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Cost-Efficient Fiber Connection
Topology Design for Metropolitan Area

WDM Networks
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Abstract—In this paper, we provide some analytical
insights into physical architectures that can serve as
benchmarks for designing a cost-efficient WDM met-
ropolitan area network (MAN). For uniform all-to-all
traffic and regular topologies with nodal symmetry,
we identify a class of regular graphs—Generalized
Moore Graphs—that have several attractive proper-
ties by formulating a first-order cost model and char-
acterizing the tradeoff between fiber and switching
resources. Our results show that, in conjunction with
minimum hop routing, Moore Graphs achieve the
minimum cost and simultaneously use the least num-
ber of wavelengths. We also take steps to broaden the
scope of our work by addressing irregular network
topologies, which represent most existing networks.
Our results show that Generalized Moore Graphs can
be used to provide useful estimates of the cost of ir-
regular networks and can serve as good reference ar-
chitectures for the designs of practical networks.

Index Terms—Metropolitan area network (MAN);
Optical cross-connect (OXC); Generalized Moore
Graph; Regular topology; Routing and wavelength as-
signment (RWA); Network optimization.

I. INTRODUCTION

D espite significant build-ups in network infra-
structures over the past decade to support the in-

creasing digital demands, traffic volume is still ex-
pected to have tremendous growth in the foreseeable
future. To keep up with the rising traffic volume, car-
riers have deployed huge capacity in the long-haul
networks. Meanwhile, end users’ access to higher data
rates is still costly [1]. As a viable solution to bridge
the gap between the bandwidth glut at the backbone
and the high access cost, optical-cross-connect-based
lightpath switching and other enabling technologies
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re currently incorporated with existing electronic
outing and switching to lower both capital expendi-
ures (CapEx) and operational expenditures (OpEx).
onetheless, only through a careful design of the cor-

esponding network architecture can the potential of
hese technologies be realized. Since the characteris-
ics of optical devices are quite different from those of
lectronic devices, the architectures optimized for op-
ical switching paradigms will not be the same as the
outer-centric network architectures that are widely
dopted for today’s Internet. As such, efficient optical
etwork architectures that truly take advantage of
DM technology need to be created, especially from

he perspective of cost scalability. The ultimate goal is
o design networks that not only require a low initial
apital investment, but also have good scalability—a
ecreasing cost-per-node-per-unit-traffic as user num-
er and transaction size increase.
In this paper, we focus on the optimization of WDM

etwork architectures, which are for the most part
verlooked by previous research but crucial for the ob-
ective of providing high bandwidth to end users at
ow cost. As a followup to our previous research [2–4],
n this work we continue our effort in searching for
ost-effective network architectures over the solution
pace that embodies key aspects of an optical network:
ber connection topologies, physical layer switching,
outing and wavelength assignment (RWA), etc.

. Problem Formulation, Solution Complexity, and
pproach

Similar to our previous work [2], we focus on a
reenfield design scenario in a metropolitan environ-
ent. The question we ask is, given the locations of

etwork nodes and the traffic demand matrix (or a
ange of matrices), how can we minimize the total net-
ork cost (capital investment) over the following de-

ign elements:
• Network fiber connection topologies. The cable

plant topologies (also known as physical topolo-
gies in most research literature, as illustrated in
Fig. 1) are determined by factors such as specu-
lated traffic and rights of way. How these fibers
2009 Optical Society of America
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(inside the cables) are connected (via fiber patch
panels) to form the fiber connection topologies is
a key design element that has significant lever-
age on the network cost. In our research, we op-
timize over two aspects of fiber connection
topologies—node degree (connectivity) and con-
nection rules (patterns).

• Dimensioning switching resources and selecting
switching architectures. A lightpath that
traverses multiple physical hops has to be
switched at intermediate nodes. As such, sizing
the switching resources to support the given traf-
fic demand (on a given fiber connection topology)
is crucial. Also, the switching mechanism comes
in different forms, such as optical-electrical-
optical (OEO) switching or all-optical switching.
With different switching technologies, the cost of
an optical switch scales differently as a function
of the port count. For example, for 3-dimensional
(3-D) MEMS switching architecture the cost can
be modeled approximately as a linear function of
the number of ports; while 2-dimensional (2-D)
MEMS switching architecture has a quadratic
cost structure [2]. In addition to the cost scalings,
parameters, such as cost per port, play an equally
important role in the switching cost. From the
perspective of designing a cost-effective optical
network, properly dimensioning the switching re-
sources and choosing a suitable switching mecha-
nism are also important.

• Routing and wavelength assignment (RWA). In
designing optical networks, the demands among
node pairs are first mapped into a set of light-
paths. For a given network fiber connection topol-
ogy, we need to decide how to establish these
lightpaths through routing and assigning a wave-
length for each lightpath. When wavelength con-
tinuity constraint (the same wavelength must be
used on every fiber along the route of a lightpath)
is enforced, the RWA problem is quite difficult to
solve, as will be addressed later in Section V.

These design elements are inter-related. Ideally they
are considered jointly in the optimization process in
order to achieve good performance.1 The design of
such scalable optical networks belongs to a class of
problems known as combinatorial optimization, for
which the number of feasible solutions increases rap-
idly as the size of the input increases. Among the de-
sign subproblems (design elements), the topology de-
sign problem itself has a complexity of O�2N2

� [5]. For
the RWA subproblem, the solution can be found via
solving jointly a multi-commodity flow problem and
an equivalent node-coloring problem [6]. The node-
coloring problem is shown to be NP-complete [7]. In

1In this paper, we only solve the joint problem for Generalized
Moore Graphs.
ddition to the topology and RWA problems, we also
eed to consider the problem of selecting switching ar-
hitectures and dimensioning switching resources.
his will further increase the complexity. As a result,
ia brute force the global optimum solution can be ob-
ained only for very small networks (e.g., for N�8)
8].

When the size of a design problem becomes large,
he required computation can be prohibitive. As such,
ome recent research, such as [6,9], focuses on design-
ng efficient algorithms to reduce the computation
omplexity. In our research, we are more interested in
valuating how the cost affects and drives architec-
ural tradeoffs, rather than in finding solutions for
pecific network design problems. Therefore, we take
n analytical approach in most parts of the paper by
ocusing on networks with symmetric and well-
efined structures (i.e., regular networks) and sym-
etric traffic patterns (e.g., all-to-all uniform traffic).
hese assumptions and simplifications keep the
nalysis tractable. The analytical solutions obtained
an show in concise form the relationships among key
etwork design parameters, thus providing valuable

nsights and references as points of departure for the
nal design. Moreover, we find that in many cases
nalytical results obtained under regular topology
nd uniform traffic assumptions can be extended to
valuate the performance of irregular networks under
rbitrary traffic patterns, for which analytical results
re difficult to derive directly.

. Main Results

Our previous research has been focusing on design-
ng fiber connection topologies. In [2] we set up a first-
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ig. 1. We can set up a fiber connection between two nodes that
re not directly linked by a cable (e.g., node 1 and node 2), using
ber patch panels (at node 3), as shown in (a). These fiber connec-
ions constitute network physical (fiber) topology, as shown in (b).
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order cost model and formulate a cost minimization
problem for the purpose of characterizing the
tradeoffs between fiber and switching resources. Us-
ing various optimization techniques, we have found
that for regular networks and uniform traffic, the
joint design problems of physical topology, dimension-
ing, and routing can be solved optimally and analyti-
cally. We prove that with minimum hop routing, Gen-
eralized Moore Graphs, whose average minimum hop
distances scale favorably as log� N, achieve the lower
bound on network cost and are good reference topolo-
gies. We also show that topologies with structures
close to Generalized Moore Graphs can achieve close-
to-minimum cost. The investigation of the cost scal-
ability further demonstrates the advantage of the
Generalized Moore Graphs and their close relatives as
benchmark topologies: the minimal normalized cost
per unit traffic decreases with increasing network
size.

Throughout this paper, we continue to address the
theoretical underpinnings of the scalable network de-
sign problem with tools of graph theory and convex
optimization. The major results are summarized as
follows.

We first investigate to what extent wavelength re-
sources can be efficiently dimensioned to support uni-
form traffic for a given regular network, especially
when wavelength conversion is not available. Further
exploration of the important properties of Generalized
Moore Graphs in conjunction with minimum hop rout-
ing indicates that, even without wavelength conver-
sion, supporting a given traffic demand requires a
minimum (or near minimum) number of wavelength
channels. In other words, wavelengths can also be ef-
ficiently provisioned for these Generalized Moore
Graphs. Our previous and new results imply that, by
routing traffic via minimum hops, Generalized Moore
Graphs achieve the minimum cost and simulta-
neously require the minimum (or near minimum)
number of wavelengths.

We also set up a cost model for OEO-switched WDM
networks and compare the relative cost benefits of de-
ploying OXC or OEO switches in the network. Our re-
sults show that at low data rates, it is economical to
use OEO switches; at high data rates, it is more cost-
advantageous to use OXC switches.

As a natural extension of our previous work [2], we
are also interested in finding a class of regular topolo-
gies that provides upper bounds on the average hop
distance and network cost. We identify that a class of
graphs, (one-sided) �-nearest neighbors topologies—
first constructed in [2], can provide such bounds.

We further expand our work by looking into irregu-
lar network topologies and (static) non-uniform traffic,
which represent most existing networks. We show
hat if the switching cost is linear with port counts,
inimum hop routing is still optimal. The results of
eneralized Moore networks can be used to provide
seful estimates for the cost of irregular networks.
lso, the unique structure of a Generalized Moore
raph—each of its nodes has a full (or almost full)
-ary routing spanning tree—can be exploited to sug-
est improvements for irregular physical topologies.
he study of the constructions of Generalized Moore
raphs yields a general yet crucial design guideline

for irregular topology and arbitrary traffic): a cost-
ffective physical topology should minimize the propa-
ation of large traffic flows. Based on this principle,
e also propose a topology design algorithm. The pre-

iminary tests show that the networks generated by
he algorithm have minimum or close to minimum
ost.
The rest of the paper is organized as follows: In Sec-

ion II, we first introduce the models for fiber connec-
ion topology, with emphasis on reviewing the concept
f Generalized Moore Graphs. In Section III, we sum-
arize the network cost model of OXC-switched WDM

etwork and introduce the cost model for OEO-
witched WDM networks. In Section IV, we discuss
-nearest neighbors topologies as a class of regular to-
ologies that provides upper (worst case) bounds on
verage hop distance and network cost. We also com-
are the relative cost benefits of deploying OXC or
EO switches in the network. In Section V, we explore

he RWA for Generalized Moore Graphs. We prove
hat minimum hop routing also minimizes the num-
er of wavelength channels for Moore Graphs. In Sec-
ion VI, we elaborate on how to extend the results of
ymmetric regular networks to assess the cost effi-
iency of irregular networks.

II. NETWORK MODELS

This section briefly describes the graph theoretic
odels for WDM networks to provide necessary back-

rounds and notations before the introduction of the
ain topics. The materials presented in this section

re largely drawn from previously published works
2–5]. More detailed descriptions can be found
herein.

. Cable Plant Topology, Fiber Connection Topology,
nd Regular Topologies

To first order, the physical architecture of an optical
etwork consists of cable plants, with each cable con-
aining many fibers, and optical switches that are in-
erconnected by the cables, as illustrated in Fig. 1.
uch a cable plant layout is called the cable plant to-
ology, which is determined by speculated traffic and
arget of opportunities for affordable rights of way, as
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well as other factors, such as bi-lateral agreements be-
tween the carriers. How the fibers within the cables
are connected is called the physical (fiber) topology,
which is a key design element that is largely up to the
network designer.

We follow the practice of representing a WDM mesh
network as a (directed or undirected) graph G�V ,E�.
Vertices V (or nodes) represent the optical switches,
and (directed or undirected) edges E represent the fi-
ber connections. A path from a source node to a desti-
nation node consists of several edges. We call the
number of edges of a path the number of hops.

The network physical topologies can be broadly
classified into two categories: regular and irregular
(arbitrary). In our research, we mostly focus on regu-
lar topologies, since with their symmetric and well-
defined connectivity pattern, they are analytically
more tractable than irregular ones. Regular topologies
are fair representations for MANs and local area net-
works (LANs), but can only be used as references for
wide area networks (WANs). For an irregular cable
plant topology, a regular fiber connection topology can
be constructed on top of it by connecting fibers via a
static patch panel, as illustrated in Fig. 1. The analy-
sis of such constructed regular topologies can provide
estimates for the irregular ones. A detailed study of
the irregular topologies by this method will be pre-
sented in Section V.

In the graph theory literature, regular topology is
defined differently in various contexts. As in [2–4], we
provide our definition of regular topology to cover a
broad class of topologies that exhibit symmetric and
well-defined structures. We say that a topology is
regular of node degree �, when it satisfies the follow-
ing conditions:

• There are � outgoing edges from and � incoming
edges to each of its nodes.

• Each node links to � other nodes following the
same set of (predefined) connectivity rules. In
other words, the regular topologies studied in
this work have nodal symmetry.

• A topology needs to be �-connected. That is, n�i�
��, 1� i�D−1, as defined in [10]. In this defini-
tion, n�i� denotes the number of nodes that are i
hops away from a node via minimum hop routing;
D denotes the diameter of a topology—the maxi-
mum distance among all possible node pairs via
minimum hop routing.

Besides node degree, diameter, and connectivity
rule, some other parameters are also used to charac-
terize a regular topology:

• The average minimum hop distance Hmin be-
tween node pairs is an important quality mea-
sure for a network. For a regular topology of N
nodes, H can be expressed as
min
Hmin =
1

N − 1�
i=1

D

in�i�. �1�

Hmin is usually used as an indicator of the propa-
gation delay performance of a network [11]. In
[2], we show that it can also be interpreted as a
measure for the switching and wavelength re-
sources required for supporting uniform all-to-all
traffic. As such, Hmin serves as a fundamental pa-
rameter.

• The load of an edge is defined as the number of
source–destination pairs using this edge. Obvi-
ously, for a given network and traffic demand, the
load depends on the routing strategies. The maxi-
mum load of an edge of G�V ,E� provided by a
routing is called congestion.

. Generalized Moore Graph and Moore Graph

Generalized Moore Graphs, with Moore Graphs as
pecial cases, are known to achieve the lower bounds
also called Moore Bounds) on the average hop dis-
ance among regular topologies with the same number
f nodes and node degrees [12,13]. To get a better un-
erstanding as to why Generalized Moore Graphs pro-
ide the lower bounds on average hop distances, we
tudy their routing spanning trees (a spanning tree is
connected subgraph that includes all the nodes and

as no cycles). Using the Petersen Graph (a Moore
raph, shown in Fig. 2) and the Heawood Graph (a
eneralized Moore Graph, shown in Fig. 3) as ex-
mples, we note that nodes can be efficiently “packed”
n the routing spanning trees. For a Moore Graph,
ach node can reach other nodes in a fully populated
-ary minimum hop routing spanning tree; while for a
eneralized Moore Graph, the routing spanning tree

s full at each level except possibly the last. There ex-
sts a rich class of directed [13] and undirected [13]
eneralized Moore Graphs. For example, in [14] di-

ected Generalized Moore Graphs with size up to 100
re constructed for �=3, �=4, and �=5. Regular
raphs, such as Shuffle Nets [15], de Brujin Graphs
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ig. 2. (a) The Petersen Graph with N=10, �=3, and D=2; (b) the
outing spanning tree from node 1.
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[15], and Kautz Graphs [15],2 are known as close rela-
tives to Generalized Moore Graphs in the sense that
they have average hop distances that either satisfy or
are very close to those of Generalized Moore Graphs.
As such, Generalized Moore Graphs and their close
relatives provide sufficient instances that could serve
as starting points for the final design of networks.

At this stage, we should note that the existence of
(strict) Moore Graphs is nevertheless rare, due to the
stringent requirement for their constructions. Di-
rected Moore Graphs exist only for trivial cases where
�=1 or D=1 [16]. Undirected Moore Graphs include
full (complete) graphs, rings (with odd number of
nodes), the Petersen Graph, and the Hoffman–
Singleton Graph (with N=50, �=7, and D=2) [17].3

Moore Graphs also exhibit good properties in load
distribution under minimum hop routing and uniform
traffic. We will discuss these properties in detail in
Section V, in the context of solving RWA problems.

III. COST MODEL

To make this paper self-contained, we summarize
the first-order network cost model, part of which was
presented in [2–4]. We also introduce a cost model for
electronic switches (which was not included in our
previous work), for the analysis of relative cost ben-
efits of optical and electronic switching in Section IV.

A. Fiber Connection Cost

As mentioned in Sections I and II, by using fiber
patch panels we can set up a fiber connection between
two nodes that are not directly linked by a cable. In a
metro environment, a fiber connection spans a much
shorter distance than that in a wide area network;
thus amplifiers, which dominate the long haul fiber
connection costs, are not required in general. As such,

2Some de Brujin Graphs and Kautz Graphs are optimal for Moore
Bounds.

3A Moore Graph with �=57 and D=2 may exist, though its con-
struction has not been realized yet [17].
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Fig. 3. (a) The Heawood Graph with N=14, �=3, and D=3; (b) the
routing spanning tree from node 1.
e can assume that all fiber connections have ap-
roximately the same cost. Let Cf denote the cost as-
ociated with fiber connections in the network, and we
ave Cf as a linear function of N and �,

Cf = �N�, �2�

here the proportional coefficient � is denoted as the
arginal cost of a new fiber connection. Note that de-

ending on whether the cable plants pre-exist or not,
e assign the marginal cost of a fiber connection dif-

erently. For a MAN, the cost for a fiber connection is
stimated in the range of $2 k–$25 k/km, and a typi-
al fiber length is in the range of 5 to 20 km. Thus � in
q. (2) is in the range of $10 k–$500 k/fiber.

. Modeling the Costs of OXC and OEO Switches

) The Sizes of OXC and OEO Switches: To first order,
he capacity of an OXC is independent of the actual
ata rate r of each wavelength. As shown in [2], the
ize of a switch Ko, which equals the sum of the num-
er of lightpaths that pass-through and add-drop at
ach node, can be obtained as

Ko�N,�,t� = t�N − 1��Hmin�N,�� + 1�. �3�

From Eq. (3), we note that if a wavelength carries a
ata rate of r Gb/s, the total traffic switched at each
ode, in the unit of Gb/s, is t�N−1�r�Hmin�N ,��+1�.
ifferent from an OXC switch, the port count of an
EO switch depends on the data rate per wavelength

. Derived via a fashion similar to that of Eq. (3), the
umber of required OEO switching port Ke as a func-
ion of rate R and the port utilization � is [5]

Ke�N,�,t,r,R,�� =
t�N − 1�r�Hmin�N,�� + 1�

R�
. �4�

) The Cost Models for OXC and OEO Switches: We
odel the cost of an OXC as a function of the number

f switching ports required. Since the traffic is all-to-
ll and the topologies are regular, we can assume that
he size of the OXC at each node is the same. If there
re Ko lightpaths to be switched, added, and dropped
t a node, the OXC needs at least Ko input ports and
o output ports. For simplicity of analysis, we assume

hat OXCs have strictly non-blocking switching fab-
ics. We also temporarily suppress the wavelength
ontinuity constraint [2] so that Ko ports are enough
o switch lightpaths without causing any blocking on
he network. The cost of OXC scales differently for dif-
erent types of switching architectures. Table I lists
he first-order cost functions corresponding to these
witching fabrics: 3-D, multi-stage, and 2-D OXC. In
his table, ��0���1�, ��0���1�, and 	�0�	�1� are
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coefficients associated with reliability and yield issues
in the manufacturing of 3-D, multi-stage, and 2-D
OXC switches, respectively.

As stated in Eq. (3), Ko is a function of network size
N, node degree �, and wavelengths of traffic t between
node pairs. Let Cs

o denote the cost of OXC, and Cs
o is

given by

Cs
o = NFi�Ko�N,�,t�� = NFi�t�N − 1��Hmin + 1��,

i � �1,2,3�, �5�

where i indexes the switch type and therefore 
1, 
2,
and 
3 are scaling factors (cost per port) for 3-D,
multi-stage, and 2-D switching fabrics, respectively.

We model the cost of an OEO switch as a linear
function of the number of OEO switching ports Ke:

Cs
e = 
eKe�N,�,t,r,�� = 
e

t�N − 1�r

R�
�Hmin�N,�� + 1�,

�6�

where 
e is the per port cost of an OEO switch. We set

e at $40 k/port for a 2.5 Gb/s interface and
$80 k/port for a 10 Gb/s interface, respectively, based
on the estimate in [18].

C. Network Cost

For a network equipped with an OXC, according to
Eqs. (2) and (5), the total network cost C is

C = Cf + Cs
o = N��� + Fi�Ko�N,�,t���, i � �1,2,3�.

�7�

The total cost can be further normalized as cost per
node—normalized network cost:

Cn =
C

N
= ��� + Fi�Ko�N,�,t���, i � �1,2,3�, �8�

and cost per node per unit traffic—normalized net-
work cost per unit traffic

Cn/t =
Cn

t
=

��� + Fi�Ko�N,�,t���

t
, i � �1,2,3�. �9�

Similarly, for a network equipped with OEO switches,
the normalized network cost per unit traffic is

TABLE I
COST OF OXC SWITCHING ARCHITECTURE AS FUNCTIONS OF

THE NUMBER OF PORTS KO

Switching Architecture Cost Function

3-D F1�Ko�=
1Ko
1+�

Multi-stage F2�Ko�=
2Ko
1+�log2Ko

2-D F3�Ko�=
3Ko
2+	
Cn/t =
Cn

t
=

��� + 
eKe�N,�,t,r,���

t
. �10�

IV. SCALABLE NETWORK ARCHITECTURES

. Network Topologies That Provide a Lower Bound
n Network Cost

Using the network cost models, we formulate the
hysical topology design problem as an optimization
ver the type of symmetric regular topology (denoted
s “tpl.” in the formulation), the routing algorithms
denoted as “r.a.” in the formulation), and the network
ode degree �. The formulation has a general form as

ollows:

min
�tpl.�,�r.a.�,�

Cn�N,�,t�

s.t. 2 � � � N − 1;

� � Z+;

N and t are given. �11�

s shown in [2–4], we have found that for regular net-
orks and uniform traffic, the joint design problem of
ber connection topology, dimensioning, and routing
an be solved optimally and analytically for a special
lass of regular graphs—Generalized Moore Graphs.
hat is, we proved that with minimum hop routing,
eneralized Moore Graphs, whose average minimum
op distances scale favorably as log� N, achieve the

ower bound on network cost and are good reference
opologies. We also showed that topologies with struc-
ures close to Generalized Moore Graphs can achieve
lose-to-minimum cost.

. Network Topologies That Provide an Upper Bound
Worst Case) on Network Cost

As a natural extension of our previous work [2], we
re also interested in finding a class of regular topolo-
ies that provides upper bounds (worst case) on the
verage hop distance and network cost. It turns out
hat (one-sided) �-nearest neighbors topologies
shown in Fig. 4), a circulant graph [6] in which each
ode connects to its � closest (one-sided) neighbors in
cyclic fashion, can achieve such bounds. To see why
-nearest neighbors exhibit relatively large average
op distances, we study them from the point of view of
heir routing spanning trees. As illustrated in Fig.
(b), the nodes are not efficiently packed: each level is
acked with only � nodes—the minimum requirement
o maintain the connectivity. As a comparison, a Gen-
ralized Moore Graph packs ���−1�i−1 nodes at the
th level �i�D−1�. By making connections between
heir properties of average hop distance and switching
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cost model, we identified that �-nearest neighbors
yield cost upper bounds (the proof is omitted for brev-
ity). This result is summarized as follows:

Theorem 4.1: A �-nearest neighbors topology pro-
vides an upper bound on the average minimum hop
distance among all regular topologies with the same
node number and node degree. Moreover, �-nearest
neighbors topologies also achieve the upper bounds on
the network cost under uniform traffic.

C. Comparisons of OXC and OEO Switches

The focus of this subsection is to compare the rela-
tive cost benefits of deploying OXC or OEO switches
in the network. As stated in Section III, the cost of an
OEO switch depends also on the port rate R and data
rate per wavelength r, while the cost of an OXC switch
can be considered as rate independent. Figure 5 plots
the minimal normalized network cost per unit traffic
per data rate Cn

* /r as a function of data rate per wave-
length for combinations of two classes of network to-
pologies (�-nearest neighbors and Moore Graphs) and

1

23
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6
7 8

9
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1

2 5

107

3 96

1st
Level

2nd
Level

3�D

Source 3rd
Level

4

8

(a) (b)

Fig. 4. (Color online) (a) (One-sided) �-nearest neighbors topology
with N=10, �=3, and D=3; (b) routing spanning tree from node 1.
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Fig. 5. Minimum normalized network cost as a function of data
rate per wavelength for combinations of two classes of network to-
pologies (�-nearest neighbors and Generalized Moore Graphs) and
two types of switching fabrics (OEO switch and 3-D OXC). N=50,
�=20, 
 =1, and 
 =7.5.
1 e
wo types of switching fabrics (OEO switch and 3-D
XC). The network size, fiber connection cost, OEO
er port cost, and 3-D OXC per port cost are set as
=50, �=20, 
e=7.5, and 
1=1, respectively. We also

ssume that there is one wavelength of traffic be-
ween each node pair, i.e., t=1. This plot demonstrates
hat at low data rates (e.g., �1 Gb/s per node pair) it
s economical to use OEO switches. At high data rates
�10 Gb/s�, networks with 3-D OXC exhibit much
etter scalability in terms of minimal normalized net-
ork cost per data rate, primarily due to the fact that

he cost of OXC switches is intrinsically independent
f data rate.

V. ROUTING AND WAVELENGTH ASSIGNMENT FOR
GENERALIZED MOORE GRAPHS

When we addressed the OXC cost in Sections III
nd IV, we implicitly suppressed the wavelength con-
inuity constraints by assuming that either there is an
nfinite number of wavelengths or a full wavelength
onversion is available. As such, Ko ports are enough
o switch Ko lightpaths, without causing wavelength
locking. Given the fact that the capacity in the metro
nvironment is always scarce and converters cur-
ently are still expensive, we expand the scope of this
ork by investigating whether Moore Graphs exhibit
ood efficiency in wavelength dimensioning. A key
easure to evaluate such an efficiency is the differ-

nce (gap) between the minimum number of wave-
engths and the network congestion under uniform
ightpath connections [19]. Following the approaches
hat are similar to those of [19], we first study the load
istribution and congestion of Moore Graphs under
niform traffic. We next construct and compare the
pper and lower bounds on the minimal number of
avelengths required. We show that for Moore
raphs the bounds are tight—the gap between the

ower and upper bounds is at most 1 (as shown in
able II).

. Definition and General Solving Approaches of RWA
roblems

We follow the conventional definition of RWA prob-
ems: given a network fiber topology and a set of end-
o-end lightpath requests, we are to determine routes
nd assign wavelengths that require the minimal pos-
ible number of wavelengths. If the routing is already
rovided, we only need to deal with the wavelength
ssignment (WA) problem. In solving a WA problem,
avelength continuity constraints [7] must be obeyed.
There are in general two approaches to solve a WA

roblem. The first approach involves setting up the
A problem in the form of mathematical program-
ing and solving it by using techniques such as linear
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programming (LP) or nonlinear programming (NLP)
[7,8]. The second approach involves first constructing
either a node conflict graph or an edge conflict graph
and then solving the related problems of node coloring
or edge coloring [19]. We concentrate on the second ap-
proach, since this approach usually allows us to ex-
ploit good properties that are intrinsic to certain light-
path patterns (logical topologies) and fiber topologies.

The node coloring approach is widely used in solv-
ing RWA problems. For a given topology G and a set of
lightpaths P, we construct a node conflict graph, de-
noted as GN, as follows: each node in GN corresponds
to a lightpath in P and two nodes in GN are connected
by an (undirected) edge, if the two corresponding
lightpaths in P share a common fiber. Solving the WA
problem is then equivalent to finding the node chro-
matic number of the graph GN, denoted as ��GN�.
There is a known result that provides an upper bound
on the node chromatic number for a connected graph
with maximal node degree [20], as summarized in the
following:

Theorem 5.1: Let GN be a connected graph with
maximal degree �max. Suppose GN is neither a com-
plete graph nor an odd cycle, then ��G���max.

Next we consider the edge coloring approach. Un-
like the node coloring approach, which has no limita-
tion on the length (in the number of hops) of a light-
path request, the edge coloring approach can only
apply to special cases in which all lighpaths have at
most two hops. The edge equivalent graph, denoted as
GL, is constructed as follows: for every edge e�E of
the original fiber topology, we introduce a node 
e in
GL. For a lightpath that uses both the edges e1 and e2,
e1�e2, we add an (undirected) edge that connects 
e1
and 
e2

. Once GL is constructed, solving the WA prob-
lem is then equivalent to solving the edge coloring

TABLE II
RWA RESULTS FOR MOORE GRAPHS

Graph

Node Number,
Node Degree,
and Diameter

Min. No. of
Wavelengths

With Conversion

Min. No. of
Wavelengths

Without
Conversion

Fully connected
graphs

�=N−1 1 1
D=1

Rings (odd
no. of nodes)

N is odd N2−1
8

N2−1
8

�=2
Petersen N=10 5 5
Graph �=3

D=2
Hoffman– N=50 13 �14
Singleton �=7

Graph D=2
N=3250 N=3250 113 �114

�=57 �=57
D=2 D=2
roblem of GL. That is, we are to find the edge chro-
atic number �e�GL� of GL—the minimal number of

olors to be assigned to the edges of GL, such that all
dges incident on a node in GL have different colors.
hese colors correspond to wavelengths used in the
riginal fiber network G.
To illustrate why the edge coloring approach can

nly be applied to solve RWA for lightpaths of no more
han two hops, we provide a simple example, as shown
n Fig. 6. We set up a lightpath of 3 hops on a line to-
ology. It is trivial to see that 1 wavelength is enough
o support this lightpath. However, if we used the
dge coloring approach, the constructed edge conflict
raph would be a 3-node ring, for which 3 colors
wavelengths) are required to ensure that all edges in-
ident on a node have different colors. Obviously this
s not true.

There is also a known result that provides an upper
ound on the edge chromatic number for a connected
raph with maximal node degree �max [21,22], as sum-
arized in the following:
Theorem 5.2: For a connected graph GL with a maxi-
al node degree �max, the edge chromatic number
e�GL� is either �max or �max+1.

. Solving RWA Problems for Moore Graphs

In this subsection, we study whether the minimum
op routing algorithm, which minimizes the network
ost, also minimizes the number of wavelengths re-
uired to establish all-to-all uniform lightpath connec-
ions for Moore Graphs. In [5], we showed that, for
oore Graphs, with minimum hop routing, the total

etwork load generated by uniform all-to-all traffic
an be evenly distributed on every fiber. In this sub-
ection, we rely on this property to solve the RWA
roblem for a Moore Graph. For clarity, we again sum-
arize the result of balanced load distribution (the

roof is detailed in [5] and omitted here).
Theorem 5.3: For a Moore Graph of degree � and di-

meter D, balanced load distribution can be achieved
or the static uniform all-to-all traffic, with each edge
aving a load of �i=1

D i��−1�i−1.
When wavelength conversion is not available, RWA

ecomes rather complicated because of the wave-

0 1 2 3

0 - 1

1 - 22 - 3

(a) (b)

ig. 6. (Color online) (a) A line topology and a lightpath request of
hops; (b) the WA result when the edge coloring approach is used.
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length continuity constraints. With wavelength conti-
nuity constraint, the balanced load result (Theorem
5.3) can only be used to construct a lower bound on the
number of wavelengths required. As such, we first
solve the RWA problem for each instance of Moore
Graphs and later extrapolate the solutions to a gen-
eral result. RWA results for all the instances of Moore
Graphs are summarized in Table II. Among these
Moore Graphs, complete graphs, rings, and the Pe-
tersen Graph all require the same (minimal) number
of wavelengths with or without wavelength conver-
sions.

We start with a fully connected (complete) graph,
which can be treated as a (trivial) Moore Graph. In a
complete graph, each node reaches every other node in
exactly one hop. It is trivial that such a graph requires
exactly one wavelength with or without wavelength
conversion.

We next consider ring topologies (with an odd num-
ber of nodes). A known result [11] shows that it re-
quires the same (minimal) number of wavelengths, in-
different to the wavelength conversion capabilities of
the network. The minimal number of wavelengths re-
quired is �N2−1� /8.

The rest of the instances of the existing Moore
Graphs all have diameters of 2. That is, the longest
lightpath has 2 hops. Using this property, we can
transform a RWA problem into an edge coloring prob-
lem of a conflict graph GL and obtain a tight upper
bound on the minimal number of wavelengths. In
other words, for a Moore Graph (of diameter 2), find-
ing the minimal number of wavelengths to support a
given set of lightpath requests is the same as finding
the edge chromatic number of the corresponding GL.
An example of constructing the edge conflict graph of
the Petersen Graph is shown in Fig. 7.

For solving a RWA problem, lightpaths using only a
single fiber (edge) can always be assigned a wave-
length independently from other lightpaths (using
more than one fiber). Thus we only need to consider
lightpaths of two hops. As shown in the proof for Theo-
rem 5.3 (cf. [5], Section 4.5.2), for a Moore Graph un-
der uniform all-to-all traffic, each fiber is used as a
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E
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I H
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C

(a) (b)

Fig. 7. (Color online) (a) Petersen Graph; (b) part of the edge con-
flict graph G and the edge coloring of the Petersen Graph.
L
rst hop (of a two-hop path) for �i=1
D−1��−1�i times

D=2�; each fiber is used as a second hop (of a two-hop
ath) for ��−1�D−1 times �D=2�. In other words, the
onflict graph is regular with a node degree

��GL� = �� − 1�2−1 + �
i=1

2−1

�� − 1�i = �
i=1

D=2

i�� − 1�i−1 − 1.

�12�

ccording to Theorem 5.2, the minimal number of
avelengths to support all the lightpaths of two hops

s at most

��GL� + 1 = �
i=1

D=2

i�� − 1�i−1. �13�

dding one additional wavelength that is used for the
ightpath of one hop, we can have an upper bound on
he minimal number of wavelengths WM as

WM � 1 + �
i=1

D=2

i�� − 1�i−1. �14�

In summary, Theorem 5.3 provides a lower bound
n the minimal number of wavelengths required for a
oore Graph. For complete graphs and rings, it re-

uires the same (minimal) number of wavelengths
ith or without wavelength conversions. An upper
ound on the minimal number of wavelengths is given
n Eq. (14). By combining these results, we extrapo-
ate to the following general conclusion on the mini-

al number of wavelengths used to support all-to-all
niform traffic:
Theorem 5.4: For a Moore Graph of degree � and di-

meter D, a minimal number of wavelengths required
o support all-to-all uniform traffic with or without
avelength conversions satisfies

�
i=1

D

i�� − 1�i−1 � WM � 1 + �
i=1

D

i�� − 1�i−1. �15�

Note that the difference between the upper and the
ower bound is 1. In other words, for a Moore Graph,
t most one additional wavelength is required in the
bsence of wavelength conversion. For the Petersen
raph, using minimum hop routing and a simple
avelength assignment heuristic, a minimum of 5
avelengths are required to support the all-to-all uni-

orm traffic. The heuristic is a combination of “first-fit”
nd “last-fit” RWA algorithm [23]. Theorem 5.4 shows
hat Moore Graphs are also efficient in regard to the
avelength usage, in the sense that wavelength con-
ersions do not provide significant advantages.
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C. Solving RWA Problems for Generalized Moore
Graphs

The balanced load distribution property of a Moore
Graph arises from its symmetric structure—each of
its nodes has a fully populated routing spanning tree.
For a Generalized Moore Graph, multiple minimum
hop paths may exist for some source–destination
pairs. As a result, the minimum hop routing may or
may not balance the load or minimize the congestion
even under uniform traffic. To illustrate this, we first
use an example of a (undirected) Generalized Moore
Graph with N=7 and �=3, as shown in Fig. 8(a). In
this example, with the minimum hop routing illus-
trated in Fig. 8(b), a load of 2 can be evenly distrib-
uted on each edge. We further show that 2 wave-
lengths are enough to support uniform all-to-all traffic
without any wavelength conversion. We next consider
another example—a Symmetric Hamilton Graph of 6
nodes and degree 3, shown in Fig. 9(a). This Symmet-
ric Hamilton Graph can be also considered as a com-
plete K3,3 bipartite graph (a set of graph vertices can
be decomposed into two disjoint sets, such that no two
vertices within the same set are adjacent, but every
pair of vertices in the two sets are adjacent). For clar-
ity of discussion, we redraw the same Symmetric
Hamilton Graph in the bipartite K3,3 form in Fig. 9(b).
For this graph, the minimum hop routing algorithm is
not unique. Table III lists two different minimum hop
routing algorithms. We note that neither of the algo-
rithms can distribute the load evenly over each fiber.

1
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45
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2 3 6 7

4 5

(a) (b)

Fig. 8. (a) A Generalized Moore Graph with N=7 and �=4; (b) a
routing spanning tree from node 1.
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Fig. 9. (a) A Symmetric Hamilton Graph with N=6 and �=3; (b)
the same graph is redrawn as a K complete bipartite graph.
3,3
outing algorithm 1 incurs a maximum load of 4,
hile routing algorithm 2 minimizes the maximum

oad to 3. It is also straightforward to show that, using
outing algorithm 2, a minimum of 3 wavelengths are
nough to support a uniform demand �t=1�, even in
he absence of wavelength conversion. Using node col-
ring approaches, we investigate the wavelength as-
ignments for Generalized Moore Graphs with �=3, 4
nd D=2, 3. The results are listed in Table IV. It is
een that the wavelength conversion does not reduce
he minimal number of wavelengths required. We
hus conclude that the wavelengths can also be effi-
iently provisioned for these Generalized Moore
raphs.

VI. IRREGULAR TOPOLOGIES AND NON-UNIFORM TRAFFIC

Up until now, we have been analyzing scalable net-
ork architecture by focusing on regular physical to-
ologies and uniform traffic. In practice, network to-
ologies are seldom regular or even regularizable.
lso, the amount of demands on node pairs are rarely
qual. As such, it is often difficult to directly derive
he analytical expressions or solutions. Normally the

TABLE IV
WA RESULTS FOR GENERALIZED MOORE GRAPHS WITH �=3,

4 AND D=2, 3

Generalized
Moore Graphs

Min. No. of
Wavelengths With

Conversions

Min. No. of
Wavelengths Without

Conversions

N=6, �=3, D=2 3 3
N=8, �=3, D=2 4 4
N=14, �=3, D=3 10 10
N=6, �=4, D=2 2 2
N=7, �=4, D=2 2 2
N=8, �=4, D=2 3 3
N=9, �=4, D=2 3 3
N=10, �=4, D=2 4 4
N=11, �=4, D=2 4 4
N=12, �=4, D=2 5 5
N=13, �=4, D=2 5 5

TABLE III
HE MINIMUM HOP ROUTING ALGORITHMS FOR A SYMMETRIC

HAMILTON GRAPH WITH N=6 AND �=3

Algorithm 1 Algorithm 2

Node i �i�6→ �i+1�6, �i�6→ �i+1�6,
�i�6→ �i+1�6→ �i+2�6, �i�6→ �i+3�6→ �i+2�6,

�i�6→ �i+3�6, �i�6→ �i+3�6,
�i�6→ �i+3�6→ �i+4�6 �i�6→ �i+3�6→ �i+4�6

�i�6→ �i+5�6 �i�6→ �i+5�6
Max load 4 3
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evaluation of irregular topologies under non-uniform
traffic is carried out numerically. Notwithstanding,
based on the framework presented so far, we can ex-
tend the results derived for symmetric regular net-
works under uniform traffic to evaluate the cost effi-
ciency of irregular networks under non-uniform
traffic. In particular, we can construct network cost
lower and upper bounds. To this end, in Subsection
VI.A, we identify conditions under which minimum
hop routing is still optimal. In Subsection VI.B, we fo-
cus on irregular networks under uniform traffic. We
first show that the results for Generalized Moore
Graphs and �-nearest neighbors can be used to pro-
vide useful estimates for irregular networks. We next
demonstrate how we use Generalized Moore Graphs
as references to suggest possible improvements for ir-
regular physical topologies. In Subsection VI.C we
study regular networks under non-uniform traffic. We
first review the concept of minimum and maximum
flow trees. Based on these concepts, we provide net-
work cost lower and upper bounds for regular net-
works under arbitrary (non-uniform) traffic. Finally in
Subsection VI.D, by combining the results from Sub-
sections VI.B and VI.C, we construct network cost
lower and upper bounds for irregular networks under
arbitrary traffic.

A. Irregular Topologies, Arbitrary Traffic, and
Minimum Hop Routing

In this work, an irregular topology is characterized
by the following parameters: the number of nodes N,
the maximum node degree �max, the minimum node
degree �min, and the average node degree �̄. �̄ is de-
fined as

�̄ =
1

N�
i=1

N

�i, �16�

where �i is the degree of node i. For convenience of
discussion, we denote an irregular topology as
�N ,�max,�min, �̄�. The average minimum hop distance
Hmin�N ,�max,�min, �̄� is then defined as

Hmin�N,�max,�min,�̄� =
1

N�N − 1��i=1

N

�
j=1

Di

ni�j�, �17�

where Di denotes the network diameter from node i
(the maximal hop distance from node i via minimum
hop routing), and ni�j� denotes the number of nodes
that are j hops away from node i.

Before analyzing the cost efficiency of an irregular
network, we need to identify conditions under which
minimum hop routing is still optimal. In [2], we
proved that under uniform traffic, minimum hop rout-
ing is optimal for any given regular network with a
non-decreasing switching cost function. For an irregu-
ar network, without regularity and nodal symmetry,
he relationship between the minimum hop routing
nd the network cost becomes much more compli-
ated. To maintain tractability, we restrict our analy-
is to linear switching cost structure (e.g., F1

i �Ko
i �


1Ko
i for 3-D OXC, where Ko

i is the switch size at
ode i, cf. Table I). Under this condition we can show
hat minimum hop routing is still optimal. This is due
o the fact that with the linearity minimizing the total
witching cost is equivalent to minimizing the total
etwork load. In other words, the minimum network

oad solution is also the minimum network cost solu-
ion.

. Irregular Networks Under Uniform Traffic

) Lower and Upper Bounds on Network Cost: In this
ubsection, we analyze the network cost of an arbi-
rary network under the restrictions of uniform all-to-
ll traffic, minimum hop routing, and linear switching
ost [e.g., F1

i �Ko
i �=
1Ko

i ]. Our approach is to use the re-
ults of average minimum hop distances for General-
zed Moore Graphs and �-nearest neighbors to size
he average minimum hop distance of an irregular to-
ology �N ,�max,�min, �̄�. The results are presented in
he following. The proofs are omitted here for brevity.

Theorem 6.1: The average minimum hop distance of
n irregular topology is lower bounded by the average
inimum hop distance of a Generalized Moore Graph

f N nodes and node degree �max. That is,

Hmin�N,�max,�min,�̄� � Hmin
M �N,�max�. �18�

he average minimum hop distance of an irregular to-
ology is upper bounded by the average minimum hop
istance of a �-nearest neighbors topology of N nodes
nd node degree �min. That is

Hmin�N,�max,�min,�̄� � Hmin
N �N,�min�. �19�

Since the switching cost is proportional to the aver-
ge minimum hop distance, a direct application of
heorem 6.1 provides us with a cost lower bound and
cost upper bound for an irregular network.
Theorem 6.2: For an irregular network of

N ,�max,�min, �̄�, the network cost under uniform
raffic has a lower bound

C�N,�max,�min,�̄� � �N�̄ + 
1N�N − 1�

��Hmin
M �N,�max� + 1�, �20�

nd an upper bound

C�N,�max,�min,�̄� � �N�̄ + 
1N�N − 1�

��Hmin
N �N,�min� + 1�, �21�
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The proofs are omitted here for brevity.

When N��̄, N��max, and N��min, we approxi-
mate the ratio of the cost upper bound to the cost
lower bound as

�N�̄ + 
1N�N − 1�Hmin
N �N,�min�

�N�̄ + 
1N�N − 1�Hmin
M �N,�max�

	
N

ln N

ln �max

2�min
.

�22�

Equation (22) indicates that the ratio scales as
N / ln N.

To evaluate the gap between the lower and the up-
per bound, we plot in Fig. 10 the bounds in the form
of normalized network cost per unit traffic
C�N ,�max,�min, �̄� / �N�N−1�� as a function of network
size N. In the plot, the following parameters are used:
�max=6, �min=3, and �̄=4. Based on the estimation of
a realistic cost ratio between fiber and switching in
metropolitan area networks, we set � /
1=40 and 
1
=1. The plot indicates that as N increases, the gap be-
tween the upper and lower bounds increases (cf. [22]).
We also note that, as the size of the network increases,
the lower bound of the normalized network cost per
unit traffic decreases, while the upper bound first de-
creases and then increases. This can be explained as
follows: the minimum node degree is set as a fixed
value 3. This node degree (of 3) is optimal only for cer-
tain sizes of networks �N=10
30�. As the size of the
network increases, this node degree (of 3) becomes
less efficient.

To have an idea on how close these two bounds
match the actual cost of the irregular networks, we
employ randomly generated networks. That is, for a
given set of parameters (N, �max, �min, and �̄), we con-
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1 1
truct around 4000 instances of networks at random,
ompute the cost of each of them, and compare their
ost distributions with the corresponding lower and
pper bounds. We plot in Figs. 11 and 12 the cost his-
ograms for random networks of size N=20 and 40, re-
pectively. The node degree parameters for each N are
et as �max=6, �min=3, and �̄=4. These histograms
emonstrate that Generalized Moore Graphs can be
sed for effectively sizing the cost of an irregular net-
ork, especially when N is small (e.g., N=10
30) and

he network is densely connected (e.g., �̄ /N�0.2). On
he contrary, the cost upper bounds generated by us-
ng �-nearest neighbors are loose, especially when N
s large (e.g., N�40) and the network is sparsely con-
ected (e.g., �̄ /N�0.1).
To look for better estimates of network cost, we use
to replace �max in Eq. (20) and �min in Eq. (21). Thus

he new estimates are

�N�̄ + 
1N�N − 1��Hmin
M �N,�̄� + 1� �23�

nd

�N�̄ + 
1N�N − 1��Hmin
N �N,�̄� + 1�. �24�

We also use the Symmetric Hamilton Graph [2] to
rovide an alternative estimate of network cost as
ollows:

�N�̄ + 
1N�N − 1��Hmin
H �N,�min� + 1�, �25�

here Hmin
H �N ,��=3/4+ �N−2� /4��−1�, as derived in

2]. Including these estimates to the corresponding
igs. 11 and 12, we find that they do give better esti-
ates. Note that we term Eqs. (23)–(25) as “esti-
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mates,” since we have not been able to prove that they
are indeed tighter bounds for every irregular network
�N ,�max,�min, �̄�.

2) Generalized Moore Graphs as References for
Possible Improvements for an Irregular Physical To-
pology: In this subsection we use examples to demon-
strate how we can use Generalized Moore Graphs as
references to suggest possible improvement for irregu-
lar physical topologies. In particular, we consider two
representative networks, which are labeled as Net-
work 1 and Network 2. Their physical topologies are
illustrated in Figs. 13(a) and 14(a), respectively. The
key network design parameters are summarized in
Table V. In our study, we assume that all fiber connec-
tions have the same cost and the switching cost is lin-
ear. For clarity of discussion, we redraw the topologies
of Network 1 and Network 2 in the form of chordal
rings in Figs. 13(b) and 14(b), respectively. For each of
the networks, we look for the minimum number of
switching ports required numerically. The results
show that to support all-to-all uniform traffic, a total

1.096 1.184 1.636 1.888

x 10
4

0

50

100

150

200

250

300

350

Network Cost

D
is

tr
ib

ut
io

n

N=40, ∆
avg

=4, ∆
max

=6, ∆
min

=3
C

avg
=13600, C

std−dev
=516

Lower Bound
∆

max
−generalized

Moore Graphs

Lower Bound
∆

avg
−generalized

Moore Graphs

Upper Bound
∆

avg
−nearest

Neighbors

Upper Bound
∆

min
−Hamilton

1.654X104

Upper Bound
∆

min
−nearest

Neighbors

Fig. 12. Network cost histogram for randomly generated net-
works, with N=40, �max=6, �min=3, and �̄=4. The horizontal and
the vertical axis represent the network cost and the number of in-
stances (cases), respectively. The fiber and switching cost param-
eters are � /
1=40 and 
1=1.

1 2

3

4

5

67

8

9

10

1 2

3

4

5

67

8

9

10

1
2

3

4

5

6

78

9 10

(a) (b) (c)

Fig. 13. (a) Network 1 with N=10, �max=5, �min=2, and �̄=3; (b)
Network 1 redrawn as a chordal ring; (c) the Petersen Graph (re-
drawn) with N=10 and �=3.
f 261 and 636 switching ports are required for Net-
ork 1 and Network 2, respectively. We then connect

he same set of nodes in the form of Generalized
oore Graphs. In particular, we suggest that the

odes in Network 1 are connected via the Petersen
raph and the nodes in Network 2 are connected via

he Heawood Graph (also a chordal ring), as shown in
igs. 13(c) and 14(c), respectively. For a fair compari-
on, here we let each suggested network use the same
umber of fiber connections as the original one does.
he parameters and results of the suggested networks
re also listed in Table V. It is seen that each of these
uggested networks requires fewer ports. We believe
hat the savings are likely to be more pronounced for
arger networks. An interesting trend is observed in
hese figures. From the perspective of a chordal ring,
he original topologies of Network 1 and Network 2
end to have more “local” connections—most of the
odes connect to their neighbors. In comparison, the

mproved topologies tend to have more “diagonal”
onnections—more nodes are linked across the ring.
he trends observed in these examples, combined
ith the concepts and the bounds to be developed in
ubsections VI.C and VI.D, provide us guidelines for
esigning an algorithm for constructing cost-optimal
opology.

. Regular Networks Under Non-Uniform Traffic

In this subsection, we focus on evaluating cost effi-
iencies of regular networks under non-uniform traf-
c. In particular, we derive network cost lower and
pper bounds for any regular networks of node num-
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TABLE V
PARAMETERS FOR NETWORK 1 AND NETWORK 2

Network 1
Petersen
Graph Network 2

Heawood
Graph

N 10 10 14 14
�max 5 3 4 3
�min 2 3 2 3

� 3 3 3 3
o. of fibers 30 30 52 52

No. of ports 261 240 636 560
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ber N, node degree �, and traffic matrix T= �ti,j�. We
still assume that the switching cost at each node is
linear with the number of ports. As such, minimum
hop routing requires the least number of switching
ports. For simplicity and clarity, we also make the as-
sumption that all the fiber connections have the same
cost.

1) Minimum and Maximum Flow Trees: The deriva-
tion of cost lower and upper bounds hinges on the con-
cepts of minimum and maximum flow trees. The con-
cept of a minimum flow tree is developed as a tool to
analyze network congestion [24]. Following the ratio-
nale (of constructing a minimum flow tree), we intro-
duce the concept of a maximum flow tree for our work.

The construction of a minimum flow tree is based on
the routing spanning tree of Generalized Moore
Graphs. That is, in a regular topology of node degree
�, for each node there can be at most � destinations
one hop away, �2 destinations two hops away, etc.
Moreover, for each source the � destinations with the
largest traffic are connected by one-hop paths, the
next �2 destinations in descending order of traffic are
connected by two-hop paths, and so on. The intuition
of a minimum flow tree is to minimize the propagation
of larger traffic values. As such, the larger traffic ti,j is
closer to source node i. As an example, for the traffic
matrix shown in Fig. 15(a), the construction of a mini-
mum flow tree from node A is illustrated Fig. 15(b).

The construction of a maximum flow tree is based
on the routing spanning tree of �-nearest neighbors.
That is, in a regular topology of node degree �, for
each node there are � destinations one hop away, �
destinations two hops away, etc. That is, each (except
probably the last) level is packed with only � nodes.
Moreover, for each source the � destinations with the
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Fig. 15. (a) Traffic demand from node A to other nodes; (b) mini-
mum flow tree from node A; (c) maximum flow tree from node A.
mallest traffic are connected by one-hop paths, the
ext � destinations in ascending order of traffic are
onnected by two-hop paths, and so on. The intuition
f a maximum flow tree is to maximize the propaga-
ion of larger traffic values. As such, the smaller traf-
c ti,j is closer to source node i. As an example, for the
raffic matrix shown in Fig. 15(a), the construction of
maximum flow tree from node A is illustrated in Fig.
5(c). Note that minimum and maximum flow trees
epresent the best or the worst cases of traffic flow in

degree � topology, respectively. Thus, they are
ostly not realizable within a given arbitrary traffic

emand and a topology.

) Network Cost Lower and Upper Bounds for Regular
etworks Under Non-Uniform Traffic: With the con-

epts of minimum and maximum flow trees, we are
eady to provide cost lower and upper bounds. To de-
ive a lower bound, we first perform a permutation for
raffic matrix T= �ti,j�, such that the elements of each
ow are in a descending order. That is, for 1� i�N
nd 1� j�N, let �i

low be a permutation of �1,2, ¯N�
nd �i

low�j� be the jth element of �i, such that

ti,�i
low�j� � ti,�i

low�j�� for j � j�. �26�

e also define D as the network diameter and mk
low as

he number of nodes packed in the 1st to kth levels of
he minimum flow tree. That is,

mk
low = ��i=1

k

�i, if 1 � k � D − 1,

N − 1, if k = D.
� �27�

s stated in [5], setting up a lightpath of k hops re-
uires k+1 ports. A direct application of this fact gives
s the lower bound on the total switching cost for any
egular network of node number N and node degree �,
ith a traffic matrix T= �ti,j�. That is,

Cs � 
1�
i=1

N

�
k=1

D

�
j=mk

low

N−1

ti,�i
low�j��k + 1�. �28�

ince the fiber cost is Cf=�N�̄, we have a lower bound
f network cost

C � �N�̄ + 
1�
i=1

N

�
k=1

D

�
j=mk

low

N−1

ti,�i
low�j��k + 1�. �29�

To derive an upper bound, we first perform a permu-
ation for traffic matrix T= �ti,j�, such that the ele-
ents of each row are in an ascending order. That is,

or 1� i�N and 1� j�N, let �i
up be a permutation of

1,2, ¯N� and �i
up�j� be the jth element of �i

up, such
hat
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ti�i
up�j� � ti�i

up�j�� for j � j�. �30�

We also define mk
up as the number of nodes packed in

the 1st to kth levels of the maximum flow tree. That
is,

mk
up = 
k�, if 1 � k � D − 1,

N − 1, if k = D. � �31�

A direct application of the fact that a k-hop lightpath
requires k+1 ports gives us the upper bound on total
switching cost for any regular network of node num-
ber N and node degree �, with a traffic matrix T
= �ti,j�. That is,

Cs � 
1�
i=1

N

�
k=1

D

�
j=mk

up

N−1

ti�i
up�j��k + 1�. �32�

Since the fiber cost is Cf=�N�̄, we have an upper
bound of network cost

C � �N�̄ + 
1�
i=1

N

�
k=1

D

�
j=mk

up

N−1

ti�i
up�j��k + 1�. �33�

D. Irregular Networks Under Arbitrary Traffic

The derivation provided in Subsection VI.C can be
extended to provide network cost lower and upper
bounds for irregular networks under non-uniform
traffic. As in the previous subsection, we assume mini-
mum hop routing and linear switching cost at every
node.

The permutation of the traffic matrix T= �ti,j� for the
lower bound is the same as in Eq. (26). However, mk

low

is defined differently in comparison with Eq. (27):

mk
low = ��i=1

k

�max
i , if 1 � k � D − 1,

N − 1, if k = D.
� �34�

The rest of the derivation follows that leads to c.f. Eq.
(28). As such, the cost lower bound has the same form
as Eq. (29).

Similarly, the permutation for traffic matrix T
= �ti,j� for the upper bound is the same as in Eq. (30).
mk

up is defined differently in comparison with Eq. (31):

mk
up = 
k�min, if 1 � k � D − 1,

N − 1, if k = D. � �35�

The rest of the derivation follows that leads to Eq.
(32). As such, the cost upper bound has the same form
as Eq. (33).

We note that the performance of these bounds de-
pends on the variance of the �i and ti,j. However, the
insights gained in the process of constructing such
bounds help us to understand the structure and con-
guration imposed by optimality. In particular, the
tudy of the properties of Generalized Moore Graphs
nd Minimum Flow Tree yields an important topology
esign guideline: a cost-effective physical topology
hould minimize the propagation of large traffic vol-
me. Using this guideline together with the character-

zation of the tradeoff between fiber and switching re-
ources, we propose a topology design algorithm in the
ollowing subsection.

. A Cost-Efficient Topology Design Algorithm

In this subsection, we propose an algorithm for to-
ology construction under realistic design scenarios
arbitrary traffic, non-symmetric topology, and
istance-dependent fiber connection cost), based on
he following two design guidelines:

• Guideline 1. The cost-efficient topology is the re-
sult of the tradeoff between the fiber and the
switching cost.

• Guideline 2. A good network topology minimizes
the propagation of large traffic flow.

he algorithm, with its pseudocode detailed in Algo-
ithm 1, consists of two components. The first compo-
ent is based on Guideline 1. That is, providing a set
f budgets allows us to trade off fiber against switch
ost. In particular, this component involves assigning
set of nB monotonically increasing budgets Bi on to-

al fiber length used in the network. That is, Bi�Bj
or i� j and i , j� �1,2, . . . ,nB�. Note that the minimal
ber length budget equals the length of a minimum
panning tree (MST), with distance di,j as the weight
di,j is set to 1 if the fiber cost is not distance depen-
ent). The maximal fiber length budget equals the to-
al length of a fully connected (complete) network. The
uality of the solution is affected by the number of
udgets assigned—cardinality of the set nB. In the
orst case, we start with a MST and add one fiber

onnection (edge) for each subsequent budget Bi �i
�2,3, . . . ,N�N−1���, until we reach the fully con-

ected network. In other words, the maximal cardi-
ality of the set is �N−1�2+1. For large network size
, analytical results on the fiber and switching costs

2–4] can inform us the solution regions for good
hysical topology, thus reducing the solution space.
The second component, based on Guideline 2, in-

olves iteratively connecting node pairs based on an
pdated criterion. For a given budget, we first connect
he nodes via a minimum spanning tree. Next, as long
s the fiber length is within the budget, we add one
ber connection at a time to increase the network con-
ectivity. Let ti,j, hi,j, and di,j denote the demand,
umber of hops, and Euclidian distance between node
and node j, respectively. We use Mi,j= ti,jhi,j /di,j (if fi-
er connection cost is not distance dependent, Mi,j
ti,jhi,j) as a criterion. Each time we add a new fiber
pan, we select the node pair with the largest M . We
i,j
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repeat the same process until the total fiber length
reaches (or surpasses) the budget. These steps, based
on Guideline 2, not only allow large traffic to travel as
few hops as possible [illustrated in Fig. 16(a)], but also
to make effective use of fiber resources [illustrated in
Fig. 16(b)]. Note that the maximum number of itera-
tions is N�N−1�, when the fiber length budget equals
the total length of a fully connected (complete) net-
work.

Algorithm 1 Cost-Efficient Topology Design
Assign a set of nB monotonically increasing budgets Bi on fiber

length.
That is, Bi�Bj for i� j and i , j� �1,2, . . . ,nB�.

for i=1:nB do
Connect all the nodes via a minimum hop spanning tree

(MST), with
weight wi,j=di,j.

lengthF= lengthMST

while lengthF�Bi do

Construct (update) a N�N matrix M, with Mi,j=
ti,jhi,j

di,j
.

Connect nodes i and j, Mi,j=maxi,j�Mi,j�.
lengthF= lengthF+di,j

end while
Routing and Wavelength Assignment (RWA) for the network.

Calculate the network cost Ci.
end for

Choose the topology with mini�Ci�.

As a preliminary testing of the performance of the
algorithms, we apply Algorithm 1 to small networks
with 7 nodes �N=7�. For each test case, nodes are uni-
formly distributed in an area of 20�20 km2. A de-
mand ti,j, in the unit of number of lightpaths, is cho-
sen from a set of uniformly distributed integers
{1,2,…,6}. We assume that the fiber cost is linear with
distance. The switch cost is linear, with switch-to-fiber
cost ratio 
e /� set to 2. We test a total of 500 cases, for
each of which we apply both Algorithm 1 and exhaus-

A

B C

D

|AD|=|AC|

A

B C

D

|AD|<|AC|

(a) (b)

Fig. 16. A topology design algorithm: each time a fiber span is
added, the node pair with the largest ti,jhi,j /di,j is connected, where
ti,j, hi,j, and di,j denote the demand, number of hops, and Euclidian
distance between node i and node j, respectively. In (a) we have
dA,D=dA,C and tA,D= tA,C. Since hA,C�hA,D, a fiber span is added be-
tween nodes A and C. In (b) we have hA,D=hA,C and tA,D= tA,C. Since
dA,D�dA,C, a fiber span is added between nodes A and D. Using
ti,jhi,j /di,j as a criterion limits the travel of large traffic to as few
hops as possible and makes effective use of fiber at the same time.
ive search and then compare the costs (generated by
ach approach). In Fig. 17 we plot the histogram of the
erformance offset (the difference between the costs
btained by heuristics and exhaustive search). The
gure demonstrates that in 25% of cases Algorithm 1
roduces the optimal solutions. The maximum offset
s 5%.

VII. CONCLUSION

Using the tool of graph theory and optimization, we
stablished a theoretical foundation of designing net-
orks that not only require a low initial capital in-
estment, but also have good scalability—a decreas-
ng cost-per-node-per-unit-traffic as user number and
ransaction size increase. By analyzing the tradeoffs
mong important network resources, we found that
or regular networks and uniform traffic, the joint de-
ign problems of fiber connection topology, dimension-
ng, and routing can be solved optimally and analyti-
ally. We prove that with minimum hop routing,
eneralized Moore Graphs, whose average minimum
op distances scale favorably as log�N, achieve the

ower bound on network cost and require the mini-
um (or close to minimum) number of wavelengths to

upport a given uniform traffic demand. In addition,
eneralized Moore Graphs and their close relatives
ave good scalability: the minimal normalized cost per
nit traffic decreases with increasing network size. In
ummary, our works identify Generalized Moore
raphs as fundamental architectures in the context of

ost efficiency. These architectures represent a drastic
eparture from currently used ones in MANs, such as
ings or interconnected rings.
Our results demonstrate that switching technolo-

ies have a tremendous impact on the final topological
rchitectures. The optimal topologies connecting the
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same set of nodes can differ significantly when differ-
ent switching fabrics are used, even when these to-
pologies are designed to serve the same traffic de-
mand. A comparison of the cost benefit between OXC
and OEO switches shows that at low data rates it is
economical to use OEO switches; at high data rates, it
is more cost-advantageous to use OXC switches.

We also addressed more realistic design scenarios—
irregular network topologies and (static) non-uniform
traffic. We showed that if the switching cost is linear
with port counts, minimum hop routing is still opti-
mal. The results of Generalized Moore networks can
be used to provide useful estimates for the cost of ir-
regular networks. Also the unique structure of a Gen-
eralized Moore Graph—each of its nodes has a full (or
almost full) �-ary routing spanning tree—can be ex-
ploited to suggest improvements for irregular physical
topologies. Moreover, the study of the constructions of
Generalized Moore Graphs yields a general yet crucial
design guideline for irregular topology and arbitrary
traffic: a cost-effective physical topology should mini-
mize the propagation of large traffic flows. This prin-
ciple guides us to propose a network design heuristic
for arbitrary topologies and traffic. The preliminary
tests show that the networks generated by the heuris-
tic have minimum or close to minimum costs.

Last but not the least, the analytical framework em-
ployed in our research thus far is general enough to be
applied in our pursuit of the following future research
directions:

• A comparison of cost advantages and disadvan-
tages between flat and hierarchical architectures.

• Scalable network architecture design under de-
mand uncertainty.

• Optimized evolution of a physical network topol-
ogy over a multi-period planning horizon.
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