  TDDFT ΔSCFmixed ΔSCFpure  TDDFT ΔSCFmixed ΔSCFpure 

PBE  -0.23 -0.72 -0.56  0.39 0.72 0.58  0.46 0.81 0.66 

B3LYP  0.08 -0.47 -0.16  0.27 0.49 0.25  0.32 0.57 0.32 

PBE0  0.15 -0.42 -0.05  0.27 0.45 0.21  0.32 0.52 0.28 

LR-ωPBE0  0.23 -0.26 0.24  0.27 0.32 0.26  0.33 0.38 0.32 

PBE4  0.28 -0.26 0.26  0.31 0.33 0.30  0.38 0.38 0.37 

BH&H  0.33 -0.14 0.45  0.35 0.27 0.45  0.42 0.31 0.50 

M06-2X   -0.08 0.41   0.27 0.42   0.30 0.48 

M06-HF   0.52 1.47   0.52 1.47   0.74 1.69 

Table 1: Test set statistics for the three different excited state methods.  All values are in eV. 

 

 

 The functional LR-ωPBE0 (ω = 0.1 bohr
-1

, cHF = 0.25) was included in our study to assess the 

performance of long-range corrected density functionals. Given that these functionals are optimized (in 

part) to give accurate TDDFT vertical excitation energies
31

, it is somewhat surprising to note that LR-

ωPBE0 performs best neither for TDDFT nor ∆SCF.  We suspect this arises from the fact that these 

excited states are bright, which selects against the charge transfer excitations (which tend to be dark) 

for which LR-ωPBE0 would outperform all other functionals. 

 It is important to note that, while ∆SCF and TDDFT have statistically similar accuracy for the 

singlet states, it does not follow that ∆SCF and TDDFT predict similar results for a given molecule.  

For example, as illustrated in Table 2, the ∆SCF and TDDFT vertical excitation energies with PBE0 

can often differ by as much as 0.6 eV for the same molecule.  These fluctuations cancel out, on 

average, and the MAE of ∆SCF and TDDFT excitation energies differ by only 0.06 eV over the whole 

set. Further, the ‹S
2
› values from the figure clearly justify the use of spin purification for these states. 

 

Molecule Exp. TDDFT ΔSCFMixed 
Mixed ‹S2› 

 

 
 

ΔSCFPure Triplet ‹S2› 

1 2.50 2.25 1.64 1.015 2.08 2.088 

2 1.82 2.08 1.55 1.014 1.91 2.021 
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3 1.88 2.08 1.54 1.029 1.96 2.047 

4 3.46 3.40 3.16 1.017 3.37 2.017 

5 2.87 2.96 2.34 1.009 2.84 2.067 

6 2.59 2.51 2.01 1.009 2.47 2.027 

7 3.55 3.15 2.61 1.008 3.00 2.034 

8 2.01 2.42 1.41 1.062 1.72 2.023 

9 2.36 2.71 1.68 1.048 2.05 2.020 

10 2.26 2.89 2.08 1.056 2.28 2.014 

11 2.58 2.49 2.05 1.024 2.38 2.022 

12 2.11 2.75 2.06 1.055 2.16 2.009 

13 1.94 2.29 1.93 1.046 2.21 2.015 

14 2.01 2.30 2.26 1.019 2.63 2.050 

15 3.21 3.29 2.71 1.008 3.32 2.024 

16 2.06 1.96 1.49 1.009 2.02 2.037 

Table 2: PBE0 energies and spin multiplicities for the test set.  All energies are in eV. 

 

V.  Discussion and Analysis 

 Based on the results of the previous section, it would appear that ∆SCF and TDDFT predict 

vertical excitation energies of organic dyes with approximately equal accuracy, with ∆SCF being 

perhaps slightly better when the best functionals are used.  If we combine this information with existing 

evidence that ∆SCF is effective for Rydberg states
39

, core excitations
42, 48

, solvent effects
71

, and double 

excitations
72

 we are led to the pragmatic conclusion that ∆SCF is a powerful tool for excited states.  Is 

this just a coincidence?  Or are there deeper reasons why ∆SCF is so effective?  To answer these 

questions, we must unpack the approximations inherent to TDDFT and ∆SCF calculations. 

A.  Linear Response TDDFT 

 According to the Runge-Gross theorem
18

, there exists a one-to-one correspondence between the 

time dependent density, (x,t), and the time dependent potential, vext(x,t).  Thus, one can formulate an 

equation of motion that involves (x,t) alone, where x contains spacial and spin coordinates, x  r, : 

    Ftx ,  

where F must be defined. In the Kohn-Sham (KS) formulation of TDDFT, the exact density is 

constructed out of a set of time-dependent orbitals, 
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i txtx
1
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,,  . 

The KS orbitals, in turn, obey a Schrödinger equation 

   
 

      txHtxtxvdx
tx

txvtxi iKSixcexti ,ˆ,,'
'

,'
,, 2

2
1 


 

















  rr

  

where the external potential, vext, is augmented by the classical Coulomb potential and the unknown 

exchange correlation potential, vxc[].  According to the Runge-Gross theorem
18

, vxc exists and is 

uniquely determined by the density.  Thus, vxc(x,t) is a functional of (x,t), justifying the notation vxc[].  

The major challenge in TDDFT is determining accurate approximations to the exchange correlation 

potential
32, 73-79

. 

 Now, in principle vxc(x,t) can depend on (x’,t’) at any point r’ in space and any time t’ in the 

past.  In practice, it is very difficult to obtain approximations to vxc(x,t) that obey causality and possess 

all the proper time translation invariance properties
80, 81

.  As a result, nearly all existing approximations 

to vxc(x,t) are strictly local in time – vxc(x,t) depends only on the density of the system at time t.  This 

approximation is known as the adiabatic approximation (AA).  It greatly simplifies the construction of 

approximate potentials and from this point forward, our manipulations will assume the AA. 

 In order to obtain excitation energies from TDDFT, the most common route is to employ linear 

response (LR)
21, 82

.  Here, one first performs a traditional DFT calculation to obtain the ground state 

density.  Next, one subjects the system to a small time-dependent external potential, v(x,t), that 

induces a small change in the density, (x,t), and a corresponding small change in the exchange 

correlation potential, vxc(x,t).  One then uses the time-dependent KS equations to connect the different 

linear variations and computes excitation energies as the poles in the frequency dependent response 

function
19

.  The resulting equations can be cast as a generalized eigenvalue problem: 
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
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


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Here, X and Y are vectors of length (occupied)x(unoccupied) that represent the density response and 

the A and B matrices are given by 

 

     
       



2121
1

21;

;;

2

1

12
dxdxxxxxB

BA

bax

xv

rjijbia

jbiaabijiajbia

xc 






 

where i,j (a,b) index occupied (unoccupied) orbitals. In principle, the eigenvalues, M, are the exact 

(within the AA) transition energies between the ground electronic state and the various excited states: 

M=Ei-E0.  Meanwhile the eigenvectors, XM and YM, contain information about the intensity of the 

transition. 

 

B.  ∆SCF Densities 

 Now, because quantum mechanics is linear, linear response in Hilbert space starting from any 

two different reference states will give equivalent transition energies.  However, since most density 

functionals have a non-linear dependence on the density, the excitation energy obtained from LR-

TDDFT depends on the reference state one chooses.  Thus, for example, in certain cases it is 

advantageous to choose a reference state with a different spin multiplicity
83-87

. 

 Instead of sifting for excitations in the density response, an alternative approach is to search 

directly for the excited state density in TDDFT.  Here, one recognizes that every eigenstate, i, of the 

Hamiltonian is a stationary state.  Hence, i(x,t) is constant in time and  

    0,   Ftx .           Eq. 1 

Within the KS formulation, the density is invariant if each KS orbital changes by a phase factor 

   xetx j

ti

j
j 


,  

so that  



13 

 

13 

 

   

   txtxH

txtxi

jjjKS

jjj

,,ˆ

,,











 

Thus, the equations obeyed by stationary densities within TDDFT are exactly the same as the SCF 

equations for traditional KS-DFT.  Viewed in this light, it is clear that ∆SCF states – which solve the 

traditional KS-DFT equations with non-Aufbau occupation of the orbitals – have a rigorous meaning in 

TDDFT: they correspond to stationary densities of the interacting system.  Further, these stationary 

densities have a clear connection with the excited states of the molecule.  This connection between 

TDDFT and ∆SCF comes tantalizingly close to rigorously justifying the use of ∆SCF-DFT for excited 

states: ∆SCF-DFT gives stationary densities that are exact within the AA. 

 Before moving on, we note how the AA is expected to influence Eq. 1. The above derivation is 

so concise that it almost seems as if no approximation has been made at all.  However, we note that in 

Eq. 1 the density is constant at all times.  Thus, the system must have been prepared in the desired 

eigenstate.  This assumption violates the terms of the Runge-Gross theorem, which only applies to 

different densities that originate from the same state (usually assumed to be the ground state at t=-). 

Only within the AA can different initial densities be justified
88

. 

 The ∆SCF scheme implied by Eq. 1 is exact within the AA because the system has no memory 

of how it was prepared.  If our functional has memory, Eq. 1 states that F[i(x,t)]=0 when applied to a 

particular density, i(x,t), that is constant in time.  To put it another way, Eq. 1 only depends on the zero 

frequency (=0) part of F.  In many ways, this is the ideal scenario within the AA.  Any adiabatic 

functional is time-local and thus frequency independent. However, it is trivial for a frequency 

independent kernel to be correct at one frequency (i.e. =0) and so one suspects that the AA could be 

well-suited to the ∆SCF approach of Eq. 1.  In contrast, within linear response one relies on the -

independent kernel being a good approximation to the true kernel at every excitation energy.  It is clear 

that, except in special cases, the latter condition cannot hold and thus LR-TDDFT would seem more 
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limited by the AA. 

 

C.  ∆SCF Energy Expressions 

 ∆SCF gives us a rigorous route to obtain a stationary density in TDDFT.  But how should we 

associate an energy with this density?  Since there is no Hohenberg-Kohn theorem for excited states
89

, 

there can be no single density functional that gives the correct energy for all excited states.  Instead, 

one must tackle the problem of defining different functionals for different excited states
34, 36

 or else 

make the functional depend on more than just the density
90, 91

.  The simplest procedure is to evaluate 

the ground state energy expression using the ∆SCF orbitals 

  xEE ex

i

ex  .            Eq. 2 

and this is the “mixed” ∆SCF energy used above. It should be noted that this energy expression is not a 

functional of the density, but rather an explicit functional of the orbitals.  If we used the excited state 

density (rather than the orbitals), we would need to derive a corresponding set of KS orbitals to 

compute the kinetic energy, Ts[].  By definition, these orbitals would be obtained by constrained 

search
92

, and the resulting orbitals would give a different energy than the excited state orbitals.  The 

orbital dependence lends some measure of robustness to the ∆SCF predictions. 

 In practice, it is necessary to correct Eq. 2 because Eq. 1 is necessary but not sufficient: not all 

stationary densities correspond to excited states even though all excited states give stationary densities. 

To see this, suppose you have a state that is a linear combination of two eigenstates: 

21  . 

Then the time evolving wavefunction is 

  21
21 

 tiEtiE
eet  

and the density is 
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where ∆E=E1-E2.  If ∆E is not zero we do not have an eigenstate and in general the density is not 

stationary.  However, suppose the transition density between the two excited states is zero everywhere.  

That is, suppose that 

  0ˆ
2112  rr . 

In this situation, the oscillating piece of the density is zero and the density is stationary even though the 

wavefunction is not an eigenstate.  Thus it is in principle possible for Eq. 1 to locate densities that do 

not correspond to eigenstates. 

 How does this affect ∆SCF in practice? Note that 12 is only zero if no one particle potential can 

drive the 12 transition. The most common situation where this occurs is if the eigenstates have 

different total spin (e.g. the transition density for singlet-triplet transitions is always rigorously zero).  

Thus, any linear combination 

TTSS cc   

of a singlet eigenstate (S) and triplet eigenstate (T) will have a stationary density and could lead to 

spurious ∆SCF solutions.  In practice, this indeterminacy leads to spin contamination of the KS 

eigenstates in the following way.  Suppose we have a singlet ground state and we’re interested in the 

HOMOLUMO transition.  The singlet and one of the triplet states require two determinants: 









LUMOHOMOLUMOHOMOT

LUMOHOMOLUMOHOMOS





........

........
 

but KS-DFT biases us toward states that are well-represented by a single determinant
93

.  Thus, rather 

than obtaining a pure singlet or a pure triplet we obtain a broken symmetry solution like 
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TSLUMOHOMO   .... . 

When employed in Eq. 2, this mixed spin state gives an energy somewhere between the singlet and 

triplet excitation energies.  Thus, we are led to the purification formula 


 EEES 2 . 

This scheme has a long history in predicting exchange couplings
94, 95

, and the results above suggest that 

it predicts singlet HOMOLUMO transitions in line with intuition.  We thus see that the projection of 

excited state energies arises directly from the indeterminacy of the ∆SCF equations in the presence of 

spin degeneracy.  We can also explicitly solve the case of three unpaired electrons to obtain two doublet 

energies 

 

     2
2
12

2
12

2
1

2
1











EEEEEE

EEEEED

. 

The projection scheme can be further generalized to an arbitrary number of unpaired electrons
96

, 

although the resulting equations are overdetermined
97

.  

 A more sophisticated scheme for dealing with spin would involve introducing a 

multideterminant reference state into the KS calculation.  This is the idea behind the ROKS and REKS 

methods
98-100

.  Techniques of this sort are certainly more elegant than post facto energy projection, but 

they also fundamentally change the equations being solved.  We will thus postpone examination of 

these approaches to a later publication. 

 

VI.  Conclusions 

 We have revisited the approximations that define the ΔSCF approach to excited states in DFT. 

The performance of the method was assessed by comparing ΔSCF excitation energies for several 

organic dyes with TDDFT and experimental excitation energies.  We found that deviations of spin-
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purified ΔSCF excitation energies from experimental values are comparable to those of TDDFT for all 

functionals tested.  Spin-contaminated ΔSCF energies were found to require more exact exchange to 

achieve similar accuracy. As a partial justification of these results, we demonstrated that ΔSCF 

densities are precisely the stationary densities of TDDFT within the adiabatic approximation, and the 

necessity of purifying the energies arises from the indeterminacy of the stationary equations with 

respect to different spin states. 

While this study establishes some expectations regarding the range of applicability of the ΔSCF 

approach, there remain several unanswered questions to be explored in future work.  We have shown 

that ∆SCF performs well for HOMOLUMO excitations, but it remains to be determined how it 

performs for higher energy excitations.  It will also be interesting to compare and contrast the 

performance of a spin-adapted approach such as ROKS with the spin purification approach presented 

here.  

Several possible extensions and applications of ΔSCF methodology also deserve attention. 

ΔSCF gradients are readily available from ground-state SCF codes. Therefore, if the excited state 

potential energy surface (PES) obtained from ΔSCF is reasonably parallel to the true Born-

Oppenheimer PES, ΔSCF could provide an efficient alternative to TDDFT and other wavefunction 

based methods for geometry optimization and molecular dynamics on excited states
101-103

. Furthermore, 

ΔSCF also provides an affordable route to the excited state Hessian, from which one could construct 

vibrationally resolved absorption and emission spectra
104, 105

. It is also a simple matter to incorporate 

solvation effects in ∆SCF
71, 106

.  Together, these features could provide an affordable way to calculate 

full absorption and emission spectra in different environments for large molecules like the 

phthalocyanines. It will be intriguing to see if the robustness of ∆SCF for low-lying excited states 

extends across a wide enough range of excited state properties to make these simulations worthwhile. 
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