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Transport of fermions is central in many fields of physics. Electron transport runs modern tech-
nology, defining states of matter such as superconductors and insulators, and electron spin, rather
than charge, is being explored as a new carrier of information [1]. Neutrino transport energizes
supernova explosions following the collapse of a dying star [2], and hydrodynamic transport of the
quark-gluon plasma governed the expansion of the early Universe [3]. However, our understanding
of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold
gases of fermionic atoms realize a pristine model for such systems and can be studied in real time
with the precision of atomic physics [4, 5]. It has been established that even above the superfluid
transition such gases flow as an almost perfect fluid with very low viscosity [3, 6] when interactions
are tuned to a scattering resonance. However, here we show that spin currents, as opposed to
mass currents, are maximally damped, and that interactions can be strong enough to reverse spin
currents, with opposite spin components reflecting off each other. We determine the spin drag coeffi-
cient, the spin diffusivity, and the spin susceptibility, as a function of temperature on resonance and
show that they obey universal laws at high temperatures. At low temperatures, the spin diffusivity
approaches a minimum value set by ~/m, the quantum limit of diffusion, where ~ is the reduced
Planck’s constant and m the atomic mass. For repulsive interactions, our measurements appear to
exclude a metastable ferromagnetic state [7–9].

Understanding the transport of spin, as opposed to
the transport of charge, is of high interest for the novel
field of spintronics [1]. While charge currents are unaf-
fected by electron-electron scattering due to momentum
conservation, spin currents will intrinsically damp due to
collisions between opposite spin electrons, as their rela-
tive momentum is not conserved. This phenomenon is
known as spin drag [10, 11]. It is expected to contribute
significantly to the damping of spin currents in doped
semiconductors [12]. The random collision events also
lead to spin diffusion, the tendency for spin currents to
flow such as to even out spatial gradients in the spin den-
sity, which has been studied in high-temperature super-
conductors [13] and in liquid 3He-4He solutions [14, 15].

Creating spin currents poses a major challenge in elec-
tronic systems where mobile spins are scattered by their
environment and by each other. However, in ultracold
atoms we have the freedom to first prepare an essen-
tially non-interacting spin mixture, separate atoms spa-
tially via magnetic field gradients, and only then induce
strong interactions. Past observations of spin currents in
ultracold Fermi gases [16, 17] were made in the weakly-
interacting regime. Here we access the regime near a
Feshbach resonance [5], where interactions are as strong
as allowed by quantum mechanics (the unitarity limit).
We measure spin transport properties, the spin drag coef-
ficient Γsd and the spin diffusivity Ds, of a strongly inter-
acting Fermi gas composed of an equal number of atoms
in two different spin states. In the strongly-interacting
regime, spin drag is expected to reach a universal max-
imum value, and spin diffusion is expected to reach a
universal minimum.

The universal behaviour of the spin transport coeffi-

cients of a Fermi gas can be estimated on general grounds.
At the Feshbach resonance, the scattering cross-section
σ between atoms of opposite spin is given by the square
of the matter wavelength, in the degenerate regime σ ∼
1/k2

F , where kF = (6π2n)1/3 is the Fermi wavevector and
n is the density of atoms in each spin state. The mean
free path between collisions is thus l = 1/nσ ∼ 1/kF
or about one interparticle spacing, the smallest possible
mean free path in a gas. The average speed v of atoms is
on the order of the Fermi velocity ~kF /m. In estimating
the spin diffusivity Ds ≈ vl the density-dependent factors
cancel, giving Ds ≈ ~/m. This value for Ds represents
a universal quantum limit to spin diffusivity in Fermi
gases. Away from resonance, the scattering cross sec-
tion decreases, increasing Ds. For temperatures T much
greater than the Fermi temperature TF = ~2k2

F /2mkB ,
the scattering cross section will be given by the square
of the thermal de Broglie wavelength and thus decrease
as σ ∝ 1/T , while the velocity will increase as v ∝

√
T ,

causing Ds to increase as Ds ∝ T 3/2. Finally, in a degen-
erate Fermi gas the average velocity will remain on the
order of the Fermi velocity, but the effective scattering
cross section will scale as σ ∝ T 2 due to Pauli blocking,
causing Ds to increase like T−2 as the temperature is low-
ered. For a Fermi gas, we thus expect the minimum Ds to
occur at temperatures near the Fermi temperature. Cor-
respondingly, the coefficient Γsd characterizing spin drag
is expected to reach a universal maximum value on reso-
nance and for temperatures near the Fermi temperature,
given by the Fermi rate EF /~, where EF = ~2k2

F /2m is
the Fermi energy.

In the experiment, we prepare an equal mixture of
the two lowest hyperfine states (“spin up” and “spin
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FIG. 1. Observation spin current reversal in a resonant
collision between two oppositely spin-polarized clouds
of fermions. (a) shows the total column density and (b) the
difference in column densities of the two clouds (red: spin up,
blue: spin down), in 1 ms intervals during the first 20 ms
after the magnetic field is set to the Feshbach resonance at
834 G. The collision leads to the formation of a high-density
interface between the two spin states. (c) The separation
between the centers of mass of the two spin states initially
oscillates at a frequency of 1.63(2) ωz, where ωz = 2π×22.8 Hz
is the trap frequency in the axial direction (see Sup. Info. for
discussion). Even after half a second, there is still substantial
spin separation. The diffusion time indicates a diffusivity on
the order of ~/m. (d) Shows the harmonic trapping potential
along the axis of symmetry.

down”) of fermionic 6Li in a cylindrically symmetric atom
trap [4, 5]. The confinement along the axis of symme-
try is harmonic, with frequency ωz. We separate the
two spin components along the axis of symmetry of the
trap (see Methods Summary) and turn on strong inter-
actions between unequal spins by quickly ramping the
magnetic field to a Feshbach resonance located at 834 G.
The confining potential of the trap forces the two clouds
of opposite-spin atoms to propagate towards each other,

establishing a spin current. Measurements are made by
selectively imaging the two spin components.

Figure 1 shows the collision between the two spin do-
mains on resonance. The clouds bounce off each other
and essentially completely repel. Due to the axial trap-
ping potential, the clouds return after the collision, and
we observe several oscillations in the displacement d =
〈z↑〉 − 〈z↓〉, where 〈z↑(↓)〉 is the center of mass of the
spin up (down) cloud. After the oscillations have de-
cayed, the displacement decreases to zero monotonically,
on a timescale on the order of one second, an extremely
long time compared to the trapping period (44 ms). The
underlying explanation for spin current reversal and the
slow relaxation can be found in the extremely short mean
free path and the high collision rate between opposite-
spin atoms at unitarity. According to the above estimate,
the spin diffusivity is approximately ~/m, which for 6Li
is (100 µm)2/s. The atom clouds in the experiment have
a length on the order of 100 µm, and it takes them on
the order of a second to diffuse through each other. So
we are indeed observing quantum-limited spin diffusion.
The initial bounces will occur when the mean free path
of a spin up atom in the spin down cloud is smaller than
the spin down cloud size, i.e. when the mixture is hydro-
dynamic. Instead of quickly diffusing into the spin down
region, it is then more likely that the spin up atom is
scattered back into the spin up region where it can prop-
agate ballistically. Indeed, we see bounces occur already
for interaction strengths away from the Feshbach reso-
nance where the mean free path is on the order of the
axial cloud size (see Supplementary Information).

The relaxation dynamics close to equilibrium give di-
rect access to the spin transport coefficients. The spin
drag coefficient Γsd is defined as the rate of momentum
transfer between opposite spin atoms [10], and is there-
fore related to the collision rate. The relaxation of the
displacement d near equilibrium then follows the differ-
ential equation [18]

Γsdḋ+ ω2
zd = 0.

Fitting an exponential with decay time τ to the displace-
ment gives the spin drag coefficient as Γsd = ω2

zτ .
The spin drag coefficient is found to be greatest on

resonance, and thus spin conduction is slowest (see Sup-
plementary Information). On dimensional grounds, Γsd

must be given by a function of the reduced tempera-
ture T/TF times the Fermi rate EF /~. At high tem-
peratures, we expect the spin drag coefficient to obey
a universal scaling Γsd ∼ nσv ∼ T−1/2. In fig. 2 we
show the spin drag coefficient as a function of T/TF .
We observe T−1/2 scaling for T/TF > 2, finding Γsd =
0.16(1)EF

~ (T/TF )−1/2. At lower temperatures, we ob-
serve a crossover from classical to non-classical behav-
ior: the spin drag coefficient reaches a maximum of ap-
proximately 0.1EF /~ near the Fermi temperature. We
interpret this saturation of the spin drag coefficient as
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a consequence of Fermi statistics, as σ and v approach
constant values [16] determined by the Fermi wavevector
kF . The maximum spin drag coefficient corresponds to
a minimum spin conductivity σs = n

mΓsd
on the order

of kF /~. This is the slowest spin conduction possible in
three dimensions in the absence of localization.
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FIG. 2. Spin drag coefficient of a trapped Fermi gas.
Spin drag coefficient for resonant interactions, as a function of
the dimensionless temperature. The temperature is normal-
ized by the maximum Fermi temperature, defined in terms of
the maximum density of a single spin state in the system. We
find agreement between measurements taken at three different
values of the axial trapping frequency ωz = 2π× 22.8 Hz (red
circles), ωz = 2π×37.5 Hz (blue triangles), ωz = 2π×11.2 Hz

(black squares). The data for T/TF > 2 fits to a T−1/2 law
(solid line). Dashed line: a power law fit with an uncon-
strained exponent for T/TF < 0.5 to show the trend. The
spin drag coefficient is obtained from the decay rate of the
spin separation and normalized by the square of the trap fre-
quency and by the maximum Fermi energy. The error bars
are statistical.

At low temperatures, the spin drag coefficient de-
creases with decreasing temperature. No theoretical pre-
diction for the spin drag coefficient exists in this regime.
For highly-imbalanced spin populations, a decrease in
the spin drag coefficient is expected due to Pauli block-
ing [19], which reduces the collision rate in the gas by a
factor of (T/TF )2 at sufficiently low temperatures. How-
ever, for systems with equal spin populations, it was
shown that pairing correlations enhance the effective col-
lision rate for collective excitations, leading to a collision
rate that increases dramatically as the temperature is
lowered [20]. The observed reduction of Γsd at low tem-
peratures contrasts with this prediction, and is qualita-
tively consistent with the onset of Pauli blocking.

Comparing the relaxation rate to the gradient in spin
density allows us to also measure the spin diffusivity Ds.
At the center of the trap, where the trapping forces van-
ish, the spin current density Js is given by the spin dif-
fusion equation [21]

Js = −Ds
∂(n↑ − n↓)

∂z
,

where n↑(↓) is the density of spin up(down) atoms.
We calculate the trap-averaged spin current as
Js = 1

2 (n↑ + n↓)ḋ, where the densities are evaluated at
the trap center.

We find that spin diffusivity is minimum when interac-
tions are resonant (see Supplementary Information). The
increase in spin diffusivity for positive scattering length
a, as well as the decrease in spin drag, argues against
the existence of a ferromagnetic state in repulsive Fermi
gases, for which diffusion should stop entirely [7, 9, 22].
Figure 3 reports the measured spin diffusivity as a func-
tion of temperature at unitarity. In the high-temperature
limit on resonance, one expects Ds ∼ v/nσ ∝ T 3/2. At
high temperatures, we indeed find this temperature de-
pendence, with a fit giving Ds = 5.8(2) ~

m (T/TF )3/2 for
T/TF > 2. Down to our lowest temperatures, the spin
diffusivity is seen to attain a limiting value of 6.3(3)~/m.
Fermi liquid theory predicts a rapid increase at low tem-
peratures as Ds ∝ (TF /T )2. From measurements on spin
quadrupolar oscillations in highly spin-imbalanced mix-
tures it is known [23] that the resulting crossover from
diffusive to ballistic motion occurs below T/TF ≈ 0.1.
However, below T/TF ≈ 0.17 a balanced gas is superfluid
and spin transport possibly inhibited by the superfluid to
normal interface [21].
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FIG. 3. Spin diffusivity of a trapped Fermi gas. Spin dif-
fusivity on resonance (solid circles) as a function of the dimen-
sionless temperature T/TF . At high temperatures, the spin

diffusivity obeys the universal T 3/2 behaviour (solid line). At
low temperatures the diffusivity approaches a constant value
of 6.3(3)~/m for temperatures below about 0.5TF , establish-
ing the quantum limit of spin diffusion for strongly interacting
Fermi gases.

When comparing these results to theoretical calcula-
tions, it is important to account for the inhomogeneous
density distributions and velocity profiles that result from
the trapping potential. For a homogeneous system on
resonance, and at high temperatures compared to the
Fermi temperature, we predict Ds = 1.11 ~

m (T/TF )3/2
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and Γsd = 0.90EF

~ (T/TF )−1/2 (see Supplementary Infor-
mation). The measured spin drag coefficient is smaller by
a factor of 0.90/0.16(1) = 5.6(4) while the spin diffusivity
is larger by about the same factor, 5.8(2)/1.11 = 5.3(2).
This factor reflects the inhomogeneity of the system and
agrees with an estimate from the Boltzmann transport
equation (see Supplementary Information).

Finally, the measured transport coefficients give for the
first time access to the temperature-dependence of the
spin susceptibility χs(T ) in strongly interacting Fermi

gases. Defined as χs =
∂(n↑−n↓)
∂(µ↑−µ↓) , the spin susceptibility

describes the spin response to an infinitesimal effective
magnetic field or chemical potential difference µ↑ − µ↓
applied to the gas, and is a crucial quantity that can
discriminate between different states of matter [8]. In
a magnetic field gradient, particles with opposite spin
are forced apart at a rate determined by the spin con-
ductivity σs, while diffusion acts to recombine them.
The balance between the processes of diffusion and con-
duction therefore determines the resulting magnetization
gradient, a connection expressed in the Einstein relation
χs = σs/Ds [9]. In calculating this ratio from observable
quantities, the relaxation time τ cancels, as both σs and
Ds are proportional to 1

τ , yielding

χs =
1

mdω2
z

∂(n↑ − n↓)
∂z

,

where
∂(n↑−n↓)

∂z is evaluated near the trap center. The
inhomogeneous trapping potential has practically no ef-
fect on the measurement of χs, as all quantities involved
refer to the vicinity of the center of mass.

Figure 4 reports our findings for the spin susceptibil-
ity at unitarity, as a function of the dimensionless tem-
perature T/TF . At high temperatures, we observe the
Curie law χs = n/T . In this classical regime of uncor-
related spins, the susceptibility equals the (normalized)
compressibility of the gas κ = ∂n/∂µ that we also di-
rectly obtain from our profiles.

At degenerate temperatures, the measured suscepti-
bility becomes smaller than the compressibility. This is
expected for a Fermi liquid, where χs = 3n

2EF

1
1+Fa

0
and

κ = 3n
2EF

1
1+F s

0
[8] with Landau parameters F s0 and F a0

describing the density (s) and spin (a) response. The
spin susceptibility is expected to strongly decrease at suf-
ficiently low temperatures in the superfluid regime, as
pairs will form that will not break in the presence of an
infinitesimal magnetic field. For the temperature range
of our experiment this behaviour is not yet observable.
It is currently under debate whether the strongly inter-
acting Fermi gas above the superfluid transition temper-
ature is a Fermi liquid [24] or a state with an excitation
gap (pseudo-gap) [25, 26]. The opening of a gap in the
excitation spectrum would be revealed as a downturn of
the spin susceptibility below a certain temperature. Such
a downturn is not observed in χs down to T/TF ≈ 0.2,
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FIG. 4. Spin susceptibility on resonance determined
from the Einstein relation. (a) Compressibility (solid blue
circles) and spin susceptibility (open red circles) normalized
by the compressibility 3n

2EF
of an ideal Fermi gas at zero tem-

perature. For temperatures below the Fermi temperature, the
susceptibility becomes suppressed relative to the compress-
ibility, due to interactions between opposite-spin atoms. The
spin susceptibility coincidentally matches the compressibility
of a non-interacting Fermi gas (dashed line) in the range of
temperatures that we could access. (b) Red circles: spin sus-
ceptibility divided by the compressibility obtained from the
same clouds. At temperatures above the Fermi temperature,
the ratio of spin susceptibility to compressibility approaches
unity (dashed line).

and therefore our spin susceptibility data agree down to
this point with the expected behavior for a Fermi liquid.

In conclusion, we have studied spin transport in
strongly interacting Fermi gases. The spin diffusivity
was found to attain a limiting value of about 6.3~/m,
establishing the quantum limit of diffusion for strongly
interacting Fermi gases. Away from resonance the
diffusivity increases. This casts doubt on the possibility
of stabilizing a ferromagnetic gas on the repulsive side
of the Feshbach resonance [7], which would require a
vanishing diffusivity [9]. The observed slow relaxation of
spin excitations is a likely explanation for the surprising
– possibly non-equilibrium [21] – profiles in imbalanced
Fermi gases observed at Rice [27], which did not agree
with equilibrium measurements at MIT [28, 29] and at
the ENS [23]. Our measurements of the temperature
dependence of the spin diffusivity at low temperatures
disagree with the expected behavior of a Fermi liquid,
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while the spin susceptibility that we measure is consis-
tent with a Fermi liquid picture. An interesting subject
of further study is whether spins are still able to diffuse
through the superfluid, or whether they travel around
it, avoiding the superfluid due to the pairing gap.

Methods Summary

The spin mixture is initially prepared at 300 G. To
separate the spin components, we ramp the total mag-
netic field to 50 G, where the magnetic moments of the
two spin states are unequal, and apply two magnetic field
gradient pulses. We then bring the total magnetic field
to the Feshbach resonance in about 2 ms.

To reach low temperatures during the approach to
equilibrium, evaporative cooling is applied, at 834 G, by
gradually lowering the depth of the optical dipole trap.
To reach high temperatures, we heat the atoms by switch-
ing off the optical dipole trap for up to 3 ms to allow the
atoms to expand before recapturing them. We then set
the final depth of the dipole trap so that the atom num-
ber and the temperature remain nearly constant during
the approach to equilibrium.

Spin selective imaging is performed via in situ absorp-
tion or phase contrast imaging using two 4 µs imaging
pulses separated by 6 µs. These images give the col-
umn densities of each spin state, from which we obtain
the three-dimensional density via an inverse Abel trans-
form [29]. The gradient in the spin density is obtained
from a linear fit to the polarization versus z.

We determine the temperature of the clouds by fitting
the density versus potential energy in the vicinity of
z = 0, but for all r, to the equation of state of the unitary
Fermi gas, measured recently by our group [30]. The
trapping potential itself is determined by summing the
densities of hundreds of clouds, using the known axial,
harmonic trapping potential to convert equidensity lines
to equipotential lines and fitting the result to an analytic
model.
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[3] T. Schäfer and D. Teaney, Rep. Prog. Phys. 72, 126001

(2009).
[4] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H.

Schunck, and W. Ketterle, Nature 435, 1047 (2005).
[5] M. Inguscio, W. Ketterle, and C. Salomon, eds., Ul-

tracold Fermi Gases, Proceedings of the International
School of Physics ”Enrico Fermi”, Course CLXIV,
Varenna, 20 - 30 June 2006 (Amsterdam: IOS, 2008).

[6] C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petricka,
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Universal Spin Transport in a Strongly Interacting Fermi Gas
Supplementary Information

DEPENDENCE ON INTERACTION STRENGTH

We study the dependence of the spin transport properties of the system on interaction strength by ramping to a
variable final field in the vicinity of the Feshbach resonance and measuring the subsequent evolution of the system.
Figure 5 shows the results of colliding two clouds at different fields, revealing the transition from transmission of the
clouds through each other to reflection of the clouds as the mean free path becomes smaller than the cloud size. When
the scattering length is set to zero (Fig. 5.a), the center of mass separation oscillates at the trap frequency ωz. On
resonance (Fig. 5.g), the observed oscillation frequency of 1.63(2) ωz is intermediate between the frequency 1.55 ωz of
the axial breathing mode of a unitary Fermi gas in the hydrodynamic limit [5] and the non-interacting value of 2 ωz,
as the system contains a hydrodynamic region at the center, and is non-interacting in the spin-polarized wings. Figure
6 shows the spin transport coefficients versus interaction strength. The spin drag coefficient exhibits a maximum on
resonance (6.a), while the spin diffusion coefficient is minimum on resonance (Fig. 6.b).
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FIG. 5. Collision between spin up and spin down clouds with varying interaction strength. After separating the
spin components, the magnetic field was ramped to a variable value near the Feshbach resonance to reach different interaction
strengths. The interaction parameter kF a, with kF = (6π2n)1/3 and n the central density per spin component, was determined
by averaging the values of kF obtained from images taken after 200 ms of evolution time (not shown). The values of kF a were
(a) 0, (b) 0.08, (c) 0.13, (d) 0.19, (e) 0.26, (f) 1.2, (g) ∞, and (h) -1.5
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FIG. 6. Spin drag coefficient (a) and spin diffusivity (b) across the Feshbach resonance. The spin-separated clouds were cooled
at 834 G to T/TF ≈ 0.16 (blue triangles) and to T/TF ≈ 0.40 (red cirlces) before ramping to the final field. The largest spin
drag and smallest spin diffusivity occur at the Feshbach resonance, where 1/kF a = 0. The solid line in (a) is a Lorenztian fit.
To reduce clutter, the 0.4 TF data are not shown in (a).
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IMAGE ANALYSIS

The experiment takes place in a trapping potential of the form

V (r, z) =
1

2
mω2

zz
2 + Vr(r),

where r =
√
x2 + y2. Here z is the symmetry axis of the trap, and we image along the y axis.

From each run of the experiment we obtain two-dimensional column densities n2d
σ (x, z) of both spin states σ =↑, ↓.

Fitting a two-dimensional Gaussian to each column density provides a measurement of the center of mass of each spin
state. We subtract the z components of the centers of mass of the two spin states to obtain the separation parameter
d = 〈z↑〉−〈z↓〉. The three-dimensional densities nσ(r, z) are obtained using a numerical implementation of the inverse
Abel transformation (similar to [31]):

nσ(ri, z) =

jmax∑
j=i

n2d
σ (xj+1, z)− n2d

σ (xj , z)

xj+1 − xj
ln

[
j + 1 +

√
(j + 1)2 − i2

j +
√
j2 − i2

]
,

For each line of constant z, the values of nσ(ri, z) with small i are sensitive to noise in n2d
σ (xj , z) for small j. To

reduce noise, we fit a one-dimensional Gaussian to n2d
σ (xj , z), for each value of z and for j < 4 (corresponding to the

innermost 5 µm of the clouds or less than a tenth of the Fermi-radius), and use this fit (with sub-resolution sampling
to reduce discretization error) in the above formula.

The temperature is determined by analyzing the densities nσ(r, z) for |z| < 60 µm (as the 1/e radii of the clouds
range from 100 to 400 µm, this restriction excludes the more polarized, large z, regions of the clouds). We obtain the
temperature of each cloud by fitting the density versus potential energy V to

n = λ−3f(βµ− βV ),

where β = 1
kBT

, λ =
√

2π~2

mkBT
, T is the temperature, µ is the chemical potential, and f is a universal function defining

the equation of state of the unitary Fermi gas [30], with µ and T as the fit parameters.

MEASUREMENT OF TRANSPORT COEFFICIENTS

Near equilibrium, d decays exponentially, and we fit the measured values to

d(t) = d0e−t/τ .

The spin drag coefficient is then

Γsd = ω2
zτ.

To non-dimensionalize this quantity we multiply by ~ and divide by the Fermi energy EF = ~2

2m (3π2n(~0))2/3, where

n(~0) = n↑(~0) + n↓(~0) is the total three-dimensional density at (r, z) = (0, 0).
After fitting to d(t) to obtain τ , we obtain the spin diffusivity from each spin up-spin down image pair as

Ds =
n(~0)d

2gτ
,

where g =
∂(n↑−n↓)

∂z |z=0,r=0 is the spin density gradient. The spin density gradient is obtained from the slope b of a

linear fit to the polarization p(z) =
n↑−n↓
n↑+n↓

as a function of z at r = 0 using the formula

g = b · (n↑(~0) + n↓(~0)).

The Einstein relation provides the spin susceptibility as

χs = σs/Ds =
n(~0)

2mDs Γsd

=
g

mdω2
z

.

Although derived using transport coefficients, the final expression for χs does not actually depend on the relaxation
time τ , so it gives an independent value of χs from each run of the experiment.
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THEORETICAL CALCULATION OF TRANSPORT COEFFICIENTS

The transport coefficients in the classical limit T � TF may be calculated using the Boltzmann transport equation.
The Boltzmann transport equation describes the evolution of the semi-classical distribution functions fσ(~r,~v, t), with
σ =↑, ↓:

∂fσ
∂t

+ ~v · ∇rfσ +
~F

m
· ∇vfσ = Icoll[f↑,↓ ]

Define the joint distribution function f(~r↑, ~r↓, ~v↑, ~v↓) = f↑(~r↑, ~v↑)f↓(~r↓, ~v↓). Any quantity of the form χ(~r↑, ~r↓, ~v↑, ~v↓)
can be averaged over f [32]:

〈χ〉 =
1

N↑N↓

∫
d3r↑d

3r↓d
3v↑d

3v↓(χf) ,

where Nσ is the number of atoms with spin σ.
We generalize to arbitrary scattering length a, and non-uniform drift velocity, the calculation by Vichi and

Stringari [18] of the equation of motion for the relative coordinates of the two spin components in a harmonic trap of
angular frequency ωz along the z axis. From the Boltzmann equation,

∂t 〈z↑ − z↓〉 = 〈vz↑ − vz↓〉
and

∂t 〈vz↑ − vz↓〉 = −〈vz↑ − vz↓〉Γsd − ω2
z 〈z↑ − z↓〉 ,

where the spin drag coefficient is

Γsd =
〈(vz↑ − vz↓)Icoll[f ]〉
〈vz↑ − vz↓〉

.

The full collision integral reads

〈(vz↑ − vz↓)Icoll[f ]〉 = −1

2

N↑ +N↓
N↑N↓

∫
d3r

∫
d3p↑

(2π~)3

∫
d3p↓

(2π~)3

∫
dΩ

dσ

dΩ
|~v↑ − ~v↓| (vz↑ − vz↓)×[

(1− f↑)(1− f↓)f ′↑f ′↓ − f↑f↓(1− f ′↑)(1− f ′↓)
]
.

The integral describes the scattering of particles ↑ and ↓ into new states ↑′ and ↓′. We assume that the distribution
functions near equilibrium are fσ(~r,~v) = f0(~r,~v−~vσ,drift), where f0 is the equilibrium distribution of both spin states
(assumed to be in the classical limit) and ~vσ,drift = ±vd(~r)ẑ is the drift velocity of spin σ. The collision integral can
then be calculated (for details, see for example [33]) and yields

Γsd =
16

3
σ(T/Ta)

(
kBT

πm

)1/2

n0(~0)/α,

with

σ(T/Ta) = 4πa2

∫
du

1

1 + T
Ta
u2
u5e−u

2

,

α = n0(~0)

∫
n0vd d3r∫
n2

0vd d3r
,

n0 =
∫
f0d3v is the equilibrium density of each spin state, and Ta = ~2

kBma2
is the temperature scale associated with

the scattering length a. The limiting values of the temperature-dependent average scattering cross section σ(T/Ta)
are

σ(T � Ta) = 4πa2
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and

σ(T � Ta) =
2π~2

mkBT
= λ2,

with the thermal de Broglie-wavelength λ. For unitary interactions, Ta = 0, and the latter limit applies. Define the

Fermi energy as EF = ~2

2m (6π2n0(~0))2/3. In the unitary limit where σ = λ2 we find

~Γsd

EF
=

32
√

2

9π3/2α

√
EF
kBT

=
0.90

α

√
EF
kBT

.

For a uniform system α = 1, while for a harmonically trapped system with a uniform drift velocity we find α = 23/2.
However, the drift velocity profile cannot be uniform: Even if it started out uniform, spin currents would get damped
faster in the center of the overlap region of the two clouds, where the collision rate is high, than in the wings,
where it is low. A non-uniform drift velocity profile will develop. The nature of the linearized Boltzmann equation
allows for a variational principle where trial functions replacing the true distribution function fσ(~r,~v) yield upper
bounds on the actual spin drag coefficient [33]. Minimizing Γsd for a trial class of non-uniform drift velocities
vd(r) = vd0(1− n0(r)γ/n0(0)γ) yields γ → 0. In this case α = 25/2 ≈ 5.7.

The spin diffusivity measured in our experiment for T � TF is then

Ds =
1

χs

n0(~0)

mΓsd

=
9π3/2α

32
√

2

~
m

(
T

TF

)3/2

= 1.1α
~
m

(
T

TF

)3/2

.

The bulk value for α = 1 represents a lower bound on the diffusivity. It is known from similar calculations that
in the high-temperature limit, this lower bound should be within a few percent of the actual bulk value [33]. The
effect of inhomogeneities in a harmonic, cylindrically symmetric trap increases the diffusivity by α ≈ 5.7. The
high-temperature result for the diffusivity has been obtained independently by Georg Bruun [34].
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