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We investigate the observational consequences of the quintessence field rolling to and oscillating near a

minimum in its potential, if it happens close to the present epoch (z & 0:2). We show that in a class of

models, the oscillations lead to a rapid growth of the field fluctuations and the gravitational potential on

subhorizon scales. The growth in the gravitational potential occurs on time scales � H�1. This effect is

present even when the quintessence parameters are chosen to reproduce an expansion history consistent

with observations. For linearized fluctuations, we find that although the gravitational potential power

spectrum is enhanced in a scale-dependent manner, the shape of the dark matter/galaxy power spectrum is

not significantly affected. We find that the best constraints on such a transition in the quintessence field is

provided via the integrated Sachs-Wolfe effect in the CMB-temperature power spectrum. Going beyond

the linearized regime, the quintessence field can fragment into large, localized, long-lived excitations

(oscillons) with sizes comparable to galaxy clusters; this fragmentation could provide additional

observational constraints. Two quoted signatures of modified gravity are a scale-dependent growth of

the gravitational potential and a difference between the matter power spectrum inferred from measure-

ments of lensing and galaxy clustering. Here, both effects are achieved by a minimally coupled scalar field

in general relativity with a canonical kinetic term. In other words we show that, with some tuning of

parameters, scale-dependent growth does not necessarily imply a violation of General Relativity.

DOI: 10.1103/PhysRevD.85.103510 PACS numbers: 98.80.�k, 04.80.Cc

I. INTRODUCTION

Scalar fields are used ubiquitously in cosmology to
provide a mechanism for accelerated expansion during
both the inflationary [1–3] and current dark-energy domi-
nated epochs (for example, [4–6]). In the inflationary case,
accelerated expansion occurs when the inflaton field is
rolling slowly and it ends once the field starts oscillating
around the minimum of its potential. The oscillatory phase
is well studied and gives rise to rapid growth of inhomo-
geneities because of couplings to other fields or self-
interactions (see, e.g. [7–10]). For a recent review, see
[11]. Like the inflaton, the quintessence field provides a
mechanism for accelerated expansion in the slow-roll re-
gime. However, unlike inflation, the possibility of the
accelerated expansion ending through quintessence oscil-
lations is rarely discussed in the literature (however, see
e.g. [12]). If quintessence was rolling slowly in the past, it
is ‘‘natural’’ [though certainly not necessary] for it to enter
an oscillatory regime as it finds its way towards a local
minimum in its potential.

In this paper, we wish to understand the observational
signatures of a transition to an oscillatory regime in the
quintessence field, if such a transition occurs in our recent
past (z & 0:2). An obvious observational signature is a
late-time change in expansion history. More importantly,

as is the case with the inflaton, the coherent oscillations of
quintessence near an anharmonic minimum are unstable
and quickly fragment in a spatially inhomogeneous man-
ner, giving rise to additional structure. This instability
driven by self-interactions of the field (the anharmonic
terms) leads to a growth in structure that is much faster
than the usual gravitational growth. For example, all po-
tentials that have a quadratic minimum and are shallower
than quadratic away from the minimum (see Fig. 1) suffer
from this instability (in particular for wave numbers
k � m, where m2 � U00ð’Þj’!0. See, for e.g [9,13–15]).

We find that while the gravitational potential is influenced
strongly by such growth in the quintessence fluctuations,
the overdensity in baryons and dark matter does not change
significantly. The scale-dependent growth in the gravita-
tional potential and the absence of similar growth in the
matter power spectrum provides a signature to confirm or
rule out such a transition in the dynamics of the quintes-
sence field. In addition, if the quintessence field becomes
nonlinear, it can fragment rapidly into long-lived, localized
excitations called oscillons (see e.g. [9,15–32]) with size
l� few�m�1 � few�Mpc.1 Although we do not pur-
sue this in detail in this paper, in Appendix B, we comment
on how such rapid nonlinear fragmentation of the field, and
to a lesser extent, the time-dependent evolution of oscillon
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1We will frequently relate the mass of the scalar field m, to
length and time scales, without explicitly writing ℏ and c. We set
ℏ ¼ c ¼ 1 throughout the paper.
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configurations themselves could have interesting inte-
grated Sachs-Wolfe (ISW) signatures.

While similar resonant phenomenon are commonly in-
voked in the early Universe, for example, during preheat-
ing (z � 1020) [11], few observational signatures exist
(e.g. [33–36]). The reason for this lack of observational
signatures on astrophysical scales is that resonance is
effective only on subhorizon scales. Since high redshifts
imply a small Hubble horizon, only small astrophysically
inaccessible scales today (of order meters for grand unified
theory scale inflation) become excited. Moreover, on these
small scales, the thermal radiation dominated state of the
Universe at the time of big bang nucleosynthesis smooths
out inhomogeneities. Since in our scenario the transition in
quintessence is happening today, the resonance now hap-
pens on astrophysically accessible scales. As a result these
models can be strongly constrained.

The observationally interesting phenomenology of
quintessence oscillations comes at a price. In addition to
the usual problems with quintessence models (such as the
smallness of the energy density, long range forces, etc.), for
the quintessence potentials we work with, we require that
the transition to an oscillatory regime happens close to
today. This imposes an additional tuning for the initial
conditions of the field.

Related to the present paper [14], Johnson and
Kamionkowski discuss the dynamical instability arising
from a ‘‘small’’ anharmonic-term in oscillating dark energy
models and conclude that such instabilities render oscillat-
ing dark energymodels unsuitable for providing a sustained
cosmic acceleration period. While we rely on these very
instabilities to source the rapid growth of the field fluctua-
tions and the gravitational potential, we envision the tran-
sition happening late enough so that this instability does not
significantly affect the observable expansion history. We
then calculate and discuss in detail the additional observ-
ables that can be used to probe the rapid growth in the
gravitational potentials arising from the dynamical insta-
bility. We reiterate, that we are not interested in the oscil-
latory phase providing the accelerated expansion.

We briefly mention a few papers that explore clustering
in quintessence-like fields, though through very different
mechanisms. Observational effects of quintessence cluster-
ing caused by phenomenologically varying its speed of
sound (not from resonant behavior discussed here) has
been investigated by several authors (see, for example,
[37–43]). Instabilities in coupled dark energy-dark matter
models have also been considered in [44]. In addition,
rapid transitions in dark energy, in the context of
coupled/unified dark matter and dark energy models where
dark energy ‘‘switches on’’ at late times have been ex-
plored by [45] (also see references therein). In our case,
dark energy ‘‘turns off’’ at late times as the quintessence
field starts oscillating, leading to a rapid growth in field
fluctuations. With a somewhat different motivation, in [46]
the authors discuss how rapid, extremely low redshift
(z & 0:02) transitions in dark energy can be hidden from
expansion history measurements. However, they did not
consider the effects of such transitions on perturbations,
which is the focus of this work.
In this exploratory paper, we restrict ourselves to single-

field quintessence models, assume a minimal coupling to
gravity, and impose no nongravitational couplings to other
fields. We include Weakly Interacting Massive Particle
(WIMP) dark matter along with the quintessence field
and assume a spatially flat universe. We limit ourselves
to a linear treatment of the fluctuations, including scalar
gravitational perturbations, except when we discuss the
nonlinear fragmentation of the quintessence field and the
formation of robust, localized quintessence excitations
(oscillons). We focus on a case that is consistent with
expansion history and galaxy clustering but could poten-
tially be ruled out by measurements of the gravitational
potential, in particular, via the cosmic microwave back-
ground (CMB)-temperature power spectrum at large
angular scales. Our intention is to stress the interesting
phenomenology of such models and to point out that such
transitions can be better constrained by going beyond the
measurements of expansion history and growth of structure
in galaxies alone.
The rest of the paper is organized as follows. In Sec. II we

introduce and motivate the form of the quintessence poten-
tial used in this paper. In Sec. III we work through the
evolution of the quintessence field in an Friedmann-
Robertson-Walker universe. We highlight initial conditions
and important regimes of evolution as well as constraints
placed on the parameters from observations of the expan-
sion history. In Sec. IV we discuss the evolution of line-
arized fluctuations in the quintessence field, dark matter,
and the gravitational potential, with a special emphasis
on their evolution during the oscillatory phase of the
background-quintessence field. In the same section we
also discuss the domain of validity of our linearized treat-
ment and comment on the nonlinear evolution of the field.
In Sec. V we compute observables such as lensing-power

FIG. 1 (color online). Initially, the field rolls slowly causing
accelerated expansion of space. As it enters the oscillatory
regime, the acceleration stops and a rapid, exponential growth
of field fluctuations begins.
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spectra and the integrated Sachs-Wolfe (ISW) contribution
to the CMB-temperature anisotropy. We present our
conclusions in Sec. VI. We also include two Appendixes.
In Appendix A, we provide some details of Floquet analysis
and an algorithm used in this paper for calculating Floquet
exponents. In Appendix B, we provide an estimate of the
ISW effect resulting from evolution of quasi/nonlinear
quintessence fluctuations and oscillons.

II. THE MODEL

We consider a quintessence field governed by a potential
of the form (see Fig. 1):

Uð’Þ ¼ m2M2

2

� ð’=MÞ2
1þ ð’=MÞ2ð1��Þ

�
; (1)

where 0<�< 1.2 This choice was motivated by monod-
romy and supergravity models of inflation [47–51] and a
recent model of axion quintessence [52] (� ¼ 1=2). The
potential has a quadratic minimum and for very large field
values it asymptotes to a shallower than quadratic form,

Uð’Þ � m2

2
’2 ’ � M;

Uð’Þ � m2M2

2
ð’=MÞ2� ’ � M:

(2)

The scaleM determines where the potential changes shape,
whereas, the scale m determines the curvature U00ð0Þ at the
bottom of the well. We will consider cases where the
field rolls slowly for ’ � M, behaving like dark energy
and then enters an oscillatory regime with ’�M after
z� 0:2. When the field oscillates around the minimum, the
‘‘opening up’’ of the potential

Uð’Þ � ð1=2Þm2’2 < 0 ’ � 0; (3)

leads to rapid, scale-dependent growth of scalar-field fluc-
tuations via parametric resonance (see Sec. IV). In the
nonlinear regimes, it leads to the formation of localized
field excitations called oscillons [9,29].

Similar phenomenology can arise in models such as
pseudo-Nambu-Goldston-Boson quintessence (e.g. [53])

Uð’Þ ¼ m2M2½1� cosð’=MÞ�: (4)

For potentials (1) and (4), a limited range of parameters
will reproduce the observed expansion history, allow for a
few oscillations in the field close to today, and allow for
rapid growth of structure. For the pseudo-Nambu-
Goldston-Boson-like models, the slow-roll dynamics of
the field necessary for accelerated expansion only occur
if M�mpl (unless ’ ! �M). However, as we discuss in

Sec. IV, efficient resonance in an expanding universe re-
quiresM � mpl. As a result we do not get rapid growth of

structure here, except in cases of extreme fine tuning of the
initial conditions and do not pursue this model any further
in this paper.

For the potential in (1), we find the requirement of a few
oscillations close to today translates into

10 2H0 & M; m & 10�2mpl and � � 1: (5)

We study these constraints in more detail in the next
section.
Finally, we note that resonant growth of fluctuations also

arise when scalar fields oscillate in potentials with asym-
metric minima

Uð’Þ � m2

2
’2 þM

3
’3 þ . . . ;

and is possible in potentials with a nonquadratic minimum
or in potentials, which do not necessarily open up (though
the band of resonant wave numbers can be narrow). The
key requirement is that there are anharmonic terms in the
potential that provide a time-varying, periodic frequency in
the equation of motion for the fluctuations.

III. HOMOGENEOUS EVOLUTION

In this section, we describe how to choose initial con-
ditions for the background quintessence field and parame-
ters in the potential so that the field both oscillates at late
times and reproduces the observed expansion history. We
do this by trying to match the �CDM expansion history.
This is more restrictive than directly using observations but
makes the following discussion more transparent.
The equations of motion for the homogeneous quintes-

sence field are

€’þ3H _’þU0ð’Þ¼0; H2¼ 1

3m2
pl

�
_’2

2
þUð’Þ

�
þH2

0

�dm

a3
;

(6)

where �dm is the fraction of the critical energy density in
WIMPs today, H is the Hubble parameter, and H0 is its
value today.3 The dot ‘‘:’’ stands for a derivative with
respect to cosmic time and the scale factor a ¼ 1 today.
We ignore the contribution from radiation since we are
only interested in late times.
Current observations are consistent with the quintes-

sence field behaving like a cosmological constant in the
recent past [54]. During the matter-dominated epoch, it is
more difficult to place constraints on dark energy’s equa-
tion of state because it is subdominant. For simplicity, we
assume that the field’s equation of state satisfies w �
ð _’2 � 2UÞ=ð _’2 þ 2UÞ � �1 (for z * 0:2), which occurs
if the slow-roll condition _’2 � U is satisfied. Imposing
that the energy density in the quintessence field during
matter domination has the same order of magnitude as
the �� in �CDM, we find

2We write ’ instead of j’j to avoid clutter.

3We choose the subscript ‘‘dm’’ for WIMPs instead of the
more usual m to avoid confusion with the mass of the scalar field
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�
m

H0

�
2
�
’i

M

�
2� � 6ð1��dmÞ

�
mPl

M

�
2
; (7)

where ’i is the initial value of the field deep in the matter-
dominated epoch. Note that for simplicity, we have as-
sumed that ’i � M and later justify our assumption at the
end of the analysis. Since we are only interested in scaling
relationships, we will ignore factors of order unity from
now on. The above gives one constraint between parame-
ters in the potential and the field’s initial conditions.

Imposing oscillations in the field at late times gives a
second constraint. To derive this, we solve Eq. (6) in the
slow-roll, matter-dominated regime, assuming the field
does not change significantly from its initial value. We
find (assuming ’i � M)4

’

M
�’i

M
�
��a3ðm=H0Þ2ðM=’iÞ3 if �¼0;

�a3ðm=H0Þ2ðM=’iÞ1�2�� if �>0:
(8)

Though the above equation of motion is not valid in the
oscillation regime, it gives an approximate scale factor ða	Þ
when oscillations begin (’=M� 0). We find,

a	 �
( ðH0=mÞ2=3ð’i=MÞ4=3 if � ¼ 0;

ðH0=mÞ2=3ð’i=MÞ2�2�=3��ð1=3Þ if �> 0:
(9)

The actual scale factor when oscillations begin (aosc)
differs from a	, but the two are monotonically related.
Combining Eqs. (7) and (9), we calculate explicit expres-
sions for m and ’i in terms of M and a	. We have

’i

M
�

8<
: a3=4	 ðmpl=MÞ1=2 if � ¼ 0;

a3=4	 ðmpl=MÞ�1=2 if � ¼ 0:

m

H0

�
8<
: ðmpl=MÞ if � ¼ 0;

a�3�=2
	 ðmpl=MÞ1����ð�=2Þ if � ¼ 0:

(10)

As discussed in more detail below in Sec. IV,M sets the
strength of the resonance between the perturbed quintes-
sence field and the background quintessence field. We
therefore keep it as a free parameter. We choose a	 so
that the actual numerically computed oscillations begin
around aosc � 0:8. Corrections to distance measurements
that depend on cosmological parameters beyond H0 are
small for scale factors larger than aosc � 0:8. Hence, mod-
ifying the expansion history there will not interfere with
measurements that probe the cosmological expansion.
Finally, we fix m and ’i using Eq. (10). The value of _’i

follows from Eq. (8).
In practice, when numerically evolving Eq. (6) accord-

ing to the above choices of initial conditions and
potential parameters, we find that in order to get agreement
with the �CDM expansion history in the past as well as
produce oscillations close to today, we require additional

fine-tuning of the initial conditions and parameters. The
procedure described above results in a value of H0 that is
smaller than the �CDM value. This is because by assump-
tion, the Hubble parameter for both �CDM and quintes-
sence are identical. At late times, however, the oscillations
in the quintessence field cause it to behave like dark matter,
giving rise to a steeper falloff than the �CDM Hubble
parameter. For better agreement with H0, we increase the
value of m until H0 agrees to better than a percent.
Performing the above iteration, we find that � affects

whether or not the field starts oscillating at low redshift.
This should be expected since the asymptotic slope of the
potential determines the time it takes to transition from
slow-roll to oscillations. We can calculate this approximate
time from the derivative of the quintessence field when
slow-roll ends. Using the slow-roll condition described
above, the value of the quintessence field when slow-roll
ends is

’e �
( ðmpl=MÞ1=3M if � ¼ 0;

�mpl if �> 0:
(11)

Assuming 3H _’��U0, taking this transition to happen
close to today, and using the constraints in Eq. (10), we find
the change in scale factor (4 a) between the beginning of
oscillations (’� 0) and the end of slow-roll is given by

4a�
( ðM=mplÞ2=3 if � ¼ 0;

�1�� if �> 0:
(12)

The larger the �, the longer it takes for oscillations to
start. Hence, consistency with a �CDM-expansion history
and having late-time oscillations limits � � 1 for the case
of nonzero � andM � mpl for vanishing �. For the rest of

this paper, we specialize to� ¼ 0. In summary, we keepM
and a	 as free parameters and choose m, ’i, and _’i so that
the value of H0 agrees with the measured value, the field
behaves like dark energy initially, and the field starts
oscillating at aosc � 0:8.
For the above prescription, we calculate the evolution of

the quintessence field, the Hubble parameter normalized
by�CDM’s Hubble parameter, the field’s equation of state
parameter w, and the acceleration parameter q � €aa= _a2 as
a function of scale factor. We show the results in Fig. 2 for

mpl=M ¼ 500; m=H0 ¼ 1130:6;

’i=M ¼ 23:7 with aosc ¼ 0:82:
(13)

Unless otherwise stated we will use these as fiducial-
parameter values throughout this paper and refer to them
as fiducial parameters. As constructed, the field remains
approximately constant for a � aosc, rolling slowly
towards the minimum. Notice, as assumed initially, that
’ � M at early times. At aosc � 0:8, the field starts to
oscillate with a slowly decaying amplitude

4The apparent discontinuity between the cases � ¼ 0 and
�> 0 disappears when the full expressions are used.
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’ � ’oscðaÞ sinð!tþ �Þ: (14)

Note that when ’ � M, ’oscðaÞ / a�3=2. Because of
the anharmonic terms in the potential, the frequency of
oscillation ð!Þ depends on the amplitude of the field and is
given by

! � m

�
2

�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð’osc=MÞ2p

E½�ð’osc=MÞ2�
�

 m; (15)

where E is the complete elliptic integral. As ’ ! 0,
! ! m. Note that in deriving the above expression for
the period, we have assumed ! � H0 so that energy is
approximately conserved during an oscillation.

The Hubble parameter matches �CDM at early times
since both models have the same amount of dark matter
[see Fig. 2(b).] The Hubble parameter must then increase
relative to �CDM in order for H0 to agree, since the
quintessence model’s Hubble parameter falls off more
steeply than �CDM at late times when the field starts to
behave like nonrelativistic matter. The deviation, for the
fiducial parameters, is at most 5%, which is consistent with
recent observational constraints [55]. The equation of state
parameter behaves as expected in the slow-roll regime
(w ¼ �1) and oscillates between 1 and �1 after aosc as
energy swaps between its kinetic and potential parts
[Fig. 2(c)]. Note that other models that give rise to an
oscillating equation of state have been explored in the
literature (for example, [56–62]). Lastly, the acceleration
parameter reveals a period of decelerated expansion deep
in the matter-dominated era, followed by a period of
accelerated expansion as the slowly rolling quintessence
field begins to dominate the energy density. After aosc, the
acceleration parameter starts oscillating around q ¼ �1=2
[Fig. 2(d)].
Observational constraints on the expansion history at

late times arise primarily from distance measurements.
Given our above prescription, we expect good agreement
between distances calculated in our quintessence model
and �CDM, which we show explicitly below. The comov-
ing distance is given by

�ðaÞ ¼
Z 1

a

da

a2HðaÞ : (16)

In Fig. 3, we plot the percent difference in �ðaÞ between
quintessence and �CDM. As expected, deviations are
smaller close to today, where the Hubble parameter was
tuned to be identical to the observed H0 and at early times,
where dark energy can be ignored. The largest deviations
are�4%. Since all observed distances, like the luminosity
distance and the angular diameter distance, differ from
the comoving distance by factors of the scale factor,
Fig. 3 implies that current observations cannot distinguish
between the background evolution of quintessence and

aosc

0.0 0.2 0.4 0.6 0.8 1.0

3

2

1

0

a

co moving distance deviation

FIG. 3 (color online). The difference in comoving distance
from an observer today, between the quintessence and �CDM
models. Deviations are smaller today, where both cosmologies
have the same H0, and at early times, where both cosmologies
have the same amount of dark matter and dark energy.

aosc

a

0.0 0.2 0.4 0.6 0.8 1.0
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1.00
1.01
1.02
1.03
1.04

a
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0.5

1.0

a

w

d

0.0 0.2 0.4 0.6 0.8 1.0
1.5
1.0
0.5
0.0
0.5

a

q

FIG. 2 (color online). (a) Homogeneous field evolution: note
that the field is relatively constant until aosc after which it starts
oscillating with a decaying amplitude. (b) The Hubble parameter
increases initially compared to its �CDM counterpart but once
the oscillations in the field begin, it starts decreasing again. The
small oscillations in the Hubble parameter reflect the oscillations
in the quintessence field. (c) The equation of state parameter
w � �1 until aosc, reflecting the cosmological constantlike
behavior due to the slowly rolling field, but starts oscillating
about w ¼ 0 after aosc, reflecting the approximately nonrelativ-
istic matterlike behavior of the oscillating field. (d) The accel-
eration parameter q reveals a period of decelerated expansion in
the matter-dominated era, followed by a period of accelerated
expansion as the slowly rolling quintessence field begins to
dominate the energy density. This continues until aosc, after
which q starts oscillating due to the oscillations in the quintes-
sence field.
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the background evolution in �CDM [63–67]. We have
restricted our analysis to aosc � 0:8 because choosing
aosc � 0:8 gives rise to unacceptably large deviations
from the observed expansion history.

IV. PERTURBATION EVOLUTION

In this section we investigate the dynamics of the fluc-
tuations in the quintessence field (�’), the gravitational
potentials, and the overdensity in WIMPs (�dm) assuming
linearized equations of motion. We ignore radiation and
neutrinos, since we are interested in late-time dynamics.
We work in the Newtonian gauge, where the metric is

ds2 ¼ �ð1þ 2�Þdt2 þ a2ð1� 2�Þdx2; (17)

and � and � are the two scalar-gravitational potentials.
Tracking the evolution of the gravitational potentials and
the two matter components (WIMPs and quintessence)
requires two second-order differential equations.
Normally, they are taken to be the energy-momentum
conservation equations for the matter components. The
gravitational potentials can then be obtained from the
Einstein equations (constraints). However, since the most
interesting dynamics happen in the gravitational potentials
and the field fluctuations, wework with them as the degrees
of freedom and then obtain the overdensity inWIMPs from
the constraints. The equations of motion for the quintes-
sence field fluctuations and the gravitational potential are
(in Fourier space)

€�’kþ3H _�’kþ
�
k2

a2
þU00ð’Þ

�
�’k¼�2U0ð’Þ�kþ4 _’ _�k;

€�kþ4H _�kþ 1

m2
pl

Uð’Þ�k¼ 1

2m2
pl

½ _’ _�’k�U0ð’Þ�’k�:

(18)

The second equation is the diagonal, space-space compo-
nent of the Einstein equations, where the right-hand side is
the pressure perturbation provided by the scalar field. Since
the WIMP dark matter is assumed to be pressureless, it
does not contribute to this source term. The second gravi-
tational potential �k does not appear in the above equa-
tions because there is no anisotropic stress at linear-order
for single, minimally coupled scalar fields. This makes the
two gravitational potentials equal

�k ¼ �k;

via the off-diagonal space-space part of the Einstein equa-
tions.5 After evolving the equations for �’k and �k, �dm

follows from the time-time components of the Einstein
equations

�dm¼� a3

3H2
0�dm

��
6H2� _’2

m2
pl

þ2
k2

a2

�
�kþ6H _�k

þ _’

m2
pl

_�’kþ 1

m2
pl

U0ð’Þ�’k

�
: (19)

A. Initial conditions and evolution during
matter domination

We are interested in the behavior of �’k, �k, and �dm

for a * 0:8. To solve (18) we need to specify �’k, � _’k,

�k,
_�k on some initial time slice. This can be done self-

consistently using the �CDM solutions for �k and �dm if
the initial time slice is chosen deep into the matter-
dominated era. During matter domination, the quintes-
sence field is a small fraction of the total energy density.
As a result, the �’k do not contribute significantly to �k,
and we can use�k from a�CDM cosmology at these early

times. We take these initial conditions for �k and _�k

directly from the output of CMBFAST [68] at ai � 10�2

since by this scale factor the anisotrotropic stress from
neutrinos is negligible and the contribution of dark energy
is yet to become important. We are then left with specify-
ing the initial conditions in �’k, which requires under-
standing its evolution in the matter-dominated era.
The evolution of adiabatic modes on superhorizon

k=aH � 1 scales is given by (see [69])

�’k ¼ �k

_’

H

� ðH=aÞRt
ti
aðt0Þdt0

�1þ ðH=aÞRt
ti
aðt0Þdt0

�
: (20)

6 The term in the square brackets is constant during matter
domination

�’k ¼ � 2

3
�k

_’

H
: (21)

On subhorizon scales (k � aH), during the matter-
dominated era, the gravitational potential is determined
by the fluctuations in the WIMP overdensity. Since �k

is constant during matter domination, the equations of
motion (18) become

€�’ kþ3H _�’kþk2

a2
�’k¼�2U0ð’Þ�k; _�k¼0; (22)

where we have assumedU00ð’Þ=H2 � ðk=aHÞ2. Under the
assumption that U0ð’Þ is slowly varying, the complete
solution is

�’k ¼ ck
k3H

½cosð2kH þ �kÞ þ 2kH sinð2kH þ �kÞ�

� 2�k

U0ð’Þ
H2

1

k2H

�
1� 7

k2H
þ 35

2k4H

�
; (23)

5For nonminimally coupled scalar fields, �k ��k�f
0ð’Þ=

fð’Þ�’k, where 8�GN ! fð’Þ�1. In minimally coupled fields,
the anisotropic stress is generated by second-order terms
�k ��k / �’2

k.
6We will ignore isocurvature modes in this paper
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where kH � k=aH and ck, �k are constants of integration
set by initial conditions at the beginning of the matter-
dominated era. For solutions that are deep inside the
horizon, kH � 1 and only one term grows with time

�’k � �2�k

U0ð’Þ
H2

1

k2H
: (24)

The initial (transient) oscillatory behavior due to the ho-
mogeneous part of the solution (23) as well as the growth
/ a2 for ai � a � aosc due to the particular solution (24)
can be seen in Fig. 5(a). We have also verified that although
from Eqs. (21) and (24) we see that �’k grows as a3 on
superhorizon scales and as a2 on small, subhorizon scales
their amplitude during matter domination does not become
large enough to change the behavior of the potential �k.

With Eqs. (21) and (24) at hand, we set the initial
conditions for all kH, using a piecewise interpolation be-
tween the subhorizon and superhorizon solutions (dashed
curve in Fig. 6). Although we have taken care to faithfully
characterize the asymptotic behavior of the initial condi-
tions of �’, in practice we find that changing the initial
conditions by orders of magnitude does not affect our
results significantly. This is because at late times, the
particular solution of �’k (determined by �k) dominates,
significantly reducing the dependence on initial conditions.

B. Evolution during the quintessence-dominated era

In this section, we investigate the dynamics of fluctua-
tions during quintessence domination and find that the

evolution differs before and after aosc. We analyze these
two regimes separately.

1. Before resonance a < aosc

When 0:5< a< aosc, the homogeneous quintessence
field rolls slowly with an energy density larger than but
comparable to the WIMP density. The behavior of �’k

on superhorizon scales is still determined by (20), but H
decreases more slowly than during the matter-dominated
era.
In the subhorizon regime, the quintessence perturbations

grow faster as we approach aosc because the field starts
rolling more rapidly (see right-hand side of Eq. (18).
However, these fluctuations are still not strong enough to
prevent the decay of the gravitational potential, which is
caused by a transition to a dark-energy dominated epoch.
During this epoch, the evolution of the�k is determined by
H and does not show any resonant behavior. The behavior of
the �’k and�k discussed here can be easily seen in Figs. 5
(a) and 5(b) for 0:5 & a & aosc. The thin, black line repre-
sents the evolution of the same mode of �k in �CDM.

2. Resonance a > aosc

We now come to the most interesting era (a > aosc) with
regards to the evolution of fluctuations. In this era, the
homogeneous field begins to oscillate with an amplitude-
dependent frequency !<m (see Eq. (15). This leads to a
rapid growth in the field fluctuations for certain character-
istic ranges of wave numbers. To understand this, we

b

0.85 0.90 0.95

0.050

0.055

0.060

0.065

H0t

FIG. 4 (color online). In Fig. 4(a) we plot the magnitude of the real part of the Floquet exponent j<ð�kÞj as a function of the physical
wave number kp and the amplitude of the background field ’osc. Yellow corresponds to a larger value than orange, whereas dark red

regions have<ð�kÞ ¼ 0. As the Universe expands, the wave number of a given mode as well as the amplitude of the background field
redshift. As a result, a given mode ‘‘sees’’ different Floquet exponents as it traverses the Floquet chart along the thin white lines. In
Fig. 4(b) we show the Floquet exponent ‘‘seen’’ by a mode with a comoving wave number k� 0:05m (along the left-most dashed
white line in Fig. 4(a). Modes with k * 0:5m pass through many resonance bands in a single oscillation of the homogeneous field and
undergo stochastic resonance (see text).
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initially ignore expansion (H ¼ 0, a ¼ 1) and the gravita-
tional perturbations (�k ¼ 0) in Eq. (18).

3. Resonance in Minkowski space

The equation of motion for �’k then becomes

€�’ k þ ½k2 þU00ð’Þ��’k ¼ 0: (25)

Since the homogeneous field ’ is periodic in time, U00ð’Þ
is periodic as well as long as U00ð’Þ � constant, which
occurs for potentials with anharmonic terms (as is the case
with our potential in (1). This yields an oscillator with a
periodically varying frequency, whose solutions can be
analyzed via standard Floquet methods (for example,
see [70]). For the interested reader, we review the main
aspects of Floquet analysis in the Appendix. Under certain

conditions (see Appendix A), Floquet’s theorem guaran-
tees that the general solution to Eq. (25) can be written as

�’kðtÞ ¼ e�ktPþðtÞ þ e��ktP�ðtÞ; (26)

where ��k are the Floquet exponents and P�ðtÞ are peri-
odic functions with the same period as U00ð’Þ.7 The
Floquet exponent �k depends on the amplitude of the
‘‘pump’’ field ’osc, as well as the wave number k. There
exists an unstable, exponentially growing solution if the
real part of the Floquet exponent <ð�kÞ � 0. In Fig. 4(a),
we show j<ð�kÞj as a function of the amplitude ’osc and
wave number. The color represents the magnitude of the
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FIG. 5 (color online). (a) Evolution of �’k with k� 0:05m � 0:01 Mpc�1. During matter domination, �’k / a2 and grows
relatively slowly. However, after aosc, the mode grows exponentially fast due to parametric resonance. At anl the fluctuations become
nonlinear and linear evolution is no longer applicable. (b) Evolution of the scalar gravitational perturbation (k� 0:05m). Before
resonance, the evolution is similar to that expected in usual slow-roll quintessence (or �CDM thin, black line) model. It is constant
deep in the matter-dominated era and starts decaying as quintessence takes over. Unlike slow-roll quintessence, after aosc the potential
grows rapidly until anl. This leads to a scale-dependent signal in observations that are sensitive to the gravitational potential. (c) The
evolution of the WIMP overdensity is not significantly affected by the resonant growth. The departure from �CDM in this case is
almost entirely due to the slight deviations in the expansion history. The normalization is set to one for all the above modes at a ¼ ai.

7When the Floquet exponents are zero, there exist another
class of solutions �’kðtÞ / tP1ðtÞ and �’kðtÞ / P2ðtÞ, where
P1;2ðtÞ are periodic functions.
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real part of the Floquet exponent. Yellow corresponds to a
larger j<ð�kÞj than orange, whereas red corresponds to
<ð�kÞ ¼ 0. Without expansion, neither ’osc nor the mo-
mentum k redshift with time. As a result, the evolution of
modes is determined by the Floquet exponent at single
point in the (k, ’osc)-plane. This no longer holds true in
an expanding universe.

4. Resonance in an expanding universe

The equation of motion for �’k in an expanding
universe (still ignoring �k) is

€�’ k þ 3H _�’k þ
�
k2

a2
þU00ð’Þ

�
�’k ¼ 0: (27)

To understand parametric resonance in an expanding back-
ground, we make the following identifications:

ka�1 ! kp; ’oscðaÞ ! ’osc: (28)

Here kp is the physical wave number and ’oscðaÞ is the

decaying envelope of the oscillating field. This identifica-
tion (28) defines a trajectory in the kp � ’osc-plane (white

lines in Fig. 4(a)). The approximate amount of amplifica-
tion undergone by a given mode is obtained by integrating
j<ð�kÞj along the corresponding trajectory in the
kp � ’osc-plane. The j<½�kðtÞ�j as seen along such a

trajectory (left-most dashed, white line in Fig. 4(a)) is
shown in Fig. 4(b). Then, schematically, the evolution

envelope of the amplified modes is (ignoring the oscilla-
tory piece P�ðtÞ)

�’kðtÞ � �’kðtiÞ
a�ðtÞ exp

�Z t
d	j<½�kð	Þ�j

�

¼ �’kðtiÞ
a�

exp

�Z a
d ln �a

j<½�kð �aÞ�j
Hð �aÞ

�
; (29)

where in the second equality we use the scale factor a
as a time co-ordinate and � ¼ 3=2 when ’osc � M. We
assume that the frequency of oscillation ! � H. This
expression (A4) is meant to give intuition about the reso-
nant behavior in an expanding universe and should be used
with care, especially when multiple bands are involved
since the phase of the oscillations can play a role when
different bands are traversed.
When a mode traverses only the first resonance band, the

fluctuations get a boost every time the homogeneous field
crosses zero. This can be thought of as a burst of particle
production. When a large number of bands are traversed
within a single oscillation of the homogeneous field, we
enter the regime of stochastic resonance. The amplitude of
the mode still changes dramatically at zero crossings of the
homogeneous field, however, we are no longer guaranteed
growth at every such instant. Although over longer time
scales the fluctuations grow, at some zero crossings they
can also decrease. For our scenario stochastic resonance is
seen for modes with k * 0:5m. A more detailed discussion
of these different regimes can be found in [71].
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10 8

10 6

10 4

0.01

1

k Mpc 1

r.m.s amplitude of quintessence fluctuations
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Condition for non linearity

FIG. 6 (color online). (a) Fluctuations in quintessence h�’2i1=2
L�k�1 ¼ �’ðk; aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3P�’ðk; aÞ=2�2

q
at anl ¼ 0:95, whereas the

dashed curve is 103� the initial conditions at ai ¼ 0:01. Note the large bump due to resonant growth seen in the �’ field at k �
0:05m � 0:01 Mpc�1. The higher k regions undergo stochastic resonance. (b) To determine when the fluctuations become nonlinear
(anl), we compare the rms fluctuations to the background field. The orange curves denote the homogeneous field, whereas the black
curves denote the maximum value of ��’ðk; aÞ at each a. Note the enhancement at each zero crossing. Once the field fluctuations

become nonlinear, different kmodes couple and the field fragments into localized, long-lived energy density configurations (oscillons).
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For our scenario, the modes that grow the fastest are the
ones with k � m (ones traversing the first band). To get a
sense of what is required of the parameters for these modes
to grow rapidly, let us now concentrate on the right-most
expression in (29). If the argument of the exponent is
significantly larger than 1, then we will have rapid growth
in fluctuations. Using aosc � 0:8, resonance takes place in
the logarithmic interval � ln a� 0:2. Hence, one gets
rapid growth in fluctuations when j<ð�kÞj=H * 10.
During the oscillatory regimeH � H0 �mðM=mplÞ, while
from Fig. 4 the real part of the Floquet exponent seen by a
mode in the first band has value of j<ð�kÞj � 0:1m. Thus
we need M=mpl & 10�2 for efficient resonance. However

as we saw in Sec. III, in the class of models described
by (1), consistency with the observed expansion history
and the requirement of a few oscillations in the homoge-

neous field close to today automatically yields M=mpl &

ð�aÞ3=2 � :03 [Eq. (22)]. Hence in such models, resonance
is almost inevitable.

Importantly, this is a nongravitationally driven growth,
driven by the homogeneous, oscillating field ! � H.
Hence this growth can happen on a time scale which is
significantly shorter than H�1.

5. Resonance in an expanding universe including
local gravity

Let us now include the gravitational potentials in the
equations of motion and consider resonant phenomenon
in the complete coupled system given by Eq. (29). When
the field-driven resonance is efficient, the gravitational
potential �k does not play a significant role in the field
dynamics. The evolution of �k, on the other hand, is
affected significantly by the resonant growth in �’k since
the quintessence field dominates the energy density. We
stress that �k can only be ignored in the evolution of
�’k for modes undergoing strong resonance when the
self-interactions dominate over the gravitational one. In
particular, as we have seen in the previous sections �’k

just before resonance is determined by �k and as a result
ignoring �k before resonance is not justified. In addition,
the gravitational potential includes contributions from
the WIMP dark-matter overdensity via the constraint equa-
tions. These two considerations make the analysis of
Eq. (18) in the resonance regime nontrivial, and we have
to rely on numerical solutions. A more detailed analytical
analysis of resonance in an expanding universe including
the effects of the gravitational potential will be pursued
elsewhere. Below we discuss the numerical solutions
during resonance in a bit more detail.

Typical, rapidly growing solutions for �’k and �k with
k � 0:05m are shown in Figs. 5(a) and 5(b), respectively.
Note the rapid, nearly exponential growth of �k and �’k

after aosc � 0:8 (vertical, dashed line). The thin, black
lines show the evolution of the same modes in �CDM.
The growth in the gravitational potential is somewhat

delayed compared to the field. This is because the energy
density in the field has to first become comparable to that of
dark matter. Before this happens, the gravitational potential
does not experience scale-dependent growth (though it still
responds to the changing expansion history).
So far we have ignored discussing the evolution of the

WIMPoverdensity since it is determined from the constraint
Eq. (19). Naively one might expect to see scale-dependent
departures in the behavior of�dm. However, despite the rapid
growth in the gravitational potential after aosc, �dm does not
deviate significantly from its �CDM counterpart (see 5(c)
in the linear regime). Although difficult to see from the
constraint Eq. (19), this behavior can be understood by
considering the conservation equation for the WIMPs

€� dm þ 2H _�dm ¼ � k2

a2
�k þ 3ð2H _�k þ €�kÞ: (30)

Heuristically, we see that on subhorizon scales �dm is ob-
tained from a double-time integral of the potential�k. This
delays the response of the�dm to the�k. The small departure
of �dm from its�CDM counterpart can be accounted for by
the difference in expansion history between the quintessence
and the �CDM models. In particular, since the Hubble
parameter in our quintessence model is always slightly
larger than its�CDM counterpart (see Sec. III), the growth
of �dm in the quintessence model is slightly suppressed.
From the above discussion we see that the linearized

fluctuations in the field and the gravitational potential grow
rapidly. Eventually, the field fluctuations will become non-
linear and we cannot trust the linearized treatment. Hence
it becomes important to understand, at least qualitatively,
when the field becomes nonlinear as well as what happens
thereafter. Although we discuss the nonlinearity of the
scalar-field fluctuations, we do not include the usual non-
linearity in �dm at late times. This nonlinearity in �dm is of
course well-studied, but to include it would take us too far
beyond the scope of this paper.

6. Nonlinearity and oscillon formation

We cannot ignore the nonlinearity of the fluctuations
when U0ð’Þ �U00ð’Þ�’. In the oscillatory regime this
happen at the scale factor anl when

��’ðk; anlÞ � ’oscðanlÞ; (31)

where �2
�’ðk; aÞ ¼ k3P�’ðk; aÞ=2�2 with h�’k�’k0 i �

ð2�Þ3P�’ðkÞ�3ðk� k0Þ is the power spectrum of the field

fluctuations (see Fig. 6(a)) Heuristically, the left-and side
characterizes the mean-square fluctuations over a spatial
region of size L, i.e.

h�’2i1=2L ¼ ½��’ðk; aÞ�k�L�1 (32)

In Fig. 6(b) the orange curves show the evolution of the
(absolute value of) oscillatory homogeneous field and its
envelope. The black curves show the maximum value of
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��’ðk; aÞ as a function of a and its envelope. The location

where the two curves intersect anl � 0:95 is taken as the
point beyond which the linearized equations cannot be
trusted. In Fig. 6(a) we show ��’ðk; anlÞ (solid, orange

curve) and ��’ðk; aiÞ. As mentioned in Sec. IVA, the

normalization of ��’ðk; aiÞ is set by ��ðk; aiÞ, which we

take from WMAP 7 [63] (�2
R¼ð9=25Þ�2

�¼2:42�10�9

at k ¼ 0:002 Mpc�1 and ns ¼ 0:966). We also note that
although k� 0:05m � 0:01 Mpc�1 is where we see the
maximum deviation, resonance significantly enhances
fluctuations for larger k as well, albeit through stochastic
resonance.

In order to calculate the effect of the rapid growth of the
gravitational potential on observables, we need its evolu-
tion until today, i.e. a � 1. However, as discussed above,
the nonlinearities of the field do not allow us to compute it
for a > anl ¼ 0:95. To remedy this, for the linearized
calculation, we take a conservative approach and ‘‘freeze’’
the value of the potential at anl, setting �kðaÞ ¼ �kðanlÞ
for anl 
 a 
 1. More realistically, the potential will
evolve further in a scale-dependent manner as the
scalar-field perturbations undergo nonlinear evolution.
Fragmentation of the scalar field [discussed below] will
enhance the perturbations, at least on smaller scales [we
provide some simple estimates of the ISWeffect due to this
nonlinear evolution in Appendix B. Along with the
break-down of linearized equations, we also note that after
anl, large gradients in the scale-field fluctuations will
source anisotropic stress, violating our assumption of
� ¼ �.

Although in this paper we do not pursue nonlinear
evolution of the scalar-field fluctuations, below we digress
slightly and point out some of the interesting phenomenol-
ogy that results. As nonlinearity sets in, the evolution of
different k-modes becomes coupled, and back-reaction
from the perturbations curtails the resonant growth of
fluctuations. The homogeneous field then fragments rap-
idly. For the type of potentials considered here (those
having a quadratic minimum and a shallower than qua-
dratic form away from the minimum), most of the energy
density can eventually end up in localized, oscillatory,
long-lived configurations of the field called oscillons (e.g.
[16,18,29]). The central density of these oscillons can be
greater than the background energy density and their sizes
are of order a few m�1 � 10�3H�1

0 � 4 Mpc. Although
oscillons radiate energy through scalar radiation (e.g.
[17,30,72,73]), our limited radial simulations of individual
oscillons reveal a lifetime of �106m�1 � 103H�1

0 for an

oscillon with width of a few m�1 and field amplitude of
order M. This makes them effectively stable compared to
current cosmological time scales. Unlike the usual oscil-
lons (e.g. [16,18,29,73]), which have a relatively stationary
energy density profile; the oscillons in our model have an
energy density that breathes in and out (also see [15]) at
about twice the field-oscillation frequency.

This phenomenon of oscillon production has been
studied in the context of the early Universe, in particular,
at the end of a similar scalar-field driven inflationary period
(e.g. [9,10,15,32]). Here, we point out that it will likely
happen at the end of the current period of cosmic accel-
eration as well. As with the early Universe studies, we
expect the oscillons to dominate the energy density.
However, unlike the early Universe, these oscillons have
sizes which make them astrophysically accessible with
novel signatures such as the existence of dark, low redshift
clusters with time-dependent configurations made of the
quintessence field. We stress that it is not guaranteed that
the Universe will become oscillon-dominated before today.
Although for the fiducial parameters, the field fluctuations
will become nonlinear before today; it can take some time
for the nonlinear field to enter a state where it is dominated
by oscillons. This time can be longer than the time between
anl and today. Quantifying this process, requires simulating
the full nonlinear dynamics of the quintessence field, in-
cluding nonlinearities of the WIMP overdensity, which is
beyond the scope of this paper. Given the similarity of the
potential with [15], we expect many of the qualitative
results to carryover. However, to perform a reliable calcu-
lation to be compared with observations, one cannot com-
pletely ignore the gravitational perturbations, which makes
the simulations somewhat more challenging.

V. POWER SPECTRA AND OBSERVABLES

With our understanding of the evolution of individual
modes and the validity of the linearized equations, we now
compute the power spectra of the gravitational potential
�2

�ðk; aÞ � k3P�ðk; aÞ=2�2 and the WIMP overdensity

P�dm
ðk; aÞ and their impact on observables such as galaxy

clustering, lensing, and the CMB.
The calculated power spectra �2

�ðk; anlÞ and P�dm
ðk; anlÞ

(with anl ¼ 0:95) are shown in Fig. 7 (thick, orange lines).
The thin, black lines show the corresponding power spectra
for the�CDM cosmology. The gray, dashed lines show the
power spectra at ai ¼ 10�2. Note that since we are using
�dm in the Newtonian gauge, P�dm

ðk; aiÞ shows an ‘‘upward
turn’’ at small k-values. By construction, the initial con-
ditions in the power spectra ��ðk; aiÞ and Pdmðk; aiÞ in our
quintessence model and �CDM agree. The scale-
dependent departures in ��ðk; aÞ arise after aosc � 0:8.
As discussed previously, the enhancement can be trusted
until anl ¼ 0:95, after which we freeze the potential until
a ¼ 1. The wave number where the maximum departures
are seen is k� 0:05m � 0:01 Mpc�1. For k � H0 and
k * m, the final spectrum closely resembles the �CDM
case. For fixed aosc, we have checked that the magnitude of
departure from�CDM increases with increasingm. This is
consistent with the notion larger m corresponds to a larger
mpl=M [see Eq. (10)], leading to more efficient resonance.

As discussed for single modes, the potential��ðk; aÞ show
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dramatic, scale-dependent departures from�CDM, but the
WIMP overdensity power spectrum does not.

Assuming a model for the bias, the WIMP power spec-
trum can be probed by measuring the two-point correlation
function of galaxies. Given the lack of scale-dependence
and the small difference ( & 6%) with �CDM, we expect
the departures from �CDM to be difficult to detect.8 The
fluctuations in quintessence are not directly observable
except through their gravitational imprint. This leaves us
with the gravitational potential as the key probe to look for
departures from �CDM. The rapidly changing potential in
the quintessence model and the large scale-dependent de-
partures at low redshifts could affect the low multipoles of
the CMB-temperature and weak-lensing power spectrum.
With this in mind, we now calculate the weak-lensing
(convergence) power spectra and the CMB-temperature
anisotropy. We remind the reader that the differences that
arise here are in spite of having made the expansion history
consistent with current observations. An expansion history
and galaxy power spectrum consistent with �CDM but
scale-dependent deviations in the lensing and CMB power
spectra provides a unique probe of a late-time transition in
the quintessence field.

A. Integrated Sachs-Wolfe effect

When CMB photons travel through an evolving gravi-
tational potential their energy changes (the intergrated
Sachs-Wolfe (ISW) effect [74]). Since the rapid growth
in the quintessence fluctuations induces large changes in
the potential, we expect imprints of the late-time quintes-
sence transition on the CMB power spectrum through the
ISW effect.
The angular power spectrum of the CMB temperature

can be written as [75]

Cl ¼ 4�
Z

d lnkD2
l ðkÞ�2

�ðkÞjprim; (33)

where �2
�ðkÞjprim is the primordial power spectrum. In the

above, DlðkÞ � �lðkÞ=�prim
k , where �lðkÞ on large angular

scales (under the assumptions of adiabatic initial condi-
tions and instantaneous recombination) is given by

�lðkÞ ¼ �SW
l ðkÞ þ �ISW

l ðkÞ

�
�
1

3
jlðk�eÞ þ 2

3

k

aeHe

j0lðk�eÞ
�
�kðaeÞ

þ
Z 1

ae

dajlðk�aÞ@a½�kðaÞ þ�kðaÞ�: (34)

In the above expression, the subscript ‘‘e’’ stands for
emission (i.e. surface of last scattering), �a ¼R
1
a da=a

2HðaÞ is the comoving distance, and jlðxÞ are
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FIG. 7 (color online). (a) Power spectrum of the gravitation potential (orange). The dashed line denotes the initial conditions at
ai ¼ 0:01, whereas the thin, black line shows the �CDM power spectrum today. Notice the scale-dependent growth of the
gravitational potential for k� 0:05m ¼ 0:01 Mpc�1, aside from which the potential decays in a manner similar to its �CDM
counterpart. (b) The WIMP power spectrum (orange line) does not show any features of the scale-dependent growth, since the
WIMPs do not have enough time to respond to the change in the gravitational potential. The difference from the �CDM counterpart
(black line) is primarily due to the difference in expansion history between the quintessence and �CDM models. The dashed line
represents 103 � Pdmðk; aiÞ. Note that since we are using �dm in the Newtonian gauge, P�dm

ðk; aiÞ shows an ‘‘upward turn’’ at small k

values.

8Note that this is reasonable since, like the WIMPs, galaxies
will not have enough time to respond to the late-time scale-
dependent quintessence fluctuations.
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spherical Bessel functions. The second term is the ISW-
term, which gets large if the potential evolves significantly
between last scattering and today. In �CDM the ISW-term
gets a small contribution just after recombination since we
are not quite matter-dominated at that time. But, the main
contribution on the scales of interest comes from late-times
as the Universe starts becoming �-dominated and the
potentials start decaying. The same effect is also present
in the quintessence model. However, there is an additional
contribution from the late-time rapid growth of the poten-
tial. This growth occurs in spurts [see Fig. 5(b)] and we can
approximate @a�k as a Dirac-delta function at the location
of the jumps in the gravitational potential. As a result, the
contribution of each jump to the ISW-term can be easily
evaluated

ðjÞ�ISW
l ðkÞ � 2jlðk�ajÞ��kðajÞ; (35)

where aj is the scale factor where the potential jumps. For

a jump of order a few �k, the ‘‘jump’’ term is larger than
the smooth ISW contribution in �CDM. Note that there
can be multiple jumps, both positive and negative depend-
ing on the kmode in question. Also note that apart from the
magnitude of the jump, the location aj also plays a role by

fixing the argument of the Bessel function.
We expect that this growth affects the low multipole

moments of the CMB since the changes in the potential
occur very recently. More specifically, the multipole
range where we expect deviations is l & k�aj , where k�
0:05m � 0:01 Mpc�1. For the fiducial parameters chosen
here, this yields l & few. Note that along with k, it is the
smallness of�aj that limits the effect to large angular scales.

In order to quantitatively calculate the effect of the
quintessence perturbations on the CMB power spectrum,
we use the �kðaÞ and �kðaÞ evaluated from CMBFAST [68]
for a < ai ¼ 0:01. This captures the contributions from
early ISW as well as early anisotropic stress (which we
ignore at late times). For a > ai, we use �kðaÞ computed
from our own independent code for �CDM and the quin-
tessence model. As discussed before, for the quintessence
case we set @a�k ¼ 0 for a > anl. With this entire solution
at hand (for ae < a < 1), we compute the �lðkÞ and Cl.
The ratio of the angular CMB power spectra for the quin-
tessence and �CDM models is shown in Fig. 8(a). Note
that this is large enough to potentially rule out this choice
of parameters. Thus, we see that in spite of the effect being
on large angular scales, ISW provides an excellent probe
for constraining the considered transition in quintessence.
One can change parameters, for example aosc or m (equiv-
alently M), to get the ISW effect small enough so that it is
consistent with observations. One has to first make sure
that such changes are still consistent with the expansion
history (see discussion in Sec. III). Increasing m or aosc or
varying m and aosc in opposite directions can lead to an
expansion history consistent with observations. Let us now
look at perturbations. In general, for a fixed aosc, as we
increase m (equivalently decrease M), the fluctuations
grow more rapidly, shifting the time when the potentials
grow rapidly to smaller a values. One might expect that
this will make the ISW contribution even larger. However,
one finds that the effect on �lðkÞ is not quite as simple.
First the change in growth of potential is quite sensitive to
the number of zero crossing of the homogeneous field. In

a

10.05.02.0 3.0 15.07.0
1

2

3

4

5

l

C
l

C
l

C
D

M

Ratio of CMB angular power spectra

b

10.05.02.0 3.0 15.07.0

1.0

1.1

1.2

1.3

1.4

1.5

l

C
l

C
l

C
D

M

Ratio of convergence power spectra

FIG. 8 (color online). (a) Ratio of CMB-temperature power spectrum at low multipoles between our quintessence and �CDM
models. The large difference is due to the rapidly evolving gravitational potential in the quintessence model after aosc (b) Ratio of the
lensing (convergence) power spectrum at low multipoles between our quintessence and �CDM models. The departures are restricted
to low l multipoles due to the proximity of the transition in the quintessence field responsible for the rapid growth in the gravitational
potential. For lensing, the model does not agree with �CDM at large l due to the different expansion histories.
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addition, changing parameters changes the wave numbers,
which grow the fastest and the time when there is a rapid
growth in the potential. Heuristically, this affects the argu-
ment of the k� of the nonmonotonic-spherical Bessel
function in�lðkÞ. Similar considerations apply to changing
aosc. As a result, it is somewhat difficult to apriori predict
which combination of parameters (consistent with the
observed expansion history) will also yield an acceptable
ISW term. Indeed we find that m � 2� 103H0 and aosc �
0:82 is entirely consistent with observations of the expan-
sion history as well as the CMB. We also find regions of
parameter space with smaller values of m but larger values
of aosc compared to the fiducial model consistent with
observations. A full sweep of parameters (including �) to
determine regions consistent with observations is beyond
the scope of this paper, but is certainly worth pursuing.

Before we move on to the calculation of the lensing
power spectrum, let us briefly comment on the additional
ISW that can result from nonlinear field evolution after anl,
ignored so far in the linearized treatment. As noted in
Sec. IVB3, the rapid growth of the linearized scalar-field
perturbations is curtailed once the field perturbations be-
come nonlinear (around anl). However, there will be further
nonlinear evolution and rapid fragmentation of the field. To
get an estimate of the resulting ISW effect, consider a
spherical perturbation with massM and radius R, collaps-
ing at speed v. Such a perturbation yields a temperature
decrement of order�GMv=R. For a sphere with an initial
radiusRnl � k�1

nl (with knl � 0:05m), an initial density com-

parable to the background energy density and v� 0:05 (the
approximate group velocity of a perturbation with wave
number knl), the decrement can be �few� 10�5 for our
fiducial set of parameters (m� 103H0). The signal is quali-
tatively similar to the Sunyaev-Zel’dovich temperature dec-
rement from galaxy clusters [76]. However, unlike
& arcmin angular scale of the SZ decrement, here, the
angular scale is �30 degrees. This simple estimate shows
that it might be possible to get additional constraints on the
quintessence transition from the ISWeffect due to the non-
linear field evolution. Individual oscillons, modeled by
density configurations with time-dependent radii �few�
m�1 can also yield an additional ISW signal on smaller
scales. We discuss a toy model for estimating the ISW
signal from such nonlinear perturbations in Appendix B.
However, we again caution the reader that these numbers
should be checked with input from detailed simulations of
the nonlinear field dynamics including gravity.

B. Weak lensing

Observational constraints from weak lensing observa-
tions are often presented in terms of the weak lensing
convergence (angular) power spectrum [77,78]

C

l ¼ 8�2

Z �e

0
d�W2ð�Þ l

�
�2

�ðk ¼ l��1; �Þ; (36)

where

Wð�Þ ¼
Z �e

�
d�0 �

0 � �

�0 �ð�0Þ; (37)

�2
�ðk; �Þ is the power spectrum of the gravitational poten-

tial and �ð�Þ is the radial distribution of sources, normal-
ized to

R
�ð�Þd� ¼ 1. We use the source distribution

�ðzÞ / z2 exp½�ð1:41z=zmedÞ1:5� (38)

with zmed ¼ 1:26. This distribution approximates the gal-
axy redshift distribution of the COSMOS survey [79]. As
with the ISW effect, because of the closeness of the tran-
sition to the present day, we expect the signal to be largest
at lowmultipoles l & k�ðanlÞ � few. The proximity of the
transition also picks out sources at approximately 2�ðanlÞ.
As a result as anl ! 1ð� ! 0Þ, we run out of sources to be
lensed. Thus in general, for a fixed enhancement of the
gravitational potential, we expect the largest lensing signal
to arise from the smallest anl still consistent with the
expansion history.
The ratio between the weak lensing convergence power

spectrum for the quintessence model and �CDM is shown
in Fig. 8(b). The errors associated with measuring the
convergence power spectrum is given by [77]:

4 C

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð2lþ 1Þfsky

s �
C

l þ

h�2
inti
�n

�
; (39)

where fsky is the fraction of the sky covered by the

survey, �n is the measured galaxy number density, and

h�2
inti1=2 � :4 is the galaxy intrinsic rms shear in one

component. Using survey parameters characteristic of
Large Synoptic Survey Telescope (LSST) (fsky � :48, �n �
5:9� 108 sr�1) [80], we find 4C


l =C


l � f:9; :26g for l ¼

f2; 30g. Hence this particular quintessence model cannot be
constrained using LSST measurements of the weak lensing
power spectrum. The weak lensing convergence power
spectrum for the quintessence model does not asymptote
to the �CDM prediction at higher l because there is a
difference in expansion history between the two models.
Even this deviation would be difficult to see using LSST
since the minimum 4C


l =C


l � 0:1 at l� 300.

Before moving on to our conclusions, we note that there
are qualitative degeneracies between observational signa-
tures (in particular, ISW at low multipoles) predicted by
our scenario and those of other models, for example,
interacting dark energy models with significant clustering
(see [60,81–83]).

VI. CONCLUSIONS

For a slowly rolling quintessence field, it is natural
(though not necessary) that the field will eventually start
oscillating at it approaches a minimum in its potential. In
this paper we have analyzed the consequences on the ex-
pansion history and structure formation of a quintessence
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field, which initially behaves like dark energy and starts
oscillating around the minimum in its potential at late
times (a * 0:8). The potentials considered in detail here
have a quadratic minimum and are shallower than qua-
dratic away from the minimum. When a spatially homoge-
neous scalar field (’) oscillates about the minimum of such
an anharmonic potential, it can pump energy into its spa-
tially inhomogeneous perturbations (�’) through paramet-
ric resonance. The amount of energy transfer depends on
both the wave number of �’ as well as the number of
oscillations that take place in the background field. This
leads to a rapid fragmentation of the homogeneous field
and rapid resonant growth of the field fluctuations on time
scales significantly shorter than H�1

0 .

In order to avoid discrepancies with the measured ex-
pansion history and to simultaneously produce oscillations
in the field, we have given a prescription for setting the
initial conditions of the quintessence field and parameters
in the potential. We have also explicitly shown that the
potentials must be close to constant during the phase where
the field is slowly rolling. Potentials that do not satisfy this
requirement have too much of a delay between the end of
slow-roll and the beginning of oscillations, thus avoiding
the rapid resonant growth of structure. Note that current
data is consistent with a cosmological constant. Our model
is in no way more natural than a cosmological constant
or other dark energy models. However, we believe that
the model’s interesting phenomenology and potentially
observable consequences warrants its study.

Given a model that produces a background expansion
history in good agreement with the measured expansion
history, we have shown how the gravitational potential and
the overdensity in WIMPs is affected by the resonant
growth of the field fluctuations. We found that the metric
perturbations develop scale-dependent growth with the

scale set by the mass of the scalar-field potential m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00ð’ ! 0Þp � 103H0 (k & 0:1m). On the other hand,

the dark matter overdensity remains featureless and very
similar to the �CDM solution aside from an overall slight
suppression because of the small difference in expansion
history between �CDM and the quintessence model. This
is because the dark matter does not have time to respond to
the changing potential. Note that scale-dependent changes
in the gravitational potential are normally attributed to
modified gravity (e.g. [84–86]). Here, however, we have
shown that such a change can occur in general relativity
with a minimally coupled quintessence field with a canoni-
cal kinetic term. Thus, if future observations find evidence
for scale-dependent growth, it cannot be attributed to
modified gravity.

The rapid growth of the potential significantly affects the
ISW contribution to the temperature angular power spec-
trum of the CMB. For a range of parameters this yields the
strongest constraint on such quintessence transitions. Since
the metric perturbation develops a scale-dependent change,

the weak lensing power spectrum also offers a possible way
to constrain this quintessence scenario, where dark energy
undergoes a late-time transition described above.
Unfortunately, because of the proximity of the decay in
dark energy, deviations from �CDM occur at low l multi-
pole moments. A full treatment, which includes nonline-
arities in the quintessence field, however, could give rise to
deviations in the weak lensing and temperature power
spectrum at larger l values.
The nonlinear dynamics of the quintessence field would

give rise to a wealth of new phenomenon including field
fragmentation and possible formation of localized scalar-
field lumps, which could provide additional observational
constraints. The full nonlinear analysis, combing N-body
simulations for the dark matter and lattice simulations for
the scalar field is beyond the scope of this paper, but
provides a promising avenue to explore quintessence tran-
sitions and their consequences further. Recall that in spite
of its strong clustering properties, our quintessence field is
minimally coupled with a canonical kinetic term and does
not have nongravitational couplings to WIMP dark matter.
This could make such models easier to simulate than
models where gravity is modified (e.g. [87–91]), interact-
ing dark energy models (e.g. [83,92–94]), nonminimally
coupled quintessence (e.g. [95,96]) or when nonstandard
kinetic terms are present.
In summary, if dark energy changes its nature close

enough to the present time, it is possible to miss it in the
expansion history measurements. For the models consid-
ered here, we have demonstrated that such a transition can
dramatically change the gravitational potential power
spectrum in a scale-dependent way but leave the galaxy
clustering unaffected, thus providing a possibly unique
signature of such a transition. The best constraints on
such transitions likely come from the ISWeffect, followed
by lensing. We expect a more involved analysis will pro-
vide additional constraints on such a transition once we
include: (i) the nonlinear collapse in WIMPs and in the
quintessence field, which will increase power on smaller
scales; (ii) couplings to other fields (ignored here). It
would also be interesting to explore similar resonant
growth in models with multiple ultralight scalar fields
(not necessarily dark energy) motivated in [97] and
studied in more detail in the context of structure forma-
tion by [98].
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APPENDIX A: FLOQUET’S THEOREM AND
CALCULATING FLOQUET EXPONENTS

The linearized equations of motion for the fluctuations,
neglecting the Hubble expansion and metric perturbation,
are (in Fourier space)

@2t �’k þ ½k2 þU00ð �’Þ��’k ¼ 0; (A1)

where k is the wave number. Since the homogeneous field
’ is oscillating, U00ð’Þ is periodic in time. This results in a
linear system with periodic coefficients can be analyzed
with Floquet theory. Floquet’s theorem is most elegantly
written in matrix form. Converting our second-order equa-
tion of motion into a first-order matrix equation, we find

@txðtÞ ¼ EðtÞxðtÞ; (A2)

where

xðtÞ ¼ �’k

@t�’k

� �
and

EðtÞ ¼ 0 1
�k2 �U00ð �’Þ 0

� �
:

Before stating Floquet’s theorem, we need one more
definition. The fundamental matrix solution Oðt; t0Þ, of
Eq. (A2) satisfies

@tOðt; t0Þ ¼ EðtÞOðt; t0Þ; Oðt0; t0Þ ¼ 1: (A3)

The fundamental matrix solution evolves the initial con-
ditions xðt0Þ in time

xðtÞ ¼ Oðt; t0Þxðt0Þ: (A4)

Explicitly, Oðt; t0Þ consists of two columns that represent
two independent solutions x1, x2, which satisfy x1ðt0Þ ¼
ð1; 0Þ and x2ðt0Þ ¼ ð0; 1Þ. Note that det Oðt; t0Þ is the
Wronskian, det Oðt0; t0Þ ¼ 1, and there are no ‘‘friction’’
terms. Hence by Abel’s Identity we have det Oðt; t0Þ ¼ 1.

We are now ready to state Floquet’s theorem (without
proof). Consider the linear system

@txðtÞ ¼ EðtÞxðtÞ; (A5)

where x is a column vector and E is a real 2� 2 matrix
satisfying Eðtþ TÞ ¼ EðtÞ for all t. The fundamental so-
lution Oðt; t0Þ is

O ðt; t0Þ ¼ Pðt; t0Þ exp½ðt� t0ÞMðt0Þ�; (A6)

where Pðtþ T; t0Þ ¼ Pðt; t0Þ and Mðt0Þ satisfies Oðt0 þ
T; t0Þ ¼ exp½TMðt0Þ�. The eigenvalues �1;2 of Mðt0Þ are
called Floquet exponents.

Since det Oðt0 þ T; t0Þ ¼ 1, we have �1 þ�2 ¼ 0.
Suppose, from now on, that �1 ¼ ��2 ¼ �. If Mðt0Þ

has two linearly independent eigenvectors e�ðt0Þ corre-
sponding to �� (including � ¼ 0), then the general solu-
tion can be written as

xðtÞ ¼ cþPþðt; t0Þe�ðt�t0Þ þ c�P�ðt; t0Þe��ðt�t0Þ; (A7)

where P�ðt; t0Þ ¼ Pðt; t0Þe�ðt0Þ are periodic column vec-
tors. If there exists only one eigenvector corresponding to
the repeated eigenvalue � ¼ 0, then the general solution
becomes

xðtÞ¼cþPþðt;t0Þþc2½ðt� t0ÞPþðt;t0ÞþP gðt;t0Þ�; (A8)

where P gðt; t0Þ ¼ Pðt; t0Þegðt0Þwith egðt0Þ is a generalized
eigenvector.
From above discussion, we have exponentially growing

solutions if the real part of the Floquet exponents <½�� �
0. In order to calculate Floquet exponents ��, it is useful
to consider the eigenvalues �� of Oðt0 þ T; t0Þ called
Floquet multipliers. Since detOðt0 þ T; t0Þ ¼ 1, then�þ �
�� ¼ 1. They are related to the Floquet exponents via
�� ¼ e�T�. In general � and �� are complex. Using
�� ¼ j��jei�� and �þ � �� ¼ 1, we have

� ¼ 1

T
½lnj�þj þ i�þ� ¼ � 1

T
½lnj��j þ i���:

Thus, <½�� � 0 if j��j � 1.
Calculating the Floquet exponents explicitly for the

problem at hand reduces to the following steps:
(1) First we calculate the period T of U. The period of

UðtÞ depends on the initial amplitude of the homo-
geneous field �’ðt0Þ (assuming @t �’ðt0Þ ¼ 0) and is
given by

Tð �’maxÞ ¼ 2
Z �’max

�’min

d �’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð �’maxÞ � 2Vð �’Þp : (A9)

In practice, we specify either �’max or �’min. The
other is found by solving Vð �’minÞ ¼ Vð �’maxÞ. For
Vð’Þ ¼ Vð�’Þ we have �’max ¼ �’min.

(2) Next we solve @tOðt; t0Þ ¼ EðtÞOðt; t0Þ from t0 to
t0 þ T to obtain

Oðt; t0Þ ¼
�’ð1Þ

k ðt0 þ TÞ �’ð2Þ
k ðt0 þ TÞ

@t�’
ð1Þ
k ðt0 þ TÞ @t�’

ð2Þ
k ðt0 þ TÞ

0
@

1
A;

where f�’ð1Þ
k ðt0Þ¼1;@t�’

ð1Þ
k ðt0Þ¼0g and f�’ð2Þ

k ðt0Þ¼
0;@t�’

ð2Þ
k ðt0Þ¼1g. This is equivalent to solving

@2t ’k þ ½k2 þ V 00ð �’Þ��’k ¼ 0 for the above two
sets of initial conditions from t0 to t0 þ T. We have
suppressed the dependence of T on �’max to reduce
clutter.

(3) Last, we find the eigenvalues of Oðt0 þ T; t0Þ. They
are
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��ðkÞ ¼ �’ð1Þ
k þ @t�’

ð2Þ
k

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�’ð1Þ

k þ @t�’
ð2Þ
k g2 þ 4�’ð2Þ

k @t�’
ð1Þ
k

q
2

;

(A10)

where all quantities are evaluated at t0 þ T. Note
that since the �’kðt0 þ TÞ depends on k, the eigen-
values also depend on k. The Floquet exponents��
are then given by

��k ¼ 1

T
ln

�
�’ð1Þ

k þ @t�’
ð2Þ
k

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�’ð1Þ

k þ @t�’
ð2Þ
k g2 þ 4�’ð2Þ

k @t�’
ð1Þ
k

q
2

�
:

(A11)

APPENDIX B: ISW EFFECT FROM NONLINEAR
DYNAMICS OF THE QUINTESSENCE FIELD

In the main body of the text, we discussed how the
quintessence field fluctuations grow rapidly during the
oscillatory regime. This rapid growth leads to a scale-
dependent growth in the gravitational potential which in
turn leads to large changes in the CMB-temperature an-
isotropies via the integrated Sachs-Wolfe effect (see
Sec. VA). However, after anl � 0:95 the field perturbations
become nonlinear and the homogeneous field fragments
rapidly, potentially forming long-lived, localized excita-
tions of the field called oscillons. Our linear analysis did
not include the ISW effect resulting from the nonlinear
evolution of the field perturbations. In this Appendix, we
remedy this by estimating the change in the CMB-
temperature due to the following:

(i) The change in the gravitational potential from the
initial quasi/nonlinear evolution of the field
perturbations.

(ii) The time varying gravitational potential due to an
isolated oscillon after it is formed.

Let us first look at the ISWeffect from the initial evolution
of quasi/nonlinear perturbations. A realistic calculation
requires input from detailed simulations of the nonlinear
field dynamics (for example, [15]). Here we concentrate on
a related toy problem of calculating the ISW effect due to
the collapse of a single, spherical top-hat overdensity. This
represents a crude approximation to the initial rapid quasi/
nonlinear evolution of density perturbations associated
with our model of quintessence. Later, we will evaluate
the CMB-temperature anisotropies from the ISWeffect due
to a stable oscillonlike configuration. Since the Universe
expands very little between anl � 0:95 and a ¼ 1, we will
work in a Minkowski background. Our main purpose is to

obtain an order of magnitude estimate and understand how
the effect depends on aspects of nonlinear evolution.
Consider a spherical mass M with uniform density

and a time-dependent radius RðtÞ located at xc. The gravi-
tational potential due to this mass is given by

�ðt;xÞ ¼
8><
>:
� GM

jx�xcj jx� xcj> RðtÞ;
GM
2R

�
jx�xcj2

R2 � 3

�
jx� xcj 
 RðtÞ:

The partial-time derivative of this potential is

@t�ðt;xÞ ¼ 3GM _R

2R4
u�ðuÞ; (B1)

where u ¼ R2ðtÞ � jx� xcj2 and� is the Heaviside func-
tion. The change in the CMB temperature due to a time-
varying potential (ISW term) is

�TðnÞ
T

¼ 2
Z t0

tnl

dt@t�ðt;xÞjx¼ðt0�tÞn; (B2)

where n is a unit vector that defines observer’s line of sight,
t0 is the time since last scattering � 0:99H�1

0 , and we

replace x by ðt0 � tÞn since light travels on null geodesics.
We have ignored anisotropic stress here (� ¼ �). Note
that the time of integration starts at tnl � 0:94H�1

0 (corre-

sponding to anl � 0:95) since nonlinear perturbations do
not exist beforehand.
Let us consider ‘‘linear’’ collapse, i.e.

RðtÞ ¼ Rnl � vðt� tnlÞ; (B3)

where 0< v< 1. This yields

u¼ð1�v2Þðtþ� tÞðt� t�Þ; t�¼ tc�vðRnlþvtnlÞ�rc
1�v2

;

(B4)

where tc ¼ t0 � xc � n ¼ t0 � jxcj cos�, Rc ¼ RðtcÞ, rc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
c � ð1� v2Þjxcj2sin2�

p
, and � is the angle between n

and xc. Note that t� and tþ denote the time a light ray
enters and exist the spherical mass. With these definitions
at hand, the integral over time in Eq. (B2) can be evaluated
analytically. In particular, if tnl < t� < tþ < t0 (and Rc >
0) we find

�TðnÞ
T

¼ � 4GMvð1� v2Þ2r3c
ðR2

c � vr2cÞ2
: (B5)

Recalling that rc and Rc depend on the angle �, the above
expression shows that we should expect a cold-spot in the
CMB, with an angular size �Rc=jxcj. The anisotropy is
negative and maximal when � ¼ 0; when the light ray
passes through the center of the mass distribution

�TðnÞ
T

��������max
¼ � 4GMv

Rc

: (B6)

The result depends only on the size of the sphere Rc when
the light passes through its center, the speed of collapse v
and the massM. To obtain an order of magnitude estimate,
we use our fiducial set of parameters. We choose an initial
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perturbation of size Rnl � k�1
nl � ð0:05mÞ�1 � 0:02H�1

0

see Sec. IVB2 and IVB3), with density of order the critical
density. We put the perturbation a distancejxcj ¼ 0:03H�1

0

from us (corresponding �ðt0 � tnlÞ=2) and impose that it
collapses with v� 0:05 (the approximate group velocity of
a perturbation with wave number knl). We get

�TðnÞ
T

��������max
�� 4� 10�5; (B7)

which could provide additional constraints on our models.
This signal is qualitatively similar to the Sunyaev-
Zel’dovich temperature decrement from galaxy clusters
[76]. However unlike & arcmin angular scale of the SZ
decrement, here the angular scale is �30 degrees. As can
be checked, the conditions tnl < t� < tþ < t0 and Rc > 0
are satisfied for the above-mentioned parameters. We re-
mind the reader that this is merely an estimate based on a
spherical top-hat collapse. The actual nonlinear field evolu-
tion can be more complicated. In addition, the amplitude of
the effect depends on the parameters in a nontrivial manner.
Nevertheless, this exercise shows that it is indeed interesting
to pursue the nonlinear evolution of the scalar-field pertur-
bations in detail.

Let us now consider the ISW effect resulting from the
time-varying potential associated with a single oscillon.
Based on our numerical solutions (radial only), oscillons
with a central field amplitude of order M9 and width of
order few m�1 have a peak energy density of order m2M2

and an energy density profile that breathes in and out. This
is in contrast with a fixed-energy density profile often used
in the oscillon literature. For an oscillon, crudely approxi-
mated by the a top-hat density configuration, we take

RoscðtÞ � 2m�1

�
1þ 1

4
sin2½mtþ��

�
; (B8)

where for our fiducial modelm� 103H0. We stress that the
actual energy density profile of oscillons in our model is
more complicated. The energy density profile resembles a
Gaussian when the central-field amplitude is at its maxi-
mum, but becomes flatter when the field amplitude passes

through zero. As a result, a calculation based on realistic
oscillon profiles could be somewhat different from the
estimates below.
Unlike the linear collapse case, we did not find a simple

analytic expression for the ISW contribution from individ-
ual oscillons. Evaluating it numerically, we find that for our
fiducial set of parameters and assuming that the energy
density within oscillons ��m2M2 � 3H2

0m
2
pl, we get

�TðnÞ
T

��������max
��GMoscm� 10�2 ��10�7: (B9)

We have assumed that the oscillon is located at jxcj �
0:03H�1

0 . The shape of the anisotropy pattern is ringlike.

The phase of the radial oscillation � determines whether
the center has a temperature decrement or increment. Note
that the radius associated with an individual oscillon is
small compared to the quasilinear perturbations considered
earlier in this Appendix (by an order of magnitude). As a
result, one expects a smaller effect if one assumes that their
density is still comparable to the average cosmological
density. In addition, since the light crossing time is com-
parable to the oscillatory time scale of the energy density
configuration, the ISW-term undergoes cancellations, lead-
ing to a somewhat smaller ISW effect than what would be
expected on purely dimensional grounds. Thus we expect
the ISW contribution from individual oscillons to be
smaller (and more localized) than that from the rapid
collapse of nonlinear perturbations.
Before we end this Appendix, we would like to comment

on a caveat regarding the emergence of oscillons. Our linear
analysis in the main body of the paper revealed that pertur-
bations become nonlinear at anl. While the nonlinear per-
turbations will form oscillons eventually, it is worth asking
whether we can see them as large overdensities with indi-
vidual identities by today. To unambiguously understand
the time scales associated with emergence of oscillons
would require a full lattice simulation, which is beyond
the scope of this current paper. Our analysis here indicates
that it is certainly worth exploring this further. While here,
we have concentrated on isolated inhomogeneities, it would
be interesting to look at the combined effect of a collection
of such inhomogeneities (with a number density of order
ðknl=2�Þ3) [9], which would be closer to the actual
scenario.
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