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Abstract

Continuum mechanics relies on the fundamental notion of a mesoscopic volume
“element” in which properties averaged over discrete particles obey deterministic
relationships. Recent work on granular materials suggests a continuum law may be
inapplicable, revealing inhomogeneities at the particle level, such as force chains and
slow cage breaking. Here, we analyze large-scale three-dimensional Discrete-Element
Method (DEM) simulations of different granular flows and show that an approx-
imate “granular element” defined at the scale of observed dynamical correlations
(roughly three to five particle diameters) has a reasonable continuum interpretation.
By viewing all the simulations as an ensemble of granular elements which deform
and move with the flow, we can track material evolution at a local level. Our results
confirm some of the hypotheses of classical plasticity theory while contradicting oth-
ers and suggest a subtle physical picture of granular failure, combining liquid-like
dependence on deformation rate and solid-like dependence on strain. Our computa-
tional methods and results can be used to guide the development of more realistic
continuum models, based on observed local relationships between average variables.
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Fig. 1. A typical 2.5d × 8d × 2.5d cell of particles from a DEM simulation, which
forms the basis of the approximate granular element considered in this paper.

1 Introduction

Granular materials exhibit many interesting collective phenomena and have
attracted growing interest from the physics community (1; 2; 3; 4), but many
of the central challenges remain unanswered. In particular, there is still no
general continuum model that can describe the many phenomena of dense
granular flow, such as parabolic flow (5; 6; 7) transitioning to plug flow (8) in
a draining silo, wide shear zones (9) and localized shear bands (10) in Couette
cells, and Bagnold scaling for inclined plane flows (11; 12). This is in contrast
to the hydrodynamics of dilute granular materials and molecular fluids, for
which accurate continuum models can be systematically derived by averaging
over particle collisions in an idealized element (13).

Recent work has revealed microscopic features of dense granular materials,
which seem to defy a simple continuum description. These include: (i) com-
plex, fractal networks of force chains, which are inhomogeneous down to the
particle level (14; 15; 16; 17; 18; 19; 20; 21); (ii) anomalous, non-collisional
particle dynamics with very slow cage breaking (7; 22; 23); (iii) proximity to
the jamming transition, where geometrical packing constraints suppress any
dynamics (24; 25); (iv) a lack of thermal equilibrium in the conventional sense,
since particles only move in response to external forces, motivating new def-
initions of temperature (26; 27; 28; 29); and (v) a wide range of dynamical
response, from liquid-like to solid-like (2; 30; 31). The first four points cast
serious doubt on the prospects of a continuum law. The fifth means that the
full stress tensor must be described, and it may depend on strain, deformation
rate, and material variables that can evolve during the process.

We thus arrive at the fundamental question: can a “granular element” be
meaningfully defined, and if so, what is its rheology? The oldest definition
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corresponds to the two-dimensional “Ideal Coulomb Material”, in which the
granular element behaves like a rigid solid, which undergoes failure if the ra-
tio of shear stress to normal stress on any plane exceeds a critical value µ,
the Coulomb internal friction coefficient (32). The stress tensor is determined
by mechanical equilibrium along with the hypothesis of incipient yield, which
asserts that the yield criterion is attained everywhere at all times (in a “limit-
state”). In limit-state Mohr–Coulomb plasticity, these conditions are assumed
to hold even if boundary conditions allow for plastic yielding. In that case, the
velocity follows from the assumption of coaxiality, which asserts that the stress
and deformation rate have the same eigendirections. The resulting equations
of limit-state Mohr–Coulomb plasticity have been used extensively in engi-
neering applications (32; 33), but their general solution requires sophisticated
numerical techniques to capture shock-like discontinuities in stress and veloc-
ity, which arise even in relatively simple geometries (34; 35; 36). Besides the
questionable physical basis of such discontinuities, the model is incapable of
describing most of the flows listed above, even qualitatively.

Recently, a number of theories have been developed to more precisely capture
the underlying physics of a granular element. The Shear Transformation Zone
theory et al. (37; 38) provides a mechanism for the element to retain a mem-
ory of its shearing history, through an auxiliary continuum variable, the STZ
density. The partial fluidization model of Aranson and Tsimring (30; 31) in-
troduces another auxiliary “order parameter” for the granular element, which
controls the size of the viscous-like contribution to the stress tensor. From ex-
tensive experimental studies of inclined-plane flows, Jop et al. have proposed
a 3D flow rule for a granular element at yield (39). Although each of these
models has had successes, none constitutes a complete continuum description
of granular flow, which can be applied to more than one of the geometries
listed above under arbitrary traction/kinematic boundary conditions.

Our group has developed a different, multiscale theoretical framework (22; 23;
40; 41), that was initially motivated by the search for a mechanism to de-
scribe microscopic particle motion and rearrangement within a granular flow.
Granular materials form amorphous random packings, and an individual par-
ticle within this structure typically cannot move by itself, as it is strongly
geometrically constrained by its neighbors; in order for flow to occur, parti-
cle motion must take place co-operatively. This led to the postulation of a
spot (22) that would mediate a correlated motion of particles on a mesoscopic
scale. The diameter of a spot can be inferred from tracer-diffusion measure-
ments in silo drainage (7; 42), and typically our group has found a scale on
the order of three to five particle diameters. Independently, the same length
scale also emerges from direct measurements of spatial velocity correlations
in drainage experiments (43) and DEM simulations (23). Using this scale in
spot-based drainage simulations also produces incredibly realistic flowing ran-
dom packings (23). These ideas have also been incorporated into a general
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theory, which can predict a variety of experimental flow profiles, again us-
ing the same length scale (and no other fitting parameters) (40). Assuming
stresses at incipient yield, the coaxial flow rule is replaced by a “stochastic
flow rule” (SFR) in which spots of mobilized material perform random walks
along slip lines, biased by local stress imbalances. The resulting theory is the
first to predict both gravity-driven flow in a silo and shear flow in a Couette
cell (40; 41), so a major motivation for this work is to directly test its basic
assumptions.

This prompts us to study rheological properties of granular media over vol-
ume elements of size comparable to the width of dynamical correlations, 3d to
5d. By “element”, we are referring to an approximate Representative Volume
Element (RVE) (44). A uniform stress state expressed at the boundaries of an
RVE should couple to a predictable homogeneous boundary deformation. But
to be technically precise, full determinism of this coupling is deducible only for
an element containing infinitely many microconstituents, so that average be-
havior over all microevents approaches a Dirac-delta function about the mean.
Realistically, all materials possess a finite micro-length, so any RVE behavior
must be interpreted within some acceptable noise tolerance. Hierarchical rela-
tionships for such noise bounds have been deduced by Ostoja-Starzewski (45)
in terms of the ratio δ = Lmeso/Lmicro, where averaging is over random re-
alizations of a heterogeneous continuum material. For finite δ, the element
is more aptly referred to as a Statistical Volume Element (SVE), which ap-
proaches RVE in the limit δ → ∞. While we use the term RVE throughout
this work, in some sense we mean a granular SVE with some acceptably small,
and quantifiable, level of noise. However, we stress that randomness in our
simulations comes from packing constraints and discrete rearrangements of a
homogeneous model material consisting of frictional, viscoelastic spheres; as
in molecular materials which are routinely described by continuum mechan-
ics, we will show that meaningful continuum averages, satisfying predictable
relations with controlled fluctuations, can be defined at the scale of observed
dynamical correlations.

The RVE must be small compared to the macroscopic length of the flow,
allowing the granular domain to deform as a network of RVEs, each one ex-
periencing close to uniform boundary conditions. If gradients in the stress or
deformation fields become too sharp, the noise in the element response must
inevitably increase. This may pose an issue for materials that can form shear
bands. Granular media are known to exhibit shear-banding phenomena in cer-
tain circumstances, though it should be noted that 3D bands tend to have a
width of 10d to 15d (46), suggesting a 3d to 5d wide element may still suffice.
This also supports our major belief that unless conditions are exotic enough
to change the dynamical correlation length (e.g. large applied gradients in
loading or shear), an element at this 3d to 5d length scale should be small
enough to describe a “standard” set of dense flows.
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µ

0.084 0.434 0.784 1.134 1.484

φ

0.534 0.574 0.614 0.654 0.694

|D0|

3.41 × 10−4 2.56 × 10−3 1.92 × 10−2 1.44 × 10−1 1.08

Fig. 2. Three computed material quantities (µ, left; packing fraction φ, center; mag-
nitude of deviatoric deformation rate |D0|, right) in the tall silo drainage simulation,
shown at t = 25τ . All the particles in each computational cell are colored according
to the computed material variables for that cell. µ and φ are dimensionless, while
|D0| has units of τ−1. A movie of this simulation is available in the supplementary
information.

Although this scale may seem somewhat arbitrary, its validity could be verified
by systematic coarse graining procedures, such as those used by Goldenberg et
al. to construct continuum elasticity at a given length scale (47) from discrete
simulations of granular materials (19; 20; 21), but it is beyond the scope of
this work to extend such methods to situations of plastic flow. Instead, we fix
a length scale for the RVE, motivated by dynamical correlations observed in
the same model material, and focus on testing relationships between a variety
of continuum variables at that particular scale.
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2 Methods

In this paper, we present the results of several large-scale DEM simulations
carried out using the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) developed by Sandia National Laboratories (48). The contact
model is based on that developed by Cundall and Strack (49), and has been
well-tested and used in many other studies (50; 11; 51; 52). In the simulations,
frictional particles of mass m and diameter d experience gravity g in the neg-

ative z direction, which can be used to define a natural time unit τ =
√

d/g.
For the simulations considered here, we restrict attention to cases which are
periodic in the horizontal y direction with period 8d, although this still allows
us to consider fully three-dimensional stresses.

Particles interact according to Hookean, history dependent contact forces. If a
particle and its neighbor have a separation vector r, and the two particles are
in contact, so that δ = d− |r| > 0, then they experience a force F = Fn + Ft,
where the normal and tangential components are given by

Fn =
(

knδn −
γnvn

2

)

Ft =
(

−kt∆st −
γtvt

2

)

.

Here, n = r/ |r|. vn and vt are the normal and tangential components of
the relative surface velocity, and kn,t and γn,t are the elastic and viscoelas-
tic constants, respectively. ∆st is the elastic tangential displacement between
spheres, obtained by integrating tangential relative velocities during elastic
deformation for the lifetime of the contact, and is truncated as necessary
to satisfy a local Coulomb yield criterion |Ft| ≤ µf |Fn|. Particle–wall in-
teractions are treated identically, but the particle–wall friction coefficient is
set independently. For the current simulations we set kt = 2

7kn, and choose
kn = 2 × 105mg/d. While this is significantly less than would be realistic for
glass spheres, where we expect kn ∼ 1010mg/d, such a spring constant would
be prohibitively computationally expensive, as the time step must have the
form δt ∝ k−1/2

n for collisions to be modeled effectively. Previous simulations
have shown that increasing kn does not significantly alter physical results
(50). We make use of a time step of δt = 10−4τ , and damping coefficients

γn = γt = 50
√

g/d.
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Fig. 3. Three computed material quantities (µ, top; packing fraction φ, middle; mag-
nitude of deviatoric deformation rate |D0|, bottom) in the wide silo for the drainage
simulation at t = 40τ (left) and the pushing simulation at t = 25τ (right). The color
scheme used is the same as that in Figure 2. Movies of these two simulations are
available in the supplementary information.

3 Computation of material variables

Since our overall aim is to extract information about the inherent properties of
a granular material, and not its behavior in a particular situation, we consider
a variety of granular flows in different geometries. We consider a tall silo with
base at z = 0 and walls at x = ±25d, and create an initial packing by pouring
in 55000 particles from z = 160d at a constant rate of 123τ−1 to fill the silo to
an approximate height of z = 114d. We also consider a wide silo, with a base
at z = 0 and walls at x ± 75d, and pour in 100000 particles from z = 160d at
a constant rate of 379τ−1, to fill the silo to a height of approximately z = 69d.
For both situations, the initial packing fraction is approximately 63.5%.

For both packings, a drainage simulation is then carried out, by opening a 6d-
wide slit in the center of the container base. In addition, a pushing simulation
is carried out in the wide silo, by freezing all particles whose centers initially
satisfy z < 7.5d, and then moving those with x > 0 upwards at a constant
speed of 0.2dτ−1. All three of these simulations are quite different in form. The
tall silo drainage simulation is different from the wide silo since the velocity
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profile is strongly affected by the presence of the vertical walls. The pushing
simulation corresponds to an active forcing of the material, while the drainage
simulations are generated by a passive response to gravity.

For each simulation, a snapshot of all particle positions is recorded at fixed
intervals of 0.2τ . In addition to this information, numerous material quantities
are calculated in a grid of cells of size 2.5d × 8d × 2.5d, at the scale of the
granular element. The local packing fraction φ is computed in each cell of
interest by evaluating the precise fraction of the cuboidal cell volume which
is occupied by the particles. The stress tensor in each cell is calculated by
looking at the forces between particles on contact. If there are N particles in
the cell, and particle l has a total of Nl contacts, then an approximate stress
tensor can be defined as in (53) and simplified for spherical grains to give

Tij =
1

V

N
∑

l=1

Nl
∑

k=1

∆x(k,l)
i F (k,l)

j

where F(k,l) is the force of the kth contact on particle l, and ∆x(k,l) is the
separation vector from the center of particle l to its kth contact.

From this, we can define a pressure p = −1
3 trT and a deviatoric stress tensor

T0 = T + 1
3p1. To calculate the value of µ, we make use of the classical

Mohr–Coulomb definition, in which µ is the ratio of shear stress to normal
stress acting on an internal plane of the material element maximized over all
possible internal planes. Algebraically, if T has eigenvalues λ1 < λ2 < λ3, then

µ =
λ3 − λ1

λ3 + λ1
.

We also considered the alternative Drucker–Prager definition of the yield pa-
rameter (54), which is defined as the ratio of the pressure p to the equivalent
shear stress |T0|/

√
2, so that µDP = |T0|/p

√
2. A plot of µ against µDP using

data from the three simulations appears linear, with a correlation coefficient
of 0.96. Due to this high level of agreement in all our simulations, we present
results using the Mohr–Coulomb definition only, and we leave an in-depth
study of the different definitions for later work. Since the Drucker–Prager def-
inition includes a dependence on the intermediate stress eigenvalue λ2, the
differences between the µDP and the Mohr–Coulomb µ may be more appar-
ent in non-periodic, fully three-dimensional situations, which are beyond the
scope of this paper.

To calculate the velocity gradient L in a cell, we consider the least squares
regression problem

v = Lx + v0.

Here x and v are the instantaneous positions and velocities of all particles
within the cell. The average cell velocity v0 and the velocity gradient are
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found by minimizing the sum of squares of residuals. The deformation rate
tensor 1 is then defined as the symmetric part of L, namely

D =
L + LT

2
.

From this, the deviatoric deformation rate tensor is defined as D0 = D −
1
3(trD)1. In most cases we expect D0 ≈ D since the density of the granular
material does not fluctuate by a large amount, making the contribution to
D from shearing larger than that from dilation. For some of the analysis, we

made use of a normalized deformation rate |I0| = |D0|d
√

ρs/p where ρs is the
particle density; this has been studied by others (39; 55; 56) and is well-suited
for use in rate sensitive granular constitutive laws.

It is possible that the instantaneous velocities used in the computation of D

may be subject to simulation artefacts, such as particle rattling, or elastic
behavior arising from the spring–dashpot contact model. We therefore carried
out the same analysis based on velocities computed by interpolating particle
positions between successive snapshots, effectively giving an averaged velocity
on a scale of 0.2τ , an order of magnitude larger than the timescale of a typical
particle–particle interaction. A plot of log |D0| for the two different compu-
tation methods appears linear, with a correlation coefficient of 0.98. Due to
the high level agreement, all our results are presented using the instantaneous
velocities in the deformation rate calculation.

4 Stress, deformation rate, and packing fraction

Figure 2 shows plots of µ, φ, and |D0| for the tall silo drainage simulation.
Near the orifice, there is a converging region of flow, that has roughly parabolic
streamlines. Higher in the container, there is a transition to uniform flow,
where the particles drop like a plug, behave like a solid, and experience little
rearrangement, as has been seen in similar situations (8). The plot of |D0|
supports these results. High in the container, very little rearrangement is seen,
while there is a sharp transition to high values when the packing must undergo
deformation to pass through the orifice.

It is clear from the plots that φ and |D0| are closely correlated. In the upper
region, where particles are falling like a plug, the packing fraction remains
constant. In the converging region, the packing fraction decreases, as the par-
ticles must have more free space in order to geometrically rearrange; this is
studied quantitatively later.

1 This tensor is sometimes called the “strain rate”, but for large deformations this
is misleading since it is not the rate-of-change of any finite strain tensor.
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Fig. 4. Plots of the directions and magnitudes of the eigenvectors of the deviatoric
stress and deformation rate tensors, calculated instantaneously in 5d×8d×5d boxes
with no time-averaging. The maximal stress eigenvector is shown in purple, with
the other two eigenvectors being shown in blue. In the regions where deformation is
occurring, the maximal and minimal eigenvectors of the deformation rate tensors are
plotted in orange. In all cases, a high degree of alignment between the two tensors
can be seen. Additional plots are available in the supplementary information.

Fig. 5. Left: A detail of the computed stresses and deformation rates for region
enclosed by the black rectangle in Figure 4. Right: the individual forces in the same
region.
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Of the three plots, µ exhibits the largest fluctuations, which we attribute to the
fact that it is a ratio between two computed quantities. However, large varia-
tions over the range 0.2 to 0.6 can be clearly seen. This immediately calls the
Mohr–Coulomb incipient yield hypothesis into question, which would predict
that µ would be constant everywhere. At first sight, the spatial differences in µ
appear not directly correlated with the other two. However, regions of higher
µ exist at the interface between the plug-like region, and the converging flow
region; this will be expanded on later. Figure 3 shows the same three plots for
the wide drainage and wide pushing simulations, and the same relationships
between the three quantities can be observed.

Figure 4 shows the directions and magnitudes of the eigenvectors of the devi-
atoric stress tensor for three different situations. For these images, the stress
tensor was calculated on a 5d×8d×5d grid, by averaging the computed stress
tensor in 2 × 2 blocks of cells. Even though they were computed using local,
instantaneous data, we can see that in all situations, the stress tensors are
smooth, and exhibit none of the shocks predicted by limit-state plasticity the-
ory. For regions undergoing deformation, the eigenvectors of D0 are also shown
in Figure 4. We see that in all areas where there is appreciable deformation
rate, there is a strong alignment between the two sets of eigenvectors, which
is surprising given that the individual forces, as shown for a small region in
Figure 5, exhibit large inhomogeneities.

For the plots of Figure 4, the average angular differential between the maximal
eigenvectors is approximately 12◦. If the plots are time-averaged over a window
of twenty frames, then the mean angular differential drops to 6.7◦. Averaging
over progressively larger time windows also allows us to verify coaxiality as
far into the granular packing as one can reasonably define a deformation rate
tensor. Coaxiality is a consequence of material isotropy at the scale of a con-
tinuum element, so it appears that increasing the time window increases the
extent to which the liquid-like material flows like a true continuous fluid.

In light of the successes of the SFR (40; 41) it is interesting to note that our
results are the opposite to its hypotheses: incipient Mohr–Coulomb yield does
not hold, while coaxiality does, especially over longer time scales in the flowing
region. In may be that the basic SFR concept of random spot-based propaga-
tion of fluidization holds at small time scales, only with different stress models
or spot dynamics. However, our results constrain any statistical theory to up-
hold coaxiality after time averaging, and even instantaneously to some degree
in steady flows. On the other hand, the data does not rule out departures from
coaxiality in regions of very slow or intermittent flow at the onset of yielding,
where the arguments behind the SFR should have the most validity.

Using this data, we tested the codirectionality hypothesis T0 ∝ D0. This
assertion is stronger than just coaxiality and has been presumed by some (39)
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Fig. 6. A plot of packing fraction φ versus normalized deformation rate |I0|. Each
point corresponds to the computed material quantities for a granular element from
one of the three DEM simulations.

while challenged by others (57). Our data reveals reasonably large variations
from purely codirectional flow. It is possible that double-shearing (58) may be
a more appropriate hypothesis, but more testing is necessary.

5 Evolution of material variables

We now investigate quantitatively the connections seen above, by viewing all
the material cells from the different simulations as an ensemble of approximate
“granular elements”, and seeking statistical relationships between them. As
a first example, consider Figure 6, showing a plot of |I0| against φ. Each
point on the graph corresponds to the instantaneous computed values of a
material element from one of the simulations, during a period when steady
flow has developed. We see an approximate collapse of the points from the
three simulations, suggesting that the correlation we are viewing is a property
inherent to the granular material, and not tied to any particular simulation
configuration. Also shown is a fit line |I0| = 0.123(0.635 − φ), The linear
relationship is consistent with the two-dimensional results of da Cruz (55).

While instructive, the above approach will only allow us to search for direct
correlations between variables. In reality, we expect that these are related in a
more complicated way, and that differential relationships may exist; there may
also be internal state variables which we are not measuring, that relate to an
element’s history of deformation and stress. Because of these complications,
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Fig. 7. Lagrangian tracer plot of µ versus packing fraction φ. Each line corresponds
to the trace in phase space of a granular element in one of the three simulations.

it is natural to switch from an Eulerian to Lagrangian approach: rather than
viewing our data set as an ensemble over fixed spatial positions, we treat it as
an ensemble of material elements which deform and move with the flow. Each
granular element corresponds to an approximate trace in the phase space of
material variables over its history during the simulation.

To correctly implement this, we must also take into account that a granular cell
may move during the simulation. We therefore initially introduced a number of
tracer positions on a 5d×5d lattice. During the simulation, the tracer positions
are advected according the average background velocity of the particles. For
each tracer, a history of a granular element is created by linearly interpolating
all the material variables from the underlying raw simulation data on the
2.5d × 2.5d lattice.

Figure 7 shows material tracers in a plot of µ versus φ for the three different
simulations. The plot shows us that, while µ is not directly correlated to φ,
it plays an important role in the failure of a granular element. The majority
of tracers start off on the right side of the graph, at the initial packing frac-
tion of 63.5%. Those tracers corresponding to failing elements take a path in
an inverted U-shape, first attaining a value of µ of approximately 0.6 before
starting to decrease in packing fraction. A material element will dilate only if
a critical value of µ is first attained. This directly relates to the behavior seen
in Figures 2 and 3, where it was noted that areas of larger µ were located at
the interface between solid-like and liquid-like regions. Also visible in 7 is a
tendency for dilated elements which experience a low value of µ to recompact
slightly.
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Some of these results are in agreement with past granular plasticity models.
In Critical State Soil Mechanics (CSSM) (59), an initially overconsolidated
material at a fixed confining pressure p undergoes a decrease in both µ and
packing fraction φ upon plastic failure by shearing. After sufficient shearing,
φ approaches a constant-volume value that depends solely on the confining
pressure, and µ approaches a material constant µCV . The left-hand side of
Figure 7 displays a similar decrease in µ over decreasing φ, and the paths of
Lagrangian tracers appear to approach a roughly constant µ. However, it is
difficult to discern from this conglomerated data whether the final µ state is
truly constant, or if the spread in final packing fraction could be accounted
for solely by pressure variations among trajectories. Homogeneous shear tests,
which are outside our current interest, are clearly better-suited for expounding
these particular behaviors. Turning attention to the right-hand side of Figure
7, the initial upshoot in µ to its peak value appears to happen over a relatively
small change in φ. It is not at the moment clear whether this ∆φ accounts
solely for elastic mechanisms (as in the Cam–Clay and Modified Cam–Clay
models of CSSM), or whether some plastic evolution of µ also takes place in
this zone (as per the Anand–Gu model (60)). But despite these details, we are
content that the general trend displayed in Figure 7 is in concert with past
theoretical development from the plasticity vantagepoint.

The Lagrangian approach also allows us to get a clearer insight into shear dila-
tion, the precise mechanics of which remains an open study. Our results show
correlations between packing fraction and deformation rate, in agreement with
other authors. However, several models for granular plasticity presume “rate-
independence”, which asserts that dilation evolves with total plastic strain
(59; 61; 60). These models are typically used under quasi-static flow condi-
tions, where the effect of shear-rate should be minimal. Since one would expect
for a single snapshot, the regions of high strain could roughly be correlated
with the regions of high deformation rate, we defer to a quantitative analysis
for improved resolution of this interdependence.

Strain is calculated from the simulation data by using the snapshots of all
particle positions. At t = 0, a 5d×8d×5d box of particles is labeled, centered
on each material tracer. Let xi be the initial particle positions in a particular
box. A deformation gradient tensor F and an overall translation x0 can then
be found by solving the least squares regression problem

x = Fxi + x0

where x are the current particle positions. We then compute the polar de-
composition F = RU where R is a rotation matrix, and the stretch U is
a symmetric positive definite matrix. Unlike infinitessimal theory, there are
many valid ways to define the strain tensor for large deformations, though
each way must be a function of U which asymptotes under small stretches
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Fig. 8. Lagrangian tracer plot of packing fraction φ versus magnitude of Hencky
strain |E|.

to the well-known infinitessimal definition. Here, we choose the Hencky strain
measure E ≡ logU, which has the additional property that strains are additive
in the absence of rotation.

Figure 8 shows a plot of packing fraction versus strain, with a sharp collapse
of the trajectories across several simulations. In order to be consistent with
Figure 6, strain must be instrumental in the process by which the material
dilates, but deformation rate sets the final packing fraction.

6 Conclusion

The results show that it is possible to make a direct connection between con-
tinuum theories and particle-based simulations of dense granular flow at the
local level. We have demonstrated that in three dimensions, an approximate
granular element defined at the scale of the dynamical correlations exhibits
a small enough amount of statistical noise to make many inferences about
the rheology of granular materials. Consistent with the results of da Cruz et
al. (55) and Lois et al. (56), we have shown a direct link between normalized
deformation rate and packing fraction and, in agreement with (55), have ob-
served that this relationship is approximately linear. However, while previous
work was carried out in 2D, we have shown this result locally in 3D using
multiple geometries with far less symmetry. Our results also show that while
deformation rate is important in determining the steady state which a packing
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will reach, the total strain plays an important role in determining the transient
process by which the deformation takes place. Together these results suggest a
complex picture of granular failure, suggesting that a continuum model should
incorporate both deformation rate and total deformation.

The numerical techniques presented here have several advantages over more
traditional approaches, such as simulations within a periodic cell. Our ap-
proach allows for continuum hypotheses to be evaluated locally and instan-
taneously within the context of real flows. By breaking up several different
simulations into a large ensemble of granular elements we are able to test con-
tinuum hypotheses across a wide variety of potential configurations, giving us
more confidence that the properties we observe are inherent in the material,
and not tied to one particular situation. By making use of a Lagrangian per-
spective, and tracing elements with the flow, we are able to search for more
complex differential relationships. These techniques could easily be extended
to other situations, and in the future we hope to directly evaluate the some of
the recently proposed theories for granular materials (40; 39; 30; 37). These
are frequently characterized by having a microscopic continuum quantity, such
as STZ populations n±, SFR spot density ρs, or partial fluidization parameter
ρ, and part of the challenge in investigating these quantities will be to under-
stand how they directly relate to the microscopic packing structure. Another
promising avenue to pursue is to better understand the role of total strain.
While strain appeared to play a crucial role in interpreting our data, it is
an undesirable quantity to use in an eventual continuum theory of granular
materials, since it is always tied to an initial reference state. Examining fully
three-dimensional situations may also provide useful clues, since it would pro-
vide greater variation in the stress tensor, allowing for an in-depth analysis
of the relative merits of the different proposed granular yield criteria and the
role, if any, played by the intermediate stress eigenvalue, a question which is
currently unresolved.
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Description

This document contains additional plots of the stress and deformation rate tensors to supplement those in
figure 4 of the paper. For each situation, the stress and deformation rate tensors are calculated in 5d×8d×5d
boxes, using instantaneous information, with no time-averaging. The maximal stress eigenvector is shown
purple, and the other two eigenvectors are shown in blue. The length of each component is proportional to
the square root of the magnitude of the deviatoric stress eigenvalue. In the regions where deformation is
occurring, the maximal and minimal eigenvectors of the deformation rate tensors are plotted in orange.

Figure S1: Plots of the directions and magnitudes of the eigenvectors of the deviatoric stress tensors for the
wide initial packing.
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Supplementary plots for figure 4



Figure S2: Plots of the directions and magnitudes of the eigenvectors of the deviatoric stress and deformation
rate tensors for the tall silo before drainage (left), and during drainage (right). During drainage, a high degree
of alignment between the two tensors can be seen.
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Figure S3: Plots of the directions and magnitudes of the eigenvectors of the deviatoric stress and deformation
rate tensors for the wide granular packing during drainage (top), and during pushing (bottom). Again, a
high degree of alignment between the two tensors can be seen.
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Figure S4: Plots of the directions and magnitudes of the eigenvectors of the deviatoric stress tensors after
the drainage (top) and pushing processes (bottom) were arrested. The stress lines closely resemble those in
the corresponding flowing states.
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