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Abstract

Consider a bounded planar domain D, an instance h of the Gaussian free field
on D, with Dirichlet energy (2π)−1

∫

D ∇h(z) · ∇h(z)dz, and a constant 0 ≤ γ < 2.
The Liouville quantum gravity measure on D is the weak limit as ε → 0 of the
measures

εγ
2/2eγhε(z)dz,

where dz is Lebesgue measure on D and hε(z) denotes the mean value of h on the circle
of radius ε centered at z. Given a random (or deterministic) subset X of D one can de-
fine the scaling dimension of X using either Lebesgue measure or this random measure.
We derive a general quadratic relation between these two dimensions, which we view
as a probabilistic formulation of the Knizhnik, Polyakov, Zamolodchikov (KPZ, 1988)
relation from conformal field theory. We also present a boundary analog of KPZ (for
subsets of ∂D). We discuss the connection between discrete and continuum quantum
gravity and provide a framework for understanding Euclidean scaling exponents via
quantum gravity.
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“There are methods and formulae in science, which serve as master-keys to
many apparently different problems. The resources of such things have to be
refilled from time to time. In my opinion at the present time we have to develop an
art of handling sums over random surfaces. These sums replace the old-fashioned
(and extremely useful) sums over random paths. The replacement is necessary,
because today gauge invariance plays the central role in physics. Elementary
excitations in gauge theories are formed by the flux lines (closed in the absence
of charges) and the time development of these lines forms the world surfaces. All
transition amplitude[s] are given by the sums over all possible surfaces with fixed
boundary.” (A.M. Polyakov, Moscow, 1981.) [Pol81a]

1 Introduction

1.1 Overview

The study of certain natural probability measures on the space of two dimensional Rie-
mannian manifolds (and singular limits of these manifolds) is often called “two-dimensional
quantum gravity.” These models have been very thoroughly studied in the physics liter-
ature, in part because of connections to string theory and conformal field theory [Pol81a,
Pol81b, Pol87a, Pol89, Sei90, GM93, Dav94, Dav95, AJW95, AW95, DFGZJ95, Kle95, KH96,
ADJ97, Eyn01, Dup06], and to random matrix theory and geometrical models; see, e.g.,
the references [BIPZ78, ADF85, KKM85, Dav85, BKKM86a, BKKM86b, Kaz86, DK88a,
DK90, GK89, Kos89a, Kos89b, DDSW90, MSS91, KK92, EZ92, JM92, Kor92a, Kor92b,
ABC93, Dur94, ADJ94, Dau95, EK95, KH95, BDKS95, AAMT96, Dup98, Dup99a, Dup99b,
Dup99c, EB99, KZJ99, Kos00, Dup00, DFGG00, DB02, Dup04, Kos07, Kos09]. More re-
cently, a purely combinatorial approach to discretized quantum gravity has been successful
[Sch98, BFSS01, FSS04, BDFG02, BS03, AS03, BDFG03a, BDFG03b, DFG05, BDFG07,
Mie09, LG07, MM07, Ber07, Ber08a, Ber08b, Ber08c, BG08a, MW08, Mie08, BG08b, LG08,
BG09, LM09, BB09], as well as the so-called topological expansion involving higher-genus
random surfaces [CMS09, Cha09, Cha10, EO07, EO08, Eyn09].

One of the most influential papers in this field is a 1988 work of Knizhnik, Polyakov,
and Zamolodchikov [KPZ88]. Building on a 1987 work of Polyakov [Pol87b], the authors
derive a relationship (the KPZ formula) between scaling dimensions of fields defined using
Euclidean geometry and analogous dimensions defined via Liouville quantum gravity (as
described earlier in [Pol81a, Pol81b]; see [Pol] for a recent historical recount). An alternative
heuristic derivation using Liouville field theory in the so-called conformal gauge was proposed
shortly after [Dav88, DK89] (see also [Tak93]). The original work by KPZ has been cited
roughly a thousand times in a variety of contexts, which we will not attempt to survey
here, though we mention that there have been a number of explicit calculations in Liouville
field theory with matching results in the random matrix theory approach, e.g., [GL91, DO94,
Tes95, ZZ96, FZZ00, Tes01, Hos01, PT02, Kos03, Zam04, KPS04, TT06, Tes07]; for a review,
see [Nak04].

The relationship in [KPZ88] has never been proved or even precisely formulated mathe-
matically. The main goal of this work is to formulate and prove the KPZ scaling dimension
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relationship in a probabilistic setting.

1.2 Critical Liouville quantum gravity

The study of two dimensional random surfaces makes frequent use of the Riemann uni-
formization theorem, which states that every smooth simply connected Riemannian mani-
fold M can be conformally mapped to either the unit disc D, the complex plane C, or the
complex sphere C ∪ {∞}. (If a manifold is not simply connected then its universal cover
can be conformally mapped to one of these spaces. See, e.g., Chapter 4 of [FK92] for more
exposition; see also [WGY05, JWGY05, GWY03, GY02, DLJ+07] for approximation algo-
rithms and beautiful computer illustrations of these maps.) Another way to say this is that
M can be parameterized by points z = x+ iy in one of these spaces in such a way that the
metric takes the form eλ(z)(dx2 + dy2) for some real-valued function λ. The (x, y) are called
isothermal coordinates or isothermal parameters for M. In most of this paper we let the
parameter space be a general simply connected proper subdomain D of the plane (which, of
course, is conformally equivalent to D).

We remark that the existence of isothermal coordinates does not require that M be
smooth; for example, it can be deduced whenever M can be parameterized by a simply
connected planar domain in which the metric has the form E(x, y)dx2 + 2F (x, y)dxdy +
G(x, y)dy2 where EG− F 2 > 0, E > 0, and E, F , and G are β-Hölder continuous for some
0 < β < 1 [Che55].

Length, area, and curvature are easy to express in isothermal coordinates. The length of
a path in M parameterized by a smooth path P in D is given by

∫

P

eλ(s)/2ds,

where ds is the Euclidean length measure on D. Given a measurable subset A of D, the
integral

∫

A
eλ(z)dz (where dz denotes Lebesgue measure on D) is the area of the portion of

M parameterized by A. The function K = −e−λ∆λ (where ∆λ = λxx+λyy is the Laplacian
operator) is called the Gaussian curvature of M. If A is a measurable subset of the (x, y)
parameter space, then the integral of the Gaussian curvature with respect to the portion
of M parameterized by A can be written

∫

A
eλ(z)K(z)dz =

∫

A
−∆λ(z)dz where dz denotes

Lebesgue measure on D. In other words, −∆λ gives the density of Gaussian curvature in
the isothermal coordinate space. In particular, M is flat if and only if λ is harmonic.

The above suggests that one can study random simply connected Riemannian manifolds
by studying random functions λ on C or C∪{∞} or any fixed simply connected subdomain
D of C. In the probabilistic formulation of the so-called critical Liouville quantum gravity, λ
is taken to be a multiple of the Gaussian free field (GFF), although some care will be required
to make sense of this construction, since the GFF is a distribution and not a function. (The
relationship between our probabilistic formulation and the original formulation of Polyakov
will be discussed in Section 2.)

For concreteness, let h be an instance of a centered GFF on a bounded simply connected
domain D with zero boundary conditions. This means that h =

∑

n αnfn where the αn are
i.i.d. zero mean unit variance normal random variables and the fn are an orthonormal basis,
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with respect to the inner product

(f1, f2)∇ := (2π)−1

∫

D

∇f1(z) · ∇f2(z)dz,

of the Hilbert space closure H(D) of the space Hs(D) of C∞ real-valued functions compactly
supported on D. Although this sum diverges pointwise almost surely, it does converge almost
surely in the space of distributions on D, and one can also make sense of the mean value
of h on various sets. (See [She07] for a detailed account of this construction of the GFF;
see Section 3.1 for a quick overview. Note that the (2π)−1 in the definition above does not
appear, e.g., in [She07]; including this factor in the definition, as is common in the physics
literature, is equivalent to multiplying the corresponding h by

√
2π. This will simplify some

of our formulas later on. In particular, in this formulation the two point covariance scales
like − log(|z − w|) instead of −(2π)−1 log(|z − w|); see Section 3.1.)

Given an instance h of the Gaussian free field on D, let hε(z) denote the mean value
of h on ∂Bε(z), the circle of radius ε centered at z (where h(z) is defined to be zero for
z ∈ C\D). This is almost surely a locally Hölder continuous function of (ε, z) on (0,∞)×D
(see Section 3.1). For each fixed ε, consider the surface Mε parameterized by D with metric
eγhε(z)(dx2 + dy2). We would like to define a surface M parameterized by D to be some sort
of limit as ε→ 0 of these surfaces. Since we would not expect the limit to be a Riemannian
manifold in any classical sense, we have to state carefully what we mean by this. There are
many ways we could attempt to make sense of this limit, depending on what quantities we
focus on. For example, we could consider

1. The length of the shortest path connecting a fixed pair of points in D.

2. The area of a fixed subset of D.

3. The length of a fixed smooth curve in D.

4. The length of a smooth boundary arc of D (which becomes interesting when h is an
instance of the GFF with free boundary conditions).

Intuitively, we might expect each quantity above to scale like a random constant times a
(possibly different) power of ε as ε tends to zero — i.e., we would expect that if the Mε

were rescaled by the appropriate powers of ε, the above quantities would have limits as
ε→ 0. Focusing on lengths of shortest paths, one might guess that the random surfaces Mε

(rescaled by some power of ε) would almost surely converge (in some natural topology on the
set of metric spaces) to a non-trivial random metric space parameterized by D. However,
this is not something we are currently able to prove. Focusing on areas, one might expect
that for some α the renormalized area measures εαeγhε(z)dz would almost surely converge
weakly to a random measure on D. This is the limit we will construct and work with in this
paper. We will also address the lengths of fixed curves and boundary curves; see Section
6. Although the constructions are quite similar, we will not use the so-called Wick normal
ordering terminology in this paper (see e.g., [Sim74]). We present a self-contained proof
of the following (although similar measures have appeared much earlier, and are called the
Høegh-Krohn model [HK71] — see also [AGHK79, AHK74] for a discussion on the level of
Schwinger functions, and a more recent survey [AHKPS92]):
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Proposition 1.1. Fix γ ∈ [0, 2) and define the zero boundary GFF h and D as above.
Then it is almost surely the case that as ε → 0 along powers of two, the measures µε :=
εγ

2/2eγhε(z)dz converge weakly inside D to a limiting measure, which we denote by µ = µh =
eγh(z)dz. This remains true if we replace h with a non-centered GFF on D — i.e., if we
set h = h + h0 where h is the zero boundary GFF on D and h0 is a deterministic, non-zero
continuous function on D.

For each z ∈ D, denote by C(z;D) the conformal radius of D viewed from z. That is,
C(z;D) = |φ′(z)|−1 where φ : D → D is a conformal map to the unit disc with φ(z) = 0.
The following gives an equivalent definition of µ.

Proposition 1.2. Write h = h + h0 where h is the zero boundary GFF on D and h0 is a
deterministic continuous function on D. Let f1, f2, . . . be an orthonormal basis for H(D)
comprised of continuous functions on D and let hn be the expectation of h given its projection
onto the span of {f1, f2, . . . , fn}. (In other words, hn is h0 plus the projection of h onto the
span of {f1, f2, . . . , fn}.) Then µ = µh (as defined in Proposition 1.1) is almost surely the
weak limit for n→ +∞ of the measures

µn = exp

(

γhn(z)− γ2

2
Varhn(z) +

γ2

2
logC(z;D)

)

dz. (1)

For each measurable A ⊂ D, we have

E[µ(A)|hn] = µn(A). (2)

In particular,

Eµ(A) =

∫

A

C(z;D)
γ2

2 eγh
0(z)dz.

Intuitively, we interpret the pair (D, µ) as describing a “random surface” M parameter-
ized conformally by D, with area measure given by µ. In the physics literature, the more
commonly used term is “random metric”; however, we stress that we have not endowed D
with a two point distance function, so we cannot mathematically interpret “random metric”
to mean “random metric space.”

In the Liouville quantum gravity literature, the term “metric” is used to mean alternately
a two-point distance function, a measure of areas and lengths of curves, or a Riemannian
metric tensor (usually the latter). The first maps pairs of points to R

+, the second maps
sets/curves to R+, and the third maps pairs of tangent vectors to R. A smooth manifold
can be equivalently characterized by any one of these objects; however, the relationships
between these notions are less obvious for the limiting (and highly non-smooth) “random
surfaces” M we deal with here. The pair (D, µ) represents a conformal parameterization
of M, with area measure µ. However, further work would be required to use this structure
to construct a two-point distance function on M, or vice versa. To avoid ambiguity arising
from the multiple definitions of the term “metric”, we will use the term “random surface”
instead of “random metric” in this paper to describe the pair (D, µ).
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1.3 Scaling exponents and KPZ

Definition 1.3. For any fixed measure µ on D (which we call the “quantum” measure), we
let Bδ(z) be the Euclidean ball centered at z whose radius is chosen so that µ(Bδ(z)) = δ. (If
there does not exist a unique δ with this property, take the radius to be sup{ε : µ(Bε(z)) ≤ δ}.)
We refer to Bδ(z) as the isothermal quantum ball of area δ centered at z. In particular,
if γ = 0 then µ is Lebesgue measure and Bδ(z) is Bε(z) where δ = πε2.

Given a subset X ⊂ D, we denote the ε neighborhood of X by

Bε(X) = {z : Bε(z) ∩X 6= ∅}.

We also define the isothermal quantum δ neighborhood of X by

Bδ(X) = {z : Bδ(z) ∩X 6= ∅}.

Translated into probability language, the so-called KPZ formula is a quadratic relation-
ship between the expectation fractal dimension of a random subset of D defined in terms of
Euclidean measure (which is the Liouville gravity measure with γ = 0) and the corresponding
expectation fractal dimension of X defined in terms of Liouville gravity with γ 6= 0.

Fix γ ∈ [0, 2) and let µ0 denote Lebesgue measure on D. We say that a (deterministic
or random) fractal subset X of D has Euclidean expectation dimension 2 − 2x and
Euclidean scaling exponent x if the expected area of Bε(X) decays like ε2x = (ε2)x, i.e.,

lim
ε→0

logEµ0(Bε(X))

log ε2
= x.

We say that X has quantum scaling exponent ∆ if when X and µ (as defined above) are
chosen independently we have

lim
δ→0

logEµ(Bδ(X))

log δ
= ∆,

where here E is with respect to both random variables X and µ. (Section 7 will provide
some discrete quantum gravity heuristics that motivate the idea of taking X and µ to be
independent of one another, as well as our particular definition of scaling exponent.)

The following is the KPZ scaling exponent relation. To avoid boundary technicalities,
we restrict attention here to a compact subset of D. The case of boundary exponents will
be dealt with in Section 6.

Theorem 1.4. Fix γ ∈ [0, 2) and a compact subset D̃ of D. If X ∩ D̃ has Euclidean scaling
exponent x ≥ 0 then it has quantum scaling exponent ∆, where ∆ is the non-negative solution
to

x =
γ2

4
∆2 +

(

1− γ2

4

)

∆. (3)

It also turns out that Theorem 1.4 admits the following straightforward generalization:
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Theorem 1.5. Let X be any random measurable subset of the set of all balls of the form
Bε(z) for ε > 0 and z in a fixed compact subset D̃ of D. Fix γ ∈ [0, 2). Then if

lim
ε→0

logEµ0{z : Bε(z) ∈ X}
log ε2

= x,

then it follows that, when X and µ (as defined above) are chosen independently, we have

lim
δ→0

logEµ{z : Bδ(z) ∈ X}
log δ

= ∆,

where ∆ is the non-negative solution to

x =
γ2

4
∆2 +

(

1− γ2

4

)

∆.

(Again, expectation in the above theorem is with respect to both random variables, X
and µ.) We obtain Theorem 1.4 as a special case of Theorem 1.5 by writing X = {Bε(z) :
Bε(z) ∩X 6= ∅}. Theorem 1.5 allows us to consider x that are greater than 1 (in which case
the “dimension” 2− 2x would be negative). If one considers, for example, a conformal loop
ensemble on D with κ = 6 (corresponding to a scaling limit of the cluster-boundary loops
in site percolation on the triangular lattice) one could let X be the set of balls contained
in D̃ that intersect ℓ distinct “macroscopic” loops (where “macroscopic” means that their
diameters are greater than some fixed constant). In this case, the value x depends on ℓ
and is called a multi-arm exponent [SD87, Dup99a, ADA99, SW01] and we may view the
corresponding ∆ as a quantum analog of such an exponent.

As another example, for some integer L fix distinct points z1, z2, . . . , zL in D \ D̃ and run
L independent Brownian motions started at the points z1, . . . , zL. Then let X be the set of
balls Bε(z) contained in D̃ with the property that the Brownian motions — stopped at the
first time they intersect ∂Bε(z) — do not intersect one another.

In this case, the Euclidean scaling exponent x = xL is called a Brownian intersection

exponent. It was conjectured in [DK88b] and rigorously derived in a celebrated series of
papers by Lawler, Schramm, and Werner using the Schramm-Loewner evolution with κ = 6
[LSW01a, LSW01b, LSW02]:

xL =
1

24
(4L2 − 1).

Although we will not fully explain this in this paper, there is a close connection between
SLEκ and Liouville quantum gravity models with γ =

√

min{κ, 16/κ} (see Section 7), in
agreement with the relationship between CFT central charge c and parameter γ in Liouville
quantum gravity [KPZ88, Dav88, DK89, Sei90, GM93]. Taking γ =

√

16/6 =
√

8/3 and xL
as above, the KPZ formula gives

∆L =
1

2

(

L− 1

2

)

,

which is an affine function of L. The first co-author predicted several years ago, based on an
approach via discrete quantum gravity models, that this ∆ would be an affine function of L
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(see [Dup98, Dup99b, Dup99c, Dup04] and the discussion in Section 7). The derivation is
based on a simple and general geometric argument that discrete quantum gravity exponents
should be in a certain sense additive together with a heuristic connection between the discrete
and the continuous models. A direct calculation via discrete graphs appears in [Dup98].
This is related to the cascade relations given earlier by Lawler and Werner using different
techniques [LW99].

Three papers that build on our work (as announced and presented in talks and mini-
courses beginning in 2007, and later in the Letter [DS09]) have already been posted online:
Benjamini and Schramm cited the ideas of our paper to produce an analog of Theorem 1.4
in a one dimensional cascade model; their proof uses a Frostman measure construction in
place of the large deviations construction used here, and almost sure Hausdorff dimension in
place of expectation dimension [BS09]. A follow up paper [RV08] adapts the arguments of
[BS09] to a class of cascade models, which was expanded to include (in a revised version) a
measure based on the exponential of the Gaussian free field, like the measures we construct
here. Another paper provides a heuristic heat kernel based derivation of the KPZ relation
[DB09].

Intuitively, one reason to expect Hausdorff-like variants of KPZ to be accessible is that
the second moments (and higher moments) of the random measures are essentially trivial to
compute (see Section 3.2). It might be interesting to try to derive other variants of KPZ:
for example, one could try to relate the actual Minksowki or Hausdorff measure of a set,
in the Euclidean sense, with some kind of expected Minkowski or Hausdorff measure in the
quantum sense. We will not address these alternative formulations here. However, we will
present below a picturesque formulation of KPZ in terms of box decompositions.

1.4 Statement of box formulation of KPZ

Define a diadic square to be a closed square (including its interior) of one of the grids
2−k

Z
2 for some integer k. Let µ be any measure on C. For δ > 0, we define a (µ, δ) box

S to be a diadic square S with µ(S) < δ and µ(S ′) ≥ δ where S ′ is the diadic parent of
S. Clearly, if a point z ∈ C does not lie on a boundary of a diadic square—and it satisfies
µ({z}) < δ < µ(C)—then there is a unique (µ, δ) box containing z, which we denote by
Sδ(z). Let Sδ

µ be the set of all (µ, δ) boxes. The boxes in Sδ
µ do not overlap one another

except at their boundaries. Thus, they form a tiling of R2 (see Figures 1, 2, and 3 for an
illustration of this construction on a torus).

We remark that the (µ, δ) boxes should not be confused with the diadic boxes in the so-
called δ-Calderón Zygmund decomposition of µ. Readers familiar with that decomposition
may recall that while the (µ, δ) boxes are diadic squares S with µ(S) < δ ≤ µ(S ′), the δ-
Calderón Zygmund boxes are diadic squares S with µ(S)/µ0(S) > δ ≥ µ(S ′)/µ0(S

′), where
µ0 is Lebesgue measure. Roughly speaking, the µ measure on each (µ, δ) box approximates
δ, while the µ density on each Calderón Zygmund box approximates δ.

When ε is a power of 2, analogously define Sε(z) to be the diadic square containing z
with edge length ε. Likewise, define

Sε(X) = {z : Sε(z) ∩X 6= ∅},

Sδ(X) = {z : Sδ(z) ∩X 6= ∅}.

8



Figure 1: (µ, δ) boxes of the random measure µ = eγhdz, where γ = .5 and h is the (discrete)
Gaussian free field on a very fine (1024 × 1024) grid on the torus, dz is counting measure
on the vertices of that grid, and δ is 2−12 times the total mass of µ. (We view µ as an
approximation of the continuum Liouville quantum gravity measure.) One way to construct
this figure is to view the entire torus as a square; then subdivide each square whose µmeasure
is at least δ into four smaller squares, and repeat until all squares have µ measure less than
δ. The squares shown have roughly the same µ size — in the sense that each square has µ
measure less than δ but each square’s diadic parent has µ measure greater than δ.
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Figure 2: Analog of Figure 1 with γ = 1, using the same instance h of the GFF.
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Figure 3: Analog of Figure 1 with γ = 1.5, using the same instance h of the GFF.
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The following gives the equivalence of the scaling dimension definition when boxes are used
instead of balls. (The first half is well known and easy to verify.)

Proposition 1.6. Fix γ ∈ [0, 2) and let X be a random subset of a deterministic compact
subset D̃ of D. Let N(µ, δ,X) be the number of (µ, δ) boxes intersected by X and N(ε,X)
the number of diadic squares intersecting X that have edge length ε (a power of 2). Then X
has Euclidean scaling exponent x ≥ 0 if and only if

lim
ε→0

logE[µ0(Sε(X))]

log ε2
= lim

ε→0

logE[ε2N(ε,X)]

log ε2
= x,

or equivalently,

lim
ε→0

logE[N(ε,X)]

log ε2
= x− 1.

Similarly, the following are equivalent

1. X has quantum scaling exponent ∆.

2. When X and µ (as defined above) are chosen independently we have

lim
δ→0

logE[µ(Sδ(X))]

log δ
= ∆. (4)

3. When X and µ (as defined above) are chosen independently we have

lim
δ→0

logE[N(µ, δ,X)]

log δ
= ∆− 1. (5)

Of course, this immediately implies the following restatement of Theorem 1.4 in terms of
boxes instead of balls:

Corollary 1.7. Fix γ ∈ [0, 2) and a compact subset D̃ of D and X and µ as above. Then if

lim
ε→0

logE[N(ε,X)]

log ε2
= x− 1.

for some x > 0 then

lim
δ→0

logE[N(µ, δ,X)]

log δ
= ∆− 1,

where ∆ is the non-negative solution to (3).

One could also phrase Theorem 1.5 in terms of boxes instead of balls, but for simplicity
we will refrain from doing this here.
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2 Coordinate changes and the physical Liouville action

Polyakov understood early on that the Liouville quantum gravity action becomes a free field
action in the conformal gauge, but he did not construct the random area measure the way
we do. In [Pol87b], where Polyakov begins the KPZ derivation, he refers to the Liouville
quantum gravity action and writes

“The most simple form this formula takes is in the conformal gauge, where
gab = eϕδab where it becomes a free field action. Unfortunately this simplicity is
an illusion. We have to set a cut-off in quantizing this theory, such that it is
compatible with general covariance. Generally, it is not clear how to do this. For
that reason, we take a different approach.”

Indeed, the actual derivation given in [Pol87b] and subsequently in Knizhnik, Polyakov, and
Zamolodchikov [KPZ88] is more complicated than ours and is not based on the Gaussian
free field. It does not give precise mathematical meaning to the random surfaces. We feel
that the Gaussian free field based random measure we construct is the correct one, at least
in the sense that it is likely to arise as a scaling limit of the discrete quantum gravity models
mentioned in [KPZ88] (see Section 7). In a way our approach is more similar to the work
of David [Dav88] and of Distler and Kawai [DK89], which heuristically derived KPZ from
Liouville field theory in the so-called conformal gauge.

In this section, we describe how the Liouville quantum gravity measure we construct
transforms covariantly under coordinate changes and use this to explain the connection
between the Gaussian free field and the more familiar and more general curvature-based
definition of the Liouville action that is conventional in the physics literature. The covariance
properties of the random measures in our point of view are very simple and agree with those
postulated in the physics literature.

If φ is a conformal map fromD to a domain D̃ and h is a distribution onD, then we define
the pullback h ◦ φ−1 of h to be a distribution on D̃ defined by (h ◦ φ−1, ρ̃) = (h, ρ) whenever
ρ is smooth and compactly supported on D and ρ̃ = |φ′|−2ρ ◦ φ−1. (Here φ′ is the complex
derivative of φ, and (h, ρ) is the value of the distribution h integrated against ρ.) Note that
if h is a continuous function (viewed as a distribution via the map ρ→

∫

D
ρ(z)h(z)dz), then

the distribution h ◦ φ−1 thus defined is the ordinary composition of h and φ−1 (viewed as a
distribution).

The following transformation rule is a simple consequence of Proposition 1.2 and the
definitions above.

Proposition 2.1. Let h be an instance of the GFF on D and ψ a conformal map from a
domain D̃ to D. Write h̃ for the distribution on D̃ given by h ◦ ψ +Q log |ψ′| where

Q =
2

γ
+
γ

2
.

Then µh is almost surely the image under ψ of the measure µh̃ on D̃. That is, µh̃(A) =
µh(ψ(A)) for each Borel measurable A ⊂ D̃.

Proof. Using the notation of Proposition 1.2, if f1, f2, . . . are an orthonormal basis forH(D),
then the conformal invariance of (·, ·)∇ implies that f1◦ψ, f2◦ψ, . . . are an orthonormal basis
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for H(D̃), and as n → ∞ the functions hn ◦ ψ converge in law to the GFF on D̃, and the
functions h̃n = hn ◦ ψ + Q log |ψ′| converge in law to h̃. If we define µ̃n analogously to µn

in (1) but with hn replaced by h̃n, then the µ̃n converge weakly to the random distribution
µ̃ := µh̃.

To see that µ is the image of µ̃ under ψ, we will observe that µn is the image of µ̃n

under ψ for each n. To see this, consider the term Q log |ψ′| = (2/γ) log |ψ′| + (γ/2) log |ψ′|
in the definition of h̃. Adding (2/γ) log |ψ′| to hn ◦ ψ corresponds to multiplying (1) by
a factor of |ψ′|2. This compensates for the fact that the Radon-Nikodym derivative of
a measure on D̃ at a point z and the Radon-Nikodym derivative of the same measure
pushed forward on D at ψ(z) differ by a factor of |ψ′(z)|2. Adding (γ/2) log |ψ′(z)| to
hn ◦ ψ compensates the expression (1) for the change in conformal radius: logC(ψ(z);D)−
logC(z; D̃) = log |ψ′(z)|.

We interpret Proposition 2.1 as a rule for changing the parametrization of a “random
surface.” For example, consider the random surface one constructs from the Gaussian free
field on a fixed domain D. Then if we are given any other domain D̃ and a conformal map
ψ : D̃ → D, we may wish to consider the same random surface parameterized by D̃ instead
of D. In this case, the transformation rule tells us that on D̃ we should consider the Liouville
quantum gravity measure defined using h̃ = h ◦ ψ+Q log |ψ′|, where h ◦ ψ is the GFF on D̃
with zero boundary conditions.

We remark that one can make a similar argument when D̃ is a curved simply connected
manifold and ψ : D̃ → D a conformal map; the metric on D̃ — when parameterized by D
using the map ψ−1 — takes the form eλ(z)(dx2 + dy2), for z ∈ D, where we write λ(ψ(w)) =
−2 log |ψ′(w)| for w ∈ D̃. Although we will not prove it here, the analog of Proposition 1.1
for smooth curved surfaces is straightforward, and the transformation rule Proposition 2.1
remains the same in this case; as in the flat case, the law of the Liouville quantum gravity
measure on D pulled back to D̃ is that of h̃ = h ◦ ψ + Q log |ψ′| where h ◦ ψ is the GFF
on D̃ with zero boundary conditions. (Alternatively, we may take this as a definition of the
Liouville quantum gravity measure on curved D̃ with zero boundary conditions.)

The remainder of this subsection describes the connection between our notation and the
common physics literature Liouville gravity notation. (This discussion can be skipped, on a
first read, by readers with no prior familiarity with the latter.) What we call the GFF on D
(with the 1/2π normalization, as discussed in the introduction) is often written (sometimes
without a rigorous definition) as the measure e−S(h)dh, where

S(h) =
1

4π

∫

D

∇h(z) · ∇h(z)dz

is called the action and dh is defined heuristically as a “uniform measure on the space
of all functions.” (Of course, the latter makes perfect sense if one considers only a finite
dimensional vector space of functions, such as real-valued functions defined on the vertices
of a lattice, or functions whose Fourier coefficients beyond a certain frequency threshold are
identically zero—in this case dh would be the Lebesgue measure on the vector space.) In
this paper, we will write

(h, h)∇ :=
1

2π

∫

D

∇h(z) · ∇h(z)dz,
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so that the above becomes S(h) = 1
2
(h, h)∇.

In the following, let D be a subdomain of C and D̃ a possibly curved surface for which
there is a conformal map ψ : D̃ → D. Write h̃0 = log |ψ′|. Now, if we switch parametrization
to D̃, we are adding Qh̃0 deterministically to h ◦ψ to get h̃, so we may rewrite the action as

S =
1

2
(h̃−Qh̃0, h̃−Qh̃0)∇,

which (at least when h̃0 is smooth and compactly supported) is seen by integrating by parts
to be equivalent (up to the additive constant 1

2
‖Qh̃0‖2∇) to

S =
1

4π

∫

D̃

dw
(

∇h̃(w) · ∇h̃(w) + 2h̃(w)Q∆h̃0(w)
)

, (6)

where the pairing ∇h̃(w)·∇h̃(w) and the Laplacian ∆h̃0(w) are now defined using the metric
on D̃ and where now dw represents the measure on D̃ instead of D. This can also be written

S =
1

4π

∫

D̃

dw
(

∇h̃(w) · ∇h̃(w) +Qh̃(w)K(w)
)

, (7)

where K is the Gaussian curvature of D̃ and dw is integration with respect to the curved
metric. (When h̃0 is not compactly supported, the formula can be modified to include a
term for boundary curvature, but we will not discuss this here.)

Adding in one additional term which is a constant µL times the total area of D̃ (and
making the following symbol substitutions: b = γ/2, ϕ = h̃, g is the underlying metric of
D̃, and j and k are summed-over indices ranging over the two tangent space directions), we
obtain the more familiar formula for the Liouville action:

SL =
1

4π

∫

D̃

dw
√
g
(

gjk∂jϕ∂kϕ+QKϕ+ 4πµLe
2bϕ

)

,

where Q = b+ b−1. The action is defined similarly when free boundary conditions are used
instead of zero boundary conditions — or when D̃ is a compact Riemann surface of some
genus. (In this case, e−SL(ϕ)dϕ is an infinite measure, although it can be “localized,” e.g.,
by requiring the mean value of ϕ to be zero.)

This paper will focus exclusively on the case γ ∈ [0, 2) (which is said to correspond to
physical models below the central charge c = 1 threshold) and µL = 0 (the so-called critical

Liouville quantum gravity). The string theory and quantum gravity literatures deal with
other parameter choices as well — including non-zero µL and complex values for γ and Q
— but these appear to be beyond the scope of our methodology, in part because, when SL

is complex valued, the expression e−SL(ϕ)dϕ is no longer a probability measure in even a
heuristic sense.

3 Constructing the random measures

3.1 GFF definition and normalization

Let D be a bounded planar domain and let dz denote Lebesgue measure on D. We assume
the reader is familiar with the Gaussian free field, as defined, e.g., in [She07], but we briefly
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review the definition here. As described earlier, to make our formulas consistent with the
physics literature, the definitions of Green’s function and the Dirichlet form will differ from
the ones in [She07] by factors of 2π.

Again, let Hs(D) be the space of C∞ real-valued functions compactly supported on D.
We define the Dirichlet inner product

(f1, f2)∇ := (2π)−1

∫

D

∇f1(z) · ∇f2(z)dz,

on Hs(D). Then an instance h of the Gaussian free field (GFF) may be viewed as a standard
Gaussian on the Hilbert space closure H(D) of Hs(D) (i.e., as a sum of the form

∑

n αnfn
where fn are any orthonormal basis for H(D)) — the sum converges almost surely in the
space of distributions on D, see [She07]. In fact, we may define (h, f)∇ as random variables
for non-smooth f as well; these are zero mean Gaussian random variables for each f ∈ H(D),
and

Cov
(

(h, f1)∇, (h, f2)∇
)

= (f1, f2)∇. (8)

The collection of random variables (h, f)∇ for f ∈ H(D) is thus a Hilbert space (isomorphic
to H(D)) under the covariance inner product.

When x ∈ D is fixed, we let G̃x(y) be the harmonic extension to y ∈ D of the function
of y on ∂D given by − log |y−x|. Then Green’s function in the domain D is defined by

G(x, y) = − log |y − x| − G̃x(y).

When x ∈ D is fixed, Green’s function may be viewed as a distributional solution of
∆G(x, ·) = −2πδx(·) with zero boundary conditions [She07]. It is non-negative for all
x, y ∈ D.

For any function ρ on Hs(D), we define a function ∆−1ρ on D by

∆−1ρ(·) := − 1

2π

∫

D

G(·, y) ρ(y) dy.

This is a C∞ (though not necessarily compactly supported) function in D whose Laplacian
is ρ. We use the same notation for more general measurable functions ρ, as well as the case
that ρ is a measure. (For example, we will sometimes speak of the inverse Laplacian of
uniform measure on a particular circle or disc contained in D.)

If f1 = −∆−1ρ1 and f2 = −∆−1ρ2, then integration by parts implies that (f1, f2)∇ =
(2π)−1(ρ1,−∆−1ρ2), where (·, ·) denotes the standard inner product on L2(D). We next
observe that every h ∈ H(D) is naturally a distribution, since we may define the map (h, ·)
by (h, ρ) := 2π(h,−∆−1ρ)∇. (It is not hard to see that −∆−1ρ ∈ H(D), since its Dirichlet
energy is given explicitly by (9).) When −∆f = ρ, we may write (h, ρ) = 2π(h, f)∇, and
hence

Cov
(

(h, ρ1), (h, ρ2)
)

= (2π)2(f1, f2)∇.

We claim that the latter expression may be rewritten to give

Cov
(

(h, ρ1), (h, ρ2)
)

=

∫

D×D

ρ1(x)G(x, y)ρ2(y) dx dy (9)
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where G(x, y) is Green’s function in D. Since ∆G(x, ·) = −2πδx(·) and
∫

D

G(x, y) ρ2(y) dy = −2π∆−1ρ2(x),

we obtain (9) by multiplying each side by −∆f1(x) = ρ1(x) and integrating by parts with
respect to x.

Denote by hε(z) the average value of h on the circle of radius ε centered at z. Similar
averages were considered in [Bau90]. (For this definition, we assume h is identically zero
outside of D.) Then hε(z) is a Gaussian process with covariances defined by

Gε1,ε2(z1, z2) := Cov (hε1(z1), hε2(z2)) (10)

given by
∫

G(x, y)ρz1ε1(x)ρ
z2
ε2(y)dxdy

where ρzε(x)dx is the uniform measure (of total mass one) on ∂Bε(z). In fact (like Brownian
motion) the process hε(z) determines a random continuous function (of z and ε):

Proposition 3.1. The process hε(z) has a modification which is almost surely locally η-
Hölder continuous in the pair (z, ε) ∈ C× (0,∞) for every η < 1/2.

In other words, the Hölder regularity enjoyed by hε(z) — as a function of the pair (z, ε) —
is the same as that of Brownian motion or the Brownian sheet. In fact, as we observe below
(Proposition 3.3), when z is fixed, hε is a Brownian motion with respect to the parameter
t = − log ε. We may view hε as an approximation to h that gets better as ε → 0. Before
we prove Proposition 3.1, let us make some observations about the covariance function
Gε1,ε2(z1, z2) defined in (10). (We will also sometimes write Gε(z1, z2) := Gε,ε(z1, z2).)

First we define the function ξzε (y), for y ∈ D, by

ξzε (y) = − logmax(ε, |z − y|)− G̃z,ε(y), (11)

where G̃z,ε(y) is the harmonic extension to D of the restriction of − logmax(ε, |z − y|) to
∂D. Note that G̃z,ε = G̃z provided that Bε(z) ⊂ D. Observe that this ξzε (y) tends to zero as
y → ∂D and that as a distribution −∆ξzε (restricted to D) is equal to 2πρzε, where as before
ρzε is a uniform measure on D ∩ ∂Bε(z). Integrating by parts, we immediately have

hε(z) = (h, ξzε )∇,

and from (8) and (10) the following:

Proposition 3.2. The function Gε1,ε2(z1, z2) is equal to the Dirichlet inner product
(

ξz1ε1 , ξ
z2
ε2

)

∇
and to the mean value of ξz1ε1 on the circle ∂Bε2(z2). In particular, if Bε1(z1) and Bε2(z2) are
disjoint and contained in D then Gε1,ε2(z1, z2) = G(z1, z2). If Bε1(z) ⊂ D and ε1 ≥ ε2 then

Gε1,ε2(z, z) = − log ε1 + logC(z;D).

It then follows that

Gε,ε(z, z) = Varhε(z) = (ξzε , ξ
z
ε )∇ = ξzε (z) = − log ε+ logC(z;D). (12)
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Proof of Proposition 3.1. We first claim that for each ε0 and D there exists a constant
K such that

Var (hε1(z1)− hε2(z2)) ≤ K
[

|z1 − z2|+ |ε1 − ε2|
]

for all z1, z2 ∈ D and ε1, ε2 ∈ [ε0,∞). Since the variance can only increase if D is replaced
with a larger domain, it suffices to show this holds when D is replaced by a sufficiently large
disc D′ (say, centered in D with 10 times the diameter r of D), and ε is restricted to values
in [ε0, 5r]. (For larger values of ε, the set ∂Bε(z) cannot intersect D when z ∈ D.) Since

Var (hε1(z1)− hε2(z2)) = Gε1,ε1(z1, z1)− 2Gε1,ε2(z1, z2) +Gε2,ε2(z2, z2),

it suffices to show that Gε1,ε2(z1, z2) is a Lipschitz function of (ε1, ε2, z1, z2) for the range of
(ε1, ε2, z1, z2) values indicated above. This follows from Proposition 3.2 and the fact (whose
proof we leave to the reader) that ξzε is a Lipschitz function when z ∈ D and ε > ε0, with a
Lipschitz constant that holds uniformly over these ε and z values.

The claim implies that for all α > 0 there is some K = K(α) > 0 such that

E[|hε1(z1)− hε2(z2)|α] ≤ K
[

|z1 − z2|+ |ε1 − ε2|
]α/2

.

This puts us in the setting of the multiparameter Kolmogorov-Čentsov theorem [KS91,
PM06], which states the following: Suppose that the random field X(a), a ∈ ∏n

i=1[0, ti]
satisfies E[|X(a)−X(b)|α] ≤ K|a− b|n+β for all a, b, for some fixed constants α, β,K. Then
there exists an almost surely continuous modification of the random field and this process is
η-Hölder continuous for every η < β/α. Applying this for n = 3 and β = α/2− 3 and large
α allows us to deduce that hε(z), as a function of ε and z, is locally η-Hölder continuous for
all η < 1/2.

Proposition 3.3. Write Vt = he−t(z), and tz0 = inf{t : Be−t(z) ⊂ D}. If z ∈ D is fixed,
then the law of

Vt := Vtz0+t − Vtz0

is a standard Brownian motion in t.

Proof. Since we already know that the hε(z) are jointly Gaussian random variables, it is
enough to compute the variances of hε(z) and hε′(z) for fixed ε, ε′, and these are given in
Proposition 3.2.

3.2 Random measure: Liouville quantum gravity

The remainder of the paper makes frequent use of the following simple fact, which the reader
may recall (or verify): if N is a Gaussian random variable with mean a and variance b then

E eN = ea+b/2. (13)

Since Ehε(z) = 0 when h is an instance of the GFF with zero boundary conditions, we have

Eeγhε(z) = eVar[γhε(z)]/2.
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Recall
Var(hε(z)) = Gε(z, z) = logC(z;D)− log ε (14)

when Bε(z) ⊂ D. Then we have

Eeγhε(z) = exp
(

γ2/2 (− log ε+ logC(z;D))
)

=

(

C(z;D)

ε

)γ2/2

. (15)

More general moments of the random variables eγhε(z) are also easy to calculate. For
example, we have

Eeγhε(y)eγhε(z) = exp
(

Var[γ(hε(y) + hε(z))]/2
)

= exp

(

γ2

2
(Gε(y, y) +Gε(z, z) + 2Gε(y, z))

)

. (16)

By Proposition 3.2 we have Gε(y, z) = G(y, z) whenever |y−z| ≥ 2ε and Bε(y)∪Bε(z) ⊂
D. In this case we have

Eeγhε(y)eγhε(z) =

(

C(y;D)C(z;D)

ε2

)γ2/2

eγ
2G(y,z).

Write

hε := γhε +
γ2

2
log ε.

Then we have
Eehε(z) = C(z;D)γ

2/2 ≍ 1

and when |y − z| > 2ε we have

Eehε(y)ehε(z) = (C(y;D)C(z;D))γ
2/2 eγ

2G(y,z) ≍ (C(y;D)C(z;D))γ
2/2 |y − z|−γ2 ≍ |y − z|−γ2

where ≍ indicates that equality holds up to a constant factor when y and z are restricted to
any compact subset of D.

Now, for each fixed ε, write µε := ehε(z)dz (which in essence corresponds to the “Wick
normal ordering” of the original measure [Sim74]). We now argue that these converge weakly
to a limiting random measure on D.

Proof of Proposition 1.1. Fix γ ∈ [0, 2). It is easy to see that if for each diadic square
S compactly supported in D the random variables µ2−k(S) converge to a finite limit as
k → ∞, almost surely, then µ2−k almost surely converges weakly to a limiting measure. We
will prove convergence of µ2−k(S) by showing that the expectation of |µ2−k(S)− µ2−k−1(S)|
decays exponentially in k. (Convergence follows, e.g., by using the Borel-Cantelli lemma to
show that a.s. |µ2−k(S) − µ2−k−1(S)| is greater than some exponentially decaying function
of k for at most finitely many k.) Without loss of generality, we may assume S is the unit

square [0, 1]2, so that µε(S) is precisely the mean value of ehε(z) on S.
As shown above, we have

Eehε(z) = C(z;D)γ
2/2,

(which is bounded between positive constants) when z ∈ S and ε is sufficiently small.

19



For y = (y1, y2) ∈ (0, 1)2 and k ≥ 1, let Sy
k be the discrete set of 22k points (a, b) ∈ S with

the property that (2ka− 2ky1, 2
kb− 2ky2) ∈ Z2. Let Ay

k be the mean value of exp h2−k−1(z)
on the set Sy

k , and B
y
k the mean value of exp h2−k−2(z) over the same set:

Ay
k := 2−2k

∑

z∈Sy
k

exp h2−k−1(z), By
k := 2−2k

∑

z∈Sy
k

exp h2−k−2(z). (17)

Clearly, µ2−k−1(S) is the mean value of Ay
k over y ∈ [0, 1]2 and µ2−k−2(S) the mean value of

By
k over y ∈ [0, 1]2. Applying Jensen’s inequality to the convex function | · |, it now suffices

for us to prove that E|Ay
k −By

k | tends to zero exponentially in k (uniformly in y). Since the
balls of radius 2−k−1 centered at points in Sy

k do not overlap, and by the Markov property

of the GFF (see, e.g., [She07]), we have that conditioned on the values of h2−k−1(z) for
z ∈ Sy

k , the random variables h2−k−2(z) for z ∈ Sy
k are independent of one another; thanks

to Propositions 3.2 and 3.3, each is a Gaussian of variance log 2 and mean h2−k−1(z).
Hence, given the values of h2−k−1(z) for z ∈ Sy

k , the value of the conditional expectation
of |Ay

k −By
k |2 is given by

E
(

|Ay
k − By

k |2|h2−k−1(z)
)

= 2−4k
∑

z∈Sy
k

E

(

|eh2−k−1 (z) − eh2−k−2 (z)|2|h2−k−1(z)
)

= 2−4kC
∑

z∈Sy
k

(

eh2−k−1 (z)
)2

, (18)

where
C = E

(

|1− 2−γ2/2eγh2−k−2 (z)|2|h2−k−1(z) = 0
)

= 2γ
2 − 1,

is a constant independent on k and z. The unconditional expectation of |Ay
k −By

k |2 is given
by the expectation of (18). It is tempting to argue that this expectation tends to zero
exponentially in k (which would in turn imply that E|Ay

k − By
k | tends to zero exponentially

in k), but this turns out to be true only for 0 ≤ γ2 < 2 and not for 2 ≤ γ2 < 4. To see this,
set ε := 2−k−1, and note that

E

[

(ε2ehε(z))2
]

= ε4+γ2

E[e2γhε ] ≍ ε4+γ2

e−
4γ2 log ε

2 = ε4−γ2

. (19)

Summing over the 22k = (2ε)−2 points z in Sy
k in (18), yields for the expectation of the latter

(up to an ε-independent constant factor)

E |Ay
k − By

k |2 ≍ ε2−γ2

,

which does not tend to zero when γ2 ≥ 2.
However, we can deal with the case γ2 ≥ 2 by breaking the sum over z ∈ Sy

k in (17)
defining Ay

k − By
k into two parts and dealing with them separately. The idea is that the

estimate in (18) and (19) of the expectation of |Ay
k − By

k |2 is dominated (and can only be
made large) by rare occurrences at points z where hε(z) is much larger than typical. Their
contribution to the expectations of Ay

k and By
k , hence to E|Ay

k − By
k |, is exponentially small

in k.
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To make this precise, fix some α with γ < α < 2γ and let S̃y
k denote set of points z ∈ Sy

k

with the property that hε(z) > −α log[ε/C(z;D)], where ε = 2−k−1. Let Ãy
k denote the

mean value of 1S̃y
k
exp h2−k−1(z) over Sy

k and B̃y
k the mean value of 1S̃y

k
exp h2−k−2(z) over Sy

k ,
so that

Ay
k = Ãy

k + 2−2k
∑

z∈Sy
k\S̃

y
k

exp h2−k−1(z), By
k = B̃y

k + 2−2k
∑

z∈Sy
k\S̃

y
k

exp h2−k−2(z). (20)

We claim that EÃy
k tends to zero exponentially in k. To see this, observe that for fixed z ∈ S,

the random variable hε(z) is a centered Gaussian with variance σ2 = − log[ε/C(z;D)]; and

the expectation of ehε(z)—which we know to be constant for all ε small enough so that z is
distance at least ε from the boundary of D—takes the form

Eehε(z) =
εγ

2/2

(2π)1/2

∫

R

e−
η2

2σ2 eγηdη = C(z;D)γ
2/2. (21)

We can therefore simply write for points z ∈ S̃y
k :

E 1S̃y
k
ehε(z) =

∫

R
1η>ασ2e−

η2

2σ2 eγηdη
∫

R
e−

η2

2σ2 eγηdη
× E ehε(z). (22)

The ratio of integrals in (22) is the probability that a normal random variable η of mean γσ2

and variance σ2 satisfies η > ασ2, with α > γ, and this clearly tends to zero exponentially
in σ2 with rate 1

2
(α− γ)2, from which the claim easily follows.

Note that (21) remains unchanged if we replace ε = 2−k−1 with 2−k−2, which implies
that EB̃y

k = EÃy
k, and in particular EB̃y

k also tends to zero exponentially in k. Since B̃y
k and

Ãy
k are non-negative, applying the triangle inequality shows that E|B̃y

k − Ãy
k| tends to zero

exponentially in k.
For the next step, we wish to bound E|(By

k − B̃y
k) − (Ay

k − Ãy
k)|2, which requires us to

consider the set of points z ∈ Sy
k \ S̃y

k in (20). Applying formula (18), we are led to estimate
the expectation

ε4E

[

1Sy
k\S̃

y
k

(

ehε(z)
)2
]

= ε4+γ2

E

[

1Sy
k\S̃

y
k
e2γhε(z)

]

. (23)

Using the explicit relation (compare to (22))

E

[

1Sy
k\S̃

y
k
e2γhε(z)

]

=

∫

R
1η<ασ2e−

η2

2σ2 e2γηdη
∫

R
e−

η2

2σ2 e2γηdη
× E e2γhε(z), (24)

we find that (23) differs from (19) by a factor that represents the probability that a Gaussian
random variable with variance − log ε (plus a constant term) and mean −2γ log ε is less than
−α log ε. Since α < 2γ, this probability decays exponentially in − log ε at rate (2γ − α)2/2.
Thus (23) becomes, up to a constant factor (universal in ε and z ∈ S),

ε4−γ2

ε(2γ−α)2/2.
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Summing over the 22k = (2ε)−2 points z ∈ Sy
k , we obtain the estimate

E|(By
k − B̃y

k)− (Ay
k − Ãy

k)|2 ≍ ε2−γ2+(2γ−α)2/2.

To conclude, we only need to make sure we chose α ∈ (γ, 2γ) small enough so that the sum
in the exponent is positive, and this is clearly possible. In fact, taking α close to γ, the
exponent becomes close to 2− γ2 + γ2/2 = 2− γ2

2
, which is positive when γ < 2.

3.3 Rooted random measures

Before proving Proposition 1.2, we introduce a notion of rooted random measure and use it
to prove a uniform integrability result for the random variables µε(S) discussed above.

Write Θε := Z−1
ε eγhε(z)dzdh, where Zε is a constant chosen to make Θε a probability

measure. Note that dzdh is a probability measure on a standard Borel space and that
Z−1

ε eγhε(z) is a measurable function on that space with expectation one. There is therefore no
difficulty in defining the Θε as the measure whose Radon-Nikodym derivative with respect
to dzdh is Z−1

ε eγhε(z). Integrating, we see that the Θε marginal distribution of z is given
by f(z)dz where f(z) = Z−1

ε Ehe
γhε(z). Thus f(z) is proportional to [C(z;D)]γ

2/2 by (15)
(provided Bε(z) ⊂ D). Similarly, the Θε marginal law of h is Z−1

ε

(∫

D
eγhε(z)dz

)

dh. Given

z, a regular conditional probability distribution for h is given by
(

Ehe
γhε(z)

)−1
eγhε(z)dh.

In other words, sampling from Θε may be described as a two step procedure. First sample
z from its marginal distribution. Then sample h from the distribution of the Gaussian free
field weighted by eγhε(z). Since dh is a Gaussian measure, we find that given z, h has the law
of the original GFF plus γξzε where ξzε satisfies a Dirichlet problem: −∆ξzε is the multiple of
the uniform measure on ∂Bε(z) with total mass 2π (because h is

√
2π times the standard

GFF; if h were the standard GFF the total mass would be 1). As noted in Section 3.1, this
ξzε has been computed explicitly:

ξzε (y) = − logmax{|z − y|, ε} − G̃z(y), (25)

where G̃z is the harmonic interpolation to D of the first term on ∂D, as long as Bε(z) ⊂ D.
Let Θ be the limit of the measures Θε as ε→ 0: that is, Θ is the measure on pairs (z, h)

for which the marginal distribution of z is proportional to [C(z;D)]γ
2/2dz and, given z, the Θ

conditional law of h is that of the original standard GFF plus the deterministic function γξz0
(viewed as a distribution). For any D̃ compactly supported on D, we will also write ΘD̃ for

the measure Θ conditioned on the event z ∈ D̃. We similarly define ΘD̃
ε to be Θε conditioned

on z ∈ D̃ (where ε is less than the distance from D̃ to ∂D). By the above construction and
Proposition 3.3, we have that conditioned on z, the Θ law of he−t is essentially that of a
Brownian motion plus a drift term of γt. This in particular implies the following:

Proposition 3.4. With Θ probability one, z is a γ-thick point of h by the definition in
[HMP10]. That is,

lim inf
ε→0

hε(z)/log ε
−1 ≥ γ.

In fact, the limit exists and equality holds almost surely.
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Since the Θ marginal law of h is absolutely continuous with respect to the law of h (with
Radon-Nikodym derivative µh(D)), this implies that µh is almost surely supported on γ-thick
points. It was shown by Hu, Miller, and Peres that the set of γ-thick points has Hausdorff
dimension 2− γ2

2
almost surely [HMP10].

Proof of Proposition 1.2. The almost sure weak convergence of the µn to a limit µ̃ is
immediate from the martingale convergence theorem. Recall the expression (1)

µn = exp

(

γhn(z)− γ2

2
Varhn(z) +

γ2

2
logC(z;D)

)

dz,

and observe that for each z, the exponential term

exp

(

γhn(z)− γ2

2
Varhn(z) +

γ2

2
logC(z;D)

)

is a non-negative martingale with respect to the filtration of hn. (This is a consequence of
(13).) Fubini’s theorem implies that µn(A) is a martingale for any Borel measurable set
A ⊂ D, and the martingale convergence theorem implies that the limit µ̃(A) := limµn(A)
exists almost surely. In particular, this holds whenever A is a diadic square contained in D
and from this easily follows the desired weak convergence.

We still need to show that µ = µ̃ almost surely, where µ is as constructed in Proposition
1.1. It is enough to show that µ(S) = µ̃(S) almost surely for each diadic square S compactly
supported on D, and since both µ and µ̃ are functions of h, this is equivalent to showing
that E[µ(S)|h] = E[µ̃(S)|h]. This in turn follows if we can show E[µ(S)|hn] = E[µ̃(S)|hn] for
all n; the latter expectation is just µn(S) by definition, so it remains only to show

E[µ(S)|hn] = µn(S). (26)

To this end, let hnε denote the mean value of hn on ∂Bε(z). For each particular choice of
z, and ε small enough so that Bε(z) ⊂ D, and for each n, we recall from (14) that hε(z) is a
Gaussian random variable with variance logC(z;D)− log ε and that hnε (z) is the conditional
expectation of hε(z) given the projection of h to the span of f1, f2, . . . , fn. Hence

E[εγ
2/2eγhε(z)|hn] = exp

(

γhnε (z)−
γ2

2
Varhnε (z) +

γ2

2
logC(z;D)

)

.

Taking the limit as ε→ 0 and using the continuity of hn(z) and Varhn(z) and the expression
(1), we have

lim
ε→0

E[µε(S)|hn] = µn(S) (27)

for each diadic square S. Using (27) we will have established (26) once we show that

E[µ(S)|hn] := E[lim
ε→0

µε(S)|hn] = lim
ε→0

E[µε(S)|hn], (28)

provided that 0 ≤ γ < 2.
We first argue this in the case n = 0 and h0 = 0, that is

E[µ(S)] := E[lim
ε→0

µε(S)] = lim
ε→0

E[µε(S)]. (29)
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Since Proposition 1.1 implies the existence of the limit of µε(S), it is enough to show that
the random variables Mε = µε(S) are uniformly integrable as ε → 0. Let M = EMε for ε
small enough so that Bε(S) ⊂ D. (By (15) this expectation is the same for all sufficiently
small ε.) The uniform integrability is equivalent to the statement that the probability
measures ηε := M−1MεdMε are tight, i.e., for all δ there exists a constant C > 0 such that
ηε([C,∞)) < δ for all ε. (Here M−1MεdMε denotes the probability measure on R whose
Radon-Nikodym derivative with respect to the law of Mε is given by M−1Mε.) Since Mε

is a function of h, this is equivalent to the statement that with respect to the measure
M−1Mε(h)dh the random variables Mε(h) are tight. Recalling that Mε is (up to a constant
factor) the Radon-Nikodym derivative of the h marginal of ΘS

ε with respect to dh, this in
turn can be rewritten as the statement that for each δ we can find a C such that

ΘS
ε {Mε(h) > C} < δ (30)

for all ε.
Throughout the remainder of the proof of (29), all probabilities and expectations will be

taken with respect to ΘS
ε . Let ε0 = sup{ε′ : Bε′(S) ⊂ D}. It suffices to prove the above

statement, that for each δ we can find a C such that (30) holds, for small S — precisely,
for avoiding boundary effects, we may restrict attention to S such that ε0 is larger than the
diameter of S, in which case S ⊂ Bε0(z) for any z ∈ S.

In order to obtain (30), we will describe a procedure for sampling from ΘS
ε in multiple

stages. We will then show that (30) holds when Mε(h) is replaced by its conditional expec-
tation given the observations from the first two stages, and the statement we require will
follow easily from this.

Precisely, we may sample the pair (z, h) from ΘS
ε in the following steps. In the first

step, we sample z from its marginal law (which is independent of ε for ε sufficiently small).
Write h̃ = h − γξzε . Given z, the ΘS

ε law of h̃ is that of a GFF on D. In the second step,
we sample Bt = h̃e−tε0(z) − h̃ε0(z) for all t ∈ [0,− log(ε/ε0)]. By Proposition 3.3, Bt is a
Brownian motion on this interval independent of z. In the third and final step, we choose h
conditioned on the results of the first two steps.

The ΘS
ε conditional expectation of h̃ given the whole process Bt (which we have defined

only for t ∈ [0,− log(ε/ε0)]) and z is given by the function (viewed as a distribution)

h̃�(w) := E[h̃(w)|z,Bt] =

{

Bu(w) (|z − w| < ε0)

0 (|z − w| ≥ ε0)
,

where

u(w) := − log
|z − w| ∨ ε

ε0
.

(We will discuss similar conditional expectations in detail in Section 4.1.) Note that once
z is fixed, for each w the mean value of h̃�(·) on ∂Bε(w) (which we denote by h̃�ε(w)) is
a weighted average of Bt over values of t between u1(w) := − log(ε1(w)/ε0) and u2(w) :=
− log(ε2(w)/ε0), where

ε1(w) := ε0 ∧ (|w − z| + ε), ε2(w) := (|w − z| − ε) ∨ ε,
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with, for |z − w| ≤ ε0, ε1(w) ≥ ε2(w), hence u1(w) ≤ u2(w). From this it is not hard
to see that given z the variance of h̃�ε(w) is between the two values {u1(w), u2(w)} of t.
We claim that each of these bounds differs from the intermediate value u(w) above, with
u1(w) ≤ u(w) ≤ u2(w), by at most an additive constant log 2. This is equivalent to the
statement that ε1(w) and ε2(w) differ from |z−w| ∨ε by a multiplicative or inverse factor of
at most two, which is easily checked under the further mild assumption that 2ε ≤ ε0. Thus
the variance of h̃�ε(w) is within log 2 of the value

u(w) = − log
|z − w|
ε0

∧ − log
ε

ε0
.

Since E[h̃ε(w)|h̃�ε(w)] = h̃�ε(w), we have

Var(h̃ε(w)) = EVar
(

h̃ε(w)|h̃�ε(w)
)

+Var(h̃�ε(w)). (31)

Since h̃ε(w) and h̃�ε(w) (both linear functionals of h) are jointly Gaussian, the quantity
Var

(

h̃ε(w)|h̃�ε(w)
)

is in fact independent of h̃�ε(w). Since (as observed above) |Var(h̃�ε(w))−
u(w)| < log 2, we conclude that

∣

∣Var(h̃ε(w)|h̃�ε(w))−Var(h̃ε(w)) + u(w)
∣

∣ < log 2,

almost surely.
Thus, with respect to ΘS

ε , we have

E[εγ
2/2eγhε(w)|z,Bt] ≍ exp

(

γh̃�ε(w) + γ2ξzε (w)− γ2u(w)/2
)

≍ exp
(

γh̃�ε(w) + γ2u(w)/2
)

,

where we recall that, thanks to (25), ξzε (w) = u(w)− log ε0 − G̃z(w), and where ≍ indicates
equality up to a multiplicative factor bounded between positive constants uniformly in ε and
z.

Now, given any positive constants a and b, there is a positive probability that a Brownian
motion Bt run for an infinite amount of time will satisfy γBt < a+bt for all t ≥ 0. In fact, for
each fixed b, this probability can be made as close to one as possible by taking a sufficiently
large. Since 0 ≤ γ < 2 we can choose a value of b with 0 < b < 2 − γ2/2. Then note that
conditioned on the event A : γBt < a + bt for all t, and since the mean value h̃�ε(w) is a
weighted average of Bt over values of t ∈ [u1(w), u2(w)], we have γh̃�ε(w) < a + b u2(w) ≤
a+ b log 2 + b u(w). We therefore have, for some constant C0

E[εγ
2/2eγhε(w)|z,Bt,A] ≤ C0 e

a exp
[

(b+ γ2/2)u(w)
]

,

≤ C0 e
a |z − w|−b−γ2/2

for |z − w| < ε0. Since S ⊂ Bε0(z) for z ∈ S, this in turn implies that

E[µε(S)|z,Bt,A] ≤
∫

Bε0 (z)

C0 e
a |z − w|−b−γ2/2dw,

and since b + γ2/2 < 2, the right hand side is at most a finite constant C1 = C1(a) that is
independent of ε. Now, given b and a constant δ > 0 we can choose a large enough so that
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the probability of the event A (that γBt < a+ bt for all t) is at least 1− δ/2. Then we take

C = C1(a)
δ/2

. If there were probability at least δ that µε(S) > C then there would have to be

probability at least δ/2 that event A and µε(S) > C simultaneously happen, which would
contradict our bound on the conditional expectation of µε(S) given A. This implies that the
probability measures ηε are tight, which in turn completes the proof of (29), which is the
n = 0 and h0 = 0 case of (28).

As a tool, we used heavily within the proof of (29) the probability measure ΘS
ε on (z, h)

pairs. Extending (28) to the case n 6= 0 does not require this tool; in the discussion below
we will use only the original dzdh measure. Note that since the random variables µε(S)
converge dzdh almost surely to a limit (with expectation limε→0Eµε(S)), it must be the case
that conditioned on hn (for almost all values of hn), we still have that µε(S) converges dzdh
almost surely to a limit. The fact that

E[lim
ε→0

µε(S)|hn] ≤ lim
ε→0

E[µε(S)|hn] (32)

for almost all hn is immediate from Fatou’s lemma. From the unconditional result, we know
that equality holds when we integrate over possible values of hn — hence equality must
hold in (32) for almost all hn. The extension of (28) to non-zero h0 is trivial for functions
that are piecewise constant on diadic squares, and the more general case follows easily by
approximation by piecewise constant functions.

Proposition 1.2 is an immediate consequence of (27) and (28).

4 KPZ proofs

4.1 Circle average KPZ

For fixed z ∈ D, choose some radius ε0 such that Bε0(z) ⊂ D. As a first step, we estimate
the expectation of the quantum measure µh(Bε(z)), given the difference of circle averages
hε(z) − hε0(z) for ε ≤ ε0. Recalling the notation of Proposition 1.2, we take h0 = 0, n = 1,
and

f1 =
(

ξzε − ξzε0
)

/||ξzε − ξzε0||∇. (33)

Recall from (12) that the square Dirichlet norm of function ξzε (11) is such that ||ξzε ||2∇ =
(ξzε , ξ

z
ε )∇ = ξzε (z), and from Proposition 3.2 that (ξzε , ξ

z
ε0
)∇ = ξzε0(z). One thus finds ||ξzε −

ξzε0||2∇ = − log(ε/ε0) and

(

ξzε − ξzε0
)

(y) =











− log(ε/ε0), 0 ≤ |y − z| ≤ ε

− log(|y − z|/ε0), ε ≤ |y − z| ≤ ε0

0, ε0 ≤ |y − z|.
(34)

The projection h1 of h onto the span of f1 and its variance are then

h1(y) =
[

hε(z)− hε0(z)
]

(

ξzε − ξzε0
)

(y)

− log(ε/ε0)
, (35)

Varh1(y) =

(

ξzε − ξzε0
)2
(y)

− log(ε/ε0)
, (36)
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where we recall that Var [hε(z)− hε0(z)] = − log(ε/ε0).
Recalling the notation of Proposition 1.1, the conditional expectation formula (2) for µ

in Proposition 1.2 gives

Eh

[
∫

Bε(z)

eγhdz|hε(z)− hε0(z)

]

= Eh [µh(Bε(z))|hε(z)− hε0(z)] = µ1 (Bε(z)) , (37)

where µ1 is the projected measure (1)

µ1(dy) = exp

(

γh1(y)− γ2

2
Varh1(y) +

γ2

2
logC(y;D)

)

dy. (38)

Note that by (34), h1(y) does not depend on y for y ∈ Bε(z)

h1(y) = hε(z)− hε0(z), y ∈ Bε(z),

Varh1(y) = − log(ε/ε0).

We therefore have

µ1(dy) = µ0(dy)

(

ε

ε0

)γ2/2

exp
[

hε(z)− hε0(z)
]

, y ∈ Bε(z), (39)

µ0(dy) :=
[

C(y;D)
]γ2/2

dy. (40)

Define the (γ-dependent) average Cε(z;D) of the conformal radius over the ball Bε(z) via
the average moment

[

Cε(z;D)
]γ2/2

:=
µ0
(

Bε(z)
)

µ0

(

Bε(z)
) =

1

πε2

∫

Bε(z)

[

C(y;D)
]γ2/2

dy, (41)

so that for ε→ 0
lim
ε→0

Cε(z;D) = C(z;D).

We then have the simple expression

µ1
(

Bε(z)
)

= πεγQ
(

Cε(z;D)

ε0

)γ2/2

exp
[

hε(z)− hε0(z)
]

, (42)

where, as above, Q = 2/γ + γ/2.
As an alternative, one may wish to estimate the expectation of the quantum measure

µh(Bε(z)), given only the circle average hε(z). In the notation of Proposition 1.2, we take
in that case h0 = 0, n = 1, and f̃1 = ξzε/||ξzε ||∇, with the square Dirichlet norm ||ξzε ||2∇ =
(ξzε , ξ

z
ε )∇ = ξzε (z). The projection h̃1 of h onto the span of f1 and its variance are then

h̃1(y) = hε(z)
ξzε (y)

ξzε (z)
, (43)

Var h̃1(y) = Varhε(z)

(

ξzε (y)

ξzε (z)

)2

=

(

ξzε (y)
)2

ξzε (z)
, (44)
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where we recall that Varhε(z) = ξzε (z) = − log (ε/C(z;D)).
The conditional expectation formula (2) for µ in Proposition 1.2 gives in this case

Eh

[
∫

Bε(z)

eγhdz|hε(z)
]

= Eh [µh(Bε(z))|hε(z)] = µ̃1 (Bε(z)) , (45)

where µ̃1 is the projected measure (1)

µ̃1(dy) = exp

(

γh̃1(y)− γ2

2
Var h̃1(y) +

γ2

2
logC(y;D)

)

dy. (46)

Note that when y ∈ Bε(z), ξ
z
ε (y) = − log ε − G̃z(y), so that the difference ξzε (z) − ξzε (y) =

logC(z;D) + G̃z(y) is harmonic in y and its modulus is equivalent to ε|G̃′
z(z)| for ε small,

where G̃′
z(z) is the derivative at z of the harmonic extension G̃z. It follows that in ball Bε(z),

ξzε (y)/ξ
z
ε(z) = 1+O(ε/ log ε). Lastly, the function C(y;D) is real analytic. Hence from (43),

(44) and (46) above, it follows from (45) that for ε→ 0

E [µ(Bε(z))|hε(z)] = µ̃1 (Bε(z)) ≃ µ⊙ (Bε(z)) , (47)

where µ⊙ is defined as

µ⊙

(

Bε(z)
)

:= πεγQeγhε(z), Q = 2/γ + γ/2, (48)

in the sense that the ratio of the two quantities tends to 1 as ε → 0. Note that µ⊙ is not
a measure, but simply a quantity defined on balls of the form Bε(z). Notice then that the
first conditional measure µ1

(

Bε(z)
)

(42) can also be written as

µ1
(

Bε(z)
)

= πε20Cε(z;D)γ
2/2 µ⊙

(

Bε(z)
)

µ⊙

(

Bε0(z)
) . (49)

For any ε ≤ ε0 define then

t := − log(ε/ε0) (50)

Vt := hε(z)− hε0(z). (51)

The law of Vt is that of a Brownian motion with V0 = 0 (by Proposition 3.3). We can then
rewrite (42) as

µ1
(

Bε(z)
)

= πε20Cε(z;D)γ
2/2eγVt−γQt. (52)

Similarly, we can rewrite (48) identically as

µ⊙

(

Bε(z)
)

= µ⊙

(

Bε0(z)
)

eγVt−γQt, (53)

in accordance with (49). In the expression (52) for the measure µ1, the first non constant
factor is the same as (41), which is a slowly varying, deterministic function of z (and of ε),
whereas in the expression (53) for µ⊙, the first factor is the quantity µ⊙

(

Bε0(z)
)

, which is
the exponential of a centered Gaussian variable, hε0(z), whose variance, − log (ε0/C(z;D)),
varies slowly with z. In both expressions, the latter factor is the exponential of a simple
Brownian motion with drift, and is independent of z.
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Definition 4.1. Let B̃δ(z) be the largest Euclidean ball in D centered at z for which eγVt−γQt

is equal to δ. The radius of this ball is e−TA where

TA := inf{t : −Vt +Qt = A},

and A := −(log δ)/γ.

As a step towards Theorem 1.5 we prove the following in this section, which is perhaps
the most straightforward form of KPZ to prove:

Theorem 4.2. Theorem 1.5 holds with Bδ(z) replaced with B̃δ(z). That is, in the setting of
Theorem 1.5, if

lim
ε→0

logEµ0{z : Bε(z) ∈ X}
log ε2

= x,

then it follows that, when X and µ are chosen independently, we have

lim
δ→0

logEµ{z : B̃δ(z) ∈ X}
log δ

= ∆,

where ∆ is the non-negative solution to

x =
γ2

4
∆2 +

(

1− γ2

4

)

∆.

We present two proofs: the first based on exponential martingales, the second based
on large deviations theory and Schilder’s theorem. (The first proof is shorter, but readers
familiar with large deviations of Brownian motion will recognize that it is essentially the
second proof in the disguise.)

Both proofs use the fact that

Eh µ{z : B̃δ(z) ∈ X}

is proportional to
Θ{(z, h) : B̃δ(z) ∈ X},

to replace an expectation computation with a probability computation. (Recall the definition
of Θ from Section 3.3.) While this rephrasing is not strictly necessary for the expectation
computation below, it is conceptually quite natural.

We use the definitions (50) and (51) of Vt given above, and assume that the fixed ε0 is
smaller than the distance from D̃ (recall that this was the compact subset of D in Theorem
1.5) to ∂D.

As mentioned in Section 3.3, the Θ conditional law of h given z ∈ D is that of the
original GFF plus the deterministic function −γ log |z − y| − γG̃z(y). The Θ conditional
law of the circular average hε(z) is then that of the original GFF circular average plus
−γ log ε+γ logC(z;D). Thus (for z restricted to points of distance at least ε0 from ∂D) the
Θ conditional law of (51) Vt = hε0e−t(z)−hε0(z) given z is that of Bt+γt, with t = − log(ε/ε0),
and where Bt evolves as a standard Brownian motion—in particular, z is independent of the
process Vt.
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Proof. The Θ law of TA is that of

inf{t : Bt + at = A = −(log δ)/γ}, a := Q− γ =
2

γ
− γ

2
> 0, (54)

where (±)Bt is standard Brownian motion with B0 = 0. Let qA be the Θ probability that the
ball of radius e−TA centered at z is in X . Since z is independent of TA, the theorem hypothesis
implies that conditioned on TA, the probability that the ball of radius e−TA centered at z
is in X is approximately exp (−2xTA), in the sense that the ratio of the logs of these two
quantities tends to 1 as TA → ∞. Computing the expectation

E [exp (−2xTA)] , (55)

with respect to a random TA will give us upper and lower bounds on qA since it easily follows
that

E [exp (−2x1TA)] ≤ qA ≤ E [exp (−2x2TA)] , (56)

for any fixed 0 < x2 < x < x1 and sufficiently large A.
To compute (55), consider for any β the exponential martingale exp(βBt − β2t/2). Since

a > 0, the stopping time TA is finite a.s. Since Bt+at ≤ A for t ∈ [0, TA], the argument of the
exponential, βBt−β2t/2, stays bounded from above, for β ≥ 0, by βA− (βa+β2/2)t ≤ βA,
hence by a fixed constant. One can thus apply the exponential martingale at the stopping
time TA <∞

E
[

exp(βBTA
− β2TA/2)

]

= 1.

By definition BTA
= A− aTA. Thus,

E exp[−(βa + β2/2)TA] = exp(−βA).

Setting 2x := βa+ β2/2, we obtain

E exp(−2xTA) = exp(−βA) = δβ/γ. (57)

Now if we set ∆ = β/γ, and a = Q− γ = 2
γ
− γ

2
, we find that the equation 2x := βa+ β2/2,

with β ≥ 0, is equivalent to the KPZ formula. The continuity of this expression and (56)
together yield the theorem.

We remark that the above yields the explicit probability distribution PA(t). The inverse
Laplace transform PA(t) of fA(x) := E exp(−2xTA), with respect to 2x, is the probability
density such that PA(t)dt := Prob (TA ∈ [t, t+ dt]). Its explicit expression is [BS00]

PA(t) = (2π)−1/2At−3/2 exp
[

−(1/2)
(

At−1/2 − at1/2
)2
]

, (58)

where as above we have A = −(log δ)/γ, t = − log(ε/ε0) and a = Q− γ.

4.2 Large deviations proof of circle average KPZ

In this section, we present an alternative proof of Theorem 4.2, using Schilder’s theorem.
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Lemma 4.3. Fix a constant a > 0. Let Bt be a standard Brownian motion. For each A > 0,
write

TA = inf{t : Bt + at = A}. (59)

Then the family of random variables A−1TA satisfies a large deviations principle with speed
A and rate function

I(η) =
η

2

(

1

η
− a

)2

=
η−1

2
− a + a2

η

2
.

Proof. Schilder’s Theorem (see Theorem 5.3.2 of [DZ97]) gives an LDP for the sample path
of α−1Bt (where Bt is standard Brownian motion) with speed α2 and rate function given
by the Dirichlet energy. The variable A−1TA can be written as inf{t : Wt + at = 1} where
Wt = BAt/A, which has the same law as

√
A−1Bt. Clearly, among all functions φ ∈ H1([0,∞))

satisfying φ(0) = 0 and inf{t : φ(t) + at = 1} ≤ η, the one with minimal Dirichlet energy is
given by

φ(t) =

{

( 1
η
− a)t t < η

( 1
η
− a)η t ≥ η.

By the contraction principle (Theorem 4.2.1 of [DZ97]), the rate function desired in Lemma
4.3 is given by this minimal Dirichlet energy, i.e., I(η) = η( 1

η
− a)2/2.

Lemma 4.4. Consider the following two part experiment. First choose TA as above. Then
toss a coin that comes up heads with probability

e−2xTA .

Then the probability that the coin comes up heads decays exponentially in A at rate β where
β and x are related by

β = inf
η
{I(η) + 2xη} , (60)

or equivalently by
4x = β2 + 2aβ. (61)

Proof. The exponential decay with the exponent given in (60) is an immediate consequence
of Varadhan’s integral lemma (Theorem 4.3.1 of [DZ97]). To derive (61) from (60), we set
the derivative of I(η) + 2xη to zero and find −η−2/2 + a2/2 + 2x = 0. Hence the minimum
is achieved at

η0 = (a2 + 4x)−1/2. (62)

We then compute β = I(η0) + 2xη0 to be

(a2 + 4x)1/2/2− a+ a2(a2 + 4x)−1/2/2 + 2x(a2 + 4x)−1/2.

Simplifying, we have β = (a2 + 4x)1/2 − a, which is equivalent to (61).

Proof of Theorem 4.2. As above, we aim to show that P{B̃δ(z) ∈ X} scales as
e−βA = δβ/γ = δ∆ where ∆ = β/γ, where δ and ε are related via the stopping time TA (54).
Rescaling TA by A−1 as in (59) puts us in the framework of large deviations Lemma 4.3. As
above, to describe the probability P{B̃δ(z) ∈ X} we can imagine that we first choose the
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radius ε of B̃δ(z) and then toss a coin that comes up heads with probability ε2x to decide
whether the ball is in X . This puts us in the framework of the second large deviations
Lemma 4.4. Using (61), we have

4x = β2 + 2aβ = (γ∆)2 + 2aγ∆,

where a = Q− γ. Plugging in this value of a and simplifying, we obtain the KPZ relation

x =
1

4

(

γ2∆2 + 2γ(Q− γ)∆
)

=
γ2

4
∆2 +

(

1− γ2

4

)

∆.

As in the previous proof, if the probability given ε is not exactly ε2x, but the ratio of the
log of this probability to the log of ε2x tends to 1 as ε→ 0, we obtain the same theorem by
using alternate values of x to give upper and lower bounds.

The optimum η0 = (a2 + 4x)−1/2 obtained in (62) has a natural interpretation — it
suggests that (in the large deviations sense described above) TA/A is concentrated near η0.

Equivalently, since

∆ =
β

γ
=

(a2 + 4x)1/2 − a

γ
,

we can say that A/TA is concentrated near γ∆+ a = γ∆+Q− γ, which implies that log δ
log ε

is

concentrated near γ(γ∆ + Q − γ). Note that the same result can also be obtained directly
from the explicit probability density (58). This is the concentration one obtains at an α-thick
point of the GFF h, where

α = γ − γ∆. (63)

Very informally, this suggests that the quantum support of a quantum fractal of dimension
∆ is made up of α-thick points of h. This generalizes the idea of Proposition 3.4, which
concerns the case ∆ = 0.

4.3 Tail estimates for quantum measure

Lemma 4.5. Let D = D = B1(0) be the unit disc and fix γ ∈ [0, 2) and take µ = eγh(z)dz as
defined previously. Then the random variable A = log µ(B1/2(0)) satisfies pA(η) := P[A <

η] < e−Cη2 for some fixed constant C > 0 and all sufficiently negative values of η.

Proof. Let h′ be the projection of h onto the space of functions in H(D) that are harmonic
inside the two discs B1/4(1/4) and B1/4(−1/4). (See Figure 4.) Recall that the orthogonal
complement of this space is the space of functions supported on these discs, or more precisely,
the space H [B1/4(1/4)∪B1/4(−1/4)]. Hence, the law of h−h′ is that of a sum of independent
Gaussian free fields on B1/4(1/4) and B1/4(−1/4) with zero boundary conditions (see, e.g.,
[She07]).

Let h be the infimum of h′ over the union of the two smaller discs B− := B1/8(−1/4)
and B+ := B1/8(1/4). Write A− = logµh−h′(B−) and A+ = logµh−h′(B+). By Proposition
2.1 the law of each of A+ and A− is the same as the law of A+ γQ log(1/4) = A− γQ log 4;
clearly A+ and A− are independent of one another. Also, µh(B+) ≥ eγhµh−h′(B+) (and
similarly for B−), which implies

A ≥ max{A−, A+}+ γh. (64)
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Figure 4: The balls B1(0), B1/2(0), B1/4(±1/4), and B± := B1/8(±1/4).

First we will show that the probability distribution of h has superexponential decay. Since
h′ is harmonic on B+ (with h′(1/4) = h′1/8(1/4)) this h

′ is the real part of an analytic function

on B+. In particular, h′ restricted to B+ can be expanded as h′(1/4) +
∑∞

n=1Re [an4
n(z −

1/4)n] for some complex an. Since each of the random variables Re an and Im an is a real-
valued linear functional of h′, it is a Gaussian random variable. The variance of the latter
can be estimated as follows.

Under the conformal map ϕ such that ϕ(1/4) = 0 and ϕ
(

B1/4(1/4)
)

= B1(0), the
original domain D is mapped onto a new domain D = ϕ(D). Let us define on C the set of
real functions

φn(z) := Re [Φn(z)], ψn(z) := Im [Φn(z)] (65)

Φn(z) :=

{

z̄n/(πn)1/2 (|z| ≤ 1)

z−n/(πn)1/2 (|z| ≥ 1)
(66)

The functions Re zn and Im zn have on D the Dirichlet energy

∫

D

n2|zn−1|2dz = n2

∫ 1

0

r2n−22πrdr = πn, (67)

so that the set {φn, ψn} obeys the orthogonality relations in D

(φm, φn)
D

∇ = (ψm, ψn)
D

∇ = δm,n; (φm, ψn)
D

∇ = 0.

From the conformal invariance of the Dirichlet inner product, and from the expansion

h′(z) = h′(0) +
∞
∑

n=1

Re an φn(z) + Im an ψn(z)

we obtain the explicit form of the coefficients an

Re an = (h′, φn)
D

∇, Im an = (h′, ψn)
D

∇,
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where after the conformal map ϕ, h′ is now understood as the projection on HarmD of the
GFF h with zero boundary conditions on ∂D. This can be rewritten in the complex form

an = (h′,Φn)
D

∇ = (h,Φn)
D

∇,

where use was made of the orthogonality of h− h′ and Φn. By inversion with respect to the
unit circle ∂D, this is also (h,Φn)

C\D
∇ , so that

an =
1

2
(h,Φn)

C

∇,

where now the Dirichlet inner product extends to the whole plane. Since h vanishes outside
of D, we can also write

(h,Φn)
C

∇ = (h, Φ̃n)
D
∇

where Φ̃n := Φn − ΦH
n , ΦH

n being the harmonic extension to D of Φn restricted to ∂D.
Specifying this separately for the real and imaginary parts of an and Φn, we have

Re an =
1

2
(h, φ̃n)

D
∇, Im an =

1

2
(h, ψ̃n)

D
∇,

where φ̃n := φn − φH
n , with a similar definition for the imaginary component. Since φ̃n is in

H(D), we have

VarRe an =
1

4
Var(h, φ̃n)

D
∇ =

1

4
(φ̃n, φ̃n)

D
∇,

together with an entirely similar expression for Var Im an. We now wish to argue that

(||φ̃n||D∇)2 ≤ (||φ̃n||C∇)2 ≤ (||φn||C∇)2 =
2

πn
.

The first inequality is obvious, while the second one is a consequence of the orthogonal
decomposition φn = φ̃n + φH

n on C. We thus conclude that the variances VarRe an and
Var Im an are at most 1/(2πn).

In particular, the variance of |an|rn, for any fixed r < 1, will decay exponentially in n.
Thus, the probability that even one of the an satisfies |an|rn > c, where c is a fixed constant,
decays quadratic-exponentially in c. It follows that the probability distribution function p

of h satisfies p(η) := P(h < η) < e−Cη2 for some C > 0 and all sufficiently negative η.
Now, let P1(η) be the probability that h < .1η/γ and A < η. Let P2(η) be the probability

that A < η and h ≥ .1η/γ. Then pA(η) = P[A < η] = P1 + P2. From the above discussion,
we have P1(η) ≤ e−Cη2 for all sufficiently negative values of η. Note from (64) that

P2(η) ≤
[

pA(.9η + γQ log 4)
]2

and

P2(η) ≤
[

P1(.9η + γQ log 4) + P2(.9η + γQ log 4)
]2 ≤

[

e−C′η2 + P2(.9η + γQ log 4)
]2
,

for some C ′. Fix a sufficiently negative η0 and inductively determine ηk via ηk−1 = .9ηk +
γQ log 4. The above can be stated as

P2(ηk) ≤
(

e−C′η2k + P2(ηk−1)
)2

.
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If we write pk = P2(ηk)

e
−2C′η2

k
, then this can be restated as pk ≤ (1+pk−1e

−C′(2η2k−1
−η2k))2. It is easy

to see that we can have pk > 2 for only finitely many k, which implies that the lemma holds
for C < min{C̄, 2C ′}, when restricted to the sequence ηk. Because of the monotonicity of
pA(η), this implies the lemma for all η.

Lemma 4.6. Fix z and ε so that Bε(z) ⊂ D. Then

E[µ(Bε(z))|hε(z)] ≃ πεγQeγhε(z) = µ⊙(Bε(z)),

where

Q =
2

γ
+
γ

2
,

as in Proposition 2.1. Moreover, conditioned on hε′(z), for all ε′ ≥ ε, we have that

P

[

µ(Bε(z))

µ⊙(Bε(z))
< eη

]

≤ C1e
−C2η2 , (68)

for some positive constants C1 and C2 independent of η ≤ 0, z, D, and the values hε′(z) for
ε′ ≥ ε.

Proof. The first sentence is a restatement of (47) and (48). It remains to prove the second
half. For a fixed ε, we want to show that the probability that

A := log
µ(Bε(z))

πεγQeγhε(z)
≤ η, η ≤ 0,

decays quadratic-exponentially in η. Let A be the infimum of γ
(

h̃(·) − hε(z)
)

on Bε/2(z),

where h̃ is h projected onto HarmBε(z). With these definitions, one easily sees that

A′ ≤ A− A,

where A′ := log
[

µh−h̃

(

Bε/2(z)
)

/πεγQ
]

. In this proof, we let P ′ denote probability condi-
tioned on z and on the map χ : [ε, εz0] → R : χ(ε′) := hε′(z).

One may use the techniques in the proof of Lemma 4.5 to show that P ′[A < η] (which is
a priori a function of χ) decays quadratic-exponentially in η, uniformly in χ (and hence in
hε(z)). Then we have by the above construction P ′[A−A < η] ≤ P[A′ < η], so that Lemma
4.5 applied to pA′(η) = P[A′ < η] implies that P ′[A−A < η] decays quadratic-exponentially in
η, also uniformly in χ. We conclude that the probability that either A < η/2 or A−A < η/2
decays quadratic-exponentially in η, and the claim follows.

Roughly speaking, the above lemma says that the total quantum area in a ball is unlikely
to be a lot smaller than the area we would predict given the average value of h on the
boundary of that ball; the following says that (even when we use the Θ measure), the total
quantum area has some constant probability to be (at least a little bit) smaller than this
prediction.

Lemma 4.7. Let z and h be chosen from ΘD̃ (as defined in Section 3.3) for a fixed compact
subset D̃ of D, and fix a δ > 0, with quantum balls Bδ(z) and B̃δ(z) defined as in Definition
1.3 and Definition 4.1. (Definition 4.1 implicitly makes use of a constant ε0, which we take
here to be sup{ε′ : Bε′(D̃) ⊂ D}.)

Conditioned on the radius of B̃δ(z), the conditional probability that B̃δ(z) ⊂ Bδ(z) is
bounded below by a positive constant c independent of D, D̃, and δ.
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Proof. Define ε to be the radius of B̃δ(z). Let P ′ be ΘD̃ probability conditioned on z and
on the map χ : [ε, ε0] → R : χ(ε′) := hε′(z). As before we assume ε is less than the distance
ε0 from D̃ to ∂D. It now suffices for us to show that

P
′
(

B̃δ(z) ⊂ Bδ(z)
)

= P
′
(

µ(B̃δ(z)) < δ
)

is bounded below independently of χ and z.
Consider now the map χ : (0, ε0] → R given by χ(ε′) = hε′(z) for all ε

′ ∈ (0, ε0]. Let hχ

denote the conditional expectation of h (in the standard GFF probability measure) given χ.
Clearly hχ(y) is a.s. radially symmetric, with center z, and equals zero for ε0 < |y − z|. It
corresponds to the projection of h onto the space of functions with these properties. (We
similarly define hχ, so that hχ is constant in Bε(z) and coincides with hχ outside.) Note that,

given z, the ΘD̃ law of hχ is that of h̃χ (where h̃ is a standard GFF) plus a deterministic
function with the same properties: the function

ζ(y) := γ[ξz0(y)− ξzε0(y)] =

{

−γ log |y−z|
ε0

y ∈ Bε0(z)

0 otherwise
.

Although hχ is a projection onto an infinite dimensional space, it is not hard to see (e.g., by
approximating with finite dimensional spaces) that the obvious analog of (2) in Proposition

1.2 still holds, i.e., taking expectation with respect to ΘD̃ we have

E[µ(A)|χ] = µχ(A),

where

µχ := exp

(

γhχ(y) +
γ2

2
log

|y − z|
ε0

+
γ2

2
logC(y;D)

)

dy,

for |y − z| ≤ ε0, and in this range we have for some C0 ≥ 1 (depending on D̃ and D) that

C−1
0 µχ

0 ≤ µχ ≤ C0 µ
χ
0 , (69)

where

µχ
0 := exp

(

γhχ(y) +
γ2

2
log

|y − z|
ε0

)

dy. (70)

The fact that µχ and hence µχ
0 is almost surely finite follows from the fact that it is a

conditional expectation of µ = µh with respect to ΘD̃, and µ is ΘD̃ almost surely finite. It can
also be seen directly from (70), using the same argument as in the proof of Proposition 1.2:
note first that (70) becomes integrable for γ ∈ [0, 2) if hχ(y) is replaced with its expectation
ζ(y), and second that |hχ(y)− ζ(y)| a.s. does not grow too quickly as y → z.

Note that hχε (z) = hχε (z) = hχ(z) = hε(z) − hε0(z). From definition (48) and from (53)
and the definition (4.1) of B̃δ(z) = Bε(z), we have that

(

ε

ε0

)2

exp

(

γhχε (z) +
γ2

2
log

ε

ε0

)

= δ

and that
δ−1µχ̄

0 (B̃
δ(z)) (71)
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is a random variable independent of ε and χ. (It depends only on the Brownian process
given by B̃s := Bs+t − Bt defined for s ≥ 0, where Bs′ := hχ

e−s′
(z)− γs′ and t = − log(ε/ε0).

Note that B̃s is a standard Brownian motion in s ≥ 0, independent of ε, z, and χ.)
It is not hard to see that this random variable is not bounded below by any number

greater than zero; thus there is an event — call it A — independent of χ, and occurring with
a probability P ′(A) bounded below by some c′ > 0, on which (71) is less than a small number,
say 1/100 (indeed, we may assume the same holds with µχ replacing µχ

0 , because of (69)).
Given this claim, it follows that on the event A, one has E[µ

(

B̃δ(z)
)

|χ] = µχ
(

B̃δ(z)
)

< δ/100,

so that the conditional probability that µ(B̃δ(z)) < δ is at least .99. The lemma follows using
the constant c = .99c′.

4.4 Proof of interior KPZ

In this section we derive Theorem 1.5 as a consequence of Lemma 4.6, Lemma 4.7, and the
arguments in Theorem 4.2.

Proof of Theorem 1.5. We use the same notation as in Theorem 4.2, but we write
TA = − log(ε/ε0) where ε is the radius of Bδ(z). In this proof, we use the probability

measure ΘD̃ and E denotes expectation with respect to ΘD̃. The proof of Theorem 4.2
carries through exactly once we show that (when h is chosen from ΘD̃)

lim
A→∞

logE
[

exp (−2xTA)
]

logE [exp (−2xTA)]
= 1, (72)

since this implies the analog of (57) with TA replaced by TA.
Note that the numerator of (68) is related to TA while the denominator is related to TA;

if the numerator and denominator were precisely equal for all ε, we would have TA = TA.
For any a, 0 < a < 1, let εa be the value for which Bεa(z) = B̃δa(z). Then µ⊙ (Bεa(z)) =

δaµ⊙ (Bε0(z)). This corresponds to a stopping time TaA = − log(εa/ε0).
On the event TA < TaA, we have εa < ε so that µ (Bεa(z)) ≤ µ (Bε(z)) = δ. It follows

that
µ (Bεa(z)) /µ⊙ (Bεa(z)) ≤ δ1−a/µ⊙ (Bε0(z)) .

Thanks to definition (48), the probability that µ⊙ (Bε0(z)) ≤ δ(1−a)/2 decays quadratic-
exponentially in A = − log(δ/γ) when δ → 0. On the event of the contrary, µ⊙ (Bε0(z)) >
δ(1−a)/2, one then has µ (Bεa(z)) /µ⊙ (Bεa(z)) < δ(1−a)/2, whose probability, by Lemma 4.6
applied for Bεa(z) and η = −γA(1 − a)/2, also decays quadratic-exponentially in A. This
implies that the probability that TA < TaA decays superexponentially in A. This implies
that

lim
A→∞

logE
[

exp (−2xTA)
]

logE [exp (−2xTaA)]
≤ 1.

Since this holds for all a < 1, it follows immediately from the continuity of the coefficient of
A in the exponent in (57) that

lim
A→∞

logE
[

exp (−2xTA)
]

logE [exp (−2xTA)]
≤ 1.
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From Lemma 4.7, it follows that, conditioned on TA, the Θ
D̃ probability that TA < TA is at

least c > 0, which implies

cE [exp (−2xTA)] ≤ E
[

exp (−2xTA)
]

for any x ≥ 0, which in turn implies the equivalence of logarithms in (72).

5 Box formulation of KPZ

In this section we prove Proposition 1.6.

Proof of Proposition 1.6. The first fact is standard; simply observe that if ε is a power
of 2 then Sε(X) ⊂ B2ε(X), hence µ0(Sε(X)) ≤ µ0(B2ε(X)), since the ball of radius 2ε
about a point contains any diadic box of width ε that contains the same point. Similarly,
B2ε(z) is contained in the union of a diadic box — of width 2ε, containing z — with the
eight diadic boxes of the same size whose boundaries touch its boundary. This implies that
B2ε(X) is contained in the union of S2ε(X) and corresponding 8 translations of S2ε(X), so
µ0(B2ε(X)) ≤ 9µ0(S2ε(X)).

For the second part, we first argue that X has quantum scaling exponent ∆ if and only if
(4) holds. We use the notation in the proof Theorem 4.2 but set T̃A to be − log(ε̃/ε0), where
ε̃ is the largest value of ε for which the diadic box Sε(z) with edge length ε has µ area at
most δ. The remainder of the argument is essentially the same as the proof of Theorem 1.5.
Just as (72) was sufficient in that case, it is enough for us to verify that when h is chosen

from ΘD̃ and X is chosen independently, we have the following analog of (72) (where TA is
replaced by T̃A):

lim
A→∞

logE
[

exp (−2xT̃A)
]

logE [exp (−2xTA)]
= 1. (73)

The proof is essentially the same as the proof of (72), but we will sketch the differences
here. As in the proof of (72) one argues first that the probability that T̃A < TaA, with
0 < a < 1, decays superexponentially in A and by continuity when a→ 1 concludes that

lim
A→∞

logE
[

exp (−2xT̃A)
]

logE [exp (−2xTA)]
≤ 1.

The only difference is that one has to first obtain a modified Lemma 4.6, in which the
µ(Bε(z)) in (68) is replaced with µ(Sε/2(z)); this straightforward exercise is left to the reader.
Then, using the same notation as in the proof of Theorem (1.5), one chooses εa so that
Bεa(z) = B̃δa(z). Then µ⊙ (Bεa(z)) = δaµ⊙ (Bε0(z)). On the event T̃A < TaA, one has
εa < ε̃, so that µ(Sεa/2(z)) ≤ µ(Sεa(z)) ≤ µ(Sε̃(z)) < δ, from which it follows that

µ
(

Sεa/2(z)
)

/µ⊙ (Bεa(z)) ≤ δ1−a/µ⊙ (Bε0(z)) .

The discussion then continues identically, depending on whether µ⊙ (Bε0(z)) ≤ δ(1−a)/2 holds,
the probability of which has superexponential decay inA = −(log δ)/γ, or the contrary, which
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also has superexponential decay by application of the modified Lemma 4.6 to the resulting
inequality

µ
(

Sεa/2(z)
)

/µ⊙ (Bεa(z)) ≤ δ(1−a)/2.

Next, as in the proof of (72), one argues that P ′[T̃A < TA + log ρ] ≥ c > 0, for some fixed
constant ρ ≥ 4, which implies

c ρ−2x
E [exp (−2xTA)] ≤ E

[

exp (−2xT̃A)
]

for any x ≥ 0, which in turn implies (73). The difference here is that one must first obtain
a modified version of Lemma 4.7 in which the event B̃δ(z) ⊂ Bδ(z) is replaced with the
event that Sδ(z) = Sε̃(z) has a width ε̃ larger than a fixed constant ρ−1 times the radius ε
of B̃δ(z) = Bε(z), which can be easily proven as follows. First, recall that by definition of ε̃,
µ (Sε̃(z)) < δ ≤ µ (S2ε̃(z)). We thus have

µ (Bε(z)) = δ ≤ µ (S2ε̃(z)) ≤ µ (B4ε̃(z)) ,

hence ε ≤ 4ε̃. From Lemma 4.7 there is a finite probability c that B̃δ(z) ⊂ Bδ(z), i.e., that
ε ≤ ε, hence that ε ≤ 4ε̃, which proves the modified version of Lemma 4.7 for ρ ≥ 4.

Next, we observe that the above arguments still work if we replace the Sδ(z) in (4)
with Ŝδ(z), defined to be the diadic parent of Sδ(z) — this only changes T̃A by an additive
constant. Thus (4) is equivalent to the analog of (4) in which Sδ(z) is replaced with Ŝδ(z).
Now define N̂ analogously to N (counting Ŝδ(z) squares instead of Sδ(z) squares). We obtain
the equivalence of (4) and (5) by observing that

lim
δ→0

logE
[

µ(Sδ(X))
]

log δ
≤ lim

δ→0

logE [δN(µ, δ,X)]

log δ

≤ lim
δ→0

logE
[

δN̂(µ, δ,X)
]

log δ

≤ lim
δ→0

logE
[

µ(Ŝδ(X))
]

log δ
.

The first and last inequalities are true because, by definition, µ(Sδ(z)) ≤ δ and µ(Ŝδ(z)) ≥ δ.
The middle inequality is true because N(µ, δ,X) ≤ 4N̂(µ, δ,X).

6 Boundary KPZ

6.1 Boundary semi-circle average

Most of the results in this paper about random measures on D have straightforward analogs
about random measures on ∂D. The proofs are essentially identical, but we will sketch the
differences in the arguments here.
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Suppose that D is a domain with piecewise linear boundary or a domain with a smooth
boundary containing a linear piece ∂D ⊂ ∂D and that h is an instance of the GFF on D
with free boundary conditions, normalized to have mean zero.

This means that h =
∑

n αnfn where the αn are i.i.d. zero mean unit variance normal
random variables and the fn are an orthonormal basis, with respect to the inner product

(f1, f2)∇ := (2π)−1

∫

D

∇f1(z) · ∇f2(z)dz,

of the Hilbert space closureH(D) of the space of C∞ bounded real-valued (but not necessarily
compactly supported) functions on D with mean zero.

Note that if f is a compactly supported smooth function on D for which −∆f = ρ, then
integration by parts implies that the variance of (h, ρ) is the Dirichlet energy of f—same
as in the zero boundary case. Similarly, suppose that f is a smooth function that is not
compactly supported but has a gradient that vanishes in the normal direction to ∂D, and we
write ρ = −∆f . Then integration by parts implies that the variance of (h, ρ) is 2π(f, f)∇.

We can also make sense of hε(z), for a point z on a linear part ∂D of the boundary of
D, to be the mean value of h on the semicircle of radius ε centered at z and contained in
the domain D. For z fixed, let ε0 be chosen small enough so that Bε0(z) ∩ ∂D ⊂ ∂D and
exactly one semi-disc of Bε0(z) lies in D. Define for any ε ≤ ε0

hε(z) = (h, ρ̂zε),

where ρ̂zε(y)dy is the uniform measure (of total mass one) localized on the semicircle ∂Bε(z)∩
D. Let us introduce the function ξ̂zε (y), for y ∈ D, such that

−∆ξ̂zε = 2π (ρ̂zε − 1/|D|) , (74)

n · ∇ξ̂zε |∂D = 0,

∫

D

ξ̂zεdy = 0, (75)

with n the current normal to ∂D, and |D| :=
∫

D
dy the area of D. Hence, ξ̂zε satisfies

Neumann boundary conditions and has zero mean, and integration by parts shows that

hε(z) =
(

h, ξ̂zε
)

∇
.

Let us introduce the auxiliary function

ζzε (y) := −2 log(|y − z| ∨ ε) + π

2|D|
(

|y − z|2 + ε2
)

, (76)

such that −∆ζzε (·) = 2π (ρ̂zε(·)− 1/|D|). The 2 log(| ·−z|∨ε) in place of log(| ·−z|∨ε) comes
from the fact that ρ̂zε is a unit mass measure over half a circle.

The solution ξ̂zε to (74) and (75) is then given by

ξ̂zε = ζzε − Ĝz, (77)

where Ĝz is the harmonic function in D, solution to the Neumann problem (75) on ∂D. Note
that the function ζzε (76) has been chosen such that both the boundary normal derivative
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n · ∇ζzε |∂D and the integral
∫

D
ζzεdy are actually independent of ε for ε ≤ ε0. The normal

derivative vanishes on the linear boundary component ∂D: n · ∇ζzε |∂D = 0. Therefore

Ĝz is independent of ε, and satisfies the Neumann condition on ∂D: n · ∇Ĝz|∂D = 0. By

the Schwarz reflection principle, this allows extending Ĝz to a harmonic function in the
domain D̄, complex conjugate and symmetrical of D with respect to ∂D ⊂ R, through
Ĝz(ȳ) = Ĝz(y).

When considering the reference radius ε0, we then have that

hε(z)− hε0(z) =
(

h, ξ̂zε − ξ̂zε0
)

∇
=

(

h, ζzε − ζzε0
)

∇
. (78)

Thus hε(z) − hε0(z) is equal to (h, ζ̂)∇, where ζ̂ := ζzε − ζzε0 (up to a constant) is the
continuous function to −2 log | · −z| on the half-annulus H ∩ {y : ε ≤ |y − z| ≤ ε0} and is
constant outside of the half-annulus. The variance of hε(z) − hε0(z) is then given by the
Dirichlet energy (ζ̂ , ζ̂)∇ = −2 log(ε/ε0). We thus have that the Gaussian random variable
hε(z)− hε0(z) is a standard Brownian motion B2t in time 2t = −2 log(ε/ε0), with boundary
condition B0 = 0, as in Proposition 3.3.

Thanks to equations (74) to (77), the set of functions ξ̂zε has Dirichlet inner products
(

ξ̂zε , ξ̂
z
ε′

)

∇
= −2 log(ε ∨ ε′) + π

2|D|
(

ε2 + ε′2
)

− Ĝz(z); (79)

one finds in particular for ε′ = 0 that
(

ξ̂zε , ξ̂
z
0

)

∇
= ξ̂zε (z). At a boundary point z ∈ ∂D, the

variance of hε(z) is

Varhε(z) =
(

ξ̂zε , ξ̂
z
ε

)

∇
= −2 log ε+

π

|D|ε
2 − Ĝz(z); (80)

this variance thus scales for ε small like −2 log ε instead of − log ε, because of the free
boundary conditions on ∂D.

6.2 Mixed boundary conditions

Notice that one can also consider other types of boundary conditions for the Gaussian free
field h, like mixed boundary conditions in domain D, with free boundary conditions on a
linear component ∂D ⊂ R, and Dirichlet ones on its complement ∂D \ ∂D. In this case,
one uses a reflection principle and considers the whole domain D† := D ∪ D̄, where D̄ is the
complex conjugate of D, symmetrical of D with respect to the real axis, and takes Dirichlet
boundary conditions on ∂D†. The Hilbert space closure H(D†) of the space of C∞ real-valued
functions compactly supported on D† can be written as the direct sum He(D

†)⊕Ho(D
†) of

the Hilbert space closures corresponding to even and odd functions on D† with respect to
the real line supporting ∂D. The Gaussian free field h in D, with mixed boundary conditions
on ∂D, is then simply obtained by projecting the GFF in D† onto the even space He(D

†),
and restricting the result to D.

It is not hard to see that the semi-circle average hε(z) of h, for z ∈ ∂D and ε ≤ ε0, is then
given by

(

h, ξ̃zε
)

∇
, where ξ̃zε (y) = −2 log

(

|y − z| ∨ ε
)

− G̃z(y), with now G̃z(y) the harmonic

extension to D† (here restricted to y ∈ D) of the restriction of the function −2 log |y− z| to
y ∈ ∂D†. These functions have Dirichlet inner products

(

ξ̃zε , ξ̃
z
ε′

)

∇
= −2 log(ε ∨ ε′)− G̃z(z), (81)
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in place of (79). Similarly, at a boundary point z ∈ ∂D, the variance of hε(z) is

Varhε(z) =
(

ξ̃zε , ξ̃
z
ε

)

∇
= −2 log ε− G̃z(z), (82)

instead of (80). Lastly, exactly as in the case of free boundary conditions, the Gaussian
random variable hε(z)−hε0(z) has variance −2 log(ε/ε0), and is a standard Brownian motion
B2t in time 2t = −2 log(ε/ε0), with initial value B0 = 0.

In the following section, we shall consider equally well free or mixed boundary conditions,
up to some minor differences that are mentioned in each case.

6.3 Boundary measure and KPZ

We define the boundary measure µB
ε := εγ

2/4eγhε(z)/2dz, where in this case dz is Lebesgue
measure on the boundary component ∂D. Here we use eγhε(z)/2 instead of eγhε(z) because we
are integrating a length instead of an area; as before, the power of ε that we chose makes
the expectation of the factor preceding dz, εγ

2/4Eeγhε(z)/2 = εγ
2/4eγ

2Varhε(z)/8, have a finite
limit when ε→ 0.

We define µB to be the weak limit as ε → 0 of the measures µB
ε (see the theorem below

for existence of this limit when 0 ≤ γ < 2). For z ∈ ∂D we write B̂ε(z) := Bε(z) ∩ ∂D and
we define B̂δ(z) to be the (largest) set B̂ε(z) whose µ

B measure is δ.
Likewise define

B̂ε(X) = {z ∈ ∂D : B̂ε(z) ∩X 6= ∅}
and

B̂δ(X) = {z ∈ ∂D : B̂δ(z) ∩X 6= ∅}.
We say that a (deterministic or random) fractal subset X of the boundary component ∂D
has Euclidean expectation dimension 1− x̃ and Euclidean scaling exponent x̃ in the
boundary sense if the expected measure of B̂ε(X) decays like εx̃, i.e.,

lim
ε→0

logEµ0(B̂ε(X))

log ε
= x̃.

We say that X has boundary quantum scaling exponent ∆̃ if when X and µB (as
defined above) are chosen independently we have

lim
δ→0

logEµB(B̂δ(X))

log δ
= ∆̃.

Theorem 6.1. Given the assumptions above, Proposition 1.1 and Theorems 1.5 and 4.2 hold,
precisely as stated, when µε is replaced by µB

ε , µ is replaced by µB; µ0 (Lebesgue measure on
D) is replaced by Lebesgue measure on one of the boundary line segments ∂D of D; Bε and
Bδ are replaced with B̂ε and B̂

δ, respectively; and the compact subset of D is replaced with a
closed subinterval of ∂D.

Proof. The proofs in the boundary case proceed exactly the same as in the interior point
case, up to factors of 2 in various places. We sketch the proof of an analog of Theorem 4.2
in order to indicate where those factors of 2 appear.
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Write t := − log(ε/ε0), and let Vt := hε(z) − hε0(z). It is not hard to see that the
expectation of the boundary line integral

Eh

[
∫

B̂ε(z)

eγh/2dy|Vt
]

= Eh

[

µB
h (B̂ε(z))|hε(z)− hε0(z)

]

has approximately the form (which replaces (37) and (52))

exp
(γ

2
Vt −

γ

2
Qt

)

, (83)

in the sense that the ratio of the logarithms of the two quantities tends to 1 when ε → 0
and t→ ∞. Let B̃δ(z) now be the largest Euclidean ball Bε(z) in D centered at z ∈ ∂D for
which (83) is equal to the quantum length δ, and B̃δ(X) := {z ∈ ∂D : B̃δ(z) ∩X 6= ∅}.

As before, we use the fact that Ehµ
B
h

(

B̃δ(X)
)

is proportional to Θ̂{(z, h) : z ∈ ∂D, B̃δ(z)∩
X 6= ∅}, where Θ̂ is the boundary rooted measure such that, given z ∈ ∂D, h is sampled
from the Gaussian free field distribution weighted by eγh(z)/2. For free boundary conditions,
the Θ̂ conditional law of h is then that of the original GFF plus the deterministic function
γ
2
ξ̂z0(·) = −γ log | · −z| + γπ

4|D|
| · −z|2. Then given z ∈ ∂D, the Θ̂ conditional law of the

semi-circular average hε(z) =
(

h, ξ̂zε
)

∇
is that of the original GFF semi-circular average, plus

the Dirichlet inner product γ
2

(

ξ̂z0 , ξ̂
z
ε

)

∇
= γ

2
ξ̂zε (z).

Then given z ∈ ∂D, the Θ̂ conditional law of Vt = hε(z)− hε0(z) is that of

B2t +
γ

2

(

ξ̂zε (z)− ξ̂zε0(z)
)

= B2t − γ log(ε/ε0) + bε − bε0 = B2t + γt+ bε0e−t − bε0 ,

where bε :=
γ
2

πε2

2|D|
; thus Vt evolves independently of z, as a Brownian motion B2t with twice

the variance of standard Brownian motion, because of the free boundary conditions on ∂D,
plus a drift term γt, and up to a constant and an exponentially small term when t→ ∞.

In the case of mixed boundary conditions, the same line of arguments (recall (81)) shows
that the Θ̂ conditional law of Vt = hε(z)− hε0(z) is simply that of

B2t +
γ

2

(

ξ̃zε (z)− ξ̃zε0(z)
)

= B2t + γt.

Using (83), we have both for free and mixed boundary conditions

E

[
∫

B̂ε(z)

eγh/2dy|Vt
]

≍ exp

(

γ

2
B2t +

1

2
γ2t− γ

2
Qt

)

. (84)

This will be equal to the quantum boundary length δ at the smallest t for which γB2t+γ
2t−

γQt = 2 log δ, with B0 = 0. If we set A := −(log δ)/γ, this smallest time is a stopping time
TA such that

TA = inf{t : B2t + at = 2A = −2(log δ)/γ}, a = Q− γ =
2

γ
− γ

2
> 0. (85)
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As above, we consider the two part experiment in which we first sample TA and then sample
z and check to see whether the ball of radius ε = ε0 e

−TA intersects X on the boundary.
Given TA, the ratio of the logarithms of this probability and

E [exp (−x̃TA)]

tends to 1 as A→ ∞.
Consider next for any β the exponential martingale exp

(

β
2
B2t − β2

4
t
)

, such that

E

[

exp

(

β

2
B2t −

β2

4
t

)]

= E

[

exp

(

β

2
B0

)]

= 1.

As before, for β ≥ 0, the martingale stays bounded from above by a fixed constant for
t ∈ [0, TA] with TA < ∞ a.s. One thus applies this exponential martingale at the stopping
time TA:

E

[

exp

(

β

2
B2TA

− β2

4
TA

)]

= 1.

By definition B2TA
= 2A− aTA. One thus gets the identity

E exp[−(βa/2 + β2/4)TA] = exp(−βA),

and it now suffices to identify 2x̃ := βa + β2/2, with β ≥ 0, to obtain the boundary KPZ
with ∆̃ := β/γ, and

E exp(−x̃TA) = δ∆̃ = exp(−βA) = exp
{

−A[(a2 + 4x̃)1/2 − a]
}

,

in complete analogy to (57).
The reader may observe that the boundary measures described above are preserved under

the transformations described in Proposition 2.1. One can use this to define the boundary
measure on more general domains, which may not have piecewise linear boundary conditions.

We also remark that a similar procedure to that above allows us to make sense of measure
restricted to lines in the interior of the domain.

7 Discrete random surface dimensions and heuristics

Historically, one of the uses of the KPZ formula has been to make heuristic predictions about
the scaling exponents of random fractal subsets of the plane (see, e.g., [Dup99b, DFGG00,
Dup04, Dup00, Dup06], and the references surveyed therein for much more detail).

In this subsection, we give a very rough and very brief sketch of what such a heuristic
might entail in a simple example. Readers familiar with discrete quantum gravity models
(a.k.a. random planar map models, random quadrangulation models, etc.) should note that
these models have natural interpretations as continuum random metric spaces as well. For
example, a random planar quadrangulation Mn on the sphere — chosen uniformly from the
set of all simply connected planar quadrangulations with n quadrilaterals — can be viewed
as a manifold by endowing each quadrilateral with the metric of a unit square. (Of course,
the resulting manifold will have singularities: negative curvature point masses at vertices
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where more than four unit squares coincide and positive curvature point masses at vertices
where fewer than four unit squares coincide.) We may then choose a uniform square from
among this set. Taking an “infinite volume limit” (as n → ∞) one obtains an infinite
random quadrangulation M∞ with a distinguished square. (See, e.g., [AS03] for a precise
description of this construction for triangulations.) This infinite random surface can be
conformally mapped to the plane in such a way that the center of the distinguished square is
mapped to the origin and the volume of the image of the distinguished square is a constant
δ (with a rotation chosen uniformly at random). The images of the unit squares of M∞

form a tiling of C by “conformally distorted” unit squares. Different squares have different
sizes with respect to the Euclidean metric on the plane; intuitively, one would expect such
a tiling to look something vaguely like the tilings in Figures 1, 2, and 3 except that the
“squares” would be randomly oriented and distorted. The pullback of the intrinsic metric
of M∞ to the plane via this map takes the form eλ(dx2 + dy2) for some function random λ
(which has logarithmic singularities at the images of the vertices of the squares). Although
the equivalence of Liouville quantum gravity and discrete quantum gravity is taken as an
Ansatz throughout much of the literature, to our knowledge the following is the first precise
conjecture for the complete scaling limit of a discrete quantum gravity model:

Conjecture 7.1. As δ → 0, the function λ converges in law (e.g., w.r.t. to the weak topology
on the space of distributions on the plane modulo additive constants) to γ(h(·) − γ log | · |)
where h is an instance of the whole plane Gaussian free field (defined up to additive constants)
and γ2 = κ = 8/3.

We further conjecture that other values of γ are obtained by choosing a random quad-
rangulation together with a statistical physical model on the quadrangulation (FK cluster
model, percolation, O(N) model, uniform spanning tree); in this case, the probability of
a given quadrangulation is proportional to the partition function of the statistical physics
model on that quadrangulation. (See the references on random matrix theory and geo-
metrical models cited in the introduction for much more detail; see [Dup06] for a review
with additional references.) One can also consider scaling limits on spheres or higher genus
surfaces, as well as different kinds of marked points (corresponding to different logarithmic
singularities in the scaling limit); however, these are a bit more complicated to describe, so
we limit attention to the infinite volume case for now.

By the usual conformal invariance Ansatz, it is natural to expect that if one conditions
on the infinite quadrangulation, and then samples the loops or trees in these models (as
mapped into the plane), their law (in the scaling limit) will be independent of the metric.

Now suppose that for each n we define a random subset Xn ofMn (for example, Xn could
be the set of the squares hit by a simple random walk started at the root square and stopped
the first time that the walk hits a square on the boundary of the quadrangulation). Then
one can define a discrete scaling exponent (analogous to the box counting exponent in (4),
with δ replaced by n−1) as follows:

∆D = lim
n→∞

logE(n−1|Xn|)
log n−1

.

Identifying Xn with its image in a conformal map to, say, D, one might guess that the random
pair (Xn, λn) — where eλn(z)dz is uniform measure on the discrete surface, mapped to D —
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has a scaling limit (X, λ), where X is a random subset of D (in our example, it might be a
Brownian motion) and λ is some form of the Gaussian free field.

If this is the case, then on a heuristic level, one would expect that the quantum scaling
exponent of X is ∆ = ∆D, since, in the notation of Corollary 1.7, if we write δ = n−1, we
would expect that E[δN(µ, δ,X)] scales like E(n−1|Xn|).

In discrete quantum gravity models, it is often possible to compute ∆D explicitly (and
rigorously) using random matrix techniques or tree bijections; it is also often possible to
compute γ directly using discrete quantum gravity machinery and so heuristically obtain its
value in the continuum limit.

Assuming values for ∆D and γ — and assuming ∆ = ∆D — the KPZ formula gives the
Euclidean scaling dimension of X . In many interesting examples, X is a random fractal
(a Schramm-Loewner evolution, for example, or the outer boundary of a planar Brownian
motion) whose Euclidean scaling dimension might not be immediately obvious otherwise.

Finally, we mention that, in the standard realm of conformal field theory, there exists a
precise relation between the central charge c ≤ 1 of the statistical model coupled to quantum
gravity and the value of Liouville parameter, γ =

(√
25− c−

√
1− c

)

/
√
6, [KPZ88, Dav88,

DK89, Sei90, GM93], as well as a corresponding connection between SLEκ and Liouville
quantum gravity models with γ =

√

min{κ, 16/κ}.
Our result extends the validity of the KPZ relation outside that CFT framework to any

value of Liouville parameter γ < 2, with the Ansatz that the fractal set X and the GFF are
sampled independently. A possible interpretation of the KPZ relation in that case would
be that it describes the quantum geometry of the given fractal in the quenched random
surface generated by random graphs, equilibrated with a conformally invariant system with
a value of c or κ corresponding to the chosen value of γ. For example, one could first
choose a random graph weighted by the critical Ising model partition function; and then
perform a loop erased random walk on that graph, ignoring Ising clusters. In this case, one
would expect the Euclidean dimension of the path to be that of SLE2 (which corresponds to
loop erased random walk), while the value of γ describing the metric would be

√
3 (which

corresponds to the critical Ising model), and one could use KPZ to predict the quantum
scaling dimension.

Similar ideas appeared in previous numerical work [ABT99, JJ99], but the data so far
appear as inconclusive.

Finally, we remark that the original (still accessible) arXiv version of this paper contained
an additional section: a three-page sketch of some work in progress, including some results
about the conformal welding of quantum random surfaces and about the scaling limits of
discrete quantum gravity models. Many of these results will appear in [She, DS].
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