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Abstract—This paper presents a decentralized control I. INTRODUCTION
strategy for positioning and orienting multiple robotic cam-
eras to collectively monitor an environment. The cameras Camera networks are all around us. They are used
may have various degrees of mobility from six degrees of {5 monitor retail stores, catch speeding drivers, col-

freedom, to one degree of freedom. The control strategy lect military intelligence. and aather scientific data
is proven to locally minimize a novel metric representing tary 1 '9 ! 9 lenti :

information loss over the environment. It can accommodate SO00N autonomous aircraft with cameras will be rou-
groups of cameras with heterogeneous degrees of mobility tinely surveilling our cities, our neighborhoods, and our
(e.g. some that only translate and some that only rotate), wildlife areas. This technology promises far reaching
and is adaptive to robotic cameras being added or deleted yanefits for the study and understanding of large-scale

from the group, and to changing environmental conditions. complex svstems. both natural and man made. However
The robotic cameras share information for their controllers plex sy ’ u : Wever,

over a wireless network using a specially designed net- before we can realize_the potential of_camera n_etworks,
working algorithm. The control strategy is demonstrated we must address an important technical question: how
in repeated experiments with three flying quadrotor robots  should a group of cameras be positioned in order to
|n.doors,. and with five flying quadrotor robotg outdoors. maintain the best view of an environment? In this
Simulation results for more complex scenarios are also . . .
presented. paper we provide a comprehensive method of controlling
groups of robotic cameras in a decentralized way to

Index Terms—Multirobot systems; distributed control; — guarantee visual coverage of a given environment.
networked control systems; wireless sensor networks; mo-  We consider the problem of providing visual coverage
bile qd hoc netwprks; unmanned aerial vehicles; distributel with maximal resolution using a group of robots with
algorithms; nonlinear control systems .

cameras. The robot group can be heterogeneous in that
some cameras may be fixed to aerial or ground robots,
while others may be able to pan and tilt in place. Our
goal is to control the robots in a decentralized fashion to
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automated and adaptive way in order to maintain the best efficient networking algorithm for state propagation
view of the environment. Our controller is demonstrateso that information can be routed between these robots.
with a group of automated helicopter robots, known dainally, the controller also accommodates heterogeneous
quadrotors, fitted with downward facing cameras. Wgroups in that different robots in the group may be able
present results with groups of three quadrotors in @a move their cameras in different ways. For example
indoor environment and five quadrotors in an outdo@ome cameras may only translate while others may only
environment. pan and tilt. This provides insights and tools for studying
The control strategy we describe is useful for robustiipe tradeoffs between re-positioning a camera versus
collecting visual data over large scale environmentstating it in place.
either for security or scientific applications. We envision The main contributions of this work are as follows.
the algorithm as being used in support of a higher- 1) We propose the minimum information per pixel
level computer vision task, such as object recognition  principle as a cost function for camera placement.
or tracking. That is, we address the problem of how 2) We use the cost function to design a provably-
to best position the robots given that the images from  stable controller to deploy multiple robots with
their cameras will be used by some computer vision  fixed downward facing cameras to locally optimal
algorithm. For example, the controller could be used to  positions in a distributed fashion.
drive groups of autonomous underwater or aerial vehicles3) We generalize the problem formulation to design
to do mosaicing [1], or to produce photometric stereo  a provably-stable controller for heterogeneous sys-
from multiple camera views [2]. This might be applied tems whose cameras have as many as six degrees
to imaging underwater or land-based archaeological sites  of freedom.
or geological formations, environments of ecological 4) We introduce a practical algorithm for enabling
interest such as coral reefs or forests, regions that are communication of the necessary position informa-
inaccessible to humans such as disaster sites or war tion around the wireless mesh network.
zones, or any other large scale environment of interest.5) We present simulation results for several scenar-
Our algorithm could also be used by autonomous flying  ios including ones with heterogeneous groups of

robots to do surveillance [3], target tracking [4]-[6], or robots.

to provide real-time localization and mapping to aid in 6) We implement the controller on quadrotor robots

the navigation of people or vehicles on the ground [7]. with fixed downward facing cameras, and pro-
Our approach is motivated by an information content  vide results from multiple experiments for three

principle: minimum information per pixel. Using infor- quadrotor robots in an indoor environment and five

mation per pixel as a metric allows for the incorporation quadrotor robots outdoors.
of physical, geometric, and optical parameters to give a

cost function that represents how well a group of cameras rajated Work

covers an environment. We obtain a control law by taking

the negative gradient of this cost function. The controller MUch of the work in this paper is inspired by a recent
is proved to converge to a local minimum of the coé?Ody of research concerning the optimal deployment of
function using Lyapunov techniqués robots for providing sensor coverage of an environment.

Cortés et al. [9] introduced a stable distributed congroll

The controller is naturally adaptive to the deletio : .
%gr sensor coverage based on ideas from the optimal

or addition of cameras to the group, and to a chang- .. . . )
ing environment, and will work with a broad class o cility placement literature [10]. This approach invatve

. . . . . Voronoi partition of the environment and has seen
environment geometries, including ones with noncoft P

vexities, and ones with multiple disconnected regiong?vgral extensions, for example. to covering nonconvex
gnwronments [11]-[13], to learning some aspect of the
o)

The controller is also decentralized in that robots only " i i 14 4o ¢ lisi
exchange information with other robots whose fields hvironmernt on-tine [14], and to incorporaté co’ision
voidance [12]. One recent extension described in [15],

view intersect with its own, and are not aware of th iqure 14. proposed an algorithm for the placement of
size nor the composition of the whole group. In the ca a9 » Prop 9 P

o . . . overing sensors, similar to our scenario.
that two robots with intersecting fields of view are no 9 ’

in direct communication with one another, we describe Our. method in this paper is related_ to this bOdY of
work in that we propose a cost function and obtain a

1 . . . distributed controller by taking its gradient. However,
The camera coverage task is necessarily nonconvex, asdpiove th tf fi is diff tf .
[8], and thus gradient controllers can only achieve localfgtimal e CO_S unc '_On we propo_se IS diiteren rom pre_v_lous
configurations. ones in that it does not involve a Voronoi partition.



(a) Concept (b) Experiment (c) Photo Mosaic

Fig. 1. This figure shows the main concept and an example mmiéation of our decentralized coverage controller. Ourtrod strategy
positions multiple flying robots with cameras to cover aniemment in a decentralized way, as in the schematic in Haperiments were
carried out in an indoor environment with three robots andrimoutdoor environment with five robots, as shown in 1(b). fidslting images
form the aerial cameras can be stitched together to prodi@eye scale surveillance image, as in 1(c).

To the contrary, it relies on the fields of view ofing cameras. In Section IV we show an extension to
multiple cameras to overlap with one another. Anotheotating cameras, beginning with one rotational degree
distinction from previous works is that the agents wef freedom, then generalizing to three rotational degrees
consider move in a space that is different from the ored freedom, and finally to heterogeneous groups made
they cover. Previous coverage scenarios have consideugdof robots with various degrees of freedom. Section
agents constrained to move in the environment that th®ypresents simulation results for the cases of a homoge-
cover, which leads to a requirement that the environmemtous system with fixed cameras with three rotational de-
must be convex. This requirement can be overcome wigiiees of freedom, a homogeneous system with cameras
more sophisticated algorithms, but it has been showvith three translational degrees of freedom, and a het-
in the literature to be a non-trivial limitation [11]-[13]. erogeneous system with rotating and translating cameras.
In contrast, we consider agents moving in a space #ection VI proposes an mesh networking algorithm for
R3, covering an arbitrary lower dimensional environmergropagating the information required by the controller to
@Q C R?, which eliminates the need for the environmendll of the robots. Finally, Section VII describes hardware
Q@ to be convex. Indeed, it need not even be connectexkperiments with three quadrotor robots indoors and five
It must only be Lebesgue measurable (since the robagsadrotor robots outdoors, and conclusions are given in
will calculate integrals over it), which is quite a broadSection VIII. Preliminary versions of some of the results
specification. in this paper have appeared in [22]-[25].

There have also been other algorithms for camera
placement, for example a probabilistic approach for gen- ) ) ) o
eral sensor deployment based on the Cramér-Rao bound/e motivate our approach with an informal justifica-
was proposed in [16], and an application of the idea f4ion ©f @ cost function, then develop the problem for-
cameras was given in [17]. In [18] the authors choodnally for the single camera case followed by thg multi-
to focus on positioning downward facing cameras, £&mera case. We desire to cover a bounded environment,

it '
opposed to arbitrarily oriented cameras. Many geometfZ © R°, With @ number of cameras. We assurgeis

cal aspects of the problem are significantly simplified iRl2nar, without topography, to avoid the complications of
Jhanging elevation or occlusions. Lgt € P represent

this setting. More generally, several other works ha ) X
considered cooperative control with flying robots ani€ State of camerg where the state spac®, will be

UAV's. For an excellent review of cooperative UAVcharacterized later. We want to contmolcameras in a

control please see [19], or [20] and [21] for two recerfiistributed fashion such that their placement minimizes
examples. ’ the aggregate information per camera pixel over the

. . . environment,
The remainder of the paper is organized as follows.

In Section Il we formulate the problem of optimally min /
covering an environment with cameras. In Section Il (P1,-pn)EP™ J @
we introduce the decentralized controller and analyZénis metric makes sense because the pixel is the funda-
its convergence and stability properties for a homogeiental information capturing unit of the camera. Con-

neous multi-robot system with fixed downward pointsider the patch of the environment that is exposed to a

II. OPTIMAL CAMERA PLACEMENT

info
pixel e



single pixel, as represented by the red circle in Figuadlows us to neglect all rotational degrees of freedom.
2. The information in that patch is reduced by thén Section IV-A we will consider a downward facing
camera to a low-dimensional representation (i.e. meaamera with a rectangular field of view, so that one
color and brightness over the patch). Therefore, the lesgational degree of freedom becomes relevant, followed
information content the image patch contains, the leby the case with three rotational degrees of freedom and
information will be lost in its low dimensional represena rectangular field of view in Section IV-B.

tation by the pixel. Furthermore, we want to minimize We define the field of view3, to be the intersection of
the accumulated information loss due to pixelation oveihe cone whose vertex is the focal point of the camera
the whole environmer@, hence the integral. In the nextlens with the subspace that contains the environment,
two sections we will formalize the notion of informationas shown in Figure 2. In this case = R3, and the
per pixel. state-space in which we do optimization is consider-
ably simplified from that of the unconstrained camera.
Decompose the camera position @as= [¢, 2]7, with

c € R? the lateral position of the focal point of the

We develop the cost function for a single camergymera, and € R the height of the focal point of the
before generalizing to multiple cameras. It is conveniept era over). We have

to consider the information per pixel as the product of
two functions,f : P x Q — (0,cc], which gives the llg —cll

area in the environment seen by one pixel (the “area per B= {q | — = tan@} @
pixel” function), and¢ : @ — (0,00) which gives the

information per area in the environment. The form otvhered is the half-angle of view of the camera.
f(pi,q) will be derived from the optics of the camera

and geometry of the environment. The functiofy) is ccp
a positive weighting of importance ovép and should

be specified beforehand (it can also be learned from
sensor data, as in [14]). For instance, if all points in
the environment are equally importanit(q) should be
constant ove€). If some known area i) requires more
resolution, the value af(g) should be larger in that area

than elsewhere id). This gives the cost function Fi

min /Q f(p,9)o(q) dg, (1)

A. Single Camera

«— Camera

Fig. 2. The camera optics and the geometry of the environment
] ) ) ] shown in this figure.
which is of a general form common in the locational

optimization and optimal sensor deployment literature
[10], [26]. We will introduce significant changes to thiﬁh

ba_ls_lr:: fo:n: W'tfht;he addition of multlpli clfilmeras. " the lens. Inside3, the aredpixel is equal to the inverse
€ state ol the camerg, ConsIS's of all parameters ¢ y,o areq maghnification factor (which is defined from

assog:iated with the camera that_effect the_area per pi)é%ssical optics [27] to b&?/ (b — 2)2) times the area of
function, f(p, ¢). In a general setting one might COnSIde{)ne pixel. Definex to be the area of one pixel divided

the camera’s position iiR? and its angular orientation
(which can be represented by a matrix $0(3)), as by the square of the focal length of the lens. We have,

well as camera specific parameters such as a zoom factor a(b—z)? for qeB
in (0,00), thus leading to an optimization in a rather fp.q) = { 00 otherwise.
complicated state-spac® = R3 x SO(3) x (0, c0),

for only one camera. For this reason, we first consid@utside of the field of view there are no pixels, therefore
the special case in which the camera is downwatte area per pixel is infinite. The cost function in (1)
facing (hovering overQ). This case is of particular takes on an infinite value if any area (of non-zero
interest in many applications involving surveillance withmeasure) of Q is outside of the field of view. However
autonomous vehicles, as described in Section |. We wille know there exists a € P such that the cost is finite
first consider a camera with a circular field of viewsince @ is bounded (givert and 8, there existz € R
because this considerably simplifies the geometry asdch thaty) C B). Therefore, we can write the equivalent

To find the area per pixel functiory,(p, ¢), consider
e geometry in Figure 2. Lét be the focal length of

®3)

4



constrained optimization problem assume that the robots have knowledge of the geometry
: 5 of the environment), and some notion of information
miny, [o alb = 2)*¢(q) dg, ) content over ito(q). This pre-existing information can
subjectto @ C B. be arbitrarily vague can be arbitrarily large) but it

One can see in this simple scenario that the Optimg\ust exist. The prior also has the benefit of making the

solution is forp to be such that the field of view is theCOSt function finite for all robot positions. It is combined
smallest ball that containg. However, with multiple with the camera sensors as if it were another camera to

cameras, the problem becomes more challenging.

area 1,1yl
B. Multiple Cameras m—(;f(pmﬂ +w )

To find optimal positions for multiple cameras, we o )
have to determine how to account for the area of overléé[%t N, be the set of indices of cameras for which

of the images of the cameras, as shown in Figure 8(Pi»¢) is bounded N, = {i | ¢ € 5;). We can now
Intuitively, an area of) that is being observed by two Write the area per pixel function as

Robot 7\ th (p1, <9 Pns Q) = ( Z f(pi, q)_l + w_l)
U

)_*:. / Robot j 1€EN,

/ \\\ E] . Q to give the cost function

—1

(®)

QNIB;

H(plaapn) :‘/Qh./\/'q(p177pn7q)¢(Q)dq (6)
@nB q We will often refer tohy, and ’H without their argu-

ments. Now we can pose the multi-camera optimization
Fig. 3. This figure shows the relevant quantities involvedtiarac- problem
terizing the intersecting fields of view of two cameras. !

) ) o ) min H. (7
different cameras is better covered than if it were being (P15 Pn) EPT
observed by only one camera, but it is meice as well g ¢ost function (6) is of a general form valid for any
covered. Consider a point that appears in the image,req per pixel functiorf (p;, ¢), and for any camera state
of n different cameras. The number of pixels per arég,cep (including cameras that have rotational degrees
at that point is the sum of the pixels per area for eacl freedom). Notice also that > 0 for all (p; Pn)
_ e\ Dn)-

camera. Therefore the area per pixel at that point is give, proceed with the special case of downward facing
by theinverseof the sum of thenverseof the area per .;meras wher® = R> and f(p;, q) is given by (3).
pixel for each camera, or ' v

area - -1y [1l. DECENTRALIZED CONTROL
O o)™,
=1

pixel We will take the gradient of (6) and find that it
wherep; is the position of theéth camera. We emphasizeis distributed among the robots in the sense that for
that it is thepixels per areathat sum because of thea robot to compute its component of the gradient, it
multiple cameras, not tharea per pixelbecause, in only needs to know the state of the other robots whose
the overlap region, multiple pixels are observing théields of view intersect with its own. This will lead to a
same area. Therefore the inverse of the sum of invergigeentralized gradient-based controller. We will use the
is unavoidable. Incidentally, this is the same form on@otation V,\{i} to mean the set of all indices iV,
would use to combine the variances of multiple noisgxcept fori.

mea_\surements_ when doing B_ayesian sensor fusion [8?l'heorem 1 (Gradient Component)The gradient of the
Finally, we introduce a prior area per pixel; €

: ) o r . cost functionH(p1,...,p,) With respect to a robot's
(0,00). The llnt.erpreta'uon of the prior IS that there | osition p;, using the area per pixel function in (3) is
some pre-existing photograph of the environment (e.g. Ren by

initial reconnaissance photograph), from which we ca
get a base-line area per pixel measurement. This i€H
compatible with the rest of our scenario, since we will dc; /o5,

q—c¢
(hw, = hargiy) ( )

m¢(Q) dq, (8)

5



and (i.e. coercive) inz;, thereforeH < 0 implies that z;
OH is bounded for all time. Finally, consider the set of all
07, Qmag(qu — hy,\(iy)#(q) tan 6 dg (p1s-- -, pa) for wh.ichﬁ = 0. This is itself an invariant

' o2 set, sinceH = 0 implies 9H/0p; = p; = 0 for all
_/ Na é(q) dq. 9) i. Therefore, all conditions of LaSalle’s principle are
onB, a(b— z)? satisfied and the trajectories of the system converge to
this invariant set.
Proof. Please refer to the appendix for a proof. There may exist configurations at Wh'% =0V
that are saddle points, local maxima, or local minima of
We propose to use a gradient control law in whichy statement ii) says that only the logalnimaof # are
every robot follows the negative of its own gradienktaple equilibria. A proof of this intuitively obvious fact

component, about gradient systems can be found in [29], Chapter 9,
w; = —kOM/Op;, (10) Section 4.

whereu; is the control input for robot andk € (0, co)

is a control gain. Assuming integrator dynamics for thBemark 1 (Intuition). The single integral for the lateral
robots component (8) causes the robot to move to increase the

amount of the environment in its field of view, while
Di = Uy, (11) also moving away from other robots whose field of

. view overlaps with its own. The vertical component (9
we can prove the convergence of this controller to Iocal||¥ P b (9)

C ; : as two integrals with competing tendencies. The first
minimize the aggregate information per area. . .
integral causes the robot to move up to bring more of

Theorem 2 (Convergence and StabilityJor a network the environment into its field of view, while the second
of n robots with the dynamics in (11), using the conintegral causes it to move down to get a better look at
troller in (10), the environment already in its field of view.

) limg— oo g_;; =0 Vie{l,...,n},

. i i Remark 2 (Requirements)Both the lateral (8) and
i) An  equilibrium (p7,...,pk), defined
d

0 , - by vertical (9) components can be computed by rabeith
5p Ipi=p;= 0 Vi € {1,...,n}, is Lyapunov ynowledge of 1) its own positiop;, 2) the environment,
stable if and only if it is a local minimum &f. Q, 3) the information per area functiom,q), and 4) the
positions of all other robots whose fields of view intersect
Proof (Convergence and Stability)The proof of state- With its own (which can be found by communication or
ment i) is an application of LaSalle’s invariance prin-S€nsing).
ciple ( [28], [26] Theorem 117). LetH(pi,.--,Pn)  Remark 3 (Network Requirements)The requirement
be a Lyapunov-type function candidate. The closed-10@p,; 5 robot can communicate with all other robots
dynamicsp; = —dH/dp; do not depend on time, andyhose fields’ of view intersect with its own describes a
9H/9p; is a continuous function of; for all j, therefore  inima| network graph for our controller to be feasible.
the dynamics are locally Lipschitz, afttlis continuously |, particular, we require the network to be at least a
differentiable. Taking the time derivative Bf along the proximity graph in which all agents are connected to

trajectories of the system gives all other agentsj € \V;, where\; = {j | QN B;NB; #
) n o onT " oHT OH 0,i # j}. To compute the controller over a network
H= Z 8_p- pi=— op Op; <0. (12) thatis a subgraph of the required proximity graph, a
=1 " =1 ’ robot needs an algorithm for maintaining estimates of

Next we show that all evolutions of the system atbe states of the robots with whom it is not in direct com-
bounded. To see this, consider a robotgatsuch that munication. Such an algorithm is discussed in Section
QN B; = 0. Thenp; = 0 for all time (if the field of VI. In the case that the network becomes disconnected,
view leaves), the robot stops for all time), sg;(¢) is the separate connected sub-groups will tend to come
bounded. GiverQ N B; # 0, H is radially unbounded together as each sub-group tries to entirely cover the
environment (being unaware of the other sub-groups). In

ZIn this application, the invariance principle requires (@)- the case that they do not reconnect, all connected sub-
tonomous, locally Lipschitz dynamics, (2) a non-incregsioontinu-

ously differentiable Lyapunov function, (3) all evolut®wof the system groups will separately cover the environment on their
remain bounded. own.



Remark 4 (Adaptivity). The controller is adaptive in Algorithm 1 Discretized Controller

the sense that it will stably reconfigure if any numbeRequire: Robot ¢ knows its positionp;, the extent

of robots fail. It will also work with nonconvex envi- environment), and the information per area function

ronments,Q, including disconnected ones. In the case ¢(q).

of a disconnected environment, the robots may (or m&equire: Roboti can communicate with all robots

not, depending on the specific scenario) split into a whose field of view intersects with its own.

number of sub-groups that are not in communication loop

with one another. The controller can also track changing  Communicate with neighbors to gef

environments,(Q, and changing information per area Compute and move to

functions,gb(_q),_ provided these quantities change slowly cilt + At) = ei(t)

enough. This is not addressed by the theorem, but has k — (hw —h . )(q,ci) H(Q)A

been shown to be the case in simulation studies. 2 gegram, (I, — v\ (i) = A(@) A
Compute and move to

portional control gain, k, adjusts the aggressiveness Zil(f+At) B Zi}(f) L tan OA
of the controller. In a discretized implementation one B quﬁﬁ\&(wj;ﬁq — h\(ip)9(q) tan 0Aq
should set this gain low enough to provide robustness to Tk conE, (l(b_isz)gqb(q)Aq
discretization errors and noise in the system. The prior

area per pixelw, adjusts how much of the are@ will
remain uncovered in the final configuration. It should be

chosen to be as large as possible, but as witlshould

be small enough to provide robustness to discretizati@momplexity as
errors and noise in the system.

Remark 5 (Control Gains and Robustnessjhe pro-

end loop

m n
<
Remark 6 (Obstacles and Collisions)The controller Tnm) < ;(0(1) - kz::l o)+
does not explicitly take into account collisions with n ne1
obstacles or with other robots. The natural tendency Z(O(l) + 20(1) + Z O(1)) € O(nm).
of the controller is for robots to push away from one ;= =1 1
another, though this does not give a definite guarantee, _
and analytical results to this effect would be difficult t¢Vhen calculating the controller for all robots on a
obtain. In a practical setting, this controller would haveceéntralized processor (as was done for the simulations
to be combined with an obstacle and collision avoidl Section V), the time complexity becom&%n, m) &
ance controller in either a hybrid or blended controlO(n"m).
architecture to prevent collisions. In the 30 experimental
trials described in this paper, no collision avoidance IV. EXTENSION TO ROTATING CAMERAS
component was used, and collisions were not a problem,
except for a single instance in which a faulty gyro sensor Until this point we have assumed that the camera’s
resulted in a midair collision of two quadrotors. field of view, B;, is a circle, and that the camera is
fixed in a downward pointing position. Of course, actual

This controller can be implemented in a discretizeg@Meras have a rectangular CCD array, and therefore a
setting as Algorithm 1. In general, the integrals in thEectangular field of view. This means that the rotational
controller must be computed using a discretized approRtientation of the camera with respect to the ground must
imation. LetQ/m%i and Q/m\& be the discretized sets /S0 be controlled. Furthermore, one may want to mount

of gird points representing the sefs1 dB; andQ N B, the camera on gimbals to control pan and tilt angles.
respectively. LetAq be the length of an arc segment forl Nis would introduce another two rotational degrees of

the discretized se{@/ﬂ-ﬁ%- and the area of a grid squarefreedom that must be controlled. In this section we revisit
¥l

for the discretized sef) N B;. A simple algorithm that thetgrad:entfllr}dThfeo_rem 1 gnd ca(;culate |tff|rstt I_or al
approximates (10) is then given in Algorithm 1. rectangular field of view and one degree of rotationa

freedom, and then consider a rectangular field of view

To determine the computational complexity of thisvith the full six degrees of freedom. Finally, we consider
algorithm, let us assume that there atepoints in both the case of heterogeneous groups made up of cameras
sets@ N 0B; and@ N B;. We can now calculate the timewith different degrees of freedom.



/ (hw, — haepgay) tan 87 ng;0(q) dg

QNlk;

A. Rectangular Field of View oH 24:
0z k=1

Let the state space of, = [¢] 2 ;)T beP = )

R? x S, wherey); is the yaw angle. The rotation matrix 2h,
v Y g _/Q 5 ﬁ(b(q) dg, (16)
nB;

in SO(2) associated withy; is given by —z)
" o and
COS Y, S Y,
R(¢;) = S o, (13) OH 4
—siny; cos; — / ha — B .
= Ny Ng\{i
i ,; Qﬂlm( v
where R(1);)q rotates a vectog expressed in the global (g — ) TR(; +7/2) s d(q) dg. (17)

coordinate frame, to a coordinate frame aligned with
the axes of the rectangular field of view. As is true _
for all rotation matricesR(¢;) is orthogonal, meaning Proof. Please see the Appendix for a proof.

R(y)" = R(¢)~". Using this matrix, define the field g terms in the gradient have interpretations similar
of view of robot: to be to the ones for the circular field of view. The lateral
component (15) has one integral which tends to make
Bi ={q||R(¢i)(q —ci)| < zitan 6}, (14) the robots move away from neighbors with intersecting
fields of view, while moving to put its entire field of view
whered = [, 6,]7 is a vector with two angles which inside of the environmen®). The vertical component
are the half-view angles associated with two perpendi¢t6) comprises two integrals. The first causes the robot
ular edges of the rectangle, as shown in Figure 4, at@igo up to take in a larger view, while the second causes
the < symbol applies element-wise (all elements in thié to go down to get a better view of what it already
vector must satisf<). We have to break up the boundaryees. The angular component (17) rotate the robot to get
of the rectangle into each of its four edges. Lebe the more of its field of view into the environment, while
kth edge, and define four outward-facing normal vectosdso rotating away from other robots whose field of
ng, one associated with each edge, where= [1  0]7, view intersects its own. Computation of the gradient
na =10 1T, n3=[-1 0, andn,=[0 —1]. component for the rectangular field of view is of the
same complexity as the circular case, and carries the
same constraint on the communication topology.

B. Incorporating Pan and Tilt Angles

In the previous section we extended the controller to
the case of four degrees of freedom: three positional
degrees and one angular degree. In this section we
complete the extension to the most general case, six
degrees of freedom, by including pan and tilt angles.
The full six degrees of freedom can be realized with
a camera mounted on double gimbals to a hovering
robot. The robot's position and yaw angle account for
the position and rotation angle of the camera while the

Fig. 4. The geometry of a camera with a rectangular field ofvvie
shown in this figure.

The cost functionH(p1,...,ps), is the same as gimpals control pan and tilt angles of the camera.
for the circular case, as is the area per pixel function The fy|l freedom of motion complicates the geometry
f i, q)- of the field of view considerably. The field of view is

a trapezoid in this case, the lengths of whose sides and
the angles between them depend nonlinearly upon the six
degrees of freedom of the camera. One can most easily
visualize the geometry by considering a rectangular
pyramid emanating from the focal point of the lens of
4 the camera toward the environment. We will call this the
‘;7; _ / (hw, = o giy) R(80) "nisblg) dg, (15)ield of view pyramid, or just the pyramid. This pyramid
i ey QN intersects with the plane of the environment to create the

Theorem 3 (Rectangular Gradient)The gradient of the
cost functionH(ps,...,p,) With respect to a robot's
positionp; using the area per pixel function in (3) and
the rectangular field of view in (14) is given by




field of view of the camera. The plane of the environmemtrigin on the ground, with the-axis pointing upward
can be oriented arbitrarily with respect to the pyramidyormal to the ground. To express vectors in either the
creating a trapezoidal field of view (assuming the pafiF; or GF frames conveniently, we first formulate three
and tilt angle are within certain limits so that all sidesotation matrices inSO(3), each realizing a rotation
of the pyramid intersect the plane). Please refer to Figutlerough a rotational angle, as

5 for a schematic of the geometry involved.

costy;  sing; 0 1 0 0
Rl = | —sin¢! cosyf 0 |, RV=1]0 cosy? sing? |, (
0 0 1 0 —siny? cosy?
cosypt 0 —siny}
and R! = 0 1 0 (

sing! 0 cosy!

To take a pointg, in the GF' and express it in th€'F;
we first translate the vector by;, the position of the
focal point in theG F', then rotate the vector about the

Fig. 5. This figure shows the distortion of the field of viewarsa axis byw/2 and fllp it about ther-axis by” using the

trapezoid due to pan and tilt angles of the camera. This derably matrix
complicates the geometry for cameras with six degrees etltn.

We follow a similar procedure as for the rectangular
case, analyzing the geometry to obtain the geometric
constraints describing the field of view, and differentiand, finally, rotate it througl”, %?, ands! in sequence
ating the constraints to obtain the gradient controllefising the rotation matrices in (18). This gives the trans-
Stability can be proved in the same way as befofgrmation R; (¢!, P ) (z — p;), which is an element
by appealing to Theorem 2 about the convergence apflthe special Euclidean groupE(3) = R3 x SO(3),

0 1
Rf=|10 0 |. (20)
0 0

stability of the gradient system. where
To formulate the geometry involved, we will in- C o N
troduce a system of coordinate frames and 3- Ri(5. 47, ¥)) = iR/ R{ R’ (21)

dimensional rotations to describe the state of the CaWe will henceforth drop the angle arguments frdtn
era. Let the ftatep of i:z;meradbehglven by pi = . to be concise. Likewise, we can take a paointn the
[:171-_ vi gl Y] i 1% ;Me’ an Ftee itatee szce 'SCF, frame and express it in th&F frame with the
Z = H%; X[_h§+ 1 ih_ |fl]><[_|§+ ?, 502, Wde;e inverse transformation i £(3) as Ry + p;. We will
1 andg, are the two hall angles of view as de ned,qe these transforms to write the constraints that describe
above. The angle; is the rotation (or yaw) angle, which trapezoidal field of view of the camera.
Consider the four outward facing unit normal vectors

is positive when the field of view spins clockwisg; is

. . . ) Bf the faces of the field of view pyramid. Denote them in
view sweeps to the left, arw[{ Is the t',lt (or pitch) angle, ¢ CF; frame in counter-clockwise order, starting from
which is positive when the field of view sweeps upward,, right-hand face of the pyramid as

The ranges for pan and tilt are limited to the angles over
which the field of view is bounded. We also introduce my; =10 cosy —sind]?, ma; =[cosfy 0 —sinby]”,
pi = [r; v z]T to denote the position of the focalyy,, = [0 —cos6y —sin6i], and my; =[—cosfy 0 — sinbs]
point of the camera. We represent the orientation of the
camera by the ang|es that have to be controlled in t}l}@t the kth Ieg of the trapeZOidal field of view be called
gimbals mechanism (similarly to Euler angles), howevér as before. The vector from the focal poinpt, to a
we will also deal with their associated rotation matrix ifPoint in the leg,g, is perpendicular to the normal of the
SO(3) to represent the field of view trapezoid. kth pyramid face, therefore
Consider two coordinate frames: the Camera Fixed miT Ri(I3.2q — pi) = 0 24)
frame of robot (C'F;) and the Global Fixed framex(F), e ! ’
which is the same for all robots. TheF; is fixed to wherel; ; is thei x j identity matrix. We defined to
the camera, centered at the focal point, with thaxis be in R? (embedded in the ground plane), so we must
pointing through the lens and theaxis pointing out the express it inR3, appending a zera coordinate with
right side of the camera. Th@F is centered at a fixed I3 2q. Points on or to the left of;, (when looking in
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the counter-clockwise direction), satispf?ykfRi (Is2¢— where
pi) < 0. Therefore the field of view can be described by

IR, —siney]  cosvy; 0 IR,
2 — R'RP | —cosu” —sinyt 0 | Rf t_ Rt
Bi = {q|mui Ri(Is24 — pi) <0 k=1,2,3,4}.(25) yr — C%wl Sléwz 0 Tooyr
It is also useful to explicitly state the vertices of the OR.
field of view. Let vy; be the vertex between the legs and 3 z =
l,—1 andl; (wherel,_; is understood to bé, for k& = i

1). Then the vertex must satisfy (24) for bothand

k—1, which givesimy_1; mx;]T Ri(I32v0k; —pi) = 0. )

Solving for the vertexy,; gives Proof. Please see the Appendix for a proof.

The controller in (10) can now be used with the

adient above to produce a controller for the full six
egree of freedom case.

Oki = (Imr—1; mii]" Rids ) [m—1; ;] Rips. (26);

Now that we have defined the field of view, we mus?I
revisit the area per pixel functiory,(p;, ¢). Previously,
we implicitly approximated the distance from the poinC. Heterogeneous Groups

in the envwc_)nm_entg, t_o the camera fo_cal poini;, The gradient control scheme that we propose can be
to be z;, which is a fair approximation if the camera,.

remains pointed at the ground. Now, however, we mug{reCtly "?‘pp"ed.“’ heterogeneous groups of rgbots. I
robot is restricted so that some of its rotational or

account for the fact that points on one side of the field (?f ) :
. L ; ranslational variables are constant, one can apply the
view may be significantly closer to the focal point than

points on the other side because of the filt and pan (c:)?ntroller in (10) to whatever components in the gradient

. . N Theorem 4 are controllable. For example, consider a
the camera. For this reason we re-deffitg;, ¢) to be . .
two robot group in which one robot can only translate
a(b — ||Is.2q — pil)2 for qe B and one robot can only rotate. Then the state space
fwira) = { 0 otherwise. 27) associated with the translating robot® = R3, that
for the rotating robot isP, = S* x [-5 + 61,5 — 64] x
The cost functionH(p1,...,pn), is the same as for [-5 + 62,5 — 6>], and the state space for the whole
the circular and rectangular cases. The difference is orgystem isP; x P,. The relevant optimization for this
in the specification of the field of vieu8;, which is given robot group becomes
by (25), and the new area per pixel function specified by )
(27). To derive the gradient controller, however, we must (pl_’pglelglx% Hhetp1:p2)- (31)
differentiate the constraint equation (24) as before. We
relegate the details of this differentiation to the appendiThe gradient ofH,o above is the same as the gradient
and show the result in the form of a theorem. of H, except thatipet is only a function of variables

) ) p1=[r1 Y1 2] andpy = [y Uy, Yiol, SO its
Theorem 4 (Six Degree of Freedom Gradientfhe gradient only has elements with respect to these six

gradient of the cost functiort(ps,...,pn) With re- yariables. This applies in general to situations in which
spect to a camera’s six degree of freedom state= any robot has degrees of freedom which are a subset of
[z yi zi ¢f ¢ f]" using the area per pixel the six possible degrees of freedom. The convergence
function in (27) and the trapezoidal field of view definegnd stability results in Theorem 2 still hold since the

by (25), is given by controller is still a gradient controller, and i is
continuously differentiable, thel ¢ is also.

4 T
OH _ / (b, = P giy) R Mg q)dg ~ One can also readily extend to the case in which
i = Joru,, ' ! ([ 12,3 RT m; | robots’ states are constrained to lie on a manifold in their

op2 state space, that is, if their state variables are constiain
Ny (13,2(] - Pi) ; ; : : -
+ - T ‘ ¢(q) dg, (28)maintain some relationship with respect to one an-
Qns: (b= 1324 = pill)? 324 = pill other. The gradient can be calculated in a straightforward
manner using the chain rule. For example, suppose we
v have control overz;, but y; is constrained such that
OH 1 mk?gTRf(pi — I32q o vi

) . ,
— = h, — hacp g o(§dg 95%){,Than theypradient of the constrained cost
0Y; ; /Qﬂlk( ) 112,53 RY mus | (%nction Hénstr??simply found from the unconstrained
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cost function by

As long as the constraing is differentiable, with a
locally Lipschitz derivative, the convergence and stapili

in Theorem 2 are ensured. Other kinds of constraints (for
example those written agx;,y;) = 0) can be handled

in a similar way. In the next section we demonstrate
the proposed control scheme for the three cases of a
homogeneous group of robots with fixed cameras, a
homogeneous group of robots with cameras that can pan
and tilt, and a heterogeneous group of robots.

(32)

(a) Initial Config.

V. SIMULATIONS

We conducted numerical simulations to demonstrate
the performance of the algorithm in various situations.
The cameras were simulated in a Matlab environment
and controlled using Algorithm 1 on a centralized pro-
cessor. The camera parameters were set to 1079,

b = 10, #; = 35 deg, 0, = 20 deg, which are typical
for commercially available hand held digital cameras.
The control gains were set tp = 1, w = 26, and
E=10%1 1 .1 1072 10 10797. We will
show the results from three representative simulation
scenarios here.

The first simulation, shown in Figure 6, models a
scenario in which there are four surveillance cameras in
a square room, one in each upper corner. The cameras (c) Final Config.
can rotate about each of their three rotational axes, x 10"
but cannot translate. The relevant controller then uses
only (29) in 1. The cameras begin pointing downward
(Figure 6(a)), then they rotate their fields of view into
the square environment (Figure 6(b)), and finally arrange
themselves so that each covers a different patch of the
environment, while allowing for some overlap (Figure
6(c)). The decreasing value of the cost functiihis
shown in Figure 6(d). The final value of the function igig. 6. Results of a simulation with four cameras fixed in theners
very small compared to the initial value, but it is not zercef @ square room are shown. The cameras can rotate aboutes! th
Indeed the cost function is always greater than zero, BIEIor) es. The camers con marks he camera possdshe,
can be seen from the definition &f in (7). The function middle, and final configurations are shown in 6(a), 6(b), aqg),6

appears to decrease jaggedly because of the discretizﬁéﬂle?tivetly- T;Le ,deCLeaSing ‘ga('g)e ?;‘] the ag%fegate }'ﬂthﬁ’“' per
. . . . pixel tunction, /, IS shown In . € Jaggedness O e curve Is
'ntegral computation in Algo”thm L due to the discretized integral approximation.

The second simulation is of five flying robots with

downward facing cameras. The robots (and their cam-

eras) have three translational degrees of freedom and

can rotate about their yaw axis. The controller equatiois Section VII-B. Figure 6 shows the results of a typical
from Algorithm 1 were computed with the gradient insimulation. The robots start in an arbitrary configuration
(15), (16), and (17). The environment in this case iand spread out and up so that their fields of view cover
nonconvex. This scenario is similar to our outdoor exhe environment. As in the previous simulation, the
periments performed with quadrotor robots as describedst function appears jagged because of the discretized

Cost Function

°€ >

10 20 30 40 50 60 70
Time (s)

(d) Cost Function

11



integral computation in Algorithm 1. of freedom. This is, therefore, an example of a heteroge-
neous group, as described in Section IV-C. The figures
show the flying cameras spreading out and up over the
environment, while the fixed cameras sweep their fields
of view into the environment. The cameras eventually
settle in a configuration in which the team covers the
environment. Figure 8(d) shows the decreasing cost of
the group, and is again jagged due to the discretized
integral in the computation of the controller.

VI. PROPAGATING STATES OVER THE NETWORK

(@) Initial Config. In this section we describe a networking algorithm to

support the camera coverage controller described above.
The algorithm facilitates the efficient propagation of
robot state information around the network by weighting
the frequency with which robot’s state information is
sent to robot by how relevant roboj’s state is to robot

i's controller.

As discussed in Remark 3, the camera coverage
controller requires the communication of state informa-
tion between robots with overlapping fields of view.
Unfortunately, there is no practical way to guarantee
that robots with overlapping fields of view will be in
direct communication with one another. Many of the
envisioned applications for our control algorithm require
the robot team to spread over large-scale domains where
distances between robots can become larger than their
transmission ranges. Furthermore, transmission ranges
depend on complicated factors beyond inter-robot dis-
tance, such as environment geometry, channel interfer-
ence, or atmospheric conditions. Therefore, to implement

(c) Final Config. the proposed controller, we require a practical multi-hop
T networking algorithm to distribute state information over
the entire system.

Existing mobile ad hoc networks typically use sophis-
ticated routing schemes to pass data packets around the
oo network. Due to the mobile nature of such networks,

Time (<) these schemes consume a significant amount of com-
(d) Cost Function munication capacity for maintaining knowledge about
Fig. 7. Results of a simulation with five cameras on flying ftsbo network topqlogy. They also are not eﬁ|C|_ent .(m terms of
(indicated by the quadrotor icons) are shown over a noneonvdiMe, bandwidth, and power) for our application because
environment. The cameras can translate in all three axicandotate they do not prioritize state information based on its

about the yaw axis. The pyramids represent the fields of viethe relevance to the controller. Instead. we here propose an
cameras. The initial, middle, and final configurations arewsh in '

7(a), 7(b), and 7(c), respectively. The decreasing valtheaggregate 2/gorithm tailored fpr our application that is more likely
information per pixel function{, is shown in 7(d). The jaggednessto broadcast state information of robots that are near by

of the curve is due to the discretized integral approxinmatio than of those that are far away. The algorithm ensures
that the state information most likely to be used by a
The final simulation scenario is of two fixed camerambot’s controller is also most likely to be up-to-date.
in opposite corners of a room, similarly to the firsiThis location-based multi-hop algorithm increases propa-
scenario, along with three cameras mounted to flyirgption rates of state estimates in local neighborhoods (i.e
robots and gimbals to enable motion in all six degreesbots that are likely to have overlapping fields of view),

Cost Function
QD
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(a) Initial Config.

~x10

'y

N

Cost Function

°€

10 20 30 40 50 60 70
Time (s)

(d) Cost Function

Fig. 8. Results of a simulation with two cameras fixed in thenecs of
a square room and three cameras mounted on flying robots @are sh
The fixed cameras (denoted by the camera icons) can rotate albho
three rotational axes while the flying cameras (denoted éyjttadrotor
icons) have the full six degrees of freedom. The initial, dhg and
final configurations are shown in 8(a), 8(b), and 8(c), retgely. The
decreasing value of the aggregate information per pixettfan, 7,
is shown in 8(d). The jaggedness of the curve is due to theatized
integral approximation.

A. Importance-Based Broadcasting

In this section we formalize the idea of maintaining
state estimates over a network and propose a means
of prioritizing state information based upon proximity.
Considern robots, each of which knows its current
state,p;(¢t) € P, by some means of measurement (e.g.
GPS or visual localization). We propose that each robot
maintains a list of state estimatés; (t;1), ..., pn(tin)],
where ¢;; denotes a time stamp at which robgs
estimate of roboj’s state was valid. We have thigf <t
and tii = t.

For simplicity, we use Time Division Multiple Access
(TDMA)? to divide the data stream into time slots of
length ~. During a time slot, one assigned robot is
allowed to broadcast over the shared channel. The length
~ is measured by the number of state estimates (along
with their time stamps) that can be broadcast in the time
slot. For example, with a slot of length = 5 a robot
can transmib state estimates. The robots broadcast one
after the other in a predetermined order. One complete
broadcast cycle is referred to as a frame. The length of
a frame is proportional ta-y.

One naive strategy, called simple flooding, is to assign
a time slot length equal to the number of robets: n,
so that each robot can broadcast its entire list of state
estimates. Although simple to implement, this strategy is
not scalable for a large number of robots since increasing
the number of robots in the system wijuadratically
decrease the frame rate (i.e. the rate the team can cycle
through all time slots). This highlights the inherent
tradeoff between the amount of information that can
be broadcast, and the currency of that information. Our
algorithm seeks to balance that trade-off.

Consider a functiory : P x P — (0, ], called the
importance function, that weights how important it is for
roboti to have a current state estimate of ropadefined
as

9i5(t) = |lpi(t) — p; (i) || (33)

A robot should consider its own state estimate to be
the most important to broadcast. This is reflected in
the model sincgy;; is infinite. We use the importance
function in (33) to develop a deterministic algorithm.
For a given time slot, this algorithm selects which state
estimates a robot will broadcast. We first describe a prob-
abilistic approach to help motivate the final algorithm.

while also being efficient in terms of bandwidth and

computaﬂ_onal ComF_"e_X'tY- We refer j[he reader to _[23] 3The proposed strategy is not limited to only TDMA; many other
for a detailed description and analysis of the algorithnahannel access methods are appropriate (e.g. FDMA or CDMA).
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B. Probabilistic Algorithm Algorithm 2 Deterministic Method for Selecting State
Estimates

n is the number of robots in the system ani$ the
time slot length.

equire: Roboti knows its statep;(t) and the state
S?sti_mate of other robots; (tl-j). _

equire: Robot ¢ knows its running counter
écil, ceey Cin]-

M, —{1,...,n}

Consider a robot that needs to selestate estimates
to broadcast during its time slot. We provided motivation
in Section VI-A that some selections are more importar&
than others. However, the robot shoulat systematically
select the state estimates associated with the high
importance; doing so can prevent estimates from fully
dispersing throughout the system. Instead, we propos
that the probability of robot selecting the state estimate

of robot j is for 1 to v do "
P/l\ili(t) =t JjeM; (34) Cij < Cij [1 — P/Z\Zli(t)]’ Vje M,

> ke, ik(t) k « argmaxgeaq, (Cik)
where M; is the set of robot indices associated with M, «— M;\{k}
selectable estimates. i — 1

Prior to the first selection for a given time sloyt; end for

is the set of all robot indices. From the full set the return {1,...,n}\M;
robot always selects its own state since it has infinite
importance. The robot then removes its index frut.
Since (34) is a valid probability mass function, the rOb%ultiplied - P}'\-Z[,(t)] — 1, or a probability of one.
can simply choose the next state estimate at random frgp selecting the index with the lowest counter value,

the correspond.ing.probability distri_bution, then.removg;,e are deterministically guiding our method to behave
the corresponding index froovt;. This means estimatesaccording to the probability distribution described by

of closer robots are more Iikely to bg chosen than ON@84). The selected index (in this cadds removed from
t_hat are farther away. By repe_atmg_ this process, the entjfg, setM;, and its corresponding counter;) is reset
time slot of lengthy can be filled in a straightforward, 4 4 value of one. This process is iteratively applied to
probabilistic manner. completely fill a time slot withy state estimates, with
counters maintaining their values between frames. The

C. Deterministic Algorithm complete deterministic strategy is given in Algoritim
The probabilistic method above is not suitable in prac-
tice because consecutive selections of a particular robot VII. EXPERIMENTS

index can be separated by an undesirably long period-l-o demonstrate the performance of our distributed

of time, especially for distant robots. By developing Zontrol algorithm, we conducted both indoor and out-
location-based deterministic algorithm, we can increa’a%or experiments using multiple Ascending Technolo-
the average rate at which all state estimates of a g'VSRes (AscTec) Hummingbird quadrotor flying robots. The

time stamp will propagate throughout a team. In th§ih 10| and yaw angles of the robots were stabilized
deterministic case, propagation time is bounded abo'\,:/da1 kHz using the on-board commercial controller

by the Ion_gest.path taken among the estimate;. NO_ Sud:g\/eloped for the platform as described in [30]. We
bound exists in the probabilistic case, resulting in geyeloped a custom microprocessor module, described
positively skewed distribution of propagation times z_;mg1 [25], to run the coverage algorithm in this paper. This
a larger mean. We propose that each robot maintaing, g, jeve| controller calculated position waypoints for

list of counters/cii, . ..., ¢in], which are initially setto a oo 1opors closed-loop position controller atHz. We

value of one. Using the probability mass functionin (34*0und that al Hz update rate for the waypoint commands
each counter represents the probability that the Corrig'suﬁiciently slow compared to the settling time of the

sponding index hasotbeen selected. Consider a robot§yqgjtion controller that the robots dynamics are well

first sel_e_ctionl{ which will alvyays_ be i'ts own index. Theapproximated by the integrator dynamics in (11).
probability, Py, (t), of selecting index is equal to one,

while all other probabilities,P}'\-Z[,(t) subject toj # 1, ) ]

are equal to zero. This implies that the countgris A OPtimal Coverage of an Indoor Environment
multiplied by [1 — Py (t)] = 0, or a zero probability = Our indoor experiments were performed at the Com-
of not being selected, while all other counters, are puter Science and Atrtificial Intelligence Lab (CSAIL) at
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Fig. 9. This figure shows the experimental setup. The robositipns

were captured with a Vicon motion capture system. The robeesl

their position information to run the coverage algorithnaidistributed Fig. 11. The cost function during the three stages of the réxpe

fashion. ment averaged over 19 successful experiments is shown. ifoe e
bars denote one standard deviation. The experiments démaenthe
performance of the algorithm, and its ability to adapt toaneseen

MIT in a room equipped with a Vicon motion capture ®°*" 2Ures:

system. This system usd$ high resolution infrared

cameras to measure the global state of each robot a{y,e repeated the above experiment a total of 20
a rate of120 Hz. The state update messaged are thghes, Of these 19 runs were successful, while in one
broadcast wirelessly over4 GHz Digi XBee-PRO radio gxperiment two of the robots collided in midair. The
modules at a rate df0 Hz to all robots in the system, ¢lision was caused by an unreliable gyroscopic sensor,
where they are parsed by the onboard microcontroligh; phy a malfunction of the coverage algorithm. With
modules. In addition to using this information for theynsropriate control gain values, collisions are avoided by

coverage controller, each module runs a PID positiqRe 4igorithm’s natural tendency for neighbors to repel
control loop at33 Hz [25]. The system configuration is yne another.

shown in Figure 9. . _ , The coverage cost of the robots over the course
The coverage algorithm for a circular field of viewys he experiment, averaged over tH® successful

using (10),(8), and (9) was implemented on each robelyperiments, is shown in Figure 11, where the error
running asynchronously in a fully distributed fashiony,rs represent one standard deviation from the mean.
The algorithm calculated the waypoiné¢t) and z(t)  Notice that when one robot is removed, the cost function
from Algorithm 1 atl Hz. The camera parameters Werg,omentarily increases, then decreases as the remaining
set toa = 10e™% andb = 10e* m (which are typical opots find a new locally optimal configuration. The
for <_:ommerC|aIIy available came_ras), the_ circular f'el‘élgorithm proved to be robust to the significant, highly
of view half angle ag) = 35°, the information per area \snlinear unmodeled aerodynamic effects of the robots,

was a constanp = 1, the prior area per pixel was = 514 to individual robot failures.
10e~® m?, and the control gain waé = 10e—5. The

environment to be covered was a skewed rectarigle, _ .
m across at its widest, shown in white in Figure 10. B. Optimal Coverage of an Outdoor Environment

To test the effectiveness of the algorithm and its we also conducted outdoor experiments with five
robustness to robot failures, we conducted experimepf§adrotor robots at the German Aerospace Center,
as follows: 1) three robots moved to their optimabeutsches zentrum fur Luft und Raumfahrt (DLR)
positions using the algorithm, 2) one robot was manuallyy Oberpfaffenhofen, Germany. An onboard Ascending
removed from the environment, and the remaining tWeechnologies AutoPilot module stabilized each robot
were left to reconfigure automatically, 3) a second robghout a GPS and compass waypoint. In addition, state
was removed from the environment and the last on&timates were acquired from the AutoPilot module by
was left to reconfigure automaticaflyFigure 10 shows the onboard microprocessor moduledatiz. Using the
photographs of a typical experiment at the beginningnger range 900 Mhz Xbee-XSC radio modules, these
(Figure 10(a)), after the first stage (Figure 10(b)), aftefstimates were propagated among the group using the
the second stage (Figure 10(c)), and after the third staggti-hop algorithm in Section VI with a time slot of

(Figure 10(d)). length v = 3, thus forming a mobile ad hoc robot
. . . _ network.
A video showing the indoor experiments Th | ithm f lar field of Vi
and numerical simulations can be found at e coverage algorithm for a rectangular field ot view

http://peopl e. csail . mit.edu/ schwager/ Mvi es/ | CRACa(wiitis B nad 35p4andf; = 26.25°) using (10),(8), and (9)

15



(a) Initial Config. (b) Three Config. (c) Two Config. (d) One Config.

Fig. 10. Frame shots from an experiment with three AscTec tdimgbird quadrotor robots are shown. After launching frdme ground

(Figure 10(a)), the three robots stabilize in a locally wgti configuration (Figure 10(b)). Then one robot is manuedi;noved to simulate a
failure, and the remaining two move to compensate for thiertai(Figure 10(c)). Finally a second robot is removed arel l#st one again
moves to compensate for the failure (Figure 10(d)). The t®bwove so that their fields of view (which cannot be seen instiepshots) cover

the environment, represented by the white polygon.

(a) Initial Config. (b) Five Config. (c) Three Config. (d) One Config.

Fig. 12. Frame shots from an experiment with three AscTec idingbird quadrotor robots are shown. After launching frdme ground
(Figure 12(a)), the five robots stabilize in an optimal camfégion (Figure 12(b)). Then two robots are manually lantiedimulate failures,
and the remaining three move to compensate for the missimgres (Figure 12(c)). Finally two more robots are removed thie last one

moves to view the whole environment by itself (Figure 12(d))
shows diagrams created from acquired ground truth data
of a typical experiment at the beginning (Figure 12(a)),
300 10 20 30 after the first stage (Fig, 12(b)), after the second stage
(Fig, 12(c)), and after the third stage (Fig, 12(d)).
The above experiment was repeated a totabdfmes,
Fig. 13. The cost function during the three stages of therxgat,  q4ring which all robots successfully converged to their
averaged over 10 successful experiments, is shown in Fit@rdhe L.
error bars denote one standard deviate from the mean. final positions for coverage. The coverage cost of the
robots over the course of the experiment, averaged over
the 10 experiments, is shown in Figure 13. Similarly
was implemented on each robot running asynchronousty the indoor experiments, the mean cost decreases at
in a fully distributed fashion. Similar to the indooreach stage, then increases when robots are removed, and
experiments, the robots were expected to cover a skewdgtreases again as the remaining robots settle into a new
rectangular environment measuring approximatély equilibrium. We witnessed several different equilibrium
meters at its widest. In addition, a square area wasnfigurations for the three robot system, resulting in
removed to create a nonconvex environment. Theaelarge variation in local optimal cost. Several factors
experiments were also performed in three stages: djuld have contributed to this outcome, such as GPS or
five robots moved to their optimal positions using theompass error, network noise or latency, and variations
algorithm, 2) two robots were manually piloted awayn the initial positions of the five robots. However,
from the environment, and the remaining three were Iefitr each run the system was successful in converging
to reconfigure automatically, 3) two more robots werto an equilibrium configuration, verifying the practical

a

N

=N
o

manually piloted away from the environment and the
last one was left to reconfigure automatically. Figure 12

Start of

Algorithm
o \

2 Robots Removed

2 Robots Removed

Cost Function
- .

10 20 30

'
o

0 10 20
Time(s)
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downward facing cameras, and a mixed group of fixed
and flying cameras all mounted on rotating fixtures.
We implemented the algorithm on a group of three
autonomous quadrotor robots in an indoor environment,
and on a group of five autonomous quadrotor robots in an
outdoor environment, and experimentally demonstrated
robustness to unforeseen robot failures.
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(b) Camera Coverage

Fig. 14. This figure shows the composite view from the five aame X. APPENDIX

prior to reaching their final configuration in the first phadette :
experiment. The five images overlay a larger, wider area \taken Proof (Theorem 1') We can break up the domain of

by a quadrotor robot manually flow above the system. integration into two parts as

H= [ hwolada+ [ byl da
viability of the coverage algorithm. QNB; Q\B:

To visualize the coverage, we affixed iFlip videdOnly the integrand in the first integral is a function pf
cameras to the base of each quadrotor robot. A six$ince the conditiori € \V is true if and only ifg € B;
robot was flown manually above the system to recoirom the definition of\,). However the boundaries of
the entire team during the experiment. Figure 14(lijoth terms are functions ¢f, and will therefore appear
shows five higher resolution views overlaying a largen boundary terms in the derivative. Using the standard
aerial mosaic, with the lowest robots giving the highestle for differentiating an integral, with the symbal to
resolution at ground level. Also note the difference imean boundary of a set, we have

equilibrium configuration of Figure 14(a) when com- OH Ohn
pared with Figure 12(b). This outcome was the result B 3 “¢(q) dg
of a malfunctioning robot (the one indicated with the pi Qns; P

red field of view); however, its neighboring teammates n I, ()
shifted their position to cover where this robot normally 2(QNB:) Na
would have gone.

ddo(ns) "
Tpiz NaQNB;) dq

o \5) "
+/ hJ\@\{iW@)% naQ\8;) ¢, (35)
d(Q\By) Di

_ o heregs. is a point on the boundary of a set expressed
In this paper we presented a distributed control aﬁ-’ do P y P

i " ; s a function ofp;, and ny. is the outward pointing
gorithm to position robotic cameras to cover an eNVE rmal vector of the boundary of the set. Decomposing
ronment. The controller is proven to locally minimiz

a cost function representing the aggregate informatiE%e boundary further, we find thal(Q N 5;) = (9Q 1

per pixel of the robots over the environment, and ¢ ut points ondQ do not change as a function of
be used in nonconvex and disconnected environmerﬁ,ﬁ,_)re]core we have ’

We also proposed a custom networking algorithm to
communicate the necessary state information among the 99(0QnB;)

VIIl. CONCLUSIONS

. . =0 V oQ N B;
robots. We showed simulation examples of the con- Op; 4€0Q
trol algorithm running on a group of fixed cameras 9q(00\B,)
with rotating fixtures, a group of flying robots with and Ip; =0 Vg €0Q\B:.
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Furthermore, everywhere in the s@tn 0B, the outward which gives the boundary term for (37). The derivative
facing normal ofd(Q\B;) is the negative of the outward of the cost functior?#{ with respect top, can now be
facing normal ofo(Q N B;), written as in Theorem 1

noQ\B:) = ~N(a(@ns) V4 € QNIB;. .
Proof (Theorem 3) The proof is the same as that of

Simplifying (35) leads to Theorem 1 up to the point of evaluating the boundary
OH terms. Equations (36) and (37) are true. Additionally the
90— oo (hw, = har\1iy) () angular component is given by
i NoB;
OH
9q(qnas; T - = / hn —h ;
. (C(;z ) n(Qnos:) dg. (36) (9’(/11 QﬁaBi( Ny N \{ })¢(Q)
' 9 )7
and .w n(aros,) dq.
oM Vi

(hw, = har\giy) () The constraint for points on thieth leg of the rectangular

0z , .
¢ JQNoB; boundary is

dqqros:) - 2h3%

s, | TM@nos) dq — /Qm& Mﬂ(l) dq, (37) (¢ — c))TR(Y:) ' ny, = 2z tan 0 ny,

from (14). Differentiate this constraint implicitly with
respect toc;, z;, and ¢; and solve for the boundary

terms to get

where we used the fact thathy,/dc; = [0 0],
and a straightforward calculation yield&h,y, /0z; =
—2h3%;, /(a(b — 2)?). Now we solve for the boundary

terms, g T
T R(wi) i = R($s) .
dqqros,) dqqros:) - dei
_ 9P ~ and _ N\ 9P 3, T
607; (QNoB;) aZl n(QnaB;) gq R('[Z),L)Tnk = tan QT’rLk’
2
which generally can be found by implicitly differentiating o0 T

the constraint that describes the boundary. Hencefortmd 8_q R(wi)Tnk =—(¢— ci)TR(wi + 7T/2)Tnk,
we will drop the subscript orng, but it should be i
understood that we are referring to pointg,constrained Where we have used the fact that

to lie on the set) N 9B;. A pointg on the boundary set gp(y,) —siny;  cos
Q N oB; will satisfy g | - COS:Z_ - smwm = R(¢; +7/2).
g — ¢| = 2 tan#, (38) Break the boundary integrals into a sum of four inte-

grals, one integral for each edge of the rectangle. The

and the outward facing normal on the gt 5; is given expression in Theorem 3 follows.

by

n(QnoB,) = M. Proof (Theorem 4) The gradient is derived using the

llg — cill same method as for the previous two cases. Break the
Differentiate (38) implicitly with respect to; to get integral domain into disjoint regions as in the proof of
Theorem 1 to get
(8qT—Iz)(q—c-)*0 OH dq r
] 1) T I 631’
Oci = (hn, = ha\giy) - % n(Qnas;)#(q) dg +

. . . . dpi .
wherel, is the2 x 2 identity matrix, therefore pi QnoB;

oh
/ N g(g) dg, (39)
QNB;

dq r (g —ci) _ (¢ —ci) ap;
dei llg—all g —eall’ and
which gives the boundary terms for (36). Now differen- OH
tiate (38) implicitly with respect ta; to get v = /Qmag(th = hngiy)
09" (g —c) dqqros) "
= tand, —n . dq se€{r,p,t}. 40
9z g —cill o0 (QﬂaBl)(b(Q) q {r,p, t} (40)
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We will see that the three angles], ¥, and ¢}, can
be treated under the same form}, s = r,p,¢. Also,
henceforth we drop the subscripts grthough it should
be understood thaj lies in a particular set specified by
the domain of integration. We now have to solve for

Ohy, — 9q" 9a

dpi * Opi oy
where ny;, as was previously defined, is the outwards
facing normal of the boundary of the field of view over
the kth leg of the trapezoid.

First, we solve for—; Nq using the chain rule with (5) [5]
and (27) to get

_ %(Z )
Jj=1 7]

Using this in (39) gives the second term of (28) from
Theorem 4. ’

Next we will solve f0|§—qi ny;. Notice that the normal
vector ny; (expressed in the global fram@F’) can be
obtained by expressing the pyramid face normal; in
the global frame and projecting it into the ground plane,[9]
then re-normalizing to obtain a unit vector as follows

(1]

(2]
T

and N

Ny ke {1721374}

oh3

q

Ohy,
6Ci

-1 8f(pla q) _
601-

(8]

Is sRTm,.. [10]
m = Tt (43)
112,325 M|
11
Differentiate the constraint (24) with respectgpto get o]
9q ’ T T
e IQ,3RZ- Mmi; — Ri Mmi; = 0. (44) [12]

pi

Substitute inly 3R my; = nil| BRI my;| from (43) to

get [13]

9" Rimy,
Ipi 12,3 RY mui ||
This with the expression in (40) gives (28) from Theoreh{"
4.
Finally we solve foryL wsTnki- Differentiate the same [15]
constraint (24) with respect tg; to get

J0q R;

now, again, substitutéLgR'fmki = ng;|| R 'my;|| to get  [17]

Nk; = (45)

[16]

(46)

S + mkl (13 2q — pl) =0.

ag T miel it (pi — I3,24)
B . (47)
op; ([ 12,3 R m| (18]

Using this in (40) gives the expression in (29) from
Theorem 4. We solve f(gri by differentiatingR; using

(18) for s = r, p,t to get (éO) from Theorem 4. [l
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