
MIT Open Access Articles

Scheduling to Minimize Power
Consumption using Submodular Functions

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Erik D. Demaine and Morteza Zadimoghaddam. 2010. Scheduling to minimize power
consumption using submodular functions. In Proceedings of the 22nd ACM symposium on
Parallelism in algorithms and architectures (SPAA '10). ACM, New York, NY, USA, 21-29.

As Published: http://dx.doi.org/10.1145/1810479.1810483

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/72589

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72589
http://creativecommons.org/licenses/by-nc-sa/3.0/

Scheduling to Minimize Power Consumption
using Submodular Functions

Erik D. Demaine
MIT

edemaine@mit.edu

Morteza Zadimoghaddam
MIT

morteza@mit.edu

ABSTRACT
We develop logarithmic approximation algorithms for
extremely general formulations of multiprocessor multi-
interval offline task scheduling to minimize power usage.
Here each processor has an arbitrary specified power con-
sumption to be turned on for each possible time interval,
and each job has a specified list of time interval/processor
pairs during which it could be scheduled. (A processor need
not be in use for an entire interval it is turned on.) If there
is a feasible schedule, our algorithm finds a feasible schedule
with total power usage within an O(logn) factor of optimal,
where n is the number of jobs. (Even in a simple setting
with one processor, the problem is Set-Cover hard.) If not
all jobs can be scheduled and each job has a specified value,
then our algorithm finds a schedule of value at least (1−ε)Z
and power usage within an O(log(1/ε)) factor of the optimal
schedule of value at least Z, for any specified Z and ε > 0.
At the foundation of our work is a general framework for
logarithmic approximation to maximizing any submodular
function subject to budget constraints.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems; G.2.2
[Discrete Mathematics]: Graph Theory

General Terms
Algorithms, Theory

Keywords
sleep state, pre-emptive scheduling, multiprocessor schedul-
ing, approximation algorithms

1. INTRODUCTION
Power management systems aim to reduce energy con-

sumption while keeping the performance high. The motiva-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

tions include battery conservation (as battery capacities con-
tinue to grow much slower than computational power) and
reducing operating cost and environmental impact (both di-
rect from energy consumption and indirect from cooling).

Processor energy usage. A common approach in practice
is to allow processors to enter a sleep state, which consumes
less energy, when they are idle. All previous work assumes a
simple model in which we pay zero energy during the sleep
state (which makes approximation only harder), a unit en-
ergy rate during the awake state (by scaling), and a fixed
restart cost α to exit the sleep state. Thus the total energy
consumed is the sum over all awake intervals of α plus the
length of the interval.

There are many settings where this simple model may not
reflect reality, which we address in this paper:

1. When the processors are not identical: different pro-
cessors do not necessarily consume energy at the same
rate, so we cannot scale to have all processors use a
unit rate.

2. When the energy consumption varies over the time:
keeping a processor active for two intervals of the same
length may not consume the same energy. One ex-
ample is if we optimize energy cost instead of actual
energy, which varies substantially in energy markets
over the course of a day. Another use for this general-
ization is if a processor is not available for some time
slots, which we can represent by setting the cost of the
processor to be infinity for these time slots.

3. When the energy consumption is an arbitrary function
of its length: the growth in energy use might not be
an affine function of the duration a processor is awake.
For example, if a processor stays awake for a short
time, it might not need to cool with a fan, saving en-
ergy, but the longer it stays awake, the faster the fan
may need to run and the more energy consumed.

We allow the energy consumption of an awake interval to
be an arbitrary function of the interval and the processor.
We also allow the processor to be idle (but still consume
energy) during such an interval. As a result, our algorithms
automatically choose to combine multiple awake intervals
(and the intervening sleep intervals) together into one awake
interval if this change causes a net decrease in energy con-
sumption.

Multi-interval task scheduling. Most previous work as-
sumes that each task has an arrival time, deadline, and

processing time. The goal is then to find a schedule that
executes all tasks by their deadlines and consumes the min-
imum energy (according to the notion above). This setup
implicitly assumes identical processors.

We consider a generalization of this problem, called multi-
interval scheduling, in which each task has a list of one or
more time intervals during which it can execute, and the goal
is to schedule each job into one of its time intervals. The
list of time intervals can be different for each processor, for
example, if the job needs specific resources held by different
processors at different times.

Prize-collecting version. All previous work assumes that
all jobs can be scheduled using the current processors and
available resources. This assumption is not necessarily sat-
isfied in many practical situations, when jobs outweigh re-
sources. In these cases, we must pick a subset of jobs to
schedule.

We consider a general weighted prize-collecting version in
which each job has a specified value. The bicriterion problem
is then to find a schedule of value at least Z and minimum
energy consumption subject to achieving this value.

Our results. We obtain in Section 3 an O(logn)-
approximation algorithm for scheduling n jobs to minimize
power consumption. For the prize-collecting version, we ob-
tain in Section 4 an O(log(1/ε))-approximation for schedul-
ing jobs of total value at least (1 − ε)Z, comparing to an
adversary required to schedule jobs of total value at least Z
(assuming such a schedule exists), for any specified Z and
ε > 0. Both of our algorithms allow specifying an arbitrary
processor energy usage for each possible interval on each
processor, specifying an arbitrary set of candidate intervals
on each processor for each job, and specifying an arbitrary
value for each job.

These results are all best possible assuming P 6= NP: we
prove in Appendix A.1 that even simple one-processor ver-
sions of these problems are Set-Cover hard.

Our approximation algorithms are based on a technique
of independent interest. In Section 2, we introduce a general
optimization problem, called submodular maximization with
budget constraints. Many interesting optimization problems
are special cases of this general problem, for example, Set
Cover and Max Cover [7, 11] and the submodular maxi-
mization problems studied in [9, 10]. We obtain bicriteria
((1 − ε), O(log 1/ε))-approximation factor for this general
problem.

In Section 3, we show how our schedule-all-jobs problem
can be formulated by a bipartite graph and its matchings.
We define a matching function in bipartite graphs, and show
that this function is submodular. Then the general tech-
nique of Section 2 solves the problem.

In Section 4, we show how the prize-collecting version of
our scheduling problem can be formulated with a bipartite
graph with weights on its nodes. Again we define a match-
ing function in these weighted bipartite graphs, and with a
more complicated proof, show that this function is also sub-
modular. Again the general technique of Section 2 applies.

The general algorithm in Section 2 has many different
and independent applications because submodular functions
arise in a variety of applications. They can be seen as utility
and cost functions of bidding auctions in game theory appli-
cation [5]. These functions can be seen as covering functions

which have many applications in different optimization prob-
lems: Set Cover functions, Edge Cut functions in graphs,
etc.

Previous work. The one-interval one-processor case of our
problem with simple energy consumption function (α plus
the interval length) remained an important and challenging
open problem for several years: it was not even clear whether
it was NP-hard.

The first main results for this problem considered the
power-saving setting, which is easier with respect to approxi-
mation algorithms. Augustine, Irani, and Swamy [1] gave an
online algorithm, which schedules jobs as they arrive with-
out knowledge of future jobs, that achieves a competitive
ratio of 3 + 2

√
2. (The best lower bound for this problem

is 2 [2, 6].)
For the offline version, Irani, Shukla, and Gupta [6] ob-

tained a 3-approximation algorithm. Finally, Baptiste [2]
solved the open problem: he developed a polynomial-time
optimal algorithm based on an sophisticated dynamic pro-
gramming approach. Demaine et al. [4] later generalized this
result to also handle multiple processors.

The multi-interval case was considered only by Demaine
et al. [4], after Baptiste mentioned the generalization during
his talk at SODA 2006. They show that this problem is Set-
Cover hard, so it does not have an o(logn)-approximation.
They also obtain a 1 + 2

3
α-approximation for the multi-

interval multi-processor case, where α is the fixed restart
cost. Note that α can be as large as n, so there is no gen-
eral algorithm with approximation factor better than Θ(n)
in the worst case (when α is around n).

However, both the Baptiste result [2] and Demaine et al.
results [4] assume that processors enter the sleep state when-
ever they go idle, immediately incurring an α cost. For
this reason, the problem can also be called minimum-gap
scheduling. But this assumption seems unreasonable in prac-
tice: we can easily leave the processor awake during suffi-
ciently short intervals in order to save energy. As mentioned
above, the problem formulations considered in this paper fix
this issue.

2. SUBMODULAR MAXIMIZATION
WITH BUDGET CONSTRAINTS

Submodular functions arise in a variety of applications.
They can represent different forms of functions in optimiza-
tion problems. As a game theoretic example, both profit
and budget functions in bid optimization problems are Set-
Cover type functions (including the weighted version) which
are special cases of submodular functions. As another appli-
cation of these functions in online algorithms, we can men-
tion the secretary problem in different models, the bipartite
graph setting in [8], and the submodular functions setting
in [3].

The authors of [10] studied the problem of submodu-
lar maximization under matroid and knapsack constraints
(which can be seen as some kind of budget constraints), and
they give the first constant factor approximation when the
number of constraints is constant. We try to find solutions
with more utility by relaxing the budget constraints. We
give the first (1 − ε)-approximation for utility maximiza-
tion with relaxing the budget constraint by log (1/ε). In our
model, we allow the cost of a subset of items be less than

their sum. This way we can cover more general cases (non-
linear or submodular cost functions). All previous works
on submodular functions assume that the cost function is
linear. Therefore they can not cover many interesting op-
timization problems including the scheduling problems we
are studying in this paper. Later we combine this result
with other techniques to give optimal scheduling strategies
for energy minimization problem with parallel machines.

Now we formulate the problem of submodular maximiza-
tion with budget constraints.

Definition 1. Let U = {a1, a2, . . . , an} be a set of n
items. We are given a set S = {S1, S2, . . . , Sm} ⊆ 2U speci-
fying m allowable subsets of U that we can add to our solu-
tion. We are also given costs C1, C2, . . . , Cm for the subsets,
where Si costs Ci. Finally, we are given a utility function
F : 2U → R defined on subsets of U . We require that F is
submodular meaning that, for any two subsets A,B of U ,
we have

F (A) + F (B) ≥ F (A ∩B) + F (A ∪B).

We also require that F is monotone (being a utility function)
meaning that, for any subsets A ⊆ B ⊆ U , we have F (A) ≤
F (B).

The problem is to choose a collection of the input subsets
with reasonable cost and utility. The cost of a collection of
subsets is the sum of their costs. The utility of these subsets
is equal to the utility of their union. In particular, if we pick
k subsets S1, S2, . . . , Sk, their cost is Σk

i=1Ci and their utility
is equal to F (∪k

i=1Si). We are given a utility threshold x,
and the problem is to find a collection with utility at least x
having minimum possible cost.

Note that all previous work assumes that the set S of al-
lowable subsets consists only of single-item subsets, namely
{a1}, {a2}, . . . , {an}. Equivalently, they assume that the
cost of picking a subset of items is equal to the sum of the
costs of the picked items (a linear cost function). By con-
trast, we allow that there be other subsets that we can pick
with different costs, but that all such subsets are explicitly
given in the input. The cost of a subset might be different
from the sum of the costs of the items in that subset; in
practice, we expect the cost to be less than the sum of the
item costs.

We need the following result in the proof of the main al-
gorithm of this section. Similar lemmas like this are proved
in the literature of submodular functions. But we need to
prove this more general lemma.

Lemma 2.1. Let T be the union of k subsets
S1, S2, . . . , Sk, and S′ be another arbitrary subset. For a
monotone submodular function F defined on these subsets,
we have that

kX
j=1

[F (S′ ∪ Sj)− F (S′)] ≥ F (T)− F (S′).

Proof. Let T ′ be the union of T and S′. We prove thatPk
j=1[F (S′∪Sj)−F (S′)] ≥ F (T ′)−F (S′) which also implies

the claim. Define subset S′i be (∪i
j=1Sj)∪S′ for any 0 ≤ i ≤

k. We prove that

F (S′ ∪ Si)− F (S′) ≥ F (S′i)− F (S′i−1).

Because F is submodular, we know that F (A) + F (B) ≥
F (A ∪B) + F (A ∩B) for any pair of subsets A and B. Let

A be the set S′ ∪ Si, and B be the set S′i−1. Their union
is S′i, and their intersection is a superset of S′. So we have
that

F (S′ ∪ Si) + F (S′i−1) ≥ F (S′i) + F ([S′ ∪ Si] ∩ [S′i−1])

≥ F (S′i) + F (S′).

This completes the proof of the inequality, F (S′ ∪ Si) −
F (S′) ≥ F (S′i)− F (S′i−1).

If we sum this inequality over all values of 1 ≤ i ≤ k, we
can conclude the claim:

kX
i=1

F (S′ ∪ Si)− F (S′) ≥
kX

i=1

F (S′i)− F (S′i−1)

= F (T ′)− F (S′)

≥ F (T)− F (S′).

Now we show how to find a collection with utility (1−ε)x
and cost O(log (1/ε)) times the optimum cost. Later we
show how to find a subset with utility x in our particular
application, scheduling with minimum energy consumption.
It is also interesting that the following algorithm generalizes
the well-known greedy algorithm for Set Cover in the sense
that the Set-Cover type functions are special cases of mono-
tone submodular functions. In order to use the following
algorithm to solve the Set Cover problem with a logarith-
mic approximation factor (which is the best possible result
for Set Cover), one just needs to set ε to some value less
than 1 over the number of items in the Set-Cover instance.

Lemma 2.2. If there exists a collection of subsets (optimal
solution) with cost at most B and utility at least x, there is
a polynomial time algorithm that can find a collection of
subsets of cost at most O(B log (1/ε)), and utility at least
(1− ε)x for any 0 < ε < 1.

Proof. The algorithm is as follows. Start with set
S = ∅. Iteratively, find the set Si with maximum ratio of
min{x, F (S∪Si)}−F (S)/Ci for 1 ≤ i ≤ m where min{a, b}
is the minimum of a and b. In fact we are choosing the sub-
set that maximizes the ratio of the increase in the utility
function over the increase in the cost function, and we just
care about the increments in our utility up to value x. If a
subset increases our utility to some value more than x, we
just take into account the difference between previous value
of our utility and x, not the new value of our utility. We do
this iteratively till our utility is at least (1− ε)x.

We prove that the cost of our solution is O(B log (1/ε)).
Assume that we pick some subsets like S′1, S

′
2, . . . , S

′
k′ respec-

tively. We define the subsets of our solution into log (1/ε)
phases. Phase 1 ≤ i ≤ log (1/ε), ends when the utility of
our solution reaches (1 − 1/2i)x, and starts when the pre-
vious phase ends. In each phase, we pick a sequence of the
k′ subsets S′1, S

′
2, . . . , S

′
k′ . We prove that the cost of each

phase is O(B), and therefore the total cost is O(B log (1/ε))
because there are log (1/ε) phases.

Let S′ai
be the last subset we pick in phase i. So

F (∪ai
j=1S

′
j) is our utility at the end of phase i, and is at

least (1 − 1/2i)x, and F (∪ai−1
j=1 S′j) is less than (1 − 1/2i)x.

So we pick subsets S′ai−1+1, S
′
ai−1+2, . . . , S

′
ai

in phase i. We
prove that the ratio of utility per cost of all subsets inserted

in phase i is at least x/2i

B
. Assume that we are in phase i,

and we want to pick another set (phase i is not finished yet).
Let S′ be our current set (the union of all subsets we picked
up to now). F (S′) is less than (1 − 1/2i)x. We also know
that there exists a solution (optimal solution) with cost B
and utility x. Without loss of generality, we assume that
this solution consists of k subsets S1, S2, . . . , Sk. Let T be
the union of these k subsets. Using lemma 2.1, we have that

kX
j=1

[F (S′ ∪ Sj)− F (S′)] ≥ F (T)− F (S′) > x/2i.

If F (S′ ∪ Sj) is at most x for any 1 ≤ j ≤ k, we can say
that

kX
j=1

[min{x, F (S′ ∪ Sj)} − F (S′)] =

kX
j=1

[F (S′ ∪ Sj)− F (S′)] ≥ F (T)− F (S′) > x/2i.

Otherwise there is some j for which F (S′ ∪Sj) is more than
x. So min{x, F (S′ ∪ Sj)} − F (S′) is at least x/2i because
F (S′) is less than (1−1/2i)x. So in both cases we can claim
the above inequality. We also know that

kX
j=1

Cj ≤ B,

where Cj is the cost of set Sj . In every iteration, we find
the subset with the maximum ratio of utility per cost (the
increase in utility per the cost of the subset). Note that we
also consider these k subsets S1, S2, . . . , Sk as candidates.
So the ratio of the subset we find in each iteration is not less
than the ratio of each of these k subsets. The ratio of subset
Sj is [min{x, F (S′ ∪ Sj)} − F (S′)]/Cj . The maximum ratio
of these k subsets is at least the sum of the nominators of
the k ratios of these sets over the sum of their denominators
which isPk

j=1[min{x, F (S′ ∪ Sj)} − F (S′)]Pk
j=1 Cj

>
x

2iB
.

So in phase i, the utility per cost ratio of each subset we add
is at least x

2iB
. Now we can bound the cost of this phase.

We pick subsets S′ai−1+1, S′ai−1+2, . . . , S′ai
in phase i. Let

u0 be our utility at the beginning of phase i. In other words,
u0 is F (∪ai−1

j=1 S
′
j). Assume we pick l subsets in this phase,

i.e., l is ai − ai−1. Let uj be our utility after inserting jth
subset in this phase where 1 ≤ j ≤ l. Note that we stop the
algorithm when our utility reaches (1 − ε)x. So our utility
after adding the first l− 1 subsets is less than x. Our utility
at the end of this phase, ul might be more than x. For any
1 ≤ j ≤ l − 1, the utility per cost ratio is uj − uj−1 divided
by the cost of the jth subset. For the last subset, the ratio is
min{x, ul}−ul−1 divided by the cost of the last subset of this
phase. According to the definition of the phases, our utility
at the beginning of this phase, u0 is at least (1− 1/2i−1)x.
So we have that

min{x, ul} − ul−1 +

l−1X
j=1

uj − uj−1 =

min{x, ul} − u0 ≤ x− (1− 1/2i−1)x = x/2i−1.

On the other hand, we know that the utility per cost ratio
of all these subsets is at least x

2iB
. Therefore the total cost

of this phase is at most

[min{x, ul} − ul−1 +
Pl−1

j=1 uj − uj−1]

x/2iB
≤ x/2i−1

x/2iB
,

which is at most 2B. So the total cost in all phases is not
more than log (1/ε) · 2B.

3. SCHEDULING TO MINIMIZE POWER
IN PARALLEL MACHINES

We proved how to find almost optimal solutions with
reasonable cost when the utility functions are submodular.
Here we show how the scheduling problem can be formu-
lated as an optimization problem with submodular utility
functions.

First we explain the power minimization scheduling prob-
lem in more detail.

Definition 2. There are p processors P1, P2, . . . , Pp and
n jobs j1, j2, . . . , jn. Each processor has an energy cost
c(I) for every possible awake interval I. Each job ji has
a unit processing time (which is equivalent to allowing pre-
emption), and set Ti of valid time slot/processor pairs. (Un-
like previous work, Ti does not necessarily form a single in-
terval, and it can have different valid time slots for different
processors.) A feasible schedule consists of a set of awake
time intervals for each processor, and an assignment of each
job to an integer time and one of the processors, such that
jobs are scheduled only during awake time slots (and during
valid choices according to Ti) and no two jobs are scheduled
at the same time on the same processor. The cost of such a
schedule is the sum of the energy costs of the awake intervals
of all processors.

In the simple case which has been studied in [2, 4], it is
assumed that the cost of an interval is a fixed amount of en-
ergy (restart cost α) plus the size of the interval. We assume
a very general case in which the cost of keeping a machine
active during an interval is a function of that machine, and
the interval. For instance, it might take more energy to keep
some machines active comparing to other machines, or some
time intervals might have more cost. So there is a cost as-
sociated with every pair of a time interval and a machine.
These costs might be explicitly given in the input, or can be
accessed through a query oracle, i.e., when the number of
possible intervals are not polynomial.

If we pick a collection of active intervals for each machine
at first, we can then find and schedule the maximum num-
ber of possible jobs that can be all together scheduled in
the active time slots without collision using the maximum
bipartite matching algorithms. So the problem is to find a
set of active intervals with low cost such that all jobs can be
done during them.

Let U be the set of all time slots in different machines. In
fact for every unit of time, we put p copies in U , because
at each unit of time, we can schedule p jobs in different ma-
chines, so each of these p units is associated with one of the
machines. We can define a function F over all subsets of U
as follows. For every subset of time slot/processor pairs like
S ⊂ U , F (S) is the maximum number of jobs that can be
scheduled in time slot/processor pairs of S. Our scheduling

problem can be formulated as follows. We want to find a
collection of time intervals I1, I2, . . . , Ik with minimum cost
and F (∪k

i=1Ii) = n (this means that all n jobs can be sched-
uled in these time intervals). Note that each Ii is a pair of
a machine and a time interval, i.e., I1 might be (P2, [3, 6])
which represents the time interval [3, 6] in machine P2. The
cost of each Ii can be accessed from the input or a query
oracle. The cost of this collection of intervals is the sum
of the costs of the intervals. We just need to prove that
function F is monotone and submodular. The monotonic-
ity comes from its definition. The submodularity proof is
involved, and needs some graph theoretic Lemmas. Now we
can present our main result for this broad class of scheduling
problems.

Theorem 3.1. If there is a schedule with cost B which
schedules all jobs, there is a polynomial time algorithm which
schedules all jobs with cost O(B logn).

Proof. We are looking for a collection of intervals with
utility at least n, and cost O(B logn). Lemma 3.2 below
states that F (defined above) is submodular. Using the
algorithm of Lemma 2.2, we can find a collection of time
intervals with utility at least (1 − ε)n and cost at most
O(B log (1/ε)) because there exists a collection of time in-
tervals (schedule) with utility n (schedules all n jobs) and
cost B. Let ε be 1/(n + 1). The cost of the result of
our algorithm is O(B log (n+ 1)), and its utility is at least
(1 − 1/(n + 1))n > n − 1. Because the utility function F
always take integer values, the utility of our result is also n.
So we can find a collection of time intervals that all jobs can
be scheduled in them. We just need to run the maximum
bipartite matching algorithm to find the appropriate sched-
ule. This means that our algorithm also schedules all jobs,
and has cost O(B log (n+ 1)).

There is another definition of submodular functions that
is equivalent to the one we presented in the previous section.
We will use this new definition in the following lemma.

Definition 3. A function F is submodular if for every
pair of subsets A ⊂ B, and an element z, we have:

F (A ∪ {z})− F (A) ≥ F (B ∪ {z})− F (B)

Now we just need to show that F is submodular. We can
look at this function as the maximum matching function
of subgraphs of a bipartite graph. Construct graph G as
follows. Consider time slots of U as the vertices of one part
of G named X. Put n vertices representing the jobs in the
other side of G named Y . Note that the time slots of U are
actually pairs of a time unit and a processor. Put an edge
between one vertex of X and a vertex of Y if the associated
job can be scheduled in that time slot (which is a pair of a
time unit and a processor), i.e., if the job can be done in that
processor and in that time unit. Now every subset of S ⊂ X
is a subset of time slots, and F (S) is the maximum number
of jobs that can be executed in S. So F (S) is in fact the
maximum cardinality matching that saturates only vertices
of S in part X (it can saturate any subset of vertices in Y).
A vertex is saturated by a matching if one of its incident
edges participates in the matching. Now we can present
this submodularity Lemma in this graph model.

Lemma 3.2. Given a bipartite graph G with parts X and
Y . For every subset S ⊂ X, define F (S) to be the maximum

cardinality matching that saturates only vertices of S in part
X. The function F is submodular.

Proof. We just need to prove that, for two subsets A ⊂
B ⊂ X and a vertex v in X, the following inequality holds:

F (A ∪ {v})− F (A) ≥ F (B ∪ {v})− F (B).

Let M1 and M2 be two maximum matchings that saturate
only vertices of A and B respectively. Note that there might
be more than just one maximum matching in each case (for
sets A and B). We first prove that there are two such max-
imum matchings that M1 is a subset of M2, i.e., all edges in
matching M1 also are in matching M2. This can be proved
using the fact that A ⊂ B as follows.

Consider two maximum matchings M1 and M2 with
the maximum number of edges in common. The edges
of M1∆M2 form a bipartite graph H where A1∆A2 is
A1∪A2−A1∩A2 for every pair of sets A1 and A2. Because
it is a disjoint union of two matchings, every vertex in H
has degree 0, 1 or 2. So H is a union of some paths and
cycles. We first prove that there is no cycle in H. We prove
this by contradiction. Let C be a cycle in H. The edges of
C are alternatively in M1 and M2. All vertices of this cycle
are either in part Y of the graph or in A ⊂ X. Now consider
matching M ′1 = M1∆C instead of M1. It also saturates only
some vertices of A in part X, and has the same size of M1.
Therefore M ′1 is also a maximum matching with the desired
property, and has more edges in common with M2. This
contradiction implies that there is no cycle in H.

Now we study the paths in H. At first we prove that there
is no path in H with even number of edges. Again we prove
this by contradiction. The edges of a path in H alternate
between matchings M1 and M2. Let P be a path in H with
even number of edges. This path has equal number of edges
from M1 and M2. Now if we take M ′2 = M2∆P instead
of M2, we have a new matching with the same number of
edges, and it has more edges in common with M1. This
contradiction shows that there is no even path in H.

Finally we prove that all other paths in H are just some
single edges from M2, and therefore there is no edge from
M1 in H. This completes the proof of the claim that M1 is a
subset of M2. Again assume that there is a path P ′ with odd
and more than one number of edges. Let e1, e2, . . . , e2l+1 are
the edges of P ′. The edges with even index are in M1, the
rest of the edges are inM2 otherwiseM ′′2 = M2∆P ′ would be
a matching for set B which has more edges than M2 (this is
a contradiction). Because P ′ is an odd path, we can assume
that it starts from part Y , and ends in part X without loss
of generality. Now if we delete edges e2, e4, . . . , e2l from M1,
and insert edges e1, e3, . . . , e2l−1 instead, we reach a new
matching M ′1. This matching uses a new vertex from Y ,
but the set of saturated vertices of X in matching M ′1 is the
same as the ones in M1. These two matchings also have the
same size. But M ′1 has more edges in common with M2.
This is also contradiction, and implies that there is no such
a path in H. So M1 is a subset of M2.

We are ready to prove the main claim of this theorem.
Note that we have to prove this inequality:

F (A ∪ {v})− F (A) ≥ F (B ∪ {v})− F (B).

We should prove that if adding v to B increases its maxi-
mum matching, it also increases the maximum matching of
A. Let M3 be the maximum matching of B ∪ {v}. Let H ′

be the subgraph of G that contains the edges of M2∆M3.

Because M3 has more edges than M2, there exists a path Q
in H ′ that has more edges from M3 than M2 (cycles have the
same number of edges from both matchings). The vertex v
should be in path Q, otherwise we could have used the path
Q to find a matching in B greater than M2, i.e., matchings
M2∆Q could be a greater matching for set B in that case
which is a contradiction.

The degree of v in H is 1, because it does not participate
in matching M2, does participate in M3. So v can be seen
as the starting vertex of path Q. Let e1, e2, . . . , e2l′+1 be the
edges of Q. The edges e2, e4, . . . , e2l′ are in M2, and some
of them might be in M1. Let 0 ≤ i ≤ l′ be the maximum
integer number for which all edges e2, e4, . . . , e2i are in M1.
If e2 is not in M1, we set i to be 0. If we remove edges
e2, e4, . . . , e2i from M1, and insert edges e1, e3, . . . , e2i+1 in-
stead, we reach a matching for set A∪ {v} with more edges
than M1. So adding v to A increases the size of its maximum
matching.

Now the only thing we should check is that edges
e1, e3, . . . , e2i+1 does not intersect with other edges of M1.
Let v = v0, v1, v2, . . . , v2l′+1 be the vertices of Q. Because
we remove edges e2, e4, . . . , e2i from M1, we do not have to
be worried about inserting the first i edges e1, e3, . . . , e2i−1.
The last edge we add is e2i+1 = (v2i, v2i+1). If v2i+1 is not
saturated in M1, there will be no intersection. So we just
need to prove that v2i+1 is not saturated in M1.

If i is equal to l′, the vertex v2i+1 = v2l′+1 is not saturated
in M2. Because M1 is a subset of M2, the vertex v2i+1 is
also not saturated in M1.

If i is less than l′, the vertex v2i+1 is saturated in M2 by
edge e2i+2. Assume v2i+1 is saturated in M1 by an edge
e′. The edge e′ should be also in M2 because all edges of
M1 are in M2. The edge e′ intersects with e2i+2, so e′ has
to be equal to e2i+2. The definition of value i implies that
e2i+2 should not be in M1 (we pick the maximum i with the
above property). This contradiction shows that the vertex
v2i+1 is not saturated in M1, and therefore we get a greater
matching in A ∪ {v} using the changes in M1.

4. PRIZE-COLLECTING SCHEDULING
PROBLEM

We introduce the prize-collecting version of the scheduling
problems. All previous work assumes that we can schedule
all jobs using the existing processors. There are many cases
that we can not execute all jobs, and we have to find a subset
of jobs to schedule using low energy. There might be pri-
orities among the jobs, i.e., there might be more important
jobs to do. We formalize this problem as follows.

As before, there are P processors and n jobs. Each job
ji has a set Ti of time slot/processor pairs during which
it can execute. Each job ji also has a value zi. We want
to schedule a subset of jobs S with value at least a given
threshold Z, and with minimum possible cost. The value of
set S is the sum of its members’ values, and it should be at
least Z. Following we prove that there is a polynomial-time
algorithm which finds a schedule with value at least (1−ε)Z
and cost at most O(log (1/ε)) times the optimum solution.
Note that the optimum solution has value at least Z.

Later in this section, we show how to find a solution with
utility at least Z, and logarithmic approximation on the en-
ergy consumption (cost).

Theorem 4.1. If there is an schedule for the prize-
collecting scheduling problem with value at least Z and cost
B, there is an algorithm which finds a schedule with value
at least (1− ε)Z and cost at most O(B log (1/ε)).

Proof. Like the simple version of the scheduling prob-
lem, we construct a bipartite graph, and relate it to our al-
gorithm in Lemma 2.2. The difference is that the bipartite
graph here has some weights (job values) on the vertices of
one of its parts. And it makes it more complicated to prove
that the corresponding utility function is submodular. At
first we explain the construction of the bipartite graph, and
show how to reduce our problem to it. Then we use Lemma
4.2 to prove that the utility function is submodular.

We make graph G with parts X and Y . The vertices of
part X represent the time slot/processor pairs. So for each
pair of a time unit in a processor, we have a vertex in X. On
the other part, Y , we have the n jobs. The edges connect
jobs to their sets of time slot/processor pairs, i.e., job ji has
edges only to time slot/processors pairs in Ti, so a job might
have edges to different time units in different processors.
The only difference is that each edge has a weight in this
graph. Each edge connects a job to a time slot/processor
pair, the weight of an edge is the value of its job. Every
schedule is actually a matching in this bipartite graph, and
the value of a matching is the sum of the values of the jobs
that are scheduled in it. This is why we set the weight of an
edge to the value of its job.

The problem again is to find a collection of time intervals
for each processor, and schedule a subset of jobs in those
intervals such that the value of this subset is close to Z,
and the cost of the schedule is low. If we have a subset of
intervals, we can find the best subset of jobs to schedule in
it. This can be done using the maximum weighted bipartite
matching. The only thing we have to prove is that the util-
ity function associated with this weighted bipartite graph is
submodular. This is also proved in Lemma 4.2.

Lemma 4.2. Given a bipartite graph G with parts X and
Y . Every vertex in Y has a value. For every subset S ⊂ X,
define F (S) be the maximum weighted matching that satu-
rates only vertices of S in part X. The weight of a match-
ing is the sum of the values of the vertices saturated by this
matching in Y . The function F is submodular.

Proof. Let A and B be two subsets of X such that A ⊆
B. Let v be a vertex in X. We have to prove that:

F (A ∪ {v})− F (A) ≥ F (B ∪ {v})− F (B)

LetM1 andM2 be two maximum weighted matchings that
saturate only vertices of A and B in X respectively. Among
all options we have, we choose two matchings M1 and M2

that have the maximum number of edges in common. We
prove that every saturated vertex in M1 is also saturated in
M2 (note that we can not prove that every edge in M1 is
also in M2). We prove this by contradiction.

The saturated vertices in M1 are either in set A or in set
Y . At first, let v′ be a vertex in A that is saturated in
M1, and not saturated in M2. Let u′ be its match in part
Y (v′ is a time slot/processor pair, and u′ is a job). The
vertex u′ is saturated in M2 otherwise we could add edge
(v′, u′) to matching M2, and get a matching with greater
value instead of M2. So u′ is matched with a vertex of
B like v′′ in matching M2. If we delete the edge (v′′, u′)

from matching M2, and use edge (v′, u′) instead, the value
of our matching remains unchanged, but we get a maximum
matching instead of M2 that has more edges in common
with M1 which is contradiction. So any vertex in X that is
saturated in M1 is also saturated in M2.

The other case is when there is vertex in Y like u′ that
is saturated in M1, and not saturated in M2. The vertex
u′ is matched with vertex w ∈ A in matching M1. Again
if w is not saturated in M2, we can insert edge (w, u′) to
M2, and get a matching with greater value. So w should be
saturated in M2. Let u′′ be the vertex matched with w in
M2. For now assume that u′′ is not saturated in M1. Note
that u′ and u′′ are some jobs with some values, and w is a
time slot/processor pair. If the values of jobs u′ and u′′ are
different, we can switch the edges in one of the matchings
M1 or M2, and get a better matching. For example, if the
value of u′ is greater than u′′, we can use edge (w, u′) instead
of (w, u′′) in matching M2, and increase the value of M2. If
the value of u′′ is greater than u′, we can use edge (w, u′′)
instead of (w, u′) in matching M1, and increase the value
of M1. So the value of u′ and u′′ are the same, we again
can use (w, u′′) instead of (w, u′) in matching M1, and get
a matching with the same value but more edges in common
with M2. This is a contradiction. So u′′ should be saturated
in M1 as well, but if we continue this process we find a path
P starting with vertex u′. The edges of this path alternate
between M1 and M2. Path P starts with an edge in M1, so it
can not end with another edge in M1 otherwise we can take
M2∆P instead of M2 to increase the size of our matching
for set B which is a contradiction. So path P starts with
vertex u′ and an edge in M1, and ends with an edge in M2.
We have the same situation as above, and we can reach the
contradiction similarly (just take the last vertex of the path
as u′′). So we can say that all saturated vertices in M1 are
also saturated in M2.

Despite the unweighted graphs, F (A ∪ {v}) − F (A) and
F (B∪{v})−F (B) might take values other than zero or one.

If M2 is also a maximum matching for set B ∪ {v}, we do
not need to prove anything. Because F (B ∪ {v}) would be
equal to F (B) in that case, and we know that F (A ∪ {v})
is always at least F (A). So assume that M ′2 is a maximum
matching for set B ∪ {v} that has the maximum number of
edges in common with M2, and its value is more than the
value of M2. Consider the graph H that consists of edges
M ′2∆M2. We know thatH is union of some paths and cycles.
We can prove that H is only a path that starts with vertex
v. In fact, if there exists a connected component like C
in H that does not include vertex v, we can take matching
M ′2∆C which is a matching for setB∪{v} with more edges in
common with M2. Note that the value of matching M ′2∆C
can not be less than the value of M ′2 otherwise we can use the
matching M2∆C for set B instead of matching M2, and get
a greater value which is a contradiction (M2 is a maximum
value matching for set B).

So graph H has only one connected component that in-
cludes vertex v. Because vertex v does not participate in
matching M2, its degree in graph H should be at most 1.
We also know that v is saturated in M ′2, so its degree is one
in H. Therefore, graph H is only a path P . This path starts
with vertex v, and one of the edges inM ′2. The edges of P are
alternatively in M ′2 and M2. If P ends with an edge in M2,
the set of jobs that these two matchings, M2 and M ′2, sched-
ule are the same. So their values would be also the same, and

F (B∪{v}) would be equal to F (B) which is a contradiction.
So path P has odd number of edges. Let e1, e2, . . . , e2l+1 be
the edges of P , and v = v0, v1, v2, . . . , v2l+1 be its vertices.
Note that v0, v2, . . . , v2l are some time slot/processor pairs,
and the other vertices are some jobs with some values. Edges
e2, e4, . . . , e2l are in M2, and the rest are in M ′2.

The only job that is scheduled in M ′2, and not scheduled
in M2 is the job associated with vertex v2l+1. Let xi be
the value of the vertex v2i+1 for any 0 ≤ i ≤ l. So F (B ∪
{v})− F (B) is equal to xl. We prove that xl is not greater
than any xi for 0 ≤ i < l by contradiction. Assume xi is
less than xl for some i < l. We could change the matching
M2 in the following way, and get a matching with greater
value for set B. We could delete edges e2i+2, e2i+4, . . . , e2l,
and insert edges e2i+3, e2i+5, . . . , 22l+1 instead. This way
we schedule job v2l+1 instead of job v2i+1, and increase our
value by xl − xi. Because M2 is a maximum matching for
set B, this is a contradiction so xl should be the minimum
of all xis.

If all edges e2, e4, . . . , e2l are also in matching M1, we can
use path P to find a matching for set A ∪ {v} with value xl

more than the value of M1. We can take matching M1∆P
for set A∪{v}. Because vertex v2l+1 is not saturated in M2,
it is also not saturated in M1. So M1∆P is a matching for
set A∪{v}. We conclude that F (A∪{v})−F (A) is at least
xl which is equal to F (B∪{v})−F (B). This completes the
proof for this case.

In the other case, there are some edges among
e2, e4, . . . , e2l that are not in M1. Let e2j be the first
edge among these edges that is not in M1. So all edges
e2, e4, . . . , e2j−2 are in both M1 and M2. Note that e2j

matches job v2j−1 with the time slot/processor pair v2j in
matching M2. If job v2j−1 is not used (saturated) in match-
ing M1, we can find a matching as follows for set A ∪ {v}.
We can delete edges e2, e4, . . . , e2j−2 from M1, and insert
edges e1, e3, . . . , e2j−1 instead. This way we schedule
job x2j−1 in addition to all other jobs that are scheduled
in M1. So the value of F (A ∪ {v}) is at least xj−1 (the
value of job x2j−1) more than F (A). We conclude that
F (A∪{v})−F (A) = xj−1 is at least F (B∪{v})−F (B) = xl.

Finally we consider the case that v2j−1 is also saturated in
M1 using some edge e other than e2j . Edges e and e2j are in
M1 and M2 respectively, and vertex v2j−1 is their common
endpoint. So these two edges should come in the same con-
nected component in the graph M1∆M2. We proved that all
connected components of M1∆M2 are paths with odd num-
ber of edges that start and end with edges in M2. Let Q be
the path that contains edges e and e2j . This path contains
edges e′1, e′2, . . . , e′i = e2j , e′i+1 = e, e′i+2, . . . , e′2l′+1. The
last edge of this path, e′2l′+1 matches a job v′ with a time
slot/processor pair. Let x′ be the value of v′. Vertex v′ is
not scheduled in matching M1. At first we prove that x′ is
at least xl (the value of job v2l+1). Then we show how to
find a matching for set A ∪ {v} with value at least x′ more
than the value of M1.

If x′ is less than xl, we can find a matching with greater
value for set B instead of M2. Delete edges e′i = e2j , e′i+2,
e′i+4, . . . , e′2l′+1, and also edges e2j+2, e2j+4, . . . , e2l from
M2, and insert edges e′i+1 = e, e′i+3, . . . , e′2l′ , and edges
e2j+1, e2j+3, . . . , e2l+1 to M2 instead of the deleted edges.
In the new matching, job v′ with value x′ is not saturated
any more, but the vertex v2l+1 with value xl is saturated.
So the value of the new matching is xl − x′ > 0 more than

the value of M2 which is a contradiction. So x′ is at least
xl.

Now we prove that there is a matching for set A ∪ {v}
with value x′ more than the value of M1. We can find this
matching as follows. Delete edges e′i+1 = e, e′i+3, . . . , e′2l′ ,
and edges e2, e4, . . . , e2j−2, and insert edges e′i+2, e′i+4, . . . ,
e′2l′+1, and edges e1, e3, . . . , e2j−1. This way we schedule
job v′ with value x′ in addition to all other jobs that are
scheduled in M1. So we find a matching for set A∪{v} with
value x′ more than the value of M1.

So F (A ∪ {v}) − F (A) is at least x′. We also know that
F (B ∪ {v})− F (B) is equal to xl. Because x′ is at least xl,
the proof is complete.

Now we are ready to represent our algorithm which finds
an optimal solution (with respect to values).

Theorem 4.3. If there is an schedule for the prize-
collecting scheduling problem with value at least Z and cost
B, there is an algorithm which finds a schedule with value
at least Z and cost at most O([logn + log ∆]B) where δ is
the ratio of the maximum value over the minimum value of
all n jobs.

Proof. Let vmax and vmin be the maximum and mini-
mum value among all n jobs respectively. We know that Z
can not be more than n · vmax. Define ε to be vmin

n·vmax
= 1

n∆
.

Using Theorem 4.1, we can find a solution with value at
least (1− ε)Z and cost at most O(B log(n∆)) = O([logn+
log ∆]B). Let S′ be this solution. If the value of S′ is at
least Z, we exit and return this set as our solution. Other-
wise we do the following. Note that we just need εZ more
value to reach the threshold Z, and εZ is at most vmin. So
we just need to insert another interval which increases our
value by at least vmin. In the proof of Lemma 4.2, we proved
that the value of F (B ∪ {v})− F (B) is either zero or equal
to the value of some jobs (in the proof it was xl the value
of vertex v2l+1). So if we add an interval the value of set is
either unchanged or increased by at least vmin. So among all
intervals with cost at most B, we choose one of them that
increase our value by at least vmin. At first note that this
insertion reaches our value to Z, and our cost would be still
O([logn+ log ∆]B).

We now prove that there exists such an interval. Note
that the optimum solution consists of some intervals
S1, S2, . . . , Sk. The union of these intervals, T has value
F (T) which is at least Z. So F (T) is greater than the value
of our solution F (S′). Using Lemma 2.1, F (S′∪Si)−F (S′)
should be positive for some 1 ≤ i ≤ k. We also know that
the cost of this set is not more than B because the cost of
the optimum solution is not more than B. So there exists
a time interval (a set like Si) that solves our problem with
additional cost at most B. We also can find it by a simple
search among all time intervals.

Note that in the simple case studied in the literature, the
values are all identical, and ∆ is equal to 1.

5. REFERENCES
[1] J. Augustine, S. Irani, and C. Swamy. Optimal

power-down strategies. In Proceedings of the 45th
Symposium on Foundations of Computer Science,
pages 530–539, Rome, Italy, October 2004.

[2] P. Baptiste. Scheduling unit tasks to minimize the
number of idle periods: a polynomial time algorithm
for offline dynamic power management. In
Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithm, pages 364–367,
Miami, Florida, 2006.

[3] MohammadHossein Bateni, MohammadTaghi
Hajiaghayi, Morteza Zadimoghaddam. The
submodular secretary problem and its extensions
Manuscript.

[4] Erik D. Demaine, Mohammad Ghodsi,
MohammadTaghi Hajiaghayi, Amin S.
Sayedi-Roshkhar and Morteza Zadimoghaddam.
Scheduling to Minimize Gaps and Power
Consumption. In Proceedings of the 19th ACM
Symposium on Parallelism in Algorithms and
Architectures (SPAA), Pages 46-54, San Diego,
California, June 2007.

[5] E. Even-dar, Y. Mansour, V. S. Mirrokni, M.
Muthukrishnan, U. Nadav. Bid Optimization for
Broad-Match Ad Auctions. In Proceedings of the 18th
International World Wide Web Conference, Pages
231-240, Madrid, Spain, 2009.

[6] S. Irani, S. Shukla, and R. Gupta. Algorithms for
power savings. In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms,
pages 37–46, Baltimore, Maryland, 2003.

[7] Johnson, D. S. Approximation Algorithms for
Combinatorial Problems. In Proceedings of the fifth
annual ACM Symposium on Theory of Computing,
Pages 38-49, Austin, Texas, 1973.

[8] Nitish Korula and Martin Pal. Algorithms for
Secretary Problems on Graphs and Hypergraphs. In
Proceedings of the 36th International Colloquium on
Automata, Languages and Programming, Pages
508-520, Rhodes, Greece, July, 2009.

[9] Ariel Kulik, Hadas Shachnai, and Tami Tamir.
Maximizing submodular set functions subject to
multiple linear constraints. In Proceedings of the
Nineteenth Annual ACM -SIAM Symposium on
Discrete Algorithms, Pages 545-554, New York, 2009.

[10] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan,
Maxim Sviridenko. Non-monotone submodular
maximization under matroid and knapsack constraints.
In Proceedings of the 41th annual ACM Symposium
on Theory of Computing, Pages 323-332, Bethesda,
Maryland, 2009.

[11] Raz, R., and Safra, S. A sub-constant error-probability
low-degree test, and sub-constant error-probability
PCP characterization of NP. In Proceedings of the
29th annual ACM Symposium on Theory of
Computing, Pages 475-484, El Paso, Texas, 1997.

APPENDIX
A. HARDNESS RESULTS

Here we show some matching hardness results to show
that our algorithms are optimal unless P = NP . Surpris-
ingly the problem we studied does not have better than logn
approximation even in very simple cases, namely, one inter-
val scheduling with nonuniform parallel machines, or multi-
interval scheduling with only one processor.

It is proved in [4] that the multi-interval scheduling prob-
lem with only one processor and simple cost function is Set-
Cover hard, and therefore the best possible approximation
factor for this problem is logn. We note that in the simple
cost function the cost of an interval is equal to its length
plus a fixed amount of energy (the restart cost). All pre-
vious work studies the problem with this cost function. In
fact, Theorem 7 of [4] shows that the problem does not have
a o(logN)-approximation even when the number of time in-
tervals of each job is at most 2 (each job has a set of time
intervals in which it can execute).

Theorem A.1. It is NP-hard to approximate 2-interval
gap scheduling within a o(logN) factor, where N is the size
of input.

Now we show that the one-interval scheduling problem, for
which there exists a polynomial-time algorithm in [4], does
not have any o(logN)-approximation when only a subset of
processors are capable of executing a job. Assume that each
job has one time interval in which it can execute, and for
each job, we have a subset of processors that can execute
this job in its time interval, i.e., the other processors do
not have necessary resources to execute the job. We also
consider the generalized cost function in which the cost of
an interval is not necessarily equal to its length plus a fixed
amount. We call this problem one-interval scheduling with
nonuniform processors.

Theorem A.2. It is NP-hard to approximate one-
interval scheduling with nonuniform processors problem
within a o(logN) factor, where N is the size of input.

Proof. Like previous hardness results for these schedul-
ing problems, we give an approximation-preserving reduc-
tion from Set Cover, which is not o(logn)-approximable un-
less P = NP [11]. Let E = {e1, e2, . . . , en} be the set of all
elements in the Set-Cover instance. There are also m sub-
sets of E, S1, S2, . . . , Sm in the instance. We construct our
scheduling problem instance as follows. For each set Sj , we
put a processor Pj in our instance. For each element ei, we
put a job ji. Only jobs in set Sj can be done in processor
Pj . The time interval of all jobs is [1, n]. The cost of keeping
each processor alive during a time interval is 1. Note that
the cost a time interval is not a function of its length in this

case, i.e., the cost of an interval is almost equal to a fixed
cost which might be the restart cost. So the optimum solu-
tion to our scheduling problem is a minimum size subset of
processors in which we can schedule all jobs because we can
assume that when a processor is alive in some time units, we
can keep that processor alive in the whole interval [1, n] (it
does not increase our cost). In fact we want to find the min-
imum number of subsets among the input subset such that
their union is E. This is exactly the Set Cover problem.

B. POLYNOMIAL-TIME ALGORITHM
FOR PRIZE-COLLECTING ONE-
INTERVAL GAP MINIMIZATION
PROBLEM

The simple cost function version of our problem is studied
in [2, 4] as the gap-minimization problem. Each job has a
time interval, and we want to schedule all jobs on P ma-
chines with the minimum number of gaps. (A gap is a max-
imal period of time in which a processor is idle, which can
be associated with a restart for one of the machines.) There
are many cases in which we can not schedule all jobs ac-
cording to our limitation in resources: number of machines,
deadlines, etc. So we define the prize-collecting version of
this simple problem. Assume that each job has some value
for us, and we get its value if we schedule it. We want to get
the maximum possible value according to some cost limits.
Formally, we want to schedule a subset of jobs with maxi-
mum total value and at most g gaps. The variable g is given
in the input. Now we show how to adapt the sophisticated
dynamic program in [4] to solve this problem.

Theorem B.1. There is a (n7p5g)-time algorithm for
prize-collecting p-processor gap scheduling of n jobs with
budget g, the number of gaps should not exceed g.

Proof. In the proof of Theorem 1 of [4], Ct1,t2,k,q,l1,l2 is
defined to be the number of gaps in the optimal solution for
a subproblem defined there. If we define C′t1,t2,k,q,l1,l2,g′ to
be the maximum value we can get in the same subproblem
using at most g′ ≤ g gaps, we can update this new dynamic
program array in the same way. The rest of the proof is
similar; we just get an extra g in the running time.

	Introduction
	Submodular Maximization with Budget Constraints
	Scheduling to Minimize Power in Parallel Machines
	Prize-Collecting Scheduling Problem
	Appendix
	Hardness Results
	Polynomial-Time Algorithm for Prize-Collecting One-interval Gap Minimization Problem

