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Eyes in the Sky: Decentralized Control for the
Deployment of Robotic Camera Networks
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Michael Angermann,Member IEEE,and Daniela Rus,Fellow IEEE

Abstract—This paper presents a decentralized control
strategy for positioning and orienting multiple robotic cam-
eras to collectively monitor an environment. The cameras
may have various degrees of mobility from six degrees of
freedom, to one degree of freedom. The control strategy
is proven to locally minimize a novel metric representing
information loss over the environment. It can accommodate
groups of cameras with heterogeneous degrees of mobility
(e.g. some that only translate and some that only rotate),
and is adaptive to robotic cameras being added or deleted
from the group, and to changing environmental conditions.
The robotic cameras share information for their controllers
over a wireless network using a specially designed net-
working algorithm. The control strategy is demonstrated
in repeated experiments with three flying quadrotor robots
indoors, and with five flying quadrotor robots outdoors.
Simulation results for more complex scenarios are also
presented.

Index Terms—Multirobot systems; distributed control;
networked control systems; wireless sensor networks; mo-
bile ad hoc networks; unmanned aerial vehicles; distributed
algorithms; nonlinear control systems
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I. I NTRODUCTION

Camera networks are all around us. They are used
to monitor retail stores, catch speeding drivers, col-
lect military intelligence, and gather scientific data.
Soon autonomous aircraft with cameras will be rou-
tinely surveilling our cities, our neighborhoods, and our
wildlife areas. This technology promises far reaching
benefits for the study and understanding of large-scale
complex systems, both natural and man made. However,
before we can realize the potential of camera networks,
we must address an important technical question: how
should a group of cameras be positioned in order to
maintain the best view of an environment? In this
paper we provide a comprehensive method of controlling
groups of robotic cameras in a decentralized way to
guarantee visual coverage of a given environment.

We consider the problem of providing visual coverage
with maximal resolution using a group of robots with
cameras. The robot group can be heterogeneous in that
some cameras may be fixed to aerial or ground robots,
while others may be able to pan and tilt in place. Our
goal is to control the robots in a decentralized fashion to
autonomously position and orient their cameras so that
the union of their fields of view achieves visual coverage
of a given planar environment at a maximal resolution.
We propose a controller with stability and convergence
guarantees based on a gradient descent strategy to drive
the robots to such a configuration.

Existing camera surveillance systems often use cam-
eras that are mounted to actuated mechanisms for ad-
justing the orientations of the cameras. Furthermore, it
is becoming increasingly common to mount cameras to
autonomous ground and air vehicles, for example the
iRobot PackBot or the Northrup Gruman Global Hawk.
In this paper we consider each camera along with its
positioning mechanism, be it a rotating mounting or an
autonomous vehicle, as a “robot,” and assume that there
is a wireless network in place to facilitate communication
among the robots. We formulate a decentralized control
strategy for the cameras to position themselves in an



automated and adaptive way in order to maintain the best
view of the environment. Our controller is demonstrated
with a group of automated helicopter robots, known as
quadrotors, fitted with downward facing cameras. We
present results with groups of three quadrotors in an
indoor environment and five quadrotors in an outdoor
environment.

The control strategy we describe is useful for robustly
collecting visual data over large scale environments
either for security or scientific applications. We envision
the algorithm as being used in support of a higher-
level computer vision task, such as object recognition
or tracking. That is, we address the problem of how
to best position the robots given that the images from
their cameras will be used by some computer vision
algorithm. For example, the controller could be used to
drive groups of autonomous underwater or aerial vehicles
to do mosaicing [1], or to produce photometric stereo
from multiple camera views [2]. This might be applied
to imaging underwater or land-based archaeological sites
or geological formations, environments of ecological
interest such as coral reefs or forests, regions that are
inaccessible to humans such as disaster sites or war
zones, or any other large scale environment of interest.
Our algorithm could also be used by autonomous flying
robots to do surveillance [3], target tracking [4]–[6], or
to provide real-time localization and mapping to aid in
the navigation of people or vehicles on the ground [7].

Our approach is motivated by an information content
principle: minimum information per pixel. Using infor-
mation per pixel as a metric allows for the incorporation
of physical, geometric, and optical parameters to give a
cost function that represents how well a group of cameras
covers an environment. We obtain a control law by taking
the negative gradient of this cost function. The controller
is proved to converge to a local minimum of the cost
function using Lyapunov techniques.1

The controller is naturally adaptive to the deletion
or addition of cameras to the group, and to a chang-
ing environment, and will work with a broad class of
environment geometries, including ones with noncon-
vexities, and ones with multiple disconnected regions.
The controller is also decentralized in that robots only
exchange information with other robots whose fields of
view intersect with its own, and are not aware of the
size nor the composition of the whole group. In the case
that two robots with intersecting fields of view are not
in direct communication with one another, we describe

1The camera coverage task is necessarily nonconvex, as proved in
[8], and thus gradient controllers can only achieve locallyoptimal
configurations.

an efficient networking algorithm for state propagation
so that information can be routed between these robots.
Finally, the controller also accommodates heterogeneous
groups in that different robots in the group may be able
to move their cameras in different ways. For example
some cameras may only translate while others may only
pan and tilt. This provides insights and tools for studying
the tradeoffs between re-positioning a camera versus
rotating it in place.

The main contributions of this work are as follows.

1) We propose the minimum information per pixel
principle as a cost function for camera placement.

2) We use the cost function to design a provably-
stable controller to deploy multiple robots with
fixed downward facing cameras to locally optimal
positions in a distributed fashion.

3) We generalize the problem formulation to design
a provably-stable controller for heterogeneous sys-
tems whose cameras have as many as six degrees
of freedom.

4) We introduce a practical algorithm for enabling
communication of the necessary position informa-
tion around the wireless mesh network.

5) We present simulation results for several scenar-
ios including ones with heterogeneous groups of
robots.

6) We implement the controller on quadrotor robots
with fixed downward facing cameras, and pro-
vide results from multiple experiments for three
quadrotor robots in an indoor environment and five
quadrotor robots outdoors.

A. Related Work

Much of the work in this paper is inspired by a recent
body of research concerning the optimal deployment of
robots for providing sensor coverage of an environment.
Cortés et al. [9] introduced a stable distributed controller
for sensor coverage based on ideas from the optimal
facility placement literature [10]. This approach involves
a Voronoi partition of the environment and has seen
several extensions, for example to covering nonconvex
environments [11]–[13], to learning some aspect of the
environment on-line [14], and to incorporate collision
avoidance [12]. One recent extension described in [15],
Figure 14, proposed an algorithm for the placement of
hovering sensors, similar to our scenario.

Our method in this paper is related to this body of
work in that we propose a cost function and obtain a
distributed controller by taking its gradient. However,
the cost function we propose is different from previous
ones in that it does not involve a Voronoi partition.

2



(a) Concept (b) Experiment (c) Photo Mosaic

Fig. 1. This figure shows the main concept and an example implementation of our decentralized coverage controller. Our control strategy
positions multiple flying robots with cameras to cover an environment in a decentralized way, as in the schematic in 1(a).Experiments were
carried out in an indoor environment with three robots and inan outdoor environment with five robots, as shown in 1(b). Theresulting images
form the aerial cameras can be stitched together to produce alarge scale surveillance image, as in 1(c).

To the contrary, it relies on the fields of view of
multiple cameras to overlap with one another. Another
distinction from previous works is that the agents we
consider move in a space that is different from the one
they cover. Previous coverage scenarios have considered
agents constrained to move in the environment that they
cover, which leads to a requirement that the environment
must be convex. This requirement can be overcome with
more sophisticated algorithms, but it has been shown
in the literature to be a non-trivial limitation [11]–[13].
In contrast, we consider agents moving in a space in
R3, covering an arbitrary lower dimensional environment
Q ⊂ R2, which eliminates the need for the environment
Q to be convex. Indeed, it need not even be connected.
It must only be Lebesgue measurable (since the robots
will calculate integrals over it), which is quite a broad
specification.

There have also been other algorithms for camera
placement, for example a probabilistic approach for gen-
eral sensor deployment based on the Cramér-Rao bound
was proposed in [16], and an application of the idea for
cameras was given in [17]. In [18] the authors choose
to focus on positioning downward facing cameras, as
opposed to arbitrarily oriented cameras. Many geometri-
cal aspects of the problem are significantly simplified in
this setting. More generally, several other works have
considered cooperative control with flying robots and
UAV’s. For an excellent review of cooperative UAV
control please see [19], or [20] and [21] for two recent
examples.

The remainder of the paper is organized as follows.
In Section II we formulate the problem of optimally
covering an environment with cameras. In Section III
we introduce the decentralized controller and analyze
its convergence and stability properties for a homoge-
neous multi-robot system with fixed downward point-

ing cameras. In Section IV we show an extension to
rotating cameras, beginning with one rotational degree
of freedom, then generalizing to three rotational degrees
of freedom, and finally to heterogeneous groups made
up of robots with various degrees of freedom. Section
V presents simulation results for the cases of a homoge-
neous system with fixed cameras with three rotational de-
grees of freedom, a homogeneous system with cameras
with three translational degrees of freedom, and a het-
erogeneous system with rotating and translating cameras.
Section VI proposes an mesh networking algorithm for
propagating the information required by the controller to
all of the robots. Finally, Section VII describes hardware
experiments with three quadrotor robots indoors and five
quadrotor robots outdoors, and conclusions are given in
Section VIII. Preliminary versions of some of the results
in this paper have appeared in [22]–[25].

II. OPTIMAL CAMERA PLACEMENT

We motivate our approach with an informal justifica-
tion of a cost function, then develop the problem for-
mally for the single camera case followed by the multi-
camera case. We desire to cover a bounded environment,
Q ⊂ R2, with a number of cameras. We assumeQ is
planar, without topography, to avoid the complications of
changing elevation or occlusions. Letpi ∈ P represent
the state of camerai, where the state space,P , will be
characterized later. We want to controln cameras in a
distributed fashion such that their placement minimizes
the aggregate information per camera pixel over the
environment,

min
(p1,...,pn)∈Pn

∫

Q

info
pixel

dq.

This metric makes sense because the pixel is the funda-
mental information capturing unit of the camera. Con-
sider the patch of the environment that is exposed to a
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single pixel, as represented by the red circle in Figure
2. The information in that patch is reduced by the
camera to a low-dimensional representation (i.e. mean
color and brightness over the patch). Therefore, the less
information content the image patch contains, the less
information will be lost in its low dimensional represen-
tation by the pixel. Furthermore, we want to minimize
the accumulated information loss due to pixelation over
the whole environmentQ, hence the integral. In the next
two sections we will formalize the notion of information
per pixel.

A. Single Camera

We develop the cost function for a single camera
before generalizing to multiple cameras. It is convenient
to consider the information per pixel as the product of
two functions,f : P × Q 7→ (0,∞], which gives the
area in the environment seen by one pixel (the “area per
pixel” function), andφ : Q 7→ (0,∞) which gives the
information per area in the environment. The form of
f(pi, q) will be derived from the optics of the camera
and geometry of the environment. The functionφ(q) is
a positive weighting of importance overQ and should
be specified beforehand (it can also be learned from
sensor data, as in [14]). For instance, if all points in
the environment are equally important,φ(q) should be
constant overQ. If some known area inQ requires more
resolution, the value ofφ(q) should be larger in that area
than elsewhere inQ. This gives the cost function

min
p

∫

Q

f(p, q)φ(q) dq, (1)

which is of a general form common in the locational
optimization and optimal sensor deployment literature
[10], [26]. We will introduce significant changes to this
basic form with the addition of multiple cameras.

The state of the camera,p, consists of all parameters
associated with the camera that effect the area per pixel
function,f(p, q). In a general setting one might consider
the camera’s position inR3 and its angular orientation
(which can be represented by a matrix inSO(3)), as
well as camera specific parameters such as a zoom factor
in (0,∞), thus leading to an optimization in a rather
complicated state-space,P = R3 × SO(3) × (0,∞),
for only one camera. For this reason, we first consider
the special case in which the camera is downward
facing (hovering overQ). This case is of particular
interest in many applications involving surveillance with
autonomous vehicles, as described in Section I. We will
first consider a camera with a circular field of view
because this considerably simplifies the geometry and

allows us to neglect all rotational degrees of freedom.
In Section IV-A we will consider a downward facing
camera with a rectangular field of view, so that one
rotational degree of freedom becomes relevant, followed
by the case with three rotational degrees of freedom and
a rectangular field of view in Section IV-B.

We define the field of view,B, to be the intersection of
the cone whose vertex is the focal point of the camera
lens with the subspace that contains the environment,
as shown in Figure 2. In this caseP = R3, and the
state-space in which we do optimization is consider-
ably simplified from that of the unconstrained camera.
Decompose the camera position asp = [cT , z]T , with
c ∈ R2 the lateral position of the focal point of the
camera, andz ∈ R the height of the focal point of the
camera overQ. We have

B =

{

q |
‖q − c‖

z
≤ tan θ

}

(2)

whereθ is the half-angle of view of the camera.

Fig. 2. The camera optics and the geometry of the environmentare
shown in this figure.

To find the area per pixel function,f(p, q), consider
the geometry in Figure 2. Letb be the focal length of
the lens. InsideB, the area/pixel is equal to the inverse
of the area magnification factor (which is defined from
classical optics [27] to beb2/(b− z)2) times the area of
one pixel. Definea to be the area of one pixel divided
by the square of the focal length of the lens. We have,

f(p, q) =

{

a(b− z)2 for q ∈ B
∞ otherwise.

(3)

Outside of the field of view there are no pixels, therefore
the area per pixel is infinite. The cost function in (1)
takes on an infinite value if any area (of non-zero
measure) of Q is outside of the field of view. However
we know there exists ap ∈ P such that the cost is finite
sinceQ is bounded (givenc and θ, there existz ∈ R

such thatQ ⊂ B). Therefore, we can write the equivalent
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constrained optimization problem

minp
∫

Q
a(b − z)2φ(q) dq, (4)

subject to Q ⊂ B.

One can see in this simple scenario that the optimal
solution is forp to be such that the field of view is the
smallest ball that containsQ. However, with multiple
cameras, the problem becomes more challenging.

B. Multiple Cameras

To find optimal positions for multiple cameras, we
have to determine how to account for the area of overlap
of the images of the cameras, as shown in Figure 3.
Intuitively, an area ofQ that is being observed by two

Fig. 3. This figure shows the relevant quantities involved incharac-
terizing the intersecting fields of view of two cameras.

different cameras is better covered than if it were being
observed by only one camera, but it is nottwice as well
covered. Consider a pointq that appears in the image
of n different cameras. The number of pixels per area
at that point is the sum of the pixels per area for each
camera. Therefore the area per pixel at that point is given
by the inverseof the sum of theinverseof the area per
pixel for each camera, or

area
pixel

=
(

n
∑

i=1

f(pi, q)
−1

)−1
,

wherepi is the position of theith camera. We emphasize
that it is thepixels per areathat sum because of the
multiple cameras, not thearea per pixelbecause, in
the overlap region, multiple pixels are observing the
same area. Therefore the inverse of the sum of inverses
is unavoidable. Incidentally, this is the same form one
would use to combine the variances of multiple noisy
measurements when doing Bayesian sensor fusion [8].

Finally, we introduce a prior area per pixel,w ∈
(0,∞). The interpretation of the prior is that there is
some pre-existing photograph of the environment (e.g. an
initial reconnaissance photograph), from which we can
get a base-line area per pixel measurement. This is
compatible with the rest of our scenario, since we will

assume that the robots have knowledge of the geometry
of the environmentQ, and some notion of information
content over it,φ(q). This pre-existing information can
be arbitrarily vague (w can be arbitrarily large) but it
must exist. The prior also has the benefit of making the
cost function finite for all robot positions. It is combined
with the camera sensors as if it were another camera to
get

area
pixel

=
(

n
∑

i=1

f(pi, q)
−1 + w−1

)−1
,

Let Nq be the set of indices of cameras for which
f(pi, q) is bounded,Nq = {i | q ∈ Bi). We can now
write the area per pixel function as

hNq
(p1, . . . , pn, q) =

(

∑

i∈Nq

f(pi, q)
−1 + w−1

)−1
. (5)

to give the cost function

H(p1, . . . , pn) =

∫

Q

hNq
(p1, . . . , pn, q)φ(q) dq. (6)

We will often refer tohNq
andH without their argu-

ments. Now we can pose the multi-camera optimization
problem,

min
(p1,...,pn)∈Pn

H. (7)

The cost function (6) is of a general form valid for any
area per pixel functionf(pi, q), and for any camera state
spaceP (including cameras that have rotational degrees
of freedom). Notice also thatH > 0 for all (p1, . . . , pn).
We proceed with the special case of downward facing
cameras, whereP = R3 andf(pi, q) is given by (3).

III. D ECENTRALIZED CONTROL

We will take the gradient of (6) and find that it
is distributed among the robots in the sense that for
a robot to compute its component of the gradient, it
only needs to know the state of the other robots whose
fields of view intersect with its own. This will lead to a
decentralized gradient-based controller. We will use the
notationNq\{i} to mean the set of all indices inNq,
except fori.

Theorem 1 (Gradient Component). The gradient of the
cost functionH(p1, . . . , pn) with respect to a robot’s
position pi, using the area per pixel function in (3) is
given by

∂H

∂ci
=

∫

Q∩∂Bi

(hNq
− hNq\{i})

(q − ci)

‖q − ci‖
φ(q) dq, (8)
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and

∂H

∂zi
=

∫

Q∩∂Bi

(hNq
− hNq\{i})φ(q) tan θ dq

−

∫

Q∩Bi

2h2
Nq

a(b − zi)3
φ(q) dq. (9)

Proof. Please refer to the appendix for a proof.

We propose to use a gradient control law in which
every robot follows the negative of its own gradient
component,

ui = −k∂H/∂pi, (10)

whereui is the control input for roboti andk ∈ (0,∞)
is a control gain. Assuming integrator dynamics for the
robots,

ṗi = ui, (11)

we can prove the convergence of this controller to locally
minimize the aggregate information per area.

Theorem 2 (Convergence and Stability). For a network
of n robots with the dynamics in (11), using the con-
troller in (10),

i) limt→∞
∂H
∂pi

= 0 ∀i ∈ {1, . . . , n},
ii) An equilibrium (p∗1, . . . , p

∗
n), defined by

∂H
∂pi

|pi=p∗i
= 0 ∀i ∈ {1, . . . , n}, is Lyapunov

stable if and only if it is a local minimum ofH.

Proof (Convergence and Stability). The proof of state-
ment i) is an application of LaSalle’s invariance prin-
ciple ( [28], [26] Theorem 1.172). Let H(p1, . . . , pn)
be a Lyapunov-type function candidate. The closed-loop
dynamicsṗi = −∂H/∂pi do not depend on time, and
∂H/∂pi is a continuous function ofpj for all j, therefore
the dynamics are locally Lipschitz, andH is continuously
differentiable. Taking the time derivative ofH along the
trajectories of the system gives

Ḣ =

n
∑

i=1

∂H

∂pi

T

ṗi = −
n

∑

i=1

∂H

∂pi

T ∂H

∂pi
≤ 0. (12)

Next we show that all evolutions of the system are
bounded. To see this, consider a robot atpi such that
Q ∩ Bi = ∅. Then ṗi = 0 for all time (if the field of
view leavesQ, the robot stops for all time), soci(t) is
bounded. GivenQ ∩ Bi 6= ∅, H is radially unbounded

2In this application, the invariance principle requires (1)au-
tonomous, locally Lipschitz dynamics, (2) a non-increasing, continu-
ously differentiable Lyapunov function, (3) all evolutions of the system
remain bounded.

(i.e. coercive) inzi, thereforeḢ ≤ 0 implies thatzi
is bounded for all time. Finally, consider the set of all
(p1, . . . , pn) for which Ḣ = 0. This is itself an invariant
set, sinceḢ = 0 implies ∂H/∂pi = ṗi = 0 for all
i. Therefore, all conditions of LaSalle’s principle are
satisfied and the trajectories of the system converge to
this invariant set.

There may exist configurations at which∂H
∂pi

= 0 ∀i
that are saddle points, local maxima, or local minima of
H. Statement ii) says that only the localminimaofH are
stable equilibria. A proof of this intuitively obvious fact
about gradient systems can be found in [29], Chapter 9,
Section 4.

Remark 1 (Intuition). The single integral for the lateral
component (8) causes the robot to move to increase the
amount of the environment in its field of view, while
also moving away from other robotsj whose field of
view overlaps with its own. The vertical component (9)
has two integrals with competing tendencies. The first
integral causes the robot to move up to bring more of
the environment into its field of view, while the second
integral causes it to move down to get a better look at
the environment already in its field of view.

Remark 2 (Requirements). Both the lateral (8) and
vertical (9) components can be computed by roboti with
knowledge of 1) its own position,pi, 2) the environment,
Q, 3) the information per area function,φ(q), and 4) the
positions of all other robots whose fields of view intersect
with its own (which can be found by communication or
sensing).

Remark 3 (Network Requirements). The requirement
that a robot can communicate with all other robots
whose fields’ of view intersect with its own describes a
minimal network graph for our controller to be feasible.
In particular, we require the network to be at least a
proximity graph in which all agentsi are connected to
all other agentsj ∈ Ni, whereNi = {j | Q∩Bi∩Bj 6=
∅, i 6= j}. To compute the controller over a network
that is a subgraph of the required proximity graph, a
robot needs an algorithm for maintaining estimates of
the states of the robots with whom it is not in direct com-
munication. Such an algorithm is discussed in Section
VI. In the case that the network becomes disconnected,
the separate connected sub-groups will tend to come
together as each sub-group tries to entirely cover the
environment (being unaware of the other sub-groups). In
the case that they do not reconnect, all connected sub-
groups will separately cover the environment on their
own.
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Remark 4 (Adaptivity). The controller is adaptive in
the sense that it will stably reconfigure if any number
of robots fail. It will also work with nonconvex envi-
ronments,Q, including disconnected ones. In the case
of a disconnected environment, the robots may (or may
not, depending on the specific scenario) split into a
number of sub-groups that are not in communication
with one another. The controller can also track changing
environments,Q, and changing information per area
functions,φ(q), provided these quantities change slowly
enough. This is not addressed by the theorem, but has
been shown to be the case in simulation studies.

Remark 5 (Control Gains and Robustness). The pro-
portional control gain, k, adjusts the aggressiveness
of the controller. In a discretized implementation one
should set this gain low enough to provide robustness to
discretization errors and noise in the system. The prior
area per pixel,w, adjusts how much of the areaQ will
remain uncovered in the final configuration. It should be
chosen to be as large as possible, but as withk, should
be small enough to provide robustness to discretization
errors and noise in the system.

Remark 6 (Obstacles and Collisions). The controller
does not explicitly take into account collisions with
obstacles or with other robots. The natural tendency
of the controller is for robots to push away from one
another, though this does not give a definite guarantee,
and analytical results to this effect would be difficult to
obtain. In a practical setting, this controller would have
to be combined with an obstacle and collision avoid-
ance controller in either a hybrid or blended control
architecture to prevent collisions. In the 30 experimental
trials described in this paper, no collision avoidance
component was used, and collisions were not a problem,
except for a single instance in which a faulty gyro sensor
resulted in a midair collision of two quadrotors.

This controller can be implemented in a discretized
setting as Algorithm 1. In general, the integrals in the
controller must be computed using a discretized approx-
imation. LetQ̂ ∩ ∂Bi andQ̂ ∩ Bi be the discretized sets
of gird points representing the setsQ∩∂Bi andQ∩Bi,
respectively. Let∆q be the length of an arc segment for
the discretized setQ̂ ∩ ∂Bi, and the area of a grid square
for the discretized set̂Q ∩ Bi. A simple algorithm that
approximates (10) is then given in Algorithm 1.

To determine the computational complexity of this
algorithm, let us assume that there arem points in both
setsQ̂ ∩ ∂Bi andQ̂ ∩ Bi. We can now calculate the time

Algorithm 1 Discretized Controller
Require: Robot i knows its positionpi, the extent

environmentQ, and the information per area function
φ(q).

Require: Robot i can communicate with all robotsj
whose field of view intersects with its own.
loop

Communicate with neighbors to getpj
Compute and move to

ci(t+ ∆t) = ci(t)

−k
∑

q∈Q̂∩∂Bi
(hNq

− hNq\{i})
(q−ci)
‖q−ci‖

φ(q)∆q

Compute and move to

zi(t+ ∆t) = zi(t)
−k

∑

q∈Q̂∩∂Bi
(hNq

− hNq\{i})φ(q) tan θ∆q

+k
∑

q∈Q̂∩Bi

2h2

Nq

a(b−zi)3
φ(q)∆q

end loop

complexity as

T (n,m) ≤
m

∑

j=1

(O(1) +

n
∑

k=1

O(1)) +

m
∑

j=1

(O(1) +

n
∑

k=1

O(1) +

n−1
∑

k=1

O(1)) ∈ O(nm).

When calculating the controller for all robots on a
centralized processor (as was done for the simulations
in Section V), the time complexity becomesT (n,m) ∈
O(n2m).

IV. EXTENSION TO ROTATING CAMERAS

Until this point we have assumed that the camera’s
field of view, Bi, is a circle, and that the camera is
fixed in a downward pointing position. Of course, actual
cameras have a rectangular CCD array, and therefore a
rectangular field of view. This means that the rotational
orientation of the camera with respect to the ground must
also be controlled. Furthermore, one may want to mount
the camera on gimbals to control pan and tilt angles.
This would introduce another two rotational degrees of
freedom that must be controlled. In this section we revisit
the gradient in Theorem 1 and calculate it first for a
rectangular field of view and one degree of rotational
freedom, and then consider a rectangular field of view
with the full six degrees of freedom. Finally, we consider
the case of heterogeneous groups made up of cameras
with different degrees of freedom.
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A. Rectangular Field of View

Let the state space ofpi = [cTi zi ψi]
T be P =

R3 × S, whereψi is the yaw angle. The rotation matrix
in SO(2) associated withψi is given by

R(ψi) =

[

cosψi sinψi
− sinψi cosψi

]

, (13)

whereR(ψi)q rotates a vectorq expressed in the global
coordinate frame, to a coordinate frame aligned with
the axes of the rectangular field of view. As is true
for all rotation matrices,R(ψi) is orthogonal, meaning
R(ψi)

T = R(ψi)
−1. Using this matrix, define the field

of view of roboti to be

Bi = {q | |R(ψi)(q − ci)| ≤ zi tan θ} , (14)

whereθ = [θ1 θ2]
T is a vector with two angles which

are the half-view angles associated with two perpendic-
ular edges of the rectangle, as shown in Figure 4, and
the≤ symbol applies element-wise (all elements in the
vector must satisfy≤). We have to break up the boundary
of the rectangle into each of its four edges. Letlk be the
kth edge, and define four outward-facing normal vectors
nk, one associated with each edge, wheren1 = [1 0]T ,
n2 = [0 1]T , n3 = [−1 0], andn4 = [0 − 1].

Fig. 4. The geometry of a camera with a rectangular field of view is
shown in this figure.

The cost function,H(p1, . . . , pn), is the same as
for the circular case, as is the area per pixel function
f(pi, q).

Theorem 3 (Rectangular Gradient). The gradient of the
cost functionH(p1, . . . , pn) with respect to a robot’s
positionpi using the area per pixel function in (3) and
the rectangular field of view in (14) is given by

∂H

∂ci
=

4
∑

k=1

∫

Q∩lki

(hNq
− hNq\{i})R(ψi)

Tnkiφ(q) dq, (15)

∂H

∂zi
=

4
∑

k=1

∫

Q∩lki

(hNq
− hNq\{i}) tan θTnkiφ(q) dq

−

∫

Q∩Bi

2h2
Nq

a(b− zi)3
φ(q) dq, (16)

and

∂H

∂ψi
=

4
∑

k=1

∫

Q∩lki

(hNq
− hNq\{i})

·(q − ci)
TR(ψi + π/2)Tnkiφ(q) dq. (17)

Proof. Please see the Appendix for a proof.

The terms in the gradient have interpretations similar
to the ones for the circular field of view. The lateral
component (15) has one integral which tends to make
the robots move away from neighbors with intersecting
fields of view, while moving to put its entire field of view
inside of the environmentQ. The vertical component
(16) comprises two integrals. The first causes the robot
to go up to take in a larger view, while the second causes
it to go down to get a better view of what it already
sees. The angular component (17) rotate the robot to get
more of its field of view into the environment, while
also rotating away from other robots whose field of
view intersects its own. Computation of the gradient
component for the rectangular field of view is of the
same complexity as the circular case, and carries the
same constraint on the communication topology.

B. Incorporating Pan and Tilt Angles

In the previous section we extended the controller to
the case of four degrees of freedom: three positional
degrees and one angular degree. In this section we
complete the extension to the most general case, six
degrees of freedom, by including pan and tilt angles.
The full six degrees of freedom can be realized with
a camera mounted on double gimbals to a hovering
robot. The robot’s position and yaw angle account for
the position and rotation angle of the camera while the
gimbals control pan and tilt angles of the camera.

The full freedom of motion complicates the geometry
of the field of view considerably. The field of view is
a trapezoid in this case, the lengths of whose sides and
the angles between them depend nonlinearly upon the six
degrees of freedom of the camera. One can most easily
visualize the geometry by considering a rectangular
pyramid emanating from the focal point of the lens of
the camera toward the environment. We will call this the
field of view pyramid, or just the pyramid. This pyramid
intersects with the plane of the environment to create the
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field of view of the camera. The plane of the environment
can be oriented arbitrarily with respect to the pyramid,
creating a trapezoidal field of view (assuming the pan
and tilt angle are within certain limits so that all sides
of the pyramid intersect the plane). Please refer to Figure
5 for a schematic of the geometry involved.

Fig. 5. This figure shows the distortion of the field of view into a
trapezoid due to pan and tilt angles of the camera. This considerably
complicates the geometry for cameras with six degrees of freedom.

We follow a similar procedure as for the rectangular
case, analyzing the geometry to obtain the geometric
constraints describing the field of view, and differenti-
ating the constraints to obtain the gradient controller.
Stability can be proved in the same way as before
by appealing to Theorem 2 about the convergence and
stability of the gradient system.

To formulate the geometry involved, we will in-
troduce a system of coordinate frames and 3-
dimensional rotations to describe the state of the cam-
era. Let the state of camerai be given by pi =
[xi yi zi ψri ψpi ψti ]

T , and the state space is
P = R3×S1×[−π2 +θ1,

π
2−θ1]×[−π2 +θ2,

π
2−θ2], where

θ1 and θ2 are the two half angles of view as defined
above. The angleψri is the rotation (or yaw) angle, which
is positive when the field of view spins clockwise,ψpi is
the pan (or roll) angle, which is positive when the field of
view sweeps to the left, andψti is the tilt (or pitch) angle,
which is positive when the field of view sweeps upward.
The ranges for pan and tilt are limited to the angles over
which the field of view is bounded. We also introduce
ρi = [xi yi zi]

T to denote the position of the focal
point of the camera. We represent the orientation of the
camera by the angles that have to be controlled in the
gimbals mechanism (similarly to Euler angles), however
we will also deal with their associated rotation matrix in
SO(3) to represent the field of view trapezoid.

Consider two coordinate frames: the Camera Fixed
frame of roboti (CFi) and the Global Fixed frame (GF ),
which is the same for all robots. TheCFi is fixed to
the camera, centered at the focal point, with thez-axis
pointing through the lens and they-axis pointing out the
right side of the camera. TheGF is centered at a fixed

origin on the ground, with thez-axis pointing upward
normal to the ground. To express vectors in either the
CFi orGF frames conveniently, we first formulate three
rotation matrices inSO(3), each realizing a rotation
through a rotational angle, as

Rri =





cosψri sinψri 0
− sinψri cosψri 0

0 0 1



 , Rpi =





1 0 0
0 cosψpi sinψpi
0 − sinψpi cosψpi



 , (18)

and Rti =





cosψti 0 − sinψti
0 1 0

sinψti 0 cosψti



 . (19)

To take a point,x, in theGF and express it in theCFi
we first translate the vector byρi, the position of the
focal point in theGF , then rotate the vector about thez
axis byπ/2 and flip it about thex-axis byπ using the
matrix

Rf =





0 1 0
1 0 0
0 0 −1



 . (20)

and, finally, rotate it throughψri , ψpi , andψti in sequence
using the rotation matrices in (18). This gives the trans-
formationRi(ψti , ψ

p
i , ψ

r
i )(x − ρi), which is an element

of the special Euclidean groupSE(3) = R3 × SO(3),
where

Ri(ψ
t
i , ψ

p
i , ψ

r
i ) = RtiR

p
iR

r
iR

f . (21)

We will henceforth drop the angle arguments fromRi
to be concise. Likewise, we can take a pointy in the
CFi frame and express it in theGF frame with the
inverse transformation inSE(3) asRTi y + ρi. We will
use these transforms to write the constraints that describe
the trapezoidal field of view of the camera.

Consider the four outward facing unit normal vectors
of the faces of the field of view pyramid. Denote them in
theCFi frame in counter-clockwise order, starting from
the right-hand face of the pyramid as

m1i = [0 cos θ1 − sin θ1]
T , m2i = [cos θ2 0 − sin θ2]

T ,

m3i = [0 − cos θ1 − sin θ1], and m4i = [− cos θ2 0 − sin θ2].

Let thekth leg of the trapezoidal field of view be called
lk as before. The vector from the focal point,ρi, to a
point in the leg,q, is perpendicular to the normal of the
kth pyramid face, therefore

mk
T
i Ri(I3,2q − ρi) = 0, (24)

whereIi,j is the i × j identity matrix. We definedq to
be in R2 (embedded in the ground plane), so we must
express it inR3, appending a zeroz coordinate with
I3,2q. Points on or to the left oflk (when looking in
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the counter-clockwise direction), satisfymk
T
i Ri(I3,2q−

ρi) ≤ 0. Therefore the field of view can be described by

Bi = {q | mk
T
i Ri(I3,2q − ρi) ≤ 0 k = 1, 2, 3, 4}. (25)

It is also useful to explicitly state the vertices of the
field of view. Let vki be the vertex between the legs
lk−1 and lk (wherelk−1 is understood to bel4 for k =
1). Then the vertex must satisfy (24) for bothk and
k−1, which gives[mk−1i mki]

TRi(I3,2vki−ρi) = 0.
Solving for the vertexvki gives

vki = ([mk−1i mki]
TRiI3,2)

−1[mk−1i mki]
TRiρi. (26)

Now that we have defined the field of view, we must
revisit the area per pixel function,f(pi, q). Previously,
we implicitly approximated the distance from the point
in the environment,q, to the camera focal point,ρi,
to be zi, which is a fair approximation if the camera
remains pointed at the ground. Now, however, we must
account for the fact that points on one side of the field of
view may be significantly closer to the focal point than
points on the other side because of the tilt and pan of
the camera. For this reason we re-definef(pi, q) to be

f(pi, q) =

{

a(b − ‖I3,2q − ρi‖)2 for q ∈ Bi
∞ otherwise.

(27)

The cost function,H(p1, . . . , pn), is the same as for
the circular and rectangular cases. The difference is only
in the specification of the field of view,Bi, which is given
by (25), and the new area per pixel function specified by
(27). To derive the gradient controller, however, we must
differentiate the constraint equation (24) as before. We
relegate the details of this differentiation to the appendix,
and show the result in the form of a theorem.

Theorem 4 (Six Degree of Freedom Gradient). The
gradient of the cost functionH(p1, . . . , pn) with re-
spect to a camera’s six degree of freedom statepi =
[xi yi zi ψri ψpi ψti ]

T using the area per pixel
function in (27) and the trapezoidal field of view defined
by (25), is given by

∂H

∂ρi
=

4
∑

k=1

∫

Q∩lki

(hNq
− hNq\{i})

RTi mki

‖I2,3RTi mki‖
φ(q) dq

+

∫

Q∩Bi

2h2
Nq

a(b− ‖I3,2q − ρi‖)3
(I3,2q − ρi)

‖I3,2q − ρi‖
φ(q) dq, (28)

∂H

∂ψsi
=

4
∑

k=1

∫

Q∩lk

(hNq
− hNq\{i})

mk
T
i
∂Ri

∂ψs
i

(ρi − I3,2q)

‖I2,3RTi mk‖
φ(q) dq s ∈ {r, p, t}, (29)

where

∂Ri
∂ψri

= RtiR
p
i





− sinψri cosψri 0
− cosψri − sinψri 0

0 0 0



Rf ,
∂Ri
∂ψpi

= Rti





0 0
0 − sin
0 − cos

and
∂Ri
∂ψti

=





− sinψti 0
0 0

cosψti 0

Proof. Please see the Appendix for a proof.

The controller in (10) can now be used with the
gradient above to produce a controller for the full six
degree of freedom case.

C. Heterogeneous Groups

The gradient control scheme that we propose can be
directly applied to heterogeneous groups of robots. If
a robot is restricted so that some of its rotational or
translational variables are constant, one can apply the
controller in (10) to whatever components in the gradient
in Theorem 4 are controllable. For example, consider a
two robot group in which one robot can only translate
and one robot can only rotate. Then the state space
associated with the translating robot isP1 = R3, that
for the rotating robot isP2 = S1 × [−π2 + θ1,

π
2 − θ1]×

[−π2 + θ2,
π
2 − θ2], and the state space for the whole

system isP1 × P2. The relevant optimization for this
robot group becomes

min
(p1,p2)∈P1×P2

Hhet(p1, p2). (31)

The gradient ofHhet above is the same as the gradient
of H, except thatHhet is only a function of variables
p1 = [x1 y1 z1] and p2 = [ψr2 ψp2 ψt2], so its
gradient only has elements with respect to these six
variables. This applies in general to situations in which
any robot has degrees of freedom which are a subset of
the six possible degrees of freedom. The convergence
and stability results in Theorem 2 still hold since the
controller is still a gradient controller, and ifH is
continuously differentiable, thenHhet is also.

One can also readily extend to the case in which
robots’ states are constrained to lie on a manifold in their
state space, that is, if their state variables are constrained
to maintain some relationship with respect to one an-
other. The gradient can be calculated in a straightforward
manner using the chain rule. For example, suppose we
have control overxi, but yi is constrained such that
yi = g(xi). Then the gradient of the constrained cost
functionHcnstr is simply found from the unconstrained
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cost function by

∂Hcnstr(xi)
∂xi

=
∂H

∂xi
+
∂H

∂yi

∂g

∂xi
. (32)

As long as the constraintg is differentiable, with a
locally Lipschitz derivative, the convergence and stability
in Theorem 2 are ensured. Other kinds of constraints (for
example those written asg(xi, yi) = 0) can be handled
in a similar way. In the next section we demonstrate
the proposed control scheme for the three cases of a
homogeneous group of robots with fixed cameras, a
homogeneous group of robots with cameras that can pan
and tilt, and a heterogeneous group of robots.

V. SIMULATIONS

We conducted numerical simulations to demonstrate
the performance of the algorithm in various situations.
The cameras were simulated in a Matlab environment
and controlled using Algorithm 1 on a centralized pro-
cessor. The camera parameters were set toa = 10−6,
b = 10, θ1 = 35 deg, θ2 = 20 deg, which are typical
for commercially available hand held digital cameras.
The control gains were set toφ = 1, w = 216, and
k = 10−6[1 1 .1 10−9 10−9 10−9]T . We will
show the results from three representative simulation
scenarios here.

The first simulation, shown in Figure 6, models a
scenario in which there are four surveillance cameras in
a square room, one in each upper corner. The cameras
can rotate about each of their three rotational axes,
but cannot translate. The relevant controller then uses
only (29) in 1. The cameras begin pointing downward
(Figure 6(a)), then they rotate their fields of view into
the square environment (Figure 6(b)), and finally arrange
themselves so that each covers a different patch of the
environment, while allowing for some overlap (Figure
6(c)). The decreasing value of the cost functionH is
shown in Figure 6(d). The final value of the function is
very small compared to the initial value, but it is not zero.
Indeed the cost function is always greater than zero, as
can be seen from the definition ofH in (7). The function
appears to decrease jaggedly because of the discretized
integral computation in Algorithm 1.

The second simulation is of five flying robots with
downward facing cameras. The robots (and their cam-
eras) have three translational degrees of freedom and
can rotate about their yaw axis. The controller equations
from Algorithm 1 were computed with the gradient in
(15), (16), and (17). The environment in this case is
nonconvex. This scenario is similar to our outdoor ex-
periments performed with quadrotor robots as described

(a) Initial Config.

(b) Middle Config.

(c) Final Config.

(d) Cost Function

Fig. 6. Results of a simulation with four cameras fixed in the corners
of a square room are shown. The cameras can rotate about all three
rotational axes. The camera icon marks the camera positionsand the
pyramids represent the fields of view of the cameras. The initial,
middle, and final configurations are shown in 6(a), 6(b), and 6(c),
respectively. The decreasing value of the aggregate information per
pixel function,H, is shown in 6(d). The jaggedness of the curve is
due to the discretized integral approximation.

in Section VII-B. Figure 6 shows the results of a typical
simulation. The robots start in an arbitrary configuration
and spread out and up so that their fields of view cover
the environment. As in the previous simulation, the
cost function appears jagged because of the discretized
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integral computation in Algorithm 1.

(a) Initial Config.

(b) Middle Config.

(c) Final Config.

(d) Cost Function

Fig. 7. Results of a simulation with five cameras on flying robots
(indicated by the quadrotor icons) are shown over a nonconvex
environment. The cameras can translate in all three axis andcan rotate
about the yaw axis. The pyramids represent the fields of view of the
cameras. The initial, middle, and final configurations are shown in
7(a), 7(b), and 7(c), respectively. The decreasing value ofthe aggregate
information per pixel function,H, is shown in 7(d). The jaggedness
of the curve is due to the discretized integral approximation.

The final simulation scenario is of two fixed cameras
in opposite corners of a room, similarly to the first
scenario, along with three cameras mounted to flying
robots and gimbals to enable motion in all six degrees

of freedom. This is, therefore, an example of a heteroge-
neous group, as described in Section IV-C. The figures
show the flying cameras spreading out and up over the
environment, while the fixed cameras sweep their fields
of view into the environment. The cameras eventually
settle in a configuration in which the team covers the
environment. Figure 8(d) shows the decreasing cost of
the group, and is again jagged due to the discretized
integral in the computation of the controller.

VI. PROPAGATING STATES OVER THE NETWORK

In this section we describe a networking algorithm to
support the camera coverage controller described above.
The algorithm facilitates the efficient propagation of
robot state information around the network by weighting
the frequency with which robotj’s state information is
sent to roboti by how relevant robotj’s state is to robot
i’s controller.

As discussed in Remark 3, the camera coverage
controller requires the communication of state informa-
tion between robots with overlapping fields of view.
Unfortunately, there is no practical way to guarantee
that robots with overlapping fields of view will be in
direct communication with one another. Many of the
envisioned applications for our control algorithm require
the robot team to spread over large-scale domains where
distances between robots can become larger than their
transmission ranges. Furthermore, transmission ranges
depend on complicated factors beyond inter-robot dis-
tance, such as environment geometry, channel interfer-
ence, or atmospheric conditions. Therefore, to implement
the proposed controller, we require a practical multi-hop
networking algorithm to distribute state information over
the entire system.

Existing mobile ad hoc networks typically use sophis-
ticated routing schemes to pass data packets around the
network. Due to the mobile nature of such networks,
these schemes consume a significant amount of com-
munication capacity for maintaining knowledge about
network topology. They also are not efficient (in terms of
time, bandwidth, and power) for our application because
they do not prioritize state information based on its
relevance to the controller. Instead, we here propose an
algorithm tailored for our application that is more likely
to broadcast state information of robots that are near by
than of those that are far away. The algorithm ensures
that the state information most likely to be used by a
robot’s controller is also most likely to be up-to-date.
This location-based multi-hop algorithm increases propa-
gation rates of state estimates in local neighborhoods (i.e.
robots that are likely to have overlapping fields of view),
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(a) Initial Config.

(b) Middle Config.

(c) Final Config.

(d) Cost Function

Fig. 8. Results of a simulation with two cameras fixed in the corners of
a square room and three cameras mounted on flying robots are shown.
The fixed cameras (denoted by the camera icons) can rotate about all
three rotational axes while the flying cameras (denoted by the quadrotor
icons) have the full six degrees of freedom. The initial, middle, and
final configurations are shown in 8(a), 8(b), and 8(c), respectively. The
decreasing value of the aggregate information per pixel function, H,
is shown in 8(d). The jaggedness of the curve is due to the discretized
integral approximation.

while also being efficient in terms of bandwidth and
computational complexity. We refer the reader to [23]
for a detailed description and analysis of the algorithm.

A. Importance-Based Broadcasting

In this section we formalize the idea of maintaining
state estimates over a network and propose a means
of prioritizing state information based upon proximity.
Considern robots, each of which knows its current
state,pi(t) ∈ P , by some means of measurement (e.g.
GPS or visual localization). We propose that each robot
maintains a list of state estimates,[p1(ti1), . . . , pn(tin)],
where tij denotes a time stamp at which roboti’s
estimate of robotj’s state was valid. We have thattij ≤ t
and tii = t.

For simplicity, we use Time Division Multiple Access
(TDMA)3 to divide the data stream into time slots of
length γ. During a time slot, one assigned robot is
allowed to broadcast over the shared channel. The length
γ is measured by the number of state estimates (along
with their time stamps) that can be broadcast in the time
slot. For example, with a slot of lengthγ = 5 a robot
can transmit5 state estimates. The robots broadcast one
after the other in a predetermined order. One complete
broadcast cycle is referred to as a frame. The length of
a frame is proportional tonγ.

One naive strategy, called simple flooding, is to assign
a time slot length equal to the number of robots,γ = n,
so that each robot can broadcast its entire list of state
estimates. Although simple to implement, this strategy is
not scalable for a large number of robots since increasing
the number of robots in the system willquadratically
decrease the frame rate (i.e. the rate the team can cycle
through all time slots). This highlights the inherent
tradeoff between the amount of information that can
be broadcast, and the currency of that information. Our
algorithm seeks to balance that trade-off.

Consider a functiong : P × P 7→ (0,∞], called the
importance function, that weights how important it is for
roboti to have a current state estimate of robotj, defined
as

gij(t) = ‖pi(t)− pj(tij)‖
−1. (33)

A robot should consider its own state estimate to be
the most important to broadcast. This is reflected in
the model sincegii is infinite. We use the importance
function in (33) to develop a deterministic algorithm.
For a given time slot, this algorithm selects which state
estimates a robot will broadcast. We first describe a prob-
abilistic approach to help motivate the final algorithm.

3The proposed strategy is not limited to only TDMA; many other
channel access methods are appropriate (e.g. FDMA or CDMA).
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B. Probabilistic Algorithm

Consider a robot that needs to selectl state estimates
to broadcast during its time slot. We provided motivation
in Section VI-A that some selections are more important
than others. However, the robot shouldnotsystematically
select the state estimates associated with the highest
importance; doing so can prevent estimates from fully
dispersing throughout the system. Instead, we propose
that the probability of roboti selecting the state estimate
of robot j is

P ijMi
(t) =

gij(t)
∑

k∈Mi
gik(t)

, j ∈Mi (34)

whereMi is the set of robot indices associated with
selectable estimates.

Prior to the first selection for a given time slot,Mi

is the set of all robot indices. From the full set the
robot always selects its own state since it has infinite
importance. The robot then removes its index fromMi.
Since (34) is a valid probability mass function, the robot
can simply choose the next state estimate at random from
the corresponding probability distribution, then remove
the corresponding index fromMi. This means estimates
of closer robots are more likely to be chosen than ones
that are farther away. By repeating this process, the entire
time slot of lengthγ can be filled in a straightforward,
probabilistic manner.

C. Deterministic Algorithm

The probabilistic method above is not suitable in prac-
tice because consecutive selections of a particular robot
index can be separated by an undesirably long period
of time, especially for distant robots. By developing a
location-based deterministic algorithm, we can increase
the average rate at which all state estimates of a given
time stamp will propagate throughout a team. In the
deterministic case, propagation time is bounded above
by the longest path taken among the estimates. No such
bound exists in the probabilistic case, resulting in a
positively skewed distribution of propagation times and
a larger mean. We propose that each robot maintains a
list of counters,[ci1, . . . , cin], which are initially set to a
value of one. Using the probability mass function in (34),
each counter represents the probability that the corre-
sponding index hasnot been selected. Consider a robot’s
first selection, which will always be its own index. The
probability,P iiMi

(t), of selecting indexi is equal to one,
while all other probabilities,P ijMi

(t) subject toj 6= i,
are equal to zero. This implies that the countercii is
multiplied by [1 − P iiMi

(t)] = 0, or a zero probability
of not being selected, while all other counters,cij , are

Algorithm 2 Deterministic Method for Selecting State
Estimates
n is the number of robots in the system andl is the
time slot length.

Require: Robot i knows its statepi(t) and the state
estimate of other robotspj(tij).

Require: Robot i knows its running counter
[ci1, . . . , cin].
Mi ← {1, . . . , n}
for 1 to γ do
P ijMi

(t)← gij(t)
P

k∈Mi
gik(t) , ∀j ∈ Mi

cij ← cij [1− P
ij
Mi

(t)], ∀j ∈ Mi

k ← argmaxk∈Mi
(cik)

Mi ←Mi\{k}
cik ← 1

end for
return {1, . . . , n}\Mi

multiplied [1 − P ijMi
(t)] = 1, or a probability of one.

By selecting the index with the lowest counter value,
we are deterministically guiding our method to behave
according to the probability distribution described by
(34). The selected index (in this casei) is removed from
the setMi, and its corresponding counter (cii) is reset
to a value of one. This process is iteratively applied to
completely fill a time slot withγ state estimates, with
counters maintaining their values between frames. The
complete deterministic strategy is given in Algorithm2.

VII. E XPERIMENTS

To demonstrate the performance of our distributed
control algorithm, we conducted both indoor and out-
door experiments using multiple Ascending Technolo-
gies (AscTec) Hummingbird quadrotor flying robots. The
pitch, roll, and yaw angles of the robots were stabilized
at 1 kHz using the on-board commercial controller
developed for the platform as described in [30]. We
developed a custom microprocessor module, described
in [25], to run the coverage algorithm in this paper. This
high-level controller calculated position waypoints for
the robot’s closed-loop position controller at1 Hz. We
found that a1 Hz update rate for the waypoint commands
is sufficiently slow compared to the settling time of the
position controller that the robot’s dynamics are well
approximated by the integrator dynamics in (11).

A. Optimal Coverage of an Indoor Environment

Our indoor experiments were performed at the Com-
puter Science and Artificial Intelligence Lab (CSAIL) at
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Fig. 9. This figure shows the experimental setup. The robots positions
were captured with a Vicon motion capture system. The robotsused
their position information to run the coverage algorithm ina distributed
fashion.

MIT in a room equipped with a Vicon motion capture
system. This system uses16 high resolution infrared
cameras to measure the global state of each robot at
a rate of120 Hz. The state update messaged are then
broadcast wirelessly over2.4 GHz Digi XBee-PRO radio
modules at a rate of50 Hz to all robots in the system,
where they are parsed by the onboard microcontroller
modules. In addition to using this information for the
coverage controller, each module runs a PID position
control loop at33 Hz [25]. The system configuration is
shown in Figure 9.

The coverage algorithm for a circular field of view
using (10),(8), and (9) was implemented on each robot,
running asynchronously in a fully distributed fashion.
The algorithm calculated the waypointsc(t) and z(t)
from Algorithm 1 at1 Hz. The camera parameters were
set toa = 10e−6 and b = 10e−2 m (which are typical
for commercially available cameras), the circular field
of view half angle asθ = 35◦, the information per area
was a constantφ = 1, the prior area per pixel wasw =
10e−6 m2, and the control gain wask = 10e−5. The
environment to be covered was a skewed rectangle,3.7
m across at its widest, shown in white in Figure 10.

To test the effectiveness of the algorithm and its
robustness to robot failures, we conducted experiments
as follows: 1) three robots moved to their optimal
positions using the algorithm, 2) one robot was manually
removed from the environment, and the remaining two
were left to reconfigure automatically, 3) a second robot
was removed from the environment and the last one
was left to reconfigure automatically.4 Figure 10 shows
photographs of a typical experiment at the beginning
(Figure 10(a)), after the first stage (Figure 10(b)), after
the second stage (Figure 10(c)), and after the third stage
(Figure 10(d)).

4A video showing the indoor experiments
and numerical simulations can be found at
http://people.csail.mit.edu/schwager/Movies/ICRACamerasFinal.mp4.

Fig. 11. The cost function during the three stages of the experi-
ment averaged over 19 successful experiments is shown. The error
bars denote one standard deviation. The experiments demonstrate the
performance of the algorithm, and its ability to adapt to unforeseen
robot failures.

We repeated the above experiment a total of 20
times. Of these 19 runs were successful, while in one
experiment two of the robots collided in midair. The
collision was caused by an unreliable gyroscopic sensor,
not by a malfunction of the coverage algorithm. With
appropriate control gain values, collisions are avoided by
the algorithm’s natural tendency for neighbors to repel
one another.

The coverage cost of the robots over the course
of the experiment, averaged over the19 successful
experiments, is shown in Figure 11, where the error
bars represent one standard deviation from the mean.
Notice that when one robot is removed, the cost function
momentarily increases, then decreases as the remaining
robots find a new locally optimal configuration. The
algorithm proved to be robust to the significant, highly
nonlinear unmodeled aerodynamic effects of the robots,
and to individual robot failures.

B. Optimal Coverage of an Outdoor Environment

We also conducted outdoor experiments with five
quadrotor robots at the German Aerospace Center,
Deutsches Zentrum für Luft und Raumfahrt (DLR)
in Oberpfaffenhofen, Germany. An onboard Ascending
Technologies AutoPilot module stabilized each robot
about a GPS and compass waypoint. In addition, state
estimates were acquired from the AutoPilot module by
the onboard microprocessor module at4 Hz. Using the
longer range 900 Mhz Xbee-XSC radio modules, these
estimates were propagated among the group using the
multi-hop algorithm in Section VI with a time slot of
length γ = 3, thus forming a mobile ad hoc robot
network.

The coverage algorithm for a rectangular field of view
(with θ1 = 35◦ andθ1 = 26.25◦) using (10),(8), and (9)
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(a) Initial Config. (b) Three Config. (c) Two Config. (d) One Config.

Fig. 10. Frame shots from an experiment with three AscTec Hummingbird quadrotor robots are shown. After launching from the ground
(Figure 10(a)), the three robots stabilize in a locally optimal configuration (Figure 10(b)). Then one robot is manuallyremoved to simulate a
failure, and the remaining two move to compensate for the failure (Figure 10(c)). Finally a second robot is removed and the last one again
moves to compensate for the failure (Figure 10(d)). The robots move so that their fields of view (which cannot be seen in thesnapshots) cover
the environment, represented by the white polygon.

(a) Initial Config. (b) Five Config. (c) Three Config. (d) One Config.

Fig. 12. Frame shots from an experiment with three AscTec Hummingbird quadrotor robots are shown. After launching from the ground
(Figure 12(a)), the five robots stabilize in an optimal configuration (Figure 12(b)). Then two robots are manually landedto simulate failures,
and the remaining three move to compensate for the missing cameras (Figure 12(c)). Finally two more robots are removed and the last one
moves to view the whole environment by itself (Figure 12(d)).

Fig. 13. The cost function during the three stages of the experiment,
averaged over 10 successful experiments, is shown in Figure13. The
error bars denote one standard deviate from the mean.

was implemented on each robot running asynchronously
in a fully distributed fashion. Similar to the indoor
experiments, the robots were expected to cover a skewed
rectangular environment measuring approximately60
meters at its widest. In addition, a square area was
removed to create a nonconvex environment. These
experiments were also performed in three stages: 1)
five robots moved to their optimal positions using the
algorithm, 2) two robots were manually piloted away
from the environment, and the remaining three were left
to reconfigure automatically, 3) two more robots were

manually piloted away from the environment and the
last one was left to reconfigure automatically. Figure 12
shows diagrams created from acquired ground truth data
of a typical experiment at the beginning (Figure 12(a)),
after the first stage (Fig, 12(b)), after the second stage
(Fig, 12(c)), and after the third stage (Fig, 12(d)).

The above experiment was repeated a total of10 times,
during which all robots successfully converged to their
final positions for coverage. The coverage cost of the
robots over the course of the experiment, averaged over
the 10 experiments, is shown in Figure 13. Similarly
to the indoor experiments, the mean cost decreases at
each stage, then increases when robots are removed, and
decreases again as the remaining robots settle into a new
equilibrium. We witnessed several different equilibrium
configurations for the three robot system, resulting in
a large variation in local optimal cost. Several factors
could have contributed to this outcome, such as GPS or
compass error, network noise or latency, and variations
in the initial positions of the five robots. However,
for each run the system was successful in converging
to an equilibrium configuration, verifying the practical
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(a) Five Config.

(b) Camera Coverage

Fig. 14. This figure shows the composite view from the five cameras
prior to reaching their final configuration in the first phase of the
experiment. The five images overlay a larger, wider area viewtaken
by a quadrotor robot manually flow above the system.

viability of the coverage algorithm.
To visualize the coverage, we affixed iFlip video

cameras to the base of each quadrotor robot. A sixth
robot was flown manually above the system to record
the entire team during the experiment. Figure 14(b)
shows five higher resolution views overlaying a larger
aerial mosaic, with the lowest robots giving the highest
resolution at ground level. Also note the difference in
equilibrium configuration of Figure 14(a) when com-
pared with Figure 12(b). This outcome was the result
of a malfunctioning robot (the one indicated with the
red field of view); however, its neighboring teammates
shifted their position to cover where this robot normally
would have gone.

VIII. C ONCLUSIONS

In this paper we presented a distributed control al-
gorithm to position robotic cameras to cover an envi-
ronment. The controller is proven to locally minimize
a cost function representing the aggregate information
per pixel of the robots over the environment, and can
be used in nonconvex and disconnected environments.
We also proposed a custom networking algorithm to
communicate the necessary state information among the
robots. We showed simulation examples of the con-
trol algorithm running on a group of fixed cameras
with rotating fixtures, a group of flying robots with

downward facing cameras, and a mixed group of fixed
and flying cameras all mounted on rotating fixtures.
We implemented the algorithm on a group of three
autonomous quadrotor robots in an indoor environment,
and on a group of five autonomous quadrotor robots in an
outdoor environment, and experimentally demonstrated
robustness to unforeseen robot failures.
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X. A PPENDIX

Proof (Theorem 1). We can break up the domain of
integration into two parts as

H =

∫

Q∩Bi

hNq
φ(q) dq +

∫

Q\Bi

hNq
φ(q) dq.

Only the integrand in the first integral is a function ofpi
since the conditioni ∈ Nq is true if and only ifq ∈ Bi
(from the definition ofNq). However the boundaries of
both terms are functions ofpi, and will therefore appear
in boundary terms in the derivative. Using the standard
rule for differentiating an integral, with the symbol∂· to
mean boundary of a set, we have

∂H

∂pi
=

∫

Q∩Bi

∂hNq

∂pi
φ(q) dq

+

∫

∂(Q∩Bi)

hNq
φ(q)

∂q∂(Q∩Bi)

∂pi

T

n∂(Q∩Bi) dq

+

∫

∂(Q\Bi)

hNq\{i}φ(q)
∂q∂(Q\Bi)

∂pi

T

n∂(Q\Bi) dq, (35)

whereq∂· is a point on the boundary of a set expressed
as a function ofpi, and n∂· is the outward pointing
normal vector of the boundary of the set. Decomposing
the boundary further, we find that∂(Q ∩ Bi) = (∂Q ∩
Bi)∪ (Q∩ ∂Bi) and∂(Q\Bi) = (∂Q\Bi)∪ (Q∩ ∂Bi).
But points on∂Q do not change as a function ofpi,
therefore we have

∂q(∂Q∩Bi)

∂pi
= 0 ∀q ∈ ∂Q ∩ Bi

and
∂q(∂Q\Bi)

∂pi
= 0 ∀q ∈ ∂Q\Bi.
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Furthermore, everywhere in the setQ∩∂Bi the outward
facing normal of∂(Q\Bi) is the negative of the outward
facing normal of∂(Q ∩ Bi),

n∂(Q\Bi) = −n(∂(Q∩Bi) ∀q ∈ Q ∩ ∂Bi.

Simplifying (35) leads to

∂H

∂ci
=

∫

Q∩∂Bi

(hNq
− hNq\{i})φ(q)

·
∂q(Q∩∂Bi)

∂ci

T

n(Q∩∂Bi) dq. (36)

and

∂H

∂zi
=

∫

Q∩∂Bi

(hNq
− hNq\{i})φ(q)

·
∂q(Q∩∂Bi)

∂zi

T

n(Q∩∂Bi) dq −

∫

Q∩Bi

2h2
Nq

a(b− zi)3
φ(q) dq, (37)

where we used the fact that∂hNq
/∂ci = [0 0]T ,

and a straightforward calculation yields∂hNq
/∂zi =

−2h2
Nq
/(a(b − zi)

3). Now we solve for the boundary
terms,

∂q(Q∩∂Bi)

∂ci

T

n(Q∩∂Bi) and
∂q(Q∩∂Bi)

∂zi

T

n(Q∩∂Bi),

which generally can be found by implicitly differentiating
the constraint that describes the boundary. Henceforth
we will drop the subscript onq, but it should be
understood that we are referring to points,q, constrained
to lie on the setQ∩ ∂Bi. A pointq on the boundary set
Q ∩ ∂Bi will satisfy

‖q − ci‖ = zi tan θ, (38)

and the outward facing normal on the setQ∩Bi is given
by

n(Q∩∂Bi) =
(q − ci)

‖q − ci‖
.

Differentiate (38) implicitly with respect toci to get

( ∂q

∂ci

T

− I2
)

(q − ci) = 0,

whereI2 is the2× 2 identity matrix, therefore

∂q

∂ci

T (q − ci)

‖q − ci‖
=

(q − ci)

‖q − ci‖
,

which gives the boundary terms for (36). Now differen-
tiate (38) implicitly with respect tozi to get

∂q

∂zi

T (q − ci)

‖q − ci‖
= tan θ,

which gives the boundary term for (37). The derivative
of the cost functionH with respect topi can now be
written as in Theorem 1

Proof (Theorem 3). The proof is the same as that of
Theorem 1 up to the point of evaluating the boundary
terms. Equations (36) and (37) are true. Additionally the
angular component is given by

∂H

∂ψi
=

∫

Q∩∂Bi

(hNq
− hNq\{i})φ(q)

·
∂q(Q∩∂Bi)

∂ψi

T

n(Q∩∂Bi) dq.

The constraint for points on thekth leg of the rectangular
boundary is

(q − ci)
TR(ψi)

Tnk = zi tan θTnk,

from (14). Differentiate this constraint implicitly with
respect toci, zi, and ψi and solve for the boundary
terms to get

∂q

∂ci

T

R(ψi)
Tnk = R(ψi)

Tnk,

∂q

∂zi

T

R(ψi)
Tnk = tan θTnk,

and
∂q

∂ψi

T

R(ψi)
Tnk = −(q − ci)

TR(ψi + π/2)Tnk,

where we have used the fact that

∂R(ψi)

∂ψi
=

[

− sinψi cosψi
− cosψi − sinψi

]

= R(ψi + π/2).

Break the boundary integrals into a sum of four inte-
grals, one integral for each edge of the rectangle. The
expression in Theorem 3 follows.

Proof (Theorem 4). The gradient is derived using the
same method as for the previous two cases. Break the
integral domain into disjoint regions as in the proof of
Theorem 1 to get

∂H

∂ρi
=

∫

Q∩∂Bi

(hNq
− hNq\{i}) ·

∂q(Q∩∂Bi)

∂ρi

T

n(Q∩∂Bi)φ(q) dq +

∫

Q∩Bi

∂hNq

∂ρi
φ(q) dq, (39)

and
∂H

∂ψsi
=

∫

Q∩∂Bi

(hNq
− hNq\{i})

·
∂q(Q∩∂Bi)

∂ψsi

T

n(Q∩∂Bi)φ(q) dq s ∈ {r, p, t}. (40)
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We will see that the three angles,ψri , ψ
p
i , andψti , can

be treated under the same form,ψsi , s = r, p, t. Also,
henceforth we drop the subscripts onq, though it should
be understood thatq lies in a particular set specified by
the domain of integration. We now have to solve for

∂hNq

∂ρi
,

∂q

∂ρi

T

nki, and
∂q

∂ψsi

T

nki k ∈ {1, 2, 3, 4} s ∈ {r, p, t}, (41)

where nki, as was previously defined, is the outward
facing normal of the boundary of the field of view over
the kth leg of the trapezoid.

First, we solve for
∂hNq

∂ρi
using the chain rule with (5)

and (27) to get

∂hNq

∂ci
=

∂

∂fi

(

n
∑

j=1

f−1
j

)−1 ∂f(pi, q)

∂ci
=

2h2
Nq

a(b− ‖I3,2q − ρi‖)3
(I3,2q − ρi)

‖I3,2q − ρi‖
. (42)

Using this in (39) gives the second term of (28) from
Theorem 4.

Next we will solve for∂q
∂ρi

T
nki. Notice that the normal

vectornki (expressed in the global frameGF ) can be
obtained by expressing the pyramid face normalmki in
the global frame and projecting it into the ground plane,
then re-normalizing to obtain a unit vector as follows

nki =
I2,3R

T
i mki

‖I2,3RTi mki‖
. (43)

Differentiate the constraint (24) with respect toρi to get

∂q

∂ρi

T

I2,3R
T
i mki −R

T
i mki = 0. (44)

Substitute inI2,3RTi mki = nki‖R
T
i mki‖ from (43) to

get

∂q

∂ρi

T

nki =
RTi mki

‖I2,3RTi mki‖
. (45)

This with the expression in (40) gives (28) from Theorem
4.

Finally we solve for ∂q
∂ψs

i

T
nki. Differentiate the same

constraint (24) with respect toψsi to get

mk
T
i RiI3,2

∂q

∂ψsi
+mk

T
i

∂Ri
∂ψsi

(I3,2q − ρi) = 0. (46)

now, again, substituteI2,3RTi mki = nki‖R
T
i mki‖ to get

∂q

∂ψsi

T

nki =
mk

T
i
∂Ri

∂ψs
i

(ρi − I3,2q)

‖I2,3RTi mki‖
. (47)

Using this in (40) gives the expression in (29) from
Theorem 4. We solve for∂Ri

∂ψs
i

by differentiatingRi using
(18) for s = r, p, t to get (30) from Theorem 4.
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