
MIT Open Access Articles

Metagenomic biomarker discovery and explanation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Segata, Nicola et al. “Metagenomic Biomarker Discovery and Explanation.” Genome 
Biology 12.6 (2011): R60. Web.

As Published: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218848/

Publisher: Springer (Biomed Central Ltd.)

Persistent URL: http://hdl.handle.net/1721.1/70123

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/70123
http://creativecommons.org/licenses/by/2.0
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Metagenomic biomarker discovery and
explanation
Nicola Segata1, Jacques Izard2,3, Levi Waldron1, Dirk Gevers4, Larisa Miropolsky1, Wendy S Garrett5,6,7 and
Curtis Huttenhower1*

Abstract

This study describes and validates a new method for metagenomic biomarker discovery by way of class
comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding
organisms, genes, or pathways that consistently explain the differences between two or more microbial
communities, which is a central problem to the study of metagenomics. We extensively validate our method on
several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.
harvard.edu/lefse/.

Background
Biomarker discovery has proven to be one of the most
broadly applicable and successful means of translating
molecular and genomic data into clinical practice. Com-
parisons between healthy and diseased tissues have high-
lighted the importance of tasks such as class discovery
(detecting novel subtypes of a disease) and class predic-
tion (determining the subtype of a new sample) [1-4],
and recent metagenomic assays have shown that human
microbial communities can be used as biomarkers for
host factors such as lifestyle [5-7] and disease [7-10]. As
sequencing technology continues to develop and makes
microbial biomarkers increasingly easily detected, this
enables clinical diagnostic and microbiological applica-
tions through the comparison of microbial communities
[11,12].
The human microbiome, consisting of the total micro-

bial complement associated with human hosts, is an
important emerging area for metagenomic biomarker
discovery [13,14]. Changes in microbial abundances in
the gut, oral cavity, and skin have been associated with
disease states ranging from obesity [15-17] to psoriasis
[18]. More generally, the metagenomic study of micro-
bial communities is an effective approach for identifying
the microorganisms or microbial metabolic characteris-
tics of any uncultured sample [19,20]. Analyses of

metagenomic data typically seek to identify the specific
organisms, clades, operational taxonomic units, or path-
ways whose relative abundances differ between two or
more groups of samples, and several features of micro-
bial communities have been proposed as potential bio-
markers for various disease states. For example, single
pathogenic organisms can signal disease if present in a
community [21,22], and increases and decreases in com-
munity complexity have been observed in bacterial vagi-
nosis [23] and Crohn’s disease [8]. Each of these
different types of microbial biomarkers is correlated
with disease phenotypes, but few bioinformatic methods
exist to explain the class comparisons afforded by meta-
genomic data.
Identifying the most biologically informative features

differentiating two or more phenotypes can be challen-
ging in any genomics dataset, and this is particularly
true for metagenomic biomarkers. Robust statistical
tools are needed to ensure the reproducibility of conclu-
sions drawn from metagenomic data, which is crucial
for clinical application of the biological findings. Related
challenges are associated with high-dimensional data
regardless of the data type or experimental platform; the
number of potential biomarkers, for example, is typically
much higher than the number of samples [24-26]. Meta-
genomic analyses additionally present their own specific
issues, including sequencing errors, chimeric reads
[27,28], and complex underlying biology; many micro-
bial communities have been found to show remarkably
high inter-subject variability. For example, large
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differences are detected even among the gut micro-
biomes of twins [29], and both human microbiomes and
environmental communities are thought to be character-
ized by the presence of a long tail of rare organisms
[30-32]. Moreover, simply identifying potential biomar-
kers without elucidating their biological consistency and
roles is only a precursor to understanding the underly-
ing mechanisms of microbe-microbe or host-microbe
interactions [33]. In many cases, it is necessary to
explain not just how two biological samples differ, but
why. This problem is referred to as class comparison:
how can the differences between phenotypes such as
tumor subtype or disease state be explained in terms of
consistent biological pathways or molecular
mechanisms?
A number of methods have been proposed for class

discovery or comparison in metagenomic data. MEGAN
[34] is a metagenomic analysis tool with recent addi-
tions for phylogenetic comparisons [35] and statistical
analyses [36]. MEGAN, however, can only compare sin-
gle pairs of metagenomes, as is also the case with
STAMP [37], which does introduce a concept of ‘biolo-
gical relevance’ in the form of confidence intervals. Uni-
Frac [38] compares sets of metagenomes at a strictly
taxonomic level using phylogenetic distance, while MG-
RAST [39], ShotgunFunctionalizeR [40], mothur [41],
and METAREP [42] all process metagenomic data using
standard statistical tests (mainly t-tests with some modi-
fications). Most methods for community analysis from
an ecological perspective rely on unsupervised cluster
analyses based on principal component analysis [43] or
principal coordinate analysis [44]. These can successfully
detect groups of related samples, but they fail to include
prior knowledge of phenotypes or environmental condi-
tions associated with the groups, and they generally do
not identify the biological features responsible for group
relationships. Metastats [45] is the only current method
that explicitly couples statistical analysis (to assess
whether metagenomes differ) with biomarker discovery
(to detect features characterizing the differences) based
on repeated t statistics and Fisher’s tests on random
permutations. However, none of these methods, even
those offering nuanced analyses of metagenomic data,
provide biological class explanations to establish statisti-
cal significance, biological consistency, and effect size
estimation of predicted biomarkers.
In this work, we present the linear discriminant analy-

sis (LDA) effect size (LEfSe) method to support high-
dimensional class comparisons with a particular focus
on metagenomic analyses. LEfSe determines the features
(organisms, clades, operational taxonomic units, genes,
or functions) most likely to explain differences between
classes by coupling standard tests for statistical signifi-
cance with additional tests encoding biological

consistency and effect relevance. Class comparison
methods typically predict biomarkers consisting of fea-
tures that violate a null hypothesis of no difference
between classes; we additionally detect the subset of fea-
tures with abundance patterns compatible with an algor-
ithmically encoded biological hypothesis and estimate
the sizes of the significant variations. In particular, effect
size provides an estimation of the magnitude of the
observed phenomenon due to each characterizing fea-
ture and it is thus a valuable tool for ranking the rele-
vance of different biological aspects and for addressing
further investigations and analyses. The introduction of
prior biological knowledge in the method contributes to
constrain the analysis and thus to address the challenges
traditionally connected with high-dimensional data
mining. LEfSe thus aims to support biologists by sug-
gesting biomarkers that explain most of the effect differ-
entiating phenotypes of interest (two or more) in
biomarker discovery comparative and hypothesis-driven
investigations. The visualization of the discovered bio-
markers on taxonomic trees provides an effective means
for summarizing the results in a biologically meaningful
way, as this both statistically and visually captures the
hierarchical relationships inherent in 16S-based taxo-
nomies/phylogenies or in ontologies of pathways and
biomolecular functions.
We validated this approach using data from human

microbiomes, a mouse model of ulcerative colitis, and
environmental samples, in each case predicting groups
of organisms or operational taxonomic units that con-
cisely differentiate the classes being compared. We
further evaluated LEfSe using synthetic data, observing
that it achieves a substantially better false positive rate
compared to standard statistical tests, at the price of a
moderately increased false negative rate (that can be
adjusted as needed by the user). An implementation of
LEfSe including a convenient graphical interface incor-
porated in the Galaxy framework [46,47] is provided
online at [48].

Results and discussion
LEfSe is an algorithm for high-dimensional biomarker
discovery and explanation that identifies genomic fea-
tures (genes, pathways, or taxa) characterizing the differ-
ences between two or more biological conditions (or
classes) (Figure 1). It emphasizes statistical significance,
biological consistency and effect relevance, allowing
researchers to identify differentially abundant features
that are also consistent with biologically meaningful
categories (subclasses; see Materials and methods).
LEfSe first robustly identifies features that are statisti-
cally different among biological classes. It then performs
additional tests to assess whether these differences are
consistent with respect to expected biological behavior;
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for example, given some known population structure
within a set of input samples, is a feature more abun-
dant in all population subclasses or in just one? Specifi-
cally, we first use the non-parametric factorial Kruskal-
Wallis (KW) sum-rank test [49] to detect features with
significant differential abundance with respect to the
class of interest; biological consistency is subsequently
investigated using a set of pairwise tests among sub-
classes using the (unpaired) Wilcoxon rank-sum test
[50,51]. As a last step, LEfSe uses LDA [52] to estimate
the effect size of each differentially abundant feature
and, if desired by the investigator, to perform dimension
reduction.
We have specifically designed LEfSe for biomarker dis-

covery in metagenomic data. We thus summarize our
results here from applying the tool to 16S rRNA gene

and whole genome shotgun datasets to detect bacterial
organisms and functional characteristics differentially
abundant between two or more microbial environments.
These include body sites within human microbiomes
(mucosal surfaces and aerobic/anaerobic environments),
adult and infant microbiomes, inflammatory bowel dis-
ease status in a mouse model, bacterial and viral envir-
onmental communities, and synthetic data for
quantitative computational evaluation.

Taxa characterizing body sites within the human
microbiome
Microbial community organization at multiple human
body sites is an area of active current research, since
both low- and high-throughput methods have shown
both differences and overlaps among the microbiota of

Figure 1 LEfSe mines a wide range of high-throughput genetic data to find biologically relevant features characterizing one or more
experimental conditions. The inputs to the system are the specifications of the biological hypothesis under investigation (conditions and inter-
condition sample groupings), the high-dimensional data obtained experimentally, and, optionally, prior knowledge from literature or databases
used to define known relationships between features (used for meaningful hierarchical organization of the discovered biomarkers) or samples
(used for testing biological consistency of potential biomarkers). LEfSe is a three-step algorithm (detailed in Figure 6). (a) LEfSe first provides the
list of features that are differential among conditions of interest with statistical and biological significance, ranking them according to the effect
size. (b) For problems with known hierarchical structure, either phylogenetic or functional, we then provide a mapping of the differences to
taxonomic or functional trees. (c) Finally, the system produces a histogram visualizing the raw data within the specified problem structure for
each relevant feature. While LEfSe has been developed primarily for metagenomic data containing taxon or gene abundances, it can be used for
biomarker discovery in any setting where prior biological knowledge regarding the structure of a comparison is coupled with statistically
significant differences in high-dimensional genomic features. KEGG, Kyoto Encyclopedia of Genes and Genomes; WGS, whole genome shotgun.
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multiple body sites [53,54]. We examined these differ-
ences in the 16S-based phylometagenomic dataset from
24 individuals enrolled in the Human Microbiome Pro-
ject [13,55]. A minimum of 5,000 16S rRNA gene
sequences were obtained for 301 samples from 24
healthy subjects (12 male, 12 female) covering 18 body
sites, including 6 main body site categories: the oral cav-
ity (9 sub-sites sampled), the vagina (3 sub-sites
sampled), the skin (2 sub-sites sampled), the retroauri-
cular crease (2 sub-sites sampled), the nasal cavity (1
sample) and the gut (1 sample). We validated LEfSe by
contrasting mucosal versus non-mucosal body site
classes and by comparing three levels of aerobic envir-
onments (anaerobic, microaerobic, and aerobic). In both
cases, the sub-sites within each class of body site were
used as a biological subclass.

Mucosal surfaces are colonized by diverse bacteria; non-
mucosal microbiomes are strongly enriched for
Actinobacteria
Our first analysis focused on differences in microbiota
composition between mucosal and non-mucosal body
sites. The oral cavity, gut, and vaginal sites were classi-
fied as sources of mucosal communities and the anterior
fossa (skin), nasal cavity, and retroauricular crease as
non-mucosal. Mucosal environments differ greatly from
the other body sites, characterized primarily by interac-
tion with the human immune system, oxidative chal-
lenge, and hydration [56].
LEfSe provides three main outputs (Figure 2), describ-

ing the effect sizes of differences observed among
mucosal/non-mucosal communities, the phylogenetic
distribution of these differences based on the Ribosomal
Database Project (RDP) bacterial taxonomy [57], and
the raw data driving these effects. LEfSe detected 15
bacterial clades showing statistically significant and bio-
logically consistent differences in non-mucosal body
sites (Figure 2a).
The most differentially abundant bacterial taxa in non-

mucosal body sites belong to phyla with prevalent aero-
bic members: Actinobacteria, Firmicutes, and Proteobac-
teria, including environmental organisms from the
Betaproteobacteria and Gammaproteobacteria clades.
Non-mucosal overrepresented genera include Propioni-
bacterium, Staphylococcus (found exclusively in non-
mucosal samples), Corynebacterium, and Pseudomonas.
Also of note is the relevant representation of plastids
from plant organisms (chloroplasts), for which the dis-
tribution of associated taxa varies, as some are limited
to non-mucosal surfaces (environmental exposure and
potentially cosmetic products) and others to the diges-
tive track (ingested food). No clades are consistently
present in all mucosal body sites, demonstrating the b-
diversity of these communities (that is, differences

among their population structure), but many taxa within
Actinobacteria, Bacillales, and several other clades are
relatively abundant at all non-mucosal sites. The within-
subject b-diversity at all phylogenetic levels is high-
lighted in Additional file 1, quantifying the extent to
which distances among different mucosal body sites are
larger than the equivalent distances among non-mucosal
sites. This leads to a lack of taxa common to all mucosal
body sites, and therefore no taxa are determined by
LEfSe to be characteristic of the mucosa as a whole.
The Actinomycetales are usually the most abundant

phylogenetic unit (order level) in non-mucosal commu-
nities, with percentages higher than 90% in several skin
samples and at most 20% in the great majority of the
oral mucosal samples and substantially lower in the
vagina and gut (Figure 2c). From a quantitative view-
point, the taxonomic order Actinomycetales makes up
essentially all of the detected members of the phylum
Actinobacteria, except in the vaginal site, which
reported a substantial Bifidobacteriales presence. Bifido-
bacteriales themselves are not detected as differentially
abundant between mucosal and non-mucosal body sites,
since this is a feature only of the vaginal samples and
not of all mucosal body sites. The contrast of many
clades’ abundance versus distribution is striking; for
example, the genera Alloscardovia, Parascardovia and
Scardovia are present in all body sites at very low abun-
dances, while Gardnerella is overrepresented only in
vaginal samples, with over three orders of magnitude
difference in abundance. A similar commonality of dis-
tribution was found for the Bacillales at an even lower
abundance. At the genus level, Propionibacterium, Sta-
phylococcus, Corynebacterium and Pseudomonas are dif-
ferentiated by both distribution and abundance. The
Staphylococcus genus in particular is detected by LEfSe
with a very high LDA score (more than five orders of
magnitude), reflecting marked abundance in non-muco-
sal sites (mean 10%, 18% and 21% in the skin, retroauri-
cular crease and anterior nares body sites, respectively)
and consistently low abundance in mucosal sites (mean
less than 0.001%).

Classes with multiple levels: distinct aerobic, anaerobic,
and microaerobic communities in the human microbiome
The roles of anaerobic metabolism in the commensal
human microbiota have not yet been fully investigated
due to the difficulty of studying these communities in
culture. We thus further investigated the aerobicity
characteristics of human microbial communities at a
high level by grouping body sites into three classes with
distinct levels of available molecular oxygen. The high-
O2 exposure class includes body sites directly and per-
manently exposed to oxygen: skin, anterior nares and
retroauricular crease. The mid-O2 exposure class
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Figure 2 LEfSe results on human microbiomes. (a-c) Mucosal body site analysis. Mucosal microbial communities are diverse, while non-
mucosal body sites are characterized by several clades, including the Actinobacteria. The analysis reported here is carried out on initial data
from the Human Microbiome Project [55,56] assigning the main body sites to mucosal and non-mucosal classes, and using the body sites as
subclasses. These graphical outputs were generated by the publicly available LEfSe visualization modules applied on the analysis results and
integrating microbial taxonomic prior knowledge [58]. (a) Histogram of the LDA scores computed for features differentially abundant between
mucosal and non-mucosal body sites. LEfSe scores can be interpreted as the degree of consistent difference in relative abundance between
features in the two classes of analyzed microbial communities. The histogram thus identifies which clades among all those detected as
statistically and biologically differential explain the greatest differences between communities. (b) Taxonomic representation of statistically and
biologically consistent differences between mucosal and non-mucosal body sites. Differences are represented in the color of the most abundant
class (red indicating non-mucosal, yellow non-significant). Each circle’s diameter is proportional to the taxon’s abundance. This representation,
here employing the Ribosomal Database Project (RDP) taxonomy [58], simultaneously highlights high-level trends and specific genera - for
example, multiple differentially abundant sibling taxa consistent with the variation of the parent clade. (c) Histogram of the Actinomycetales
relative abundances (in the 0[1] interval) in mucosal and non-mucosal body sites. Subclasses (specific body sites) are differentially colored and
the mean and median relative abundance of the Actinomycetales are indicated with solid and dashed lines, respectively. (d,e) Aerobiosis
analysis. The cladograms report the taxa (highlighted by small circles and by shading) showing different abundance values (according to LEfSe)
in the three O2-dependent classes as described in Results; for each taxon, the color denotes the class with higher median for both the small
circles and the shading. (d) The strict (all classes differential) version of LEfSe detects 13 biomarkers whereas (e) the non-strict (at least one class
differential) version of LEfSe detects 60 microbial biomarkers with abundance differential under aerobic, anaerobic, or microaerobic conditions.
Additional file 2 reports the non-strict version of LEfSe focused on the Firmicutes phylum, highlighting several low-O2 specific genera within
Ruminococcaceae and Lachnospiraceae.
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includes the oral and vaginal body sites that can be
directly, but not permanently, atmospherically exposed,
and the low-O2 exposure class (the gut) is mainly anae-
robic. The body sites included in the three classes may
have other distinguishing features in addition to differ-
ent oxygen exposure and, in general, these confounding
factors can cause features unrelated with aerobiosis to
be detected as biomarkers. However, the LEfSe biologi-
cal consistency step assures that the detected biomar-
kers are characteristic of all the subclasses of a given
class and with respect to all subclasses of the other
classes. For example, the high-abundance of a bacterial
clade in the mouth due to an oral-specific niche is not
detected as a biomarker unless the same niche is also
present in the vaginal samples (the other body site in
the mid-O2 class) and not present in any high-O2 or
low-O2 single body sites. So LEfSe will detect biomar-
kers more confidently connected with the aerobiosis
characteristics than traditional methods that do not
incorporate subclass information. Moreover, LEfSe is
specifically able to analyze ordinal classes with multiple
levels, and in agreement with established microbiology,
we observed specific microbial clades ubiquitous within
and characteristic to each of these three environments,
detailed as follows (Figure 2d).
LEfSe allows ordinal classes with more than two levels

to be analyzed in two different stringencies. The first
requires significant taxa to differ between every pair of
class values (that is, aerobicity in this example; see
Materials and methods); the discovered biomarkers
must accurately distinguish all individual classes (high-,
mid-, and low-O2). In this example (Figure 2d; strict
version), we detected 13 clades with LDA scores above
2, showing three distinct abundance levels. Alternatively,
LEfSe can determine significant taxa differing in at least
one (and possibly multiple) class value(s) (non-strict ver-
sion); in other words, biomarkers that distinguish at
least one individual class. Using this method (Figure 2e),
we find 60 clades with LDA scores of at least 2.
Using either approach, each oxygen level is broadly

characterized by a specific clade. The overall abundances
of the Actinobacteria phylum are higher in body sites
directly exposed to molecular oxygen with several mem-
bers of the Actinomycetales order that colonize the skin.
Actinomycetales includes the Propionibacterium genus,
which is highly abundant on the skin, low in moderate-
O2 environments, and absent from the gut. The Lacto-
bacillales (primarily Bacilli) are specific to moderate O2

exposure levels, with conversely lower presences in the
high-O2 exposure class, and are again absent from the
gut. The Bacteroidaceae (particularly Bacteroides) are
ubiquitous in anaerobic samples; interestingly, however,
members of this family are more abundant in high oxy-
gen availability conditions (particularly in skin and

retroauricular crease) than in medium oxygen availabil-
ity, showing the niche diversity within the phylogenetic
branching. This is in agreement with observations that
the microenvironment of many microbial consortia
shows extreme biogeographical variation with respect to
nutrients, metabolites, and oxygen availability [58,59].

Bifidobacteria and additional clades are underrepresented
in a mouse model of ulcerative colitis
Rodent models have been established to provide a
uniquely accurate and tractable model for studying the
gut microbiota, including the molecular and cellular
mechanisms driving chronic intestinal inflammation
[60-63]. In particular, mouse models of inflammatory
bowel disease [63] facilitate a mechanistic evaluation of
the contribution of the gut microbiota to the initiation
and perpetuation of chronic intestinal inflammation, as
occurs in human Crohn’s disease and ulcerative colitis
[64]. One host molecular mechanism known to maintain
the balance between immune regulation and the com-
mensal microflora is T-bet, a transcription factor
expressed in many immune cell subsets. Its loss in the
absence of an adaptive immune system results in a
highly penetrant and aggressive form of ulcerative colitis
[65] that is specifically dependent on and transmissible
through the gut flora. We thus sought to investigate the
characteristics of the fecal microbiota in a mouse model
of spontaneous colitis that occurs in a colony of Balb/c
T-bet-/- × Rag2-/- mice using 16S rRNA gene metage-
nomic data [66,67].
LEfSe was applied to the microbiota data of 20 T-bet-/-

× Rag2-/- (case) and 10 Rag2-/- (control) mice (dataset
provided in Additional File 10), finding 19 differentially
abundant taxonomic clades (a = 0.01) with an LDA
score higher than 2.0 (Figure 3). These differentially
abundant clades were consonant with both our prior
16S rRNA-based sequence analysis using complete link-
age hierarchical clustering and quantitative real time
PCR-based experiments performed on the same fecal
DNA samples [67]. More specifically, the marked loss in
Bifidobacteriaceae and Bifidobacterium associated with
T-bet-/- × Rag2-/- we observed here may explain the
positive responsiveness of this colitis to a Bifidobacter-
ium animalis subsp. lactis fermented milk product vali-
dated with low-throughput approaches [67].
At the family level, the Rag2-/- enrichment of Bifido-

bacteriaceae, Porphyromonadaceae, Staphylococcaceae
and the T-bet-/- × Rag2-/- enrichment of Lachnospira-
ceae confirm our reports in [68] using culture-based
and quantitative real time PCR techniques. LEfSe’s LDA
score more informatively reorders these taxa relative to
the P-values found for these families in our previous
work, highlighting the Bifidobacteria and, interestingly,
several clades within the Clostridia. These include the
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Rag2-/--specific Roseburia and Papillibacter genera
belonging to T-bet-/- × Rag2-/--specific families (Lach-
nospiraceae and Ruminococcaceae). The significant pre-
sence of Metascardovia (Bifidobacteriaceae) in Rag2-/-

mice is also interesting, as it may have a role similar to
Bifidobacterium and because Metascardovia has been
previously observed primarily in the oral cavity [68].
This analysis both highlights the agreement of LEfSe’s
effect size estimation with respect to low-throughput
confirmations and suggests additional clades to be
further investigated experimentally.

A comparison with current metagenomic analysis tools
using viral and microbial pathways from environmental
data
We applied LEfSe to the environmental data of [69], a
dataset with the goal of characterizing the functional
roles of viromes (that is, viral metagenomes) versus
microbiomes (that is, bacterial metagenomes). This task
was used in [45] to characterize the Metastats algorithm
on the same raw data. Among the 29 high-level func-
tional roles (including unclassified roles) in the subsys-
tem hierarchy of the SEED [70] and NMPDR [71]
frameworks, LEfSe identifies only the ‘Nucleosides and
nucleotides’ subsystem to be strictly differentially abun-
dant among all environmental subclasses, specifically

with higher levels in viromes than microbiomes. This is
an accurate characterization of exactly the protein func-
tion most commonly encoded in viral genomes, whereas
bacterial genomes of course encode a wide range of less
specifically enriched functionality. When LEfSe is
relaxed to detect significant variations consistent for at
least one, rather than all, environmental subclasses, we
additionally determine the ‘Respiration’ subsystem to be
significantly enriched in microbiomes with respect to
viromes, likely reflecting the uniformly aerobic bacterial
metabolism captured by these data.
In addition to the Nucleosides and nucleotides and

Respiration subsystems, Metastats [45] reports five other
high-level functional roles as differentially abundant (P =
0.001). However, when taking the subclass structure into
account across the sampled environments, these additional
differences show much less consistent variation. This is
demonstrated in Figure 4, which reports histograms of
raw data for these cases and the different results of LEfSe,
Metastats and the KW test alone. Moreover, since the sub-
system framework is hierarchical (three levels), LEfSe’s
results include a cladogram showing the significant differ-
ences on each level (see Figure 4 for a two-level clado-
gram, and Additional file 2 for a three-level cladogram).
Considering all three levels of SEED functional specifi-

city, LEfSe reports 59 subsystems to be more abundant

Figure 3 Comparison between Rag2-/- (control) and T-bet-/- × Rag2-/- (case) mice highlighting that, at the phylum level, Firmicutes are
enriched in T-bet-/- × Rag2-/- mice, whereas Actinobacteria are enriched in Rag2-/- mice. In agreement with previous culture-based studies,
Bifidobacterium species are underabundant in T-bet-/- × Rag2-/- mice [68], and LEfSe highlights several additional genus-level clades, including the
specifically depleted Roseburia and Papillibacter within the otherwise overabundant Firmicutes.
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in microbial metagenomes and only 7 that are more
abundant in viral metagenomes (Additional file 3). Bac-
terial genomes encode a much greater quantity and
diversity of biomolecular functionality than most viral
genomes, and these differences are thus to be expected.
However, they also highlight a consideration specific to
most metagenomic (and, more generally, ecological)
analyses, which typically analyze relative abundances. A
few very common subsystems in viromes (that is,
Nucleosides and nucleotides) will force the relative
abundance of all other subsystems to decrease, resulting
in apparent under-abundance. The subsystems detected
to be virus-specific may thus show this trend in part
due to the normalization of abundances in each sample.
This issue is specific to neither LEfSe nor Metastats,
however, and must be taken into account during inter-
pretation of any relative abundance data, metagenomic
or otherwise [72].

Functional activity within the infant and adult microbiota
indicates post-weaning microbial specialization
Just as LEfSe can determine whether organisms or path-
ways are differentially abundant among several

metagenomic samples, it can also focus on individual
enzymes or orthologous groups. Kurokawa et al. [73]
analyzed 13 gut metagenomes from nine adults and four
unweaned infants in terms of the functions of ortholo-
gous gene families. They originally did this by compar-
ing the COGs [74,75] found in each metagenome to a
reference database; later, White et al. [45] applied the
Metastats algorithm to directly detect differences
between infant and adult microbiomes. Using signifi-
cance a values of 0.01 due to the low cardinality of the
classes (in particular the infant class), LEfSe detected
366 COGs to be enriched in either adult or infant meta-
genomes, 17 of which have a LDA score higher than 3
(Additional file 4).
Among the 17 COG profiles with LEfSe scores higher

than 3, 11 are also detected by Metastats. The six COGs
not detected by Metastats (Additional file 5) are Outer
membrane protein (COG1538) and Na+-driven multi-
drug efflux pump (COG0534), enriched in adults, and
Transposase and inactivated derivatives (COG2801,
COG2963), Transcriptional regulator/sugar kinase
(COG1940) and Transcriptional regulator (COG1309),
enriched in infants. All six COGs possess abundance

Figure 4 LEfSe highlights pathways consistently differential between bacterial microbiomes and viromes within diverse environmental
subclasses. (a) Using the SEED [71] catalog of functional pathways, LEfSe reports Nucleoside and nucleotide metabolism and Respiration to
differ consistently between bacterial microbiomes and viromes across environmental samples described in [70]. The former is significant using
the strictest all-subclasses test, the latter in the more lenient one-subclass test. (b) A two-level cladogram reporting the significant pathway
differences as visualized using the SEED hierarchy (see Additional file 3 for the three-level cladogram and detailed differences). (c) Metastats [45]
reports four additional pathways differential among these data (Carbohydrates, DNA metabolism, Membrane transport and Nitrogen
metabolism). Using only the KW test portion of LEfSe (a = 0.05), we obtain results consonant with Metastats (excluding Nitrogen metabolism).
However, as shown here, an overview of the abundance histograms of these subsystems demonstrates them to be less consistent across
environments (for example, Coral and Hyper-saline subclasses in the Carbohydrates, Membrane transport and Nitrogen metabolism) and to lose
significance within individual subclasses (as for the DNA metabolism subsystem).
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profiles that are completely non-overlapping between
infant and adult individuals (apart from COG1538, in
which the lowest level in adults is slightly lower than
the highest in infants) and are thus nominally quite dis-
criminative. On the other hand, among the 192 COGs
found by Metastats, 9 are not detected by LEfSe even at
the lowest LDA score threshold (Additional file 6). All
possess overlapping abundance values between infant
and adult classes (at least two, and often more, of the
highest samples in the less abundant class overlap the
putatively more abundant class). This lack of discrimina-
tory power precludes LEfSe from highlighting the differ-
ences as significant between adults and infants,
particularly given the low number of infant samples.
Intriguingly, LEfSe’s distinct list of functional activities

in the core infant and adult microbiomes is suggestive
of ‘generalist’ microbial activity during early life and spe-
cialization over time [76]. In fact, inspecting the five dif-
ferentially abundant COGs with the highest effect sizes
for each class, we find for infants very high-level func-
tional groups related to broad transcriptional regulation
(COG1609, COG1940, COG1309 and COG3711). In
adults, all five represent more specialized orthologous
groups, including COG1629 (Outer membrane receptor
proteins, mostly Fe transport), COG1595 (DNA-directed
RNA polymerase specialized sigma subunit, sigma24
homolog), and COG4771 (Outer membrane receptor for
ferrienterochelin and colicins). Since the number of dif-
ferentially abundant COGs is very high (366), this obser-
vation was only highlighted at the top of the candidate
biomarker list due to LEfSe’s effect size quantification,
which allows the most characteristic differences among
classes to emerge. For the same reason, we can easily
confirm that sugar metabolism plays a crucial role in
the infant gut and iron metabolism in adults, as already
stated in [45,73]; the COGs with the highest LDA scores
indeed possess sugar and glucose functional activities
for infants and iron-related functionality for adults.

LEfSe achieves a very low false positive rate in synthetic
data
We further investigated the ability of LEfSe to detect
biomarkers using synthetic high-dimensional data (see
Materials and methods for the description of the data-
set) in comparison with the KW test alone (a non-para-
metric adaptation of the analysis of variance (ANOVA))
and with Metastats [45]. The LDA effect size step of
LEfSe is not considered here for simplicity, and the arti-
ficial data are detailed in Figure 5.
Theoretically, the settings of the first two experiments

(Figure 5a,b) exactly match the application conditions for
the KW test. The false positive rate (mean 2.5%, regard-
less of the distance between feature means and of the
standard deviation of the normal distribution) is in fact

consistent with the a value of 0.05, given that the nega-
tive features are half of the total. LEfSe behaved qualita-
tively very similar to KW, but with a considerably lower
false positive rate (less than 0.5% in the great majority of
the cases against a mean value of 2.5%) and a higher false
negative rate. In biology, false positives are often per-
ceived as more dramatic than false negatives [77-79]; this
is often attributable to the fact that it is undesirable to
invest in expensive experimental follow-up of false posi-
tives, whereas in high-throughput settings, a few true
positives outweigh the false negatives that are left unin-
vestigated. With this motivation for minimizing false
positives, we conclude that LEfSe performs at least as
well as KW when no meaningful subclass structure is
available. On the other hand, when subclasses can be
identified internally to the classes and some of them do
not agree with the trend among classes, LEfSe performs
qualitatively and quantitatively much better than KW
(Figure 5c). The false positives are in fact always substan-
tially lower than KW, whereas the false negatives are
higher only for very noisy features. Metastats [45] seems
to achieve results very similar to KW (Additional file 7)
with the same disadvantages with respect to LEfSe.

Conclusions
Gaining insight into the structure, organization, and
function of microbial communities has been proposed
as one of the major research challenges of the current
decade [80], and it will be enabled by both experimental
and computational metagenomic analyses. To this end,
we have developed the LEfSe algorithm for comparative
metagenomic studies, permitting the characterization of
microbial taxa specific to an experimental or environ-
mental condition, the detection of pathways and biologi-
cal mechanisms over- or under-represented in different
communities, and the identification of metagenomic
biomarkers in mammalian microbiomes. LEfSe is shown
here to be effective in detecting differentially abundant
features in the human microbiome (characteristically
mucosal or aerobic taxa) and in a mouse model of coli-
tis. A comparison with existing statistical methods and
state-of-the-art metagenomic analyses of environmental,
infant gut microbiome, and synthetic data shows that
LEfSe consistently provides lower false positive rates
and can effectively aid in explaining the biology underly-
ing differences in microbial communities.
These findings demonstrate that a concept of class

explanation including both statistical and biological sig-
nificance is highly beneficial in tackling the statistical
challenges associated with high-dimensional biomarker
discovery [28,81,82]. Specifically, LEfSe determines fea-
tures potentially able to explain the differences among
conditions rather than the features that simply possess
uneven distributions among classes. This is distinct
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from most current statistical approaches [45] and akin
to the incorporation of biological prior knowledge that
has proven highly successful in recent genome-wide
association studies [83-85]. Moreover, particularly in
(often noisy) metagenomic datasets, effect size can serve
as an orthogonal measure to complement ranking bio-
markers based on P-values alone. Differences between
classes can be very statistically significant (low P-value)
but so small that they are unlikely to be biologically
responsible for phenotypic differences. On the other
hand, a biomarker with a relatively large P-value (for
example, 0.01) may correspond to a large effect size,
with statistical significance diminished by technical
noise. LEfSe investigates both aspects computationally
by testing both the consistency and the effect size of dif-
ferences in feature abundance among classes with
respect to the structure of the problem. This is

performed subsequently to standard statistical signifi-
cance tests and is integrated in LEfSe by assessing biolo-
gically meaningful groups of samples among subclasses
within each condition. This coupling of statistical
approaches with biological consistency and effect size
estimation alleviates possible artifacts or statistical inho-
mogeneity known to be common in metagenomic data,
for example, extreme variability among subjects or the
presence of a long tail of rare organisms [32,86]. Simi-
larly, while multiple hypothesis corrected statistical sig-
nificance speaks to the potential reproducibility of a
result, estimation of effect size in high-dimensional set-
tings is crucial for addressing biological consistency and
interpretability.
The biology highlighted by these investigations speaks

to the potential of metagenomics for both microbial
ecology and translational applications. For example,

Figure 5 Comparison of LEfSe and the KW test alone for false positive and negative rates in synthetic data. Both tests used a = 0.05 in
all cases, and the three artificial datasets comprise 100 samples, each in two classes, each with two subclasses of cardinality 25. The samples
consist of 1,000 synthetic features taking the place of microbial taxa, pathways, and so on; half are negative (not biomarkers) and the other half
positive. (a) LEfSe and KW false positive and negative rates at increasing values of the difference between class means. Negative features are
normally distributed with parameters (μ = 10,000, s = 100) across classes; positive features contain classes with increasingly different means. (b)
Performance as standard deviation varies within classes (rather than the difference between means, fixed at 2,000). (c) Performance as standard
deviation increases within inconsistent subclasses. Negative features have subclasses sampled from the same normal distribution (and thus not
representing consistent biomarkers). Positive features are distributed as in (b). In all cases, LEfSe sacrifices a small number of false negatives in
order to achieve a false positive rate near zero, with the goal of ensuring that biomarkers of large effect size will be both reproducible and
biologically interpretable.
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certain bacterial clades are frequently detected as bio-
markers even in diverse environments, suggesting that
some species can adapt in surprisingly condition-specific
manners. Staphylococcus and the Bacillales, for example,
are discriminative for mucosal tissues, aerobic condi-
tions, and murine colitis, whereas no Proteobacteria
consistently characterize any of these conditions, even
though they always represent a substantial portion of
the communities. These observations may reflect exten-
sive microenvironmental heterogeneity and the coexis-
tence of generalist and specialist bacteria [87-89].
In addition to these insights into microbiology, meta-

genomic biomarkers, including the abundances of speci-
fic organisms, abundances of entire clades, or the
presence/absence of specific organisms, can serve to
describe host phenotypes, lifestyle, diet, and disease as
well [5-10]. If the depletion of Bifidobacterium species
in ulcerative colitis proves to occur early in human dis-
ease etiology, this and comparable shifts in the micro-
biota have potential applications in the detection of
human disorders [90,91], especially as shifts in some
bacterial consortia can be detected easily and inexpen-
sively. Oral microbial biomarkers, for example, can be
easily acquired and analyzed with microarray chips tar-
geted for bacterial profiling [92]. These appear particu-
larly promising for clinical applications [11], as the
microbial communities in the saliva seem to represent
one potential proxy for other human microbiota [93].
Other important clinical applications of metagenomic
analyses include probiotic treatments [94,95] and micro-
biome transplantation [96-99] for gastrointestinal
diseases.
LEfSe, the computational approach to biomarker class

comparisons detailed here, thus contributes to the under-
standing of microbial communities and guides biologists
in detecting novel metagenomic biomarkers. The algo-
rithm’s effectiveness on real and synthetic data has been
highlighted by several experiments in which we success-
fully characterized both host-associated microbiota and
environmental microbiomes in multiple contexts. To
support ongoing metagenomic analyses, we have imple-
mented LEfSe as a user-friendly web application that can
provide both raw data and publication-ready graphical
results, including reports of detected microbial variation
on taxonomic trees for visual and biological summariza-
tion. LEfSe is freely available online in the Galaxy work-
flow framework [46,47] at the following link [48].

Materials and methods
The LEfSe algorithm is introduced in overview in the
Results section, and Figure 6 illustrates in detail the for-
mat of the input (a matrix with n rows and m columns)
and the three steps performed by the computational
tool: the KW rank sum test [49] on classes, the pairwise

Wilcoxon test [50,51] between subclasses of different
classes, and the LDA [52] on the relevant features.
Each of the n features is represented with a positive-

valued vector containing its abundances in the m sam-
ples, and each sample is associated with values describ-
ing its class and, optionally, subclass and/or originating
subject. The factorial KW rank sum test is applied to
each feature with respect to the class factor; the subclass
and subject information are used as stratifying sub-
groups when present. Features that, according to the
KW rank sum test, do not violate the null hypothesis of
identical value distribution among classes (with default
P-value, a = 0.05) are not further analyzed. The pairwise
Wilcoxon test is applied to retained features belonging
to subclasses of different classes. For each feature, the
pairwise Wilcoxon test is not satisfied if at least one
comparison between subclasses has a P-value higher
than the chosen a or if the sign of variation is not equal
among all comparisons. For example, if a feature
appears in samples from two classes with three sub-
classes each, all nine comparisons between subclasses in
different classes must violate the null hypothesis, and all
signs of the differences between medians must be con-
sistent. The features that pass the pairwise Wilcoxon
test are considered successful biomarkers. An LDA
model is finally built with the class as dependent vari-
able and the remaining feature values, subclass, and sub-
ject values as independent variables. This model is used
to estimate their effect sizes, which are obtained by
averaging the differences between class means (using
unmodified feature values) with the differences between
class means along the first linear discriminant axis,
which equally weights features’ variability and discrimi-
natory power. The LDA score for each biomarker is
obtained computing the logarithm (base 10) of this
value after being scaled in the [1,106] interval and,
regardless of the absolute values of the LDA score, it
induces the ranking of biomarker relevance. For robust-
ness, LDA is additionally supported by bootstrapping
(default 30-fold) and subsequent averaging.
LEfSe’s first two steps employ non-parametric tests

because of the nature of metagenomic data. Relative abun-
dances will, in most cases, violate the main assumption of
typical parametric tests (normal population in each class),
whereas non-parametric tests are much more robust to
the underlying distribution of the data since they are dis-
tribution-free approaches. The only assumption of the
Wilcoxon and KW tests is that the distributions in each
class are identically shaped with possible differences in the
medians. For example, the bimodal or multimodal abun-
dance distribution of an organism violates the assumptions
of parametric tests but not those of non-parametric tests,
unless the number of peaks in the distribution (or, more
generally, the shape of the distribution) also changes
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among classes. LDA is used for effect size estimation as
our experiments determined it to more accurately estimate
biological consistency compared to approaches like differ-
ences in group means/medians or support vector
machines (SVMs) [100]. A comparison between LDA and
SVM approaches for effect size estimation on the murine
model of ulcerative colitis (for which low-throughput bio-
logical validations of biomarkers are available in [67]) is
reported in our supplemental material (Additional files 8
and 9) and shows the advantages of LDA with respect to
upranking features of potential biological interest. Theore-
tically, this is motivated by LDA’s ability to find the axis of
highest variance and SVM’s focus on features’ combined
predictive power rather than single feature relevance. Note
that as we are performing class comparison rather than
class prediction, it is worth specifying that the effect size
estimation accuracy of an algorithm is not directly con-
nected with its predictive ability (for example, SVM
approaches are generally considered more accurate than
LDA for prediction).

Multiclass strategies
Comparisons with more than two classes require special
strategies for applying the Wilcoxon and LDA steps,

whereas the factorial KW test is already appropriate for
this setting. Our multiclass strategy for the Wilcoxon
test depends on the problem-specific strategy chosen by
the user to define features differentially distributed
among the n classes. In the most stringent strategy, we
require that all n abundance profiles of a feature are sta-
tistically significantly distinct among all n classes. This
strategy, called ‘strict’, is implemented by requiring that
all Wilcoxon tests between classes are significant. A
more permissive strategy, called ‘non-strict’, considers a
feature as a biomarker if at least one class is significantly
different from all others. The more permissive strategy
thus needs to satisfy only a subset of the Wilcoxon
tests. Regardless of the strategy, the LDA step always
reports the highest score detected among all pairwise
class comparisons.

Subclass structure variants encoding different biological
hypotheses
Different interpretations of the biomarker class compari-
son problem are implemented in LEfSe by modifying the
requirements for pairwise Wilcoxon comparisons among
subclasses. If classes contain subclasses that represent
distinct strata, we test only comparisons within each

Figure 6 Schematic representation of the statistical and computational steps implemented in LEfSe. Input data consist of a collection of
m samples (columns) each made up of n numerical features (rows, typically normalized per-sample, red representing high values and green
low). These samples are labeled with a class (taking two or more possible values) that represents the main biological comparison under
investigation; they may also have one or more subclass labels reflecting within-class groupings. (a) Step 1 analyzes all features, testing whether
values in different classes are differentially distributed. (b) Features violating the null hypothesis are further analyzed in step 2, which tests
whether all pairwise comparisons between subclasses in different classes significantly agree with the class level trend. (c) The resulting subset of
vectors is used to build a LDA model from which the relative difference among classes is used to rank the features. The final output thus
consists of a list of features that are discriminative with respect to the classes, consistent with the subclass grouping within classes, and ranked
according to the effect size with which they differentiate classes.
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identical subclass (Figure 4). For example, to assess the
effect of a treatment on two sub-types of the same dis-
ease, we compare pre- and post-treatment levels within
each subclass and require that the trend observed at the
class level is significant independently for both sub-
classes. To implement this variant, LEfSe performs the
Wilcoxon step only comparing subclasses with the same
name. Alternatively, subclasses may represent covariates
within which feature levels may vary but for which the
problem does not dictate explicit stratification (Figure
2). In both settings, we explicitly require all the pairwise
comparison to reject the null hypothesis for detecting
the biomarker; thus, no multiple testing corrections are
needed.

Subclasses containing few samples
When few samples are available, non-parametric tests
like the Wilcoxon have reduced power to detect differ-
ences. This can affect LEfSe when subclasses are very
small, preventing the overall test from even rejecting the
null hypothesis. For this reason, small subclasses should
be avoided when possible, for example, by excluding
them from the problem or by grouping together all sub-
classes with small cardinalities. For cases in which
removing or grouping subclasses is not possible or dis-
rupts the biological consistency of the analysis, LEfSe
substitutes the Wilcoxon test with a test to compare
whether subclass medians differ with the expected sign.
The user can choose the subclass cardinality threshold
at which this median comparison is substituted for the
Wilcoxon test.

Parameter settings
Except as stated otherwise in Results, all experiments in
this study were run with LEfSe’s a parameter for pair-
wise tests set to 0.05 for both class normality and sub-
class tests, and the threshold on the logarithmic score of
LDA analysis was set to 2.0. The stringency of these
parameters is easily tunable (also through the web inter-
face) and allows the user to detect biomarkers with
lower P-values and/or higher effect size in order, for
example, to prioritize additional biological experiments
and validations. All LDA scores are determined by boot-
strapping over 30 cycles, each sampling two-thirds of
the data with replacement, with the maximum influence
of the LDA coefficients in the LDA score of three orders
of magnitude.

Data description
Except as stated otherwise, taxonomic abundances for
16S samples were generated from filtered sequence
reads using the RDP classifier [101], with confidences
below 80% rebinned to ‘uncertain’. For all the datasets
described below, the final input for LEfSe is a matrix of

relative abundances obtained from the read counts with
per-sample normalization to sum to one. Witten-Bell
smoothing [102] was used to accommodate rare types,
but due to LEfSe’s non-parametric approach, this has
minimal effect on the discovered biomarkers and on the
LDA score. This also allows our biomarker discovery
method to avoid most effects of sequence quality issues
as long as any sequencing biases are homogeneous
among different conditions, as no specific assumptions
on the statistical distribution and noise model are made
by the algorithm as is standard for non-parametric
approaches.

Human microbiome data
The 16S rRNA-based phylometagenomic dataset of the
normal (healthy) human microbiome was made available
through the Human Microbiome Project [13], and con-
sists of 454 FLX Titanium sequences spanning the V3
to V5 variable regions obtained for 301 samples from 24
healthy subjects (12 male, 12 female) enrolled at a single
clinical site in Houston, TX. These samples cover 18
different body sites, including 6 main body site cate-
gories: the oral cavity (9 samples), the gut (1 sample),
the vagina (3 samples), the retroauricular crease (2 sam-
ples), the nasal cavity (1 sample) and the skin (2 sam-
ples). Detailed protocols used for enrollment, sampling,
DNA extraction, 16S amplification and sequencing are
available on the Human Microbiome Project Data Ana-
lysis and Coordination Center website [103], and are
also described elsewhere [55,56]. In brief, genomic DNA
was isolated using the Mo Bio PowerSoil kit [104] and
subjected to 16S amplifications using primers designed
incorporating the FLX Titanium adapters and a sample
barcode sequence, allowing directional sequencing cov-
ering variable regions V5 to partial V3 (primers: 357F
5’-CCTACGGGAGGCAGCAG-3’ and 926R 5’-
CCGTCAATTCMTTTRAGT-3’). Resulting sequences
were processed using a data curation pipeline imple-
mented in mothur [41], which reduces the sequencing
error rate to less than 0.06% as validated on a mock
community. As part of the pipeline parameters, to pass
the initial quality control step, one unambiguous mis-
match to the sample barcode and two mismatches to
the PCR amplification primers were allowed. Sequences
with an ambiguous base call or a homopolymer longer
than eight nucleotides were removed from subsequent
analyses, as suggested previously [105]. Based on the
supplied quality scores, all sequences were trimmed
when a base call with a score below 20 was encoun-
tered. All sequences were aligned using a NAST-based
sequence aligner to a custom reference based on the
SILVA alignment [106,107]. Sequences that were shorter
than 200 bp or that did not align to the anticipated
region of the reference alignment were removed from
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further analysis. Chimeric sequences were identified
using the mothur implementation of the ChimeraSlayer
algorithm [108]. Unique reads were classified with the
MSU RDP classifier v2.2 [58] using the taxonomy pro-
posed by [109], maintained at the RDP (RDP 10 data-
base, version 6). The 16S rRNA reads are available in
the Sequence Read Archive at [110].

T-bet-/- × Rag2-/- and Rag2-/- mouse data
T-bet-/- × Rag2-/- and Rag2-/- mice, their husbandry, and
their chow have been described in [67]. The animal stu-
dies and experiments were approved and carried out
according to Harvard University’s Standing Committee
on Animals as well as National Institutes of Health
guidelines. Collection, processing, and extraction of
DNA from fecal samples were performed as described
in [67]. The V5 and V6 regions of the 16S rRNA gene
were targeted for amplification and multiplex pyrose-
quencing with error-correcting barcodes. Sequencing
was performed using a Roche FLX Genome Sequencer
at DNAVision (Charleroi, Belgium) and data were pre-
processed to remove sequences with low-quality scores.
There were 7,579 ± 2,379 high-quality 16S reads per
sample with a mean read length of 278 bp.

Viral and microbial environmental data
We retrieved from the online supplemental material of
[69] the 80 available metagenomes (42 viromes, 38
microbiomes). We identified three environments con-
taining at least seven samples and grouped them into
coral, hyper-saline, and marine subclasses; the fourth
subclass, other, groups all environments with few
samples.

Infant and adult microbiome data
The COG profiles of the nine adult and four unweaned
infant microbiomes were obtained from the supplemen-
tal material of [73] and used unmodified in this study.

Synthetic datasets
We built three collections of artificial datasets in order
to compare LEfSe to KW and Metastats. All datasets
have 1,000 features and 100 samples belonging evenly to
two classes, and the values are sampled from a Gaussian
normal distribution. The samples in the two classes are
further organized in four subclasses (two per class) with
equal cardinality. Of the 1,000 features, 500 features
have different means across classes and should thus be
detected as biomarkers (positive features), the other 500
features are evenly distributed among classes or among
at least one subclass in both classes and should not be
detected as discriminative (negative features). The meth-
ods are evaluated assessing the false positive rate (num-
ber of erroneously detected biomarkers with respect to

the total number of features) and the false negative rate
(number of correctly detected non-discriminant features
with respect to the total number of features, that is, sen-
sitivity). The three collections of datasets (graphically
shown in Figure 5) differ in the distribution of values in
the subclasses and in the mean/standard deviation of
the normal distribution. (a) The subclasses in the same
class have the same parameters (thus the subclass orga-
nization is meaningless). Negative features all have μ =
10,000 and s = 100, whereas one class of the positive
features has μ = 10,000 - t (s = 100) and the other μ =
10,000 + t (s = 100) where t is a parameter ranging
from 1 to 150. The performances of all methods are
assessed at regular steps of the t parameter. (b) Datasets
in this collection are defined in the same way as collec-
tion (a) but with t = 1,000 for all datasets and s ranging
from 1,000 to 10,000. (c) The negative class in the third
collection has different subclass distribution. In particu-
lar, the second subclass of the first class has the same
mean of the first subclass of the second class. The other
two subclasses have different means (μ = 10,000 - t and
μ = 10,000 + t, t = 1,000), but the feature is not consid-
ered differential since the difference is not consistent
between subclasses. The positive features are defined in
the same way as dataset (b).

Implementation and availability of the method
LEfSe is implemented in Python and makes use of R sta-
tistical functions in the coin [111] and MASS [112]
libraries through the rpy2 library [113] and of the mat-
plotlib [114] library for graphical output. LEfSe is pro-
vided with a graphical interface in the Galaxy
framework [46,47], which allows the user to select para-
meters (the primary three stringency parameters, the
multiclass setting, and other computational, statistical,
and graphical preferences), to pipeline data between
modules in a workflow framework, to generate publica-
tion-quality graphical outputs, and to combine these
results with other statistical and metagenomic analyses.
LEfSe is available at [48].

Additional material

Additional file 1: Supplementary Figure S6. Histogram of within-
subject b-diversity (community dissimilarity) between different mucosal
(red) and non-mucosal (green) body sites.

Additional file 2: Supplementary Figure S1. Cladogram representing
the differences between viromes and microbiomes on the subsystem
framework.

Additional file 3: Supplementary Figure S2. Histogram of LDA
logarithmic scores of biomarkers found by LEfSe comparing microbiomes
and viromes within the subsystem framework.

Additional file 4: Supplementary Figure S3. Histogram of LDA
logarithmic scores of COG biomarkers found by LEfSe comparing adult
and infant microbiomes.
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Additional file 5: Supplementary Figure S4. Functional features (COGs)
that are discrimantive for the comparison between adult and infant
microbiomes according to LEfSe but not detected by Metastats among
the discriminant features with LDA score higher than 3. If we consider all
the discriminant features without threhold on LDA score, LEfSe identifies
366 COGs in total, 185 of which are not discriminant for Metastats.

Additional file 6: Supplementary Figure S5. Functional features (COGs)
that are discrimantive for the comparison between adult and infant
microbiomes according to Metastats but not detected by LEfSe. Even if
median and variance suggest the differences to be discriminative, there
are always some microbiomes (at least two) that are overlapping
between classes. This is due to the stringent a-value (0.01) set for the
KW test in LEfSe and to the fact that we use non-parametric statistics
(differently from Metastats). Notice, however, that even using a low a-
value LEfSe detects many more biomarkers than metastats (366 versus
192).

Additional file 7: Supplementary Figure S9. Comparison between
LEfSe and Metastats using the synthetic data described in Figure 5 and
in the Materials and methods. LEfSe was applied as detailed in the paper;
for Metastats we used the default settings (that is, a = 0.05 and
Npermutations = 1,000) and, as for LEfSe and KW, we disabled the per-
sample normalization as the features are independent. (a,b) Metastats
has a higher false positive rate (average 5%) than LEfSe (average below
0.5%) and lower false negative rate. (c) When the subclass information is
meaningful (see Figure 5 for the representation of the dataset), LEfSe
performs substantially better than Metastats both in terms of false
positive and false negatives. Overall, on these synthetic data, Metastats
achieves very similar results compared to KW (Figure 5) and neither of
them can make use of additional information regarding the within-class
structure, thus achieving poor results compared to LEfSe when such
kinds of information are available.

Additional file 8: Supplementary Figure S7. SVM-based effect size
estimation for the biomarkers found for the Rag2-/- versus T-bet-/-xRag2-/-

comparison reported in Figure 3 of the manuscript. The LDA-based
approach for assessing effect size (Figure 3) is closer to the biological
follow-up experiments and is more visually consistent. The reason for
LDA superiority over SVM approaches for effect size estimation is
theoretically connected with the ability of LDA to find the axis with the
highest variance, and the SVM effort on evaluating the combined feature
predictive power rather than single feature relevance. It is worth
specifying that the effect size estimation accuracy of an algorithm is not
directly connected with its predictive ability (SVM approaches are usually
considered more accurate than LDA for prediction).

Additional file 9: Supplementary Figure S8. Comparison between the
features with the highest SVM-based effect size (Papillibacter, on the left),
the highest LDA-based effect size (Bifidobacterium, in the center), and the
Actinobacteria phylum (on the right). From a visual analysis,
Bifidobacerium shows a larger effect size, which is also evident looking at
the ratios between class means, suggesting LDA as a better option for
effect size estimation than SVM approaches. As detailed in the
manuscript, the relevance of Bifidobacterium has been experimentally
validated. Moreover, the large difference in the score given by the SVM
approach to Actinobacteria compared to Bifidobacterium and Papillibacter
is not consistent.

Additional file 10: T-bet-/- × Rag2-/- - Rag2-/- dataset. Input LEfSe file
for the analysis of the ulcerative colitis phenotype in mice.

Abbreviations
bp: base pair; KW: Kruskal-Wallis; LDA: linear discriminant analysis; LEfSe:
linear discriminant analysis effect size; PCR: polymerase chain reaction; RDP:
Ribosomal Database Project; SVM: support vector machines.
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