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Abstract 
 
The economic costs of environmental regulations have been widely debated since the U.S. began 
to restrict pollution emissions more than four decades ago.  Using detailed production data from 
nearly 1.2 million plant observations drawn from the 1972-1993 Annual Survey of 
Manufactures, we estimate the effects of air quality regulations on manufacturing plants’ total 
factor productivity (TFP) levels. We find that among surviving polluting plants, stricter air 
quality regulations are associated with a roughly 2.6 percent decline in TFP.  The regulations 
governing ozone have particularly large negative effects on productivity, though effects are also 
evident among particulates and sulfur dioxide emitters.  Carbon monoxide regulations, on the 
other hand, appear to increase measured TFP, especially among refineries.  The application of 
corrections for the confounding of price increases and output declines and sample selection on 
survival produce a 4.8 percent estimated decline in TFP for polluting plants in regulated areas.  
This corresponds to an annual economic cost from the regulation of manufacturing plants of 
roughly $21 billion, which is about 8.8 percent of manufacturing sector profits in this period. 
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I. Introduction 

The economic costs of environmental regulations have been widely debated since the 

U.S. began to restrict pollution emissions more than four decades ago through the Clean Air and 

Water Acts.  The conventional wisdom is that stricter environmental standards raise polluting 

firms’ costs of production, which weakens U.S. firms’ position in international markets and 

raises the prices that consumers face.  On the one hand, the decline in U.S. manufacturing 

employment from 18 million (25.3 percent of total US employment) in 1970 to 12 million (9.0 

percent of total employment) in 2012 mirrors the introduction and expansion of U.S. 

environmental policy.  On the other hand, Porter (1991) argues that more stringent regulations 

enhance productivity growth by causing firms to rationalize their operations.   

In addition to being an important area of research, this issue is of considerable interest to 

policymakers.  In the last few years, several lawmakers have argued that environmental 

regulations are “job killers”.  This contention is not new, as a few decades ago environmental 

considerations played a major role in the NAFTA debate; opponents predicted that NAFTA 

would induce U.S. and Canadian firms to move their operations to Mexico, where they could 

better compete on the global market due to lax local environmental regulations.1

This paper helps to fill this gap by making uses of detailed production data from nearly 

1.2 million plant observations from the 1972-1993 Annual Survey of Manufactures to investigate 

the economic costs of air quality regulations.  Following the passage of the 1970 Clean Air Act 

Amendments, the Environmental Protection Agency (EPA) established separate national ambient 

air quality standards—a minimum level of air quality that all counties are required to meet—for 

four criteria pollutants: carbon monoxide (CO), tropospheric ozone (O3), sulfur dioxide (SO2), 

and total suspended particulates (TSPs).  As a part of this legislation, every U.S. county receives 

annual nonattainment or attainment designations for each of the four pollutants.  The 

nonattainment designation is reserved for counties whose air contains concentrations of the 

  Parallel 

arguments on both sides can be found in recent European negotiations, where competitiveness 

issues played a prominent role in discussions of differences in environmental regulations among 

member states in the context of the Single European Act.  Part of the reason that these debates 

have raged on is that there is a paucity of conclusive empirical evidence. 

                                                 
1 Ross Perot famously argued that “If NAFTA passes you’ll hear a flushing sound of millions of American jobs 
going south” when debating Al Gore on CNN’s Larry King Show.  Vice President Al Gore’s response was a broad 
appeal based on the Porter (1991) hypothesis.   
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relevant pollutant that exceed the federal standard.  Emitters of the regulated pollutant in 

nonattainment counties are subject to greater regulatory oversight than emitters in attainment 

counties.  Non-polluters are free from regulation in both categories of counties. 

We find that among surviving plants in heavily polluting industries, the nonattainment 

designation is associated with a 2.6 percent decline in measured total factor productivity (TFP) 

among plants that emit the targeted pollutants.  In plain English, this means that regulated plants’ 

output declined by 2.6 percent after holding constant their inputs (i.e., labor, capital, and 

materials).  The regulations governing ozone have particularly large negative effects on 

productivity, though negative effects are also evident among emitters of particulates and sulfur 

dioxide.  Carbon monoxide nonattainment, on the other hand, appears to actually increase 

measured TFP, especially among refineries. 

The estimated decline in TFP of 2.6 percent likely understates the true loss in output due 

to the nonattainment designations for at least three reasons.  First, the estimates are based on 

comparisons between emitters and non-emitters. These categories are imprecise, however, and it 

is probable that some of the non-emitter group was also regulated by the Clean Air Act, albeit 

less intensively.  Second, data constraints require us to use revenue in estimating TFP, but this is 

the product of prices, which may increase due to the costs imposed by regulations, and the 

conceptually correct outcome of physical output.  Third, the estimates are based on the plants 

that continue to operate, yet it seems reasonable to assume that the plants most harmed by the 

regulations shut down. 

The application of corrections for the confounding of price increases and output declines 

and sample selection on survival produces a much larger estimate:  TFP declines by 4.8 percent 

for polluting plants in nonattainment counties.  This corresponds to an annual economic cost 

from the regulation of manufacturing plants of roughly $21 billion in 2010 dollars.  This 

translates into a loss of more than $450 billion over the studied period.  

The paper makes several contributions.  The first is that by measuring the impact on 

productivity—the amount of output obtained from a given set of inputs—we believe that this is 

the first study to obtain an estimate of the regulation’s economic costs in the full manufacturing 
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sector.2  Our focus on productivity effects speaks to the efficiency of the manufacturing sector; 

that is, given the inputs being used, do environmental regulations  change how effectively the 

sector converts these inputs into outputs.  Consequently, the results have a clearer economic 

interpretation than the finding that the nonattainment designations are associated with reductions 

in employment, investment, shipments in the manufacturing sector (Henderson 1996; Becker and 

Henderson 2000; Greenstone 2002; and Walker 2012).  Furthermore, these estimates along with 

estimates of the costs borne by workers in these firms (Walker 2012) can be contrasted with the 

growing literature on the benefits of cleaner air to conduct a cost-benefit analysis.3

The second contribution is that the paper uses the principal instruments of the Clean Air 

Act Amendments (CAAAs), the pollutant-specific, county-level attainment/nonattainment 

designations as its measures of air quality regulation.  These four designations are the “law of the 

land” and capture the regional and industry variation that Congress imposed with this 

legislation.

  

4

Furthermore, there is spatial, temporal, and industry-based variation in the impact of the 

regulations associated with nonattainment designations which allows for the estimation of 

statistical models that control for several likely confounders.  The analysis exploits variation 

across plants in different industries in the same county and within the same industry across 

counties allowing for adjustment for location-specific shocks to TFP and shocks common to 

plants in the same industry.  Additionally the panel structure of the data means that the TFP 

effects are identified from plants in counties that experience a change in nonattainment status; 

thus, the estimates are based on comparisons of plants in periods when they face the 

nonattainment regulations to periods when they are free from them. 

  In fact, these designations govern the writing and enforcement of the plant-specific 

regulations that restrict the behavior of polluters.  Moreover, the simultaneous evaluation of each 

pollution-specific regulation is important, because many plants emitted multiple pollutants and 

many counties were designated in nonattainment for multiple pollutants.   

The third contribution is that this paper builds on the literature of the past two decades 
                                                 
2 Gollop and Roberts (1983) estimates the economic costs of SO2 regulation in the utility sector during the 1970s.  
They estimate the impact of a different feature of the Clean Air Act Amendments than nonattainment designations.  
Also, see Ryan (2011) for estimates of the costs of the 1990 CAAAs in the Portland cement industry. 
3 Some examples of the extensive literature on the benefits of clean air include Chay and Greenstone (2003 and 
2005), Currie and Neidell (2005), Lleras-Muney (2010), and Deschenes, Grenestone, and Shapiro (2012) 
4 A few states and localities (e.g., California) have imposed regulations that are stricter than the federal ones.  Any 
regulations over and above the federally mandated ones are unobserved variables in the subsequent analysis. 
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that has sought to explain differences in producers’ TFP levels (see Syverson 2011 for a survey).  

Ultimately, productivity determines a nation’s living standards, and our understanding of its 

micro determinants remains in its nascent stages.  This paper demonstrates that government 

policy can play an important role in shaping TFP.  To date, we have little credible empirical 

evidence on the magnitude of such policy effects, with our study providing among the first such 

estimates for environmental regulations.   

The remainder of our study is organized as follows.  The next section briefly lays out the 

conceptual framework that helps to structure the subsequent analysis.  Section III reviews the 

CAAA attainment designation process and its implications for producers.  Section IV describes 

the data.  Section V presents the empirical specification, and Section VI reports the benchmark 

results.  Section VII discusses potential reasons why our estimates in Section VI are likely 

underestimates of the true productivity losses suffered by plants in polluting industries when 

their county is designated nonattainment for a pollutant, and estimates correction factors to 

account for these issues.  We further interpret our results and conclude in Section VIII. 

  

II. Conceptual Framework 

In this section we briefly frame our conceptual view of how environmental regulations 

might affect a manufacturer’s productivity level and how we would measure such effects.  The 

model motivates the empirical models and provides a lens to interpret the results.   

We begin by assuming that a manufacturing plant has a Cobb-Douglas production 

function: 

𝑄 = 𝐴𝐿�𝛼𝐾�1−𝛼, 

where Q is the plant’s output, A is a Hicks-neutral technology shifter, and 𝐿� and 𝐾� are, 

respectively, labor and capital inputs.  The only nonstandard feature of our assumed production 

function is that the labor and capital inputs, 𝐿� and 𝐾� are production-effective labor and capital—

that is, the quantity of each input that actually is used in the production of output—rather than 

the observed labor and capital at the plant.  Production-effective and observed inputs are related 

to one another; we assume the former is proportional to the latter, with the factor of 

proportionality allowed to vary between the two inputs.  Thus, 

 𝐿� = 𝜆𝐿𝐿 and 𝐾� = 𝜆𝐾𝐾, 

where L and K are the observed labor and capital inputs at the plant and λL and λK are the factors 
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of proportionality that link observed to production-effective inputs. 

 The introduction of production-effective inputs captures the notion that plants that fall 

under more stringent environmental regulations need to employ inputs that are necessary to meet 

regulatory requirements but that are potentially not useful for producing the plants’ commercial 

outputs.  Indeed, the plant-specific requirements under the Clean Air Act in this period were 

generally of the “command and control” variety that involved the EPA dictating the installation 

of particular pollution abatement technologies (rather than imposing emissions limits and 

allowing plants to achieve them in whatever way they found most efficient).  Thus, for example, 

in order to meet federal air quality standards a manufacturing plant may need to install scrubbing 

or gas reclamation equipment.  This equipment is part of the plant’s measured capital stock, but 

in itself is neither necessary nor useful for producing the plant’s commercial output.  A labor-

input example of the same concept is the hiring of an environmental compliance officer for the 

plant. 

 As reflected in our proportionality assumption, we assume these additional regulatory-

compliance inputs scale up with the size of the plant.  While the strict proportionality assumption 

is made for analytical convenience and is unnecessary to make our conceptual point, we believe 

it is quite plausible that larger plants require more regulatory-compliance inputs.  For example, 

larger plants need more emissions-cleaning capital and multiple employees focusing on 

environmental compliance because it is the larger plants that face greater regulatory scrutiny.   

 In this framework, the introduction of more stringent regulatory requirements—namely, a 

nonattainment designation for an emitting plant’s county—can be interpreted as a decrease in λL 

and/or λK.  When more compliance-related inputs are necessary, there is a larger gap between a 

plant’s observed and production-effective inputs.5

 𝑄 = 𝐴(𝜆𝐿𝐿)𝛼(𝜆𝐾𝐾)1−𝛼 = 𝐴𝜆𝐿
𝛼𝜆𝐾

1−𝛼𝐿𝛼𝐾1−𝛼. 

  The productivity effects of the regulation can 

be seen by substituting the expressions for production-effective labor and capital into the 

production function: 

The plant’s measured TFP is its output divided by its observed inputs (weighted appropriately): 

                                                 
5 Another possible channel through which air quality regulation can affect TFP besides the compliance-related input 
mechanism discussed here is New Source Review (NSR).  Under NSR, if an existing plant makes “significant” 
changes to its operations, the entire plant falls under regulations for new plants.  The way this channel would have 
TFP effects is by forcing plants to use suboptimal input mixes in order to avoid NSR.  Our conceptual framework 
embeds this mechanism; one can interpret λL and λK in this case as measuring the difference between the observed 
and the optimal input levels. 
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 𝑇𝐹𝑃 = 𝑄
𝐿𝛼𝐾1−𝛼

= 𝐴𝜆𝐿
𝛼𝜆𝐾

1−𝛼𝐿𝛼𝐾1−𝛼

𝐿𝛼𝐾1−𝛼
= 𝐴𝜆𝐿𝛼𝜆𝐾1−𝛼. 

This expression makes obvious the effect of regulation on TFP.  Decreases in λL and λK 

driven by an increased need for compliance-related inputs are inward shifters of the plant’s 

production function.  In other words, the amount of output the plant obtains per unit of observed 

input—its TFP level—decreases.  The greater the amount of compliance-related inputs (the 

larger the drop in λL and λK), the larger the observed decline in plant TFP. 

 Given the production function above, cost minimization implies the plant’s marginal cost 

is 

𝑀𝐶 = 1
𝐴𝜆𝐿

𝛼𝜆𝐾
1−𝛼 𝜙𝑤𝛼𝑟1−𝛼. 

(φ is a constant that depends on parameter α.)  Marginal cost rises as λL and λK fall, so 

regulations requiring more pollution abatement-related inputs increase the plant’s marginal cost.  

Although we do not model the output market, with market power, higher marginal cost results in 

an increase in the price of the plant’s output.  This price effect of regulation is important in our 

empirical work below, because we cannot directly measure the output quantity Q in the 

theoretical TFP measure above.  We must instead measure output using revenue.  Because 

revenue is the product of Q and price, our estimates of regulation’s TFP impacts reflect not just 

the TFP effect elucidated above, but also the price effect.  The size of the price effect—that is, 

the relationship between price and marginal cost—depends on the nature of demand for the 

plant’s product.  We measure this markup relationship below to derive a correction that turns our 

estimated revenue-based TFP measures into quantity-based TFP metrics, consistent with our 

model. 

 

III. The CAAA as the Basis of a Research Design 

A. Background on the CAAAs and Their Enforcement 

The 1970 CAAA marked the federal government’s ambitious entry into the business of 

restricting the emission of pollutants into the air.  It required that all states meet national ambient 

air quality standards (NAAQS) for certain criteria air pollutants—carbon monoxide, sulfur 
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dioxide, total suspended particulates6, and ozone7

Due to this lack of progress, Congress passed the 1977 CAAA.  The 1977 CAAA 

stipulated that starting in 1978 every county in the U.S. was to be designated annually as being 

in-attainment or out-of-attainment (nonattainment) of NAAQS.  A county’s attainment status 

was to be determined with respect to each of the criteria air pollutants.  If a county is not in 

attainment of the federal standard with respect to one of these pollutants, the state must submit 

periodic comprehensive plans that will lead to attainment status in the near future.  If standards 

are not met in due time, states risk losing federal monies that help to fund state-level public 

goods and services (see, e.g., Becker and Henderson, 2000; Greenstone, 2002).

 (other pollutants, such as lead, have 

subsequently been added to the list).  To do so, states with air quality exceeding the federal 

guidelines were required to submit a State Implementation Plan (SIP) that detailed their plans to 

bring violating areas into compliance.  Given the amount of confusion, and the inadequate 

resources to carry-out these plans, many areas of the country had failed to meet the standards by 

the 1975 deadline. 

8

Environmental regulations in nonattainment counties are intended to be stringent.  

Polluting plants entering or expanding in a nonattainment county are subject to a standard of 

“Lowest Achievable Emission Rate (LAER)” without consideration of cost for all investments.  

The resulting rules frequently involve compliance with “command and control” style regulations 

that requires the installation and operation of specified pollution abatement equipment.  Further, 

emissions from new investment must be offset by emissions reductions from an existing source 

within the same county, and plant expansion or modification leads to the entire plant being 

 

                                                 
6 In 1987 the EPA changed its focus from the regulation of all particulates (i.e., TSPs) to the smaller PM10s, which 
have an aerodynamic diameter equal to or less than 10 micrometers.  In 1997 the PM10 regulation was replaced with 
a PM2.5 one.  
7 There are separate standards for ozone (O3) and nitrogen dioxide (NO2).  In principle, a county could meet one of 
these standards, but not the other.  However, O3 is the result of a complicated chemical process that involves NO2, 
and the vast majority of counties that were nonattainment for NO2 were also nonattainment for O3.  As a result, we 
designated a county nonattainment for O3 if the EPA labeled it nonattainment for either O3 or NO2.  All future 
references to O3 refer to this combined measure.   
8 While the EPA denoted each county beginning in 1978 as either in or out of attainment for each criteria air 
pollutant, Greenstone (2002) compiled the data back to 1972 using air quality data collected via filing a Freedom of 
Information Act petition. 
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subject to more stringent regulations (see List et al., 2004).9

Polluting plants locating in attainment areas, on the other hand, face a more lax 

regulatory standard.  These plants are subject to the standard of “Prevention of Significant 

Deterioration (PSD).”  This entails permitting and the installation of the “Best Available Control 

Technology (BACT)” for new plants that have the potential to emit over 100 tons of a criteria 

pollutant in a year.  The BACT is negotiated on a case-by-case basis and the economic burden on 

the plant is considered in arriving at a final solution.  Given that the installation of BACT in 

attainment areas is likely to be much less costly than the installation of LAER in nonattainment 

areas, new polluting plants and expansions of existing ones could face significantly lower 

pollution control capital construction costs in attainment areas versus nonattainment counties. 

 

Given that SIPs require states to develop plant-specific regulations for every major source 

of air pollution, existing plants in nonattainment areas also face greater regulatory scrutiny than 

plants in attainment areas.  These plant-specific regulations typically have come in the form of 

emissions limits.  Beyond the necessary abatement investments, inspections and regulatory 

oversight are more persistent in nonattainment areas.  Further, the size of the existing polluter 

importantly determines the level of regulation (see Becker and Henderson, 2000). 

Both the states and the EPA are given substantial enforcement powers to ensure that the 

CAAA’s intent is met.  For instance, the EPA must approve all state regulation programs in order 

to limit the variance in regulatory intensity across states.  On the compliance side, states run their 

own inspection programs and frequently fine non-compliers.  The 1977 legislation also made the 

plant-specific regulations both federal and state law, which gave the EPA legal standing to 

impose penalties on states that do not aggressively enforce the regulations and on plants that do 

not adhere to the regulations.  A number of studies document the effectiveness of these 

regulatory actions at the plant level (Nadeau 1997, Cohen 1998).  Perhaps the most direct 

evidence that the regulations are enforced successfully is that air pollution concentrations 

declined more in nonattainment counties than in attainment ones during the 1970s and 1980s 

(Henderson 1996, Chay and Greenstone 2003 and 2005, Greenstone 2002). 

 

B. Variation in Regulation as the Basis of a Research Design 
                                                 
9 The reduction in pollution due to the offset has to be larger than the expected increase in pollution associated with 
the new investment.  The offsets could be purchased from a different facility or generated by tighter controls on 
existing operations at the same site (Peirce, Vesilind, and Weiner 1998).  
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The structure of the CAAAs provides three sources of variation in which plants were 

affected by the nonattainment designations.  This subsection summarizes these three dimensions 

of variation and highlights their importance from an evaluation perspective.  It also briefly 

discusses some of the sources of this variation and why they may reinforce the credibility of the 

subsequent analysis. 

The first dimension of variation is that at any point in time the pollutant-specific 

nonattainment designations are reserved for counties whose pollution concentrations exceed the 

federal standards.  This cross-sectional variation allows for the separate identification of 

industry-specific shocks and regulatory effects.  This may be especially important in the period 

we study, because there were dramatic shocks—oil crises, recessions, and increases in foreign 

competition—that affected industries differentially. 

The second dimension of variation is that a county’s attainment/nonattainment 

designations vary over time as its air quality changes.  Consequently, individual plants might be 

subject to regulations in one period but not in a different one.  This longitudinal variation allows 

for the inclusion of plant fixed effects in equations analyzing plant-level productivity.  

Consequently, the paper presents estimated regulation effects that are derived from within-plant 

comparisons or comparisons of the productivity of polluting plants in counties that experience a 

change in a nonattainment designation.   

The third dimension of variation is that within nonattainment counties only plants that are 

major emitters of the relevant pollutant(s) are subject to the regulations.  We follow Greenstone 

(2002) and classify sectors based on their emission levels.  Using information from EPA’s Sector 

Notebook Project, we label industrial sectors as “pollution-intensive” if they emit at least 10 

percent of the total industrial sector’s emissions of the pollutant under consideration.10

                                                 
10 This is higher than the seven percent threshold used in Greenstone (2002).  Below, we present evidence 
suggesting that the marginal plants experiencing productivity impacts from nonattainment designations are in 
industry groups accounting for between seven and ten percent of industrial sector emissions.  Plants in cleaner 
industry groups see little measurable productivity effects; those in dirtier industry groups see impacts that are 
roughly the same size as those just above our 10 percent cutoff. 

  All other 

industries are considered non-emitters.  Table 1 lists the polluting industries and the pollutants 

they emit. The nonpolluting plants in nonattainment counties allow for the estimation of 

statistical models that control for shocks to productivity common to polluters and non-polluters 

in nonattainment counties. 



 10 

Some of the sources of variation in nonattainment status reinforce the credibility of an 

evaluation based on the CAAAs.  County-level nonattainment designations are federally 

mandated and are therefore less likely to be related to differences in tastes, geographic attributes, 

or underlying economic conditions across counties.  Moreover, nonattainment designations 

depend on whether local pollution levels exceed the federal standards.  While pollution levels are 

not randomly assigned, scientific evidence suggests that during the years under study many 

counties were designated nonattainment due to pollution that was related to weather patterns—a 

factor which is likely to be unrelated to local manufacturing sector activity.11

 

 

IV. Data 

 Our primary data sources are a county-level panel on CAAA attainment status and 

production microdata for manufacturing plants from the U.S. Census Bureau.  We describe each 

in turn. 

 

A. CAAA Attainment Status Data 

We collected information on annual CAAA nonattainment status of 3,141 U.S. counties 

from 1972 to 1993.  We observe in each year whether or not the county is in attainment with 

CAAA standards for each of four pollutants: ozone (O3), total suspended particulates (TSPs), 

sulfur dioxide (SO2), and carbon monoxide (CO).  We construct county-level nonattainment 

measures from this data. 

Table 2 summarizes the variation in attainment status across counties and over time.  It 

reveals the distribution of counties’ lagged and current nonattainment status by pollutant.  It also 

includes a pooled category of “any pollutant,” which holds if the county is nonattaining in any 

one or more of the four pollutants we track.  The numbers in the table are the respective counts 

by category of lagged and contemporaneous attainment status counts for the 65,961 county-years 

in our annual CAAA attainment data over the 1972-1993 period.  For example, 52,390 counties 

were in attainment for all pollutants in both the current and previous years; 1,461 were in 

                                                 
11 Cleveland et. al. (1976) and Cleveland and Graedel (1979) document that wind patterns often cause air pollution 
to travel hundreds of miles, and that the concentration of O3 in the air entering the New York region in the 1970s 
often exceeded the federal standards.  Figure 1b in Greenstone (2002) graphically depicts the counties that were 
designated nonattainment for O3 and reveals that virtually the entire Northeast, even counties without substantial 
local production of O3, is in O3 nonattainment for at least one period.  It is evident that this region’s nonattainment 
designations partially reflect its location downwind from heavy O3 emitters in the Ohio Valley. 
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nonattainment in the current year but were in attainment the previous year, and so on.  

Counties fall into nonattainment and come back into attainment at roughly the same rates, 

indicating little change in average nonattainment rates over time.  However, this hides clear 

patterns in the time series for all pollutants (not shown here for space reasons) that show a rapid 

rise in the number of counties in nonattainment in the 1970s and a slow but steady decline 

thereafter.  Looking at specific pollutants, changes in attainment status are most common for 

ozone, with TSPs close behind.  Sulfur dioxide and carbon monoxide attainment changes are 

notably less frequent than for the other two pollutants. 

These within-county changes in attainment status are a basic source of identification for 

our estimates of the effects of nonattainment status.  While the county-years that see attainment 

status changes are a modest share of the entire sample, they still correspond to hundreds and 

sometimes thousands of county-level changes.  Moreover, because most of the attaining counties 

are in rural areas with little manufacturing activity, the counties that are always in attainment of 

the federal standards account for a much smaller fraction of economic activity than their shares 

in Table 2.12

This extent of the CAAA’s reach is seen in Figure 1, which reports the share of polluting 

industries’ total output that is produced by plants in nonattainment counties over the course of 

the sample.  Panel A shows the series for industry production in nonattainment counties in any 

(one or more) of the pollutants for which each industry is a heavy emitter; panel B shows the 

corresponding pollutant-specific series.  Over 30 percent of emitting industries’ output was 

produced in nonattainment counties at the beginning of the sample in 1972.  This quickly rose to 

more than 65 percent by 1978 (due mostly to additional counties being declared nonattainment 

rather than firms moving activity to nonattainment counties), after which it slowly fell to around 

the 55 percent level by the end of the sample.  Panel B shows that ozone-emitting industries have 

the greatest share of their output produced in nonattainment counties, peaking at over 70 percent 

in 1978-79.  TSP and CO emitting industries have nonattainment county production shares on 

the order of 20-30 percent (both see steady declines in this share over the sample), while SO

  Hence the share of manufacturing plants and output that exists in counties that 

experience attainment status changes is much larger than the percentages in Table 2 suggest.   

2

 

 

emitters only produce around 10 percent of their output in nonattaining counties. 

                                                 
12 See the maps in Greenstone (2002) for information on the location of nonattainment counties by pollutant. 
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B. Census Manufacturing Micro Data 

 The other primary data source is the plant-level micro data on manufacturers from the 

U.S. Census Bureau.  This is comprised of the Annual Survey of Manufactures (ASM), the 

Longitudinal Business Database (LBD), and the Census of Manufactures (CM).  These data files 

contain detailed production data for manufacturing plants with a total of nearly 1.2 million plant 

observations over the course of the sample.  A plant—or “establishment” in Census Bureau 

terminology—is a physical location where economic activity takes place.  In the manufacturing 

sector, this can be thought of as a factory.  A firm can own one or many plants. 

The ASM contains production data that include plant revenues, several labor input 

measures, book values of equipment and structures capital stocks, investment in equipment and 

structures, and expenditures on inputs.  We use these data to calculate plants’ total factor 

productivity levels as described below.  The ASM data also include a unique permanent plant 

identifier that allows us to link plants across years and estimate models with plant fixed effects.  

Critically, we also observe the state and county in which a plant is located, allowing us to match 

plants to our county-level attainment status file. 

 The ASM, as its name indicates, is taken annually.  The ASM sample is comprised of 

rotating five-year survey panels that begin in years ending with “4” or “9” and end in years 

ending with “8” or “3” respectively.  The panels are selected to be representative of the 

manufacturing sector.  Large plants (those with over 250 employees) are sampled with certainty; 

sampling probabilities increase with size for plants below this threshold.  A typical ASM year 

contains about 60,000 plants.  The ASM microdata contain plants’ sample weights (the inverse 

of their sampling probabilities), allowing us to obtain values that are representative of the entire 

manufacturing sector.  ASM data are available from 1972 on, but information on capital stocks is 

only available until 1993.  Because we need capital inputs to construct total factor productivity 

measures, our ASM sample spans 1972-1993. 

The most important purpose of the ASM production data is to construct measures of 

plants’ total factor productivity (TFP) levels.  Our empirical specifications use TFP measures 

based on index number methods, where a plant’s TFP is its logged output minus a weighted sum 

of its logged labor, capital, materials, and energy inputs.  That is, 

𝑇𝐹𝑃𝑖𝑡 = 𝑦𝑖𝑡 − 𝛼𝑙𝑡𝑙𝑖𝑡 − 𝛼𝑘𝑡𝑘𝑖𝑡 − 𝛼𝑚𝑡𝑚𝑖𝑡 − 𝛼𝑒𝑡𝑒𝑖𝑡, 
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where the weights αj are the input elasticities of input j∈{l, k, m, e}.13

 A major advantage of the ASM for our purposes is its frequency.  That it is a survey 

rather than a census is a weakness.  The fact that it is designed as a representative sample, 

however, and that we have the sampling weights, assuages our concerns on this point.  Another 

potential weakness is that the ASM’s rotating panel structure could pose a problem for 

identifying which plants exit, as in panels’ final years it will not be clear whether a plant that 

disappears from the sample does so because it is rotated out of the sample or because it ceased 

operations.  Identifying exiters will be important below when we try to correct for the likely 

possibility that those plants which take the largest productivity hits from regulatory action are 

also more likely to exit.  Fortunately, we can supplement our ASM files with LBD data, which 

contains annual data on plants’ activity status, and therefore identifies the actual year of exit (if 

exit has in fact occurred). 

  (Thus our TFP measure is 

the natural logarithm of a plant’s ratio of output to inputs.)  Output is the plant’s inventory-

adjusted total value of shipments deflated to 1987 dollars.  Inputs are plant-specific, but we use 

industry-level input cost shares to measure the input elastiticies.  These cost shares are computed 

using reported industry-level labor, materials, and energy expenditures from the NBER 

Productivity Database (which is itself constructed from the ASM).  Capital expenditures are 

constructed as the reported plant’s capital stocks multiplied by their respective BLS capital rental 

rates in the corresponding two-digit industry.  Details on the construction of the TFP index are in 

the Appendix. 

The CM, which is a census of the roughly 350,000 manufacturing plants operating in the 

U.S. in a typical year, is only taken quinquennially, in years ending in “2” and “7”.  We will use 

CM data for one particular industry (ready-mixed concrete) in a specification below where we 

investigate the effects of nonattainment designation on plants’ prices.  Plant-level price data is 

typically not available in producer microdata of this sort, but the CM collects separate 

information on plants’ revenues and physical quantities for a limited number of industries.  This 

allows us to compute plant-level average unit prices as well as measure TFP in physical terms, as 

                                                 
13 For a brief discussion of TFP measurement and citations for further reference, see Syverson (2011).  We prefer 
index numbers in this application for the ease with which they allow for flexible technologies and their avoidance of 
the problem of inputs being endogenous functions of TFP.  Like any TFP measurement methodology, however, they 
require assumptions.  Besides cost minimization, index numbers also assume the plant faces no adjustment costs in 
inputs.  Fortunately, empirical results in the literature using micro-level TFP data have been typically quite robust to 
the specific method used to obtain the TFP measure. 
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opposed to the standard deflated-revenue-based real output measures which confound within-

industry price variation with output variation.  (We discuss these output measurement issues, and 

their implications for our estimates of regulation’s productivity effects, in greater detail below.) 

 

V. Empirical Specification 

We seek to estimate the effect of CAAA nonattainment status on polluting plants’ 

productive efficiencies as embodied in their TFP levels, as described in the conceptual 

framework.  Because a plant’s TFP reflects how much output it produces from a given amount of 

inputs, our estimates below measure the change in a plant’s output due to the nonattainment 

regulation given a fixed set of inputs.  We estimate the following specification: 

(1) 𝑇𝐹𝑃𝑖𝑡 = ∑ �𝛽𝑝𝐼�𝑛𝑜𝑐𝑎𝑎𝑎𝑐𝑝𝑡� + 𝛿𝑝𝐼�𝑝𝑜𝑙𝑙𝑖𝑛𝑑𝑖𝑝� + 𝛾𝑝𝐼�𝑛𝑜𝑐𝑎𝑎𝑎𝑐𝑝𝑡�𝐼�𝑝𝑜𝑙𝑙𝑖𝑛𝑑𝑖𝑝��𝑝  

   +𝑋𝑖𝑡Φ + η𝑖 + 𝜀𝑖𝑡, 

where i indexes a plant, t references a year, p indicates a pollutant, and c indexes a county.   

𝑇𝐹𝑃𝑖𝑡 is the natural logarithm of plant i’s total factor productivity in year t.  Importantly, 

this equation allows for permanent differences in plant productivity, which are captured with the 

vector η𝑖 that includes a separate fixed effect for each of the roughly 189,000 plants in the 

sample.  The vector Xit includes Census-geographic-division-by-year or Census-geographic-

division-by-ASM-panel fixed effects.  These fixed effects control for differential changes in 

average productivity levels across geography that are common to polluters and non-polluters.   

Two indicator functions are the core of the regression’s explanatory variables.  

I[pollindip] equals one if plant i is in an industry that is classified as a heavy emitter of pollutant p 

as detailed in Table 1.  In practice, we model industry effects more flexibly by also including 2-

digit-SIC-industry-by-ASM-panel (i.e., 5 years) fixed effects and 4-digit-SIC-by-year fixed 

effects in other specifications.14

                                                 
14 The extent of disaggregation in our industry-by-period and geography-by-period controls is subject to 
computational constraints.  There are 20 two-digit SIC manufacturing industries, five ASM periods, and nine Census 
geographic divisions.  Thus there are 145 (20⋅5 + 9⋅5) time-varying fixed effects in addition to the roughly 200,000 
plant fixed effects in our benchmark specification.  Specifications using fixed effects based on more disaggregated 
industry, time, or geographic categories proved computationally unworkable given our sample size of almost 1.2 
million plant-year observations.  However, we explore the robustness of our benchmark results to two-digit-
industry-by-year and division-by-year fixed effects (for a total of 20⋅22 + 9⋅22 = 638 fixed effects) below. 

  These fixed effects control for the considerable variation in TFP 
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levels and shocks across industries.15

The second core indicator is I[nocaaacpt], which equals one if the county c in which plant 

i is located is designated nonattainment for pollutant p in year t.  These indicators control for 

productivity differences common to polluters and non-polluters in nonattainment counties.  For 

example, counties in dense urban areas are more likely to be in nonattainment, while at the same 

time the plants in these counties might enjoy productivity benefits from agglomeration spillovers 

(Greenstone, Hornbeck and Moretti 2010). 

 

The parameters of interest are the 𝛾𝑝’s.  They capture the variation in TFP specific to 

plants that operate in a county designated nonattainment for a particular pollutant and are in 

industries that are heavy emitters of that same pollutant.  In specifications that include the plant 

fixed effects, η𝑖, the 𝛾𝑝’s are identified from polluting plants in counties that experience a change 

in the nonattainment designation for the pollutants they emit.   

The 𝛾�𝑝 estimates are obtained using two approaches.  In the first, we pool across the four 

pollutants (O3, TSPs, SO2, and CO) when defining I[nocaaacpt] and I[pollindip].  In this case, 

I[nocaaacpt] equals one if the county is in CAAA nonattainment for any one or more of the four 

pollutants, and I[pollindip] equals one if the plant is in a heavily-emitting industry in one or more 

of the pollutants in which the county is in nonattainment.  This specification captures the effect 

of nonattainment status on TFP and averages it across plants that face the nonattainment 

designation for just one or multiple pollutants.  The second approach controls separately and 

simultaneously for each of the four pollutants, allowing for the estimation of pollutant-specific 

effects while holding the impacts of others constant.  This specification allows for heterogeneity 

in the impact of the nonattainment designation across pollutants and is also informative about the 

impacts on plants in industries that are heavy emitters of multiple pollutants. 

A few other estimation details are noteworthy.  All versions of equation (1) are weighted 

by the plant’s ASM representative real output.  This is the product of the plant’s reported real 

output and the plant’s ASM weight (its inverse sampling probability in the ASM panel; see 

Section IV).  Consequently, the regressions measure average TFP effects on a dollar-weighted 

basis, which means that the results can be interpreted as aggregate average effects.  Additionally, 
                                                 
15 Even though our benchmark specification includes plant fixed effects, I[pollindip] is identified because some 
plants switch industry classifications during our sample.  These industry switchers are substantial in number; if we 
exclude them our sample drops by one-third.  We test our results for robustness to excluding industry changers 
below. 
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the tables report standard errors based on clustering at the county-by-year level to account for the 

likely dependence in TFP innovations across plants in the same county and year.  We also 

estimated standard errors where the clustering is done at the county level to allow for arbitrary 

time-series correlation in TFP shocks within a county and those are discussed briefly below. 

 

VI. Results 

A. Benchmark Specification 

Table 3 reports the values of 𝛾�𝑝 and the associated standard errors obtained from 

estimating several versions of equation (1).  While all specifications include the main effects—

I[nocaaacpt] and I[pollindip]—for parsimony we only report the coefficients of interest, 𝛾�𝑝, from 

their interaction. The set of controls increase in detail, and thus control for more data variation, 

moving from left to right in the table. 

Empirical results in columns 1 and 2 include a full set of four-digit-SIC-industry-by-year 

fixed effects.  These capture all common productivity movements within a four-digit industry 

from year to year.  The coefficient in column 1, which shows the estimate for the composite “any 

pollutant” variable, indicates that TFP is 2.4 percent lower for a polluting plant in a county that is 

nonattainment for that pollutant; that is after adjustment for annual shocks to TFP common to 

plants in the same 4-digit industry, polluting plants in the same industry in attainment counties 

have a 2.4 percent higher TFP than plants in nonattainment counties.  Alternatively, it can be 

described as polluting plants in nonattainment counties producing 2.4 percent less output from a 

fixed set of inputs.  The effect is precisely estimated, with a standard error of 0.3 percent. 

Empirical results in column 2 indicate that this average effect pooled across industries 

masks considerable differences in pollution-specific TFP effects of nonattainment.  Ozone 

emitting plants in ozone nonattainment counties experience productivity losses of 1.8 percent, 

relative to comparable plants in attainment counties.  TSP emitting plants in TSP nonattainment 

counties appear to, if anything, see marginally significant TFP growth of about 1.0 percent.  

Sulfur dioxide emitters see no substantial change in TFP when their county is in nonattainment 

for SO2, and CO emitters suffer significant productivity losses on the order of 2.1 percent.  In 

interpreting these results, it is important to bear in mind that these pollutant-specific TFP effects 

are all estimated holding the others constant.  Further, plants in industries that are emitters of 

multiple pollutants will experience average total productivity effects that are larger than any of 
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these individual pollution-specific components if their county is nonattainment for multiple 

pollutants.  Indeed, the fact that some plants face nonattainment determined regulations for 

multiple pollutants helps to explain why the estimate in column 1 is not a weighted average of 

the column 2 estimates.16

The specifications in columns 3 and 4 add controls for geographic variation in average 

productivity levels by including census-division-by-year fixed effects.  There is little change in 

the estimates from columns 1 and 2.  The composite nonattainment coefficient indicates a -2.3 

percent change in TFP, with a standard error of just 0.3 percent.  The pollution-specific estimates 

track those in column 2 closely. 

 

Columns 5 and 6 report the results from specifications that include plant fixed effects, so 

the nonattainment productivity effects are identified from within-plant TFP variations.  In other 

words, the identifying variation comes from polluting plants located in counties that move from 

nonattainment to attainment or attainment to nonattainment.  The specifications also include two-

digit-SIC-industry-by-ASM-panel and census-division-by-ASM-panel fixed effects to control for 

any differences in broad productivity changes across manufacturing industries or regions.  

The estimated composite effect in column 5 is a statistically significant 2.6 percent TFP 

drop (s.e. = 0.6 percent), which is qualitatively identical to the estimates from the previous 

specifications.  Among the pollutant-specific estimates in column 6, again O3 is the largest, at -

2.2 percent.  Interestingly, adding plant fixed effects makes the TSP estimate negative and 

significant but causes the CO estimate to become positive and significant.  Evidently, all else 

equal, plants with persistently high (low) productivity levels in TSP- (CO-) emitting industries 

are more likely to be in nonattainment counties.  Controlling for plant fixed effects removes this 

correlation and produces the observed change in the coefficients.  SO2 nonattainment 

corresponds to a TFP decline of 1.6 percent among SO2-emitting plants, though the p-value of 

this estimate is 0.11.17

Columns 7 and 8 are richer models that include 4-digit-SIC-by-year and census-division-

 

                                                 
16 In addition, the column (1) specification will capture some interactions due to the regulation of multiple pollutants 
that are not accounted for in the column (2) specification. 
17 We also estimated the column 5 and 6 specifications while clustering standard errors by county rather than 
county-year to account for arbitrary time series correlation in TFP shocks in the same county.  The estimated TFP 
effect in the pooled pollutant sample remains significant at the 5 percent level, as does the effect of ozone 
nonattainment in the pollution-specific specification.  The coefficients on the other pollutants that were marginally 
significant in the benchmark results become insignificant, however. 
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by-year fixed effects.  In general, the estimated coefficients are larger in magnitude than those 

from the coarser fixed effects structure in columns 5 and 6.  The composite pollutant interaction 

coefficient in column 7 is now -4.4 percent and is estimated precisely.  The O3 nonattainment 

designation is associated with a 5.7 percent decline in TFP for ozone emitters, and SO2 

nonattainment is tied to a 2.1 percent productivity drop.  TSP effects are negative but 

insignificant, and again CO nonattainment is correlated with productivity increases. 

A few conclusions emerge from these specifications.  First, a nonattainment designation 

for any pollutant reduces the TFP of plants that are heavy emitters of that pollutant by around 2 

to 4 percent, with the larger estimates coming from the more robust specifications.  Second, the 

largest declines in TFP are associated with O3 nonattainment, which incidentally is one of the 

most commonly emitted pollutants among our industries.  Third, the estimated effects for the 

other pollutants are more sensitive to specification.  In the more reliable specifications with plant 

fixed effects, the TSPs and SO2 nonattainment effects are typically in the range of 1 to 2 percent 

declines, while CO nonattainment, on the other hand, is associated with productivity increases.  

In this manner, there is some evidence consonant with the Porter (1991) effect. 

While the results are robust to the inclusion of the full array of controls in columns 7 and 

8 (and in fact imply larger magnitude effects than most of the other specifications), this 

specification was unfortunately unworkable as a practical matter.  Many regression runs with this 

specification failed due to insufficient hardware resources (despite the formidable capabilities of 

the Census Bureau servers) and successful runs were considered unfair uses of Census computer 

resources.18

 Before proceeding, it is useful to place the magnitude of the estimates from the 

benchmark specification in context.  The average yearly output of plants in any polluting 

  Consequently, the benchmark specification throughout the remainder of the paper 

will be the model estimated in columns 5 and 6 of Table 3, which balances computational 

feasibility with the ability to control for a broad set of potential confounders.  Additionally, this 

specification’s estimates of the productivity effects of CAAA nonattainment are toward the 

middle of those presented in Table 3, offering a somewhat conservative measure of total TFP 

impacts. 

                                                 
18 Furthermore, we were completely unsuccessful in running specifications with even finer fixed effect structures 
(e.g., state-by-year fixed effects). 
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industry in nonattainment counties from 1972-1993 was roughly $412.5 billion in 2010 dollars.19  

Taking the column (5) estimate at face value, the estimated average annual cost of CAAA 

nonattainment in lost output was therefore about $11.0 billion in 2010 dollars.20  Under the 

strong assumption that the affected manufacturers are price takers, the $11 billion is the annual 

reduction in manufacturing sector profits.  As a base of comparison, from 1972-1993, annual 

manufacturing sector pre-tax profits averaged $236 billion (in 2010$).21

 

 

B. Dynamic Effects 

The specifications above assume that the nonattainment designation’s productivity 

impact is contemporaneous.  Yet it seems possible that there could be longer-lasting cumulative 

effects of nonattainment on plant productivity (see, e.g., List et al., 2003).  For example, it is 

difficult for the EPA and local environmental regulators to compel compliance of all plants in 

high-pollution industries within the first year of nonattainment.  It may take a year or more for all 

plants to take the required costly abatement actions.  The permitting requirements for plant 

expansions can involve prolonged negotiations between engineers and consultants detailing 

required start-up capital.  The regulations affect plants’ production choices (e.g., their capital 

stocks), and the impacts of these choices on TFP may affect productivity even many years after a 

county has moved from nonattainment to attainment status.  Finally, as an empirical matter, 

nonattainment is autocorrelated; dirty counties often keep that designation for several years. 

 To explore the possibility of cumulative productivity effects, we estimate a version of our 

benchmark specification where we also include indicators of lagged nonattainment status.  The 

total estimated impact of being subject to the nonattainment related regulations for one year is 

                                                 
19 We obtain this and other values in the paper expressed in 2010 dollars by inflating measures in the data, which 
contain real 1987 values, using the Bureau of Labor Statistics’ annual producer price index for “Total Manufacturing 
Industries.”  The index equals 100.9 for 1987 and 175.4 for 2010, implying nominal price growth in the sector of 
73.8 percent over the period. 
20 This is computed as the difference between the counterfactual output of $423.5 billion (= $412.5B/(1 – 0.026)) 
and the observed output of $412.5B.  Similar calculations for the pollutant-specific results in column 6 of Table 3 
indicate a smaller annual lost output cost of just over $6.5 billion (again in 2010 dollars), though recall that this 
value will not adequately capture the total TFP change of plants emitting multiple pollutants in counties that are 
nonattainment for multiple pollutants. 
21 Manufacturing profits are taken from the “Corporate Profits Before Tax by Industry” tables of the National 
Income and Product Accounts.  These are deflated to 1993 values using the GDP price index, and adjusted to 2010 
values using the manufacturing sector PPI used elsewhere in this paper. 
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then the summed marginal effects across the contemporaneous and lagged impacts.22

Columns 1 and 2 in Table 4 are repeated from columns 5 and 6 of Table 3, and are 

included as a basis for comparison.  Columns 3 and 4 in Table 4 report the results from the same 

specifications fit on the smaller, two-lag sample.  Here, the estimated regulation effect from the 

any pollutant specification is -1.7 percent and would be judged to be statistically significant.  

This effect is modestly smaller than the effect estimated from the full sample, and it is apparent 

that this is related to the much smaller and insignificant effect of ozone nonattainment status on 

ozone emitters.  The estimated impact of SO2 nonattainment is somewhat larger than in the 

whole sample, while the TSP and CO nonattainment effects are qualitatively identical. 

  We 

estimate specifications including one and two years of lagged attainment status.  To keep a 

consistent sample across the specifications, we estimate each using plants that are in at least their 

third year of operation.  This sample contains roughly 800,000 plant-year observations. 

Columns 5 and 7 in Table 4 report the estimated cumulative marginal TFP effects for the 

pooled pollutant specification, which are the sums of the contemporaneous and lagged 

coefficients on the interactions of emitting-plant and nonattainment indicators.  The estimated 

effect from the specification that includes one lag yields an estimated TFP loss of 2.0 percent, 

while the specification accounting for two years of nonattainment lags indicates a total 

productivity drop of 3.1 percent.  The latter estimate suggests that the total TFP impact for a 

polluting plant in a county that is nonattainment for that pollutant is 80 percent larger than the 

contemporaneous effect in a consistent sample. 

 The pollutant-by-pollutant effects shown in columns 6 and 8 indicate that the cumulative 

impacts in the pooled pollutant specification reflect increasingly negative cumulative effects of 

ozone, TSP, and SO2 nonattainment.  Interestingly, the positive estimated TFP effect of CO 

nonattainment falls by more than half, and is insignificant in the column 8 specification. 

 Overall, we conclude that a year’s nonattainment designation affects a plant’s operations 

and productivity for at least three years.  This finding is consistent with the conceptual 

framework’s assumption that the nonattainment designation leads firms to install pollution 

abatement equipment that does not increase output. 

 

                                                 
22 These lags are included both as main effects and interacted with the polluting-industry indicators.  As with the 
contemporaneous effects, the interaction coefficients are our focus. 
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C. Robustness Checks 

 This subsection probes the robustness of the results to several variations in the details 

surrounding our measurement practices and our empirical specification. 

Excluding Industry Switchers. Our sampled universe includes a substantial number of 

plants that switch industries during the time period.  Some of these plants may switch out of (or 

into) high-emissions industries.  If these shifts are coincident with nonattainment designations in 

the plants’ counties, this could impact the estimated effects of nonattainment.  To test if the 

benchmark results are sensitive to this industry switching, we fit the benchmark specification on 

the sample of plants that remain in the same four-digit SIC industry during their entire time in 

the sample.  This shrinks the sample to approximately 807,000 observations and 135,000 unique 

plants.23

Empirical results from this smaller sample are in columns 1 and 2 of Table 5.  They 

qualitatively, and to some extent quantitatively, match those observed from the benchmark 

model.  The estimated TFP effect of nonattainment in the pooled pollutant specification is a 

statistically significant -1.6 percent, though smaller than the benchmark estimate.  Since ozone-

emitting industry plants account for a large share of all emitters, the smaller ozone effect helps to 

explain this smaller ‘any pollutant’ effect.  In contrast, the TSP and SO2 effects are significant 

and larger in magnitude at -2.7 and -2.2 percent, respectively.  Again, plants in industries that 

emit large amounts of CO experience a productivity gain. 

 

Heavy-Emissions Industry Definitions.  As we discussed above, a key source of 

identification for the CAAA’s productivity effects is in the comparison of dirty (high-emissions) 

and clean (low-emissions) plants in nonattainment counties.  This is based on the notion that 

environmental regulators will focus abatement efforts on the heaviest polluters first.  However, 

our threshold for dirty—that the plant’s industry group accounts for at least 10 percent of the 

                                                 
23 Excluding any four-digit SIC industry changers is quite conservative in that some of these switchers may change 
from one industry that is a heavy emitter of a particular pollutant to another industry that is similarly a heavy 
polluter of that pollutant.  For example, suppose due to a change in the products it made that a plant moved from the 
Brick and Structural Clay Tile industry (SIC 3251) to the Structural Clay Products, Not Elsewhere Classified 
industry (SIC 3259).  Because both of these four-digit industries are considered part of the heavy O3/TSP/SO2 
emitting Stone, Clay, Glass, and Concrete industry group (SIC 32), the indicator variables definitions for this plant 
would not change.  As such, neither would this or other similar cases lead to changes in the interaction coefficients.  
However, if as discussed above there are systematic differences in average TFP levels across four-digit industries 
within particular heavy-emitter industry groups, then plant fixed effects would not control for such changes for 
industry-shifting plants.  As such, restricting attention to plants that stay in the same narrow industry will avoid this 
problem. 
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industrial sector’s emissions of a pollutant—is arbitrary.  In this subsection we explore  the 

sensitivity of the results to this 10 percent emissions share cutoff. 

 We first estimate our benchmark specification where any industry group accounting for at 

least seven percent of industrial emissions of a pollutant is considered a heavy emitter.  This is 

the same cutoff used in Greenstone (2002).  We then obtain estimates using a more stringent 

cutoff, requiring the industry group to account for at least 12 percent of industrial emissions of 

that pollutant.24

 Columns 3 and 4 of Table 5 report the results using the seven percent cutoff.  The pooled-

pollutant estimated effect is -2.1 percent, slightly smaller but similar to the estimate using only 

industries that meet the 10 percent cutoff.  The ozone-specific estimate exhibits the same 

comparative pattern, being smaller than its 10 percent analog but still statistically significant at -

1.7 percent.  The estimated TSP and SO2 effects are smaller in magnitude, however, and would 

be judged statistically insignificant at conventional levels.  The CO estimate is exactly the same 

because there are no industry groups that account for between 7 and 10 percent of industrial 

sector emissions of carbon monoxide.  Overall, these small estimated TFP impacts suggest that 

the EPA targeted its regulatory efforts at the heaviest polluters.

   

25

 The results using the 12 percent cutoff group are in columns 5 and 6 of Table 5.  Here, 

the results are quite similar to those from the benchmark.  The composite effect in the any-

pollutant specification is -2.3 percent.  The pollutant-specific estimates for ozone, TSPs, and SO2 

are almost unchanged.  The only substantial change from the 10-percent-cutoff estimates, in fact, 

is for CO, where the formerly positive and significant effect on the order of 1.5 to 2 percent is 

now a small and insignificant 0.2 percent.  This finding reveals that the positive TFP effects 

associated with nonattainment in this pollutant are concentrated in petroleum refining industry 

(accounting for 11.8 percent of CO emissions), which is the only industry dropped from the set 

of dirty plants with the higher cutoff.

   

26

                                                 
24 Which formerly clean industry groups become dirty (in the seven percent cutoff specification) or dirty industry 
groups become clean (in the 12 percent specification) can be seen in Table A2 of Greenstone (2002), which lists all 
industry groups tracked by the EPA and their pollution-specific emissions shares. 

  Overall, the similarity of these and the benchmark 

25 The use of a 4.5 percent cutoff produces even smaller TFP estimates, suggesting that the marginal plants to 
experience significant productivity impacts from nonattainment designations are those in industry groups accounting 
for around seven percent of industrial emissions. 
26 It is noteworthy that petroleum refining is also a heavy emitter of ozone and SO2, so it is possible that the positive 
CO effect reflects interactions across the regulation of multiple pollutants. 



 23 

estimates suggests that the marginal plants to receive regulatory oversight are those in industries 

accounting for less than 10 percent of industrial sector emissions of particular pollutants. 

Industry-Specific Productivity Effects. The benchmark specification restricts the effect of 

nonattainment status to be constant across all industries that are heavy emitters of a particular 

pollutant.  Here, we test this restriction by estimating industry-specific analogs to our pooled 

pollutant and pollutant-specific models.  In the pooled pollutant analog, we interact indicators for 

the industry groups detailed in Table 1 with indicators for counties that are in nonattainment with 

any pollutant that the industry emits, while in the pollutant-specific analog, they are interacted 

with nonattainment indicators for specific pollutants. 

   The results from the pooled pollutant specification are in Table 6A.  There is notable 

dispersion in the estimated TFP effects across industry groups with the organic chemicals 

industry experiencing the largest productivity decline of roughly 17 percent.  When multiplied by 

this industry’s average annual output in nonattainment counties (the table reports these values in 

2010$ for each industry), their annual loss was roughly $9.2 billion.  Interestingly, ozone is the 

only pollutant for which they are regulated.  Further, the nonattainment designation is associated 

with TFP declines of 6.3 percent and 2.4 percent for nonferrous metals and rubber plants, 

respectively.  Between them, this corresponds to an average lost output of about $2.3 billion per 

year.  On the other hand, pulp and paper plants see TFP gains of 2.5 percent associated with 

nonattainment designations, though the relatively small size of the industry ($26.6 billion 

average revenue per year in 2010 dollars) imply that only about $0.6 billion of extra output was 

gained.  The estimates for other industries are modest in magnitude and statistically insignificant.  

Given this dispersion, it is not surprising that an F-test of the null hypothesis that the industry-

specific nonattainment effects are equal is easily rejected. 

 Table 6B contains the pollutant-specific results, with separate TFP effects estimated for 

all 15 industry-pollutant interactions.  The enormous estimated productivity loss due to 

nonattainment for organic chemicals producers remains, here seen in the ozone nonattainment 

interactions (as it must because ozone is the only pollutant for which the industry is a heavy 

polluter).  The point estimate is therefore equivalent to that in panel A.  Pulp and paper’s positive 

estimate in panel A is driven primarily by a positive effect of ozone nonattainment on TFP.   

Another industry-specific result of note is that the only significantly positive effect of CO 

nonattainment is seen in refining.  First, it counteracts significant productivity losses among 
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industry plants associated with SO2 nonattainment.  In combination, they give the more-or-less 

zero result for the industry in panel A.  Second, the CO coefficient is consistent with the earlier 

finding that the positive effect of CO went away when we used a higher threshold for dirty CO 

plants that excluded refiners.   

Table 6B also reports test statistics and associated p-values for F-tests of the hypothesis 

that the pollutant-specific productivity effects are equal across industry groups.  The clear 

rejection in the pooled pollutant specification mostly reflects heterogeneous ozone effects, as we 

cannot reject equality at the five percent level for TSPs, SO2, and CO.  

 

VII. Do the Estimated Regulation Impacts Understate the True Effect on TFP? 

 The estimates in the previous section likely to understate the true magnitude of 

productivity losses resulting from nonattainment designations for three main reasons.  First, the 

estimated TFP impacts are based on a comparison of TFP among high and low emissions plants.  

This allows us to use the “clean” plants to control for local shocks to economic activity that may 

confound the nonattainment designations.  However, some of the plants that we have categorized 

as low emitters were likely targeted by the CAAA’s regulations.  To the extent that this is the 

case, it will cause the estimated effects of regulation to be understated. 

Second, like almost all users of plant- or firm-level production data, we must use revenue 

to measure plant output in our TFP measures.  This is a result of limited data: plant- or firm-level 

price information is not available in the ASM, or almost any other similar data sets.  The use of 

revenue-based TFP measures means any price differences across plants in an industry will 

therefore be measured as output and productivity variation.  The problem in our context is that 

abatement actions that reduce TFP may raise marginal costs.  Standard theory predicts that when 

these plants have market power they will increase the price they charge for their product.  The 

consequence is that revenue-based TFP measures will conflate regulation’s negative impact on 

technical efficiency with the positive price change, resulting in an understatement of the true 

technical efficiency (and output quantity) loss. 

The third source of bias is due to endogenous selection of which plants survive a CAAA 

nonattainment designation.  All else equal, plants experiencing the largest negative productivity 

shocks from these environmental regulations are the most likely to cease operating and shut 

down.  Our sample of survivors experienced productivity drops that were likely to be smaller on 
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average than those across all plants.  And, the resulting estimates will not reflect the most 

negative productivity innovations experienced due to the application of the clean air regulations. 

 While there is little we can do to quantify the impact of our inability to measure any TFP 

effects that are common across both “clean” and “dirty” plants, the data do allow us to obtain 

some sense of the degree of understatement caused by the price measurement and survivor bias 

problems.  This section explores the extent of these possibilities. 

 

A. Regulation’s Impact on Prices 

 Plant-level price data is unavailable for most industries.  However, the Census of 

Manufactures does collect plant-level output data in both revenue and physical quantity terms for 

a few industries.  We can use these quantity data to directly measure plants’ physical TFP levels 

(the number of physical units of output they produce per unit input), which bypasses the price-as-

output measurement problem altogether.  Moreover, these same data allow us to compute plants’ 

average unit prices and see how they vary with nonattainment status. 

 While physical quantity data are available for several industries in the CM, we focus here 

on ready-mixed concrete (SIC 3273).  The industry has several features that lend itself to 

accurate measurement of quantity-based TFP.  Ready-mixed concrete is a physically 

homogeneous product, so the output quantities (measured in thousands of cubic yards) are 

comparable across plants.  One can imagine the conceptual difficulties of comparing quantity 

productivity in an industry with highly differentiated products—say in units of airplanes, where 

some plants make commercial jets and others make gliders for hobbyists.  Also, the industry’s 

combination of high transport costs and ubiquity mean there are many ready-mixed plants spread 

throughout the country.  This affords a greater amount of data variation with which to measure 

price effects.27

                                                 
27 There are roughly 5000 plants in any given year of the CM, 3000 of which we have physical quantity data for.  
Adding across the CMs spanning our sample, we have over 12,000 observations of quantity-based TFP and prices. 

  Finally, ready-mixed plants are highly specialized; on average, well over 90 

percent of their revenue comes from sales of ready-mixed concrete as opposed to other products 

like concrete block or pipe.  Specialization is important because the physical output data in the 

CM are collected at the product level (by seven-digit SIC classification), while inputs are only 

measured at the plant level.  Allocating a plant’s inputs to specific products, a necessary step 

when computing physical TFP, involves some measurement error that shrinks as the output in 
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question accounts for a larger share of plant revenues.28

 To gauge how nonattainment designations impact plant prices and technical efficiency 

levels, we estimate regressions similar to our benchmark specification using data only from 

ready-mixed concrete plants.  Rather than merely exploring plants’ (revenue-based) TFP, 

however, we also estimate specifications with plants’ quantity-based TFP levels and their 

(logged) unit prices as dependent variables.  Estimating a specification with revenue-based TFP 

offers a comparison to the benchmark results.  Also, because it equals the sum of the other two 

dependent variables by construction, we can use the three regressions to decompose the 

estimated regulation-induced revenue TFP change into the components driven by quantity TFP 

and prices.
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 There are a few other differences between these regressions and the benchmark 

specifications.  We now set I[nocaaacpt] equal to one if county c is declared in year t to be in 

nonattainment with standards for either Ozone, TSPs, or SO2—the three pollutants for which 

ready-mixed concrete’s industry group is a heavy emitter.  Thus we focus on nonattainment 

designations that should specifically affect ready-mixed plants.  Also, because only ready-mixed 

concrete plants are in the sample, the industry indicator I[pollindip] is not separately identified 

from the constant.  The specification measures nonattainment effects by comparing TFP levels 

and prices of ready-mixed plants in nonattaining counties to those in attaining counties.  The key 

difference with the benchmark specification is that we cannot control for shocks to TFP common 

to polluters and non-polluters in nonattainment counties.  However, we are still able to include 

division-by-ASM-panel and plant-level fixed effects in the specification.
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 The results presented in Table 7 are telling.  The revenue TFP impact of nonattainment in 

column (1) is economically small, at -0.6 percent, and statistically insignificant.  This result 

suggests that ready-mixed concrete plants do not appear to suffer (revenue) TFP declines from 

regulatory action. 

 

                                                 
28 Foster, Haltiwanger, and Syverson (2008) discuss these quantity-based TFP measurement issues in greater detail.  
Syverson (2008) offers a general discussion of the economics of the ready-mixed concrete industry. 
29 TFPrev = TFPq + ln(p) because ln(revenue) = ln(q) + ln(p) and the input terms in both TFP measures are the same.  
The revenue-based productivity measure used in our full sample also includes usually minor contributions from 
inventory accumulations and occasionally other typically small revenue sources such as contract work.  In this 
section, we only use revenue from the plants’ ready-mixed concrete sales to ensure that the identity holds. 
30 Here, because we only have data from the quinennial CMs, division-by-ASM-period fixed effects are equivalent 
to division-by-CM fixed effects.   
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The results in columns 2 and 3 provide an explanation.  Specifically, column 2 indicates 

that the nonattainment designation is associated with price increases: on average, a statistically 

significant 2.7 percent increase in price.  The effect on plants’ quantity-based TFP (cubic yards 

per unit input) is contained in column (3).  This equals, as it must by construction, the revenue-

based TFP effect minus the price effect.  While the estimated effect of -3.3 percent is 

insignificant (it has a p-value of 0.111), it implies as a point estimate a considerably larger effect 

of nonattainment on productivity than does the revenue-based TFP estimate. 

 These results make clear that the nonattainment designation is associated with declines in 

efficiency—or equivalently, ready-mixed concrete plants suffer output losses given their input 

choices.  However, this decline is masked in revenue-based productivity measures, because the 

plants are able to raise prices in response to higher regulatory costs.  So at least in the case of 

ready-mixed concrete plants, revenue-based TFP measures are positively biased estimates of 

nonattainment’s true impact on plants’ technical efficiencies and output.  This result is consistent 

with standard economic theory about firm's pricing behavior when they have market power. 

 This case study offers a vivid exhibit of the sort of understatement of true productivity 

effects that might plague the revenue-based TFP estimates for the entire manufacturing sector.  If 

a similar-sized effect (i.e., an additional productivity drop of around 2.7 percent) operates in the 

larger sample, the true effects of nonattainment designation—which the benchmark specification 

estimated at -2.6 percent in revenue-based measures—could be about twice as large.  Since this 

evidence comes from just a single industry, we are reluctant to speculate about the magnitude 

and instead conclude that this case study provides evidence of a strong directional bias. 

 By augmenting these estimates with another data source, we are able to make broader-

scoped estimates of the price measurement problem.  The NBER-CES Manufacturing Industry 

Database contains annual price indices and industry-level TFP measures (logged total industry 

output minus a weighted sum of logged total industry inputs) for a panel of 459 four-digit SIC 

manufacturing industries from 1958 to 2005.31

                                                 
31 The data available on the NBER website span 1958 to 1997; a recent “beta” version of an extension extended this 
to 2005.  We use the four-factor TFP measures in the NBER database to be consistent with the definition of our 
plant-level TFP indexes, though similar results were found using the five-factor TFP measures (which treat 
equipment capital and structures capital as separate inputs). 

  We use these data to compare price growth to 

productivity growth at the industry level to provide  a first understanding of what fraction of 

productivity improvements (declines) are passed on as lower (higher) prices. 
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 We regressed industry price growth on industry TFP growth, and included industry fixed 

effects to compare price and TFP growth within industries.  (The results were very similar when 

including cross-industry variation as well.)  The coefficient on the change in industry TFP is -

0.349 (s.e. = 0.014).  That is, for every one-percent increase (decrease) in average TFP in an 

industry, average industry price falls (rises) by roughly 0.35 percent.32

 If we extend the findings from this regression to our results, it implies that for each one-

percent increase in costs driven by productivity losses, firms raise prices by 0.35 percent.  For 

our average estimated effect of nonattainment on revenue-based TFP of roughly 2.6 percent, the 

implied impact on true technical efficiency is then actually 2.6/(0.65) = 4.0 percent.

   

33

  

  These 

estimates suggest that the lost output due to nonattainment designation could therefore be in the 

neighborhood of $17.2 billion annually (in 2010 dollars). 

B. Regulation’s Impact on Survivorship 

It is important to note that the estimated TFP effects are conditional on survival.  But 

plants experiencing the largest negative productivity shocks from nonattainment are the most 

likely to cease operations and exit the industry.  This will lead such plants to disappear from our 

sample.34

We first test whether nonattainment status predicts exit for polluting plants.  Table 8 

shows the results from regressing an indicator for plant exit on the same set of explanatory 

variables included in our benchmark specification.

  This implies that the paper’s estimates will understate the true TFP impact of 

nonattainment.  This subsection attempts to shed some light on the magnitude of the 

understatement due to this survivorship problem. 

35

                                                 
32 Industry-level TFP measures are not subject to the price measurement problem because industry-level deflators 
are available, so industry TFP changes should reflect quantity changes. 

  Again, we report only the estimates of the 

interaction of pollution attainment and polluting industry indicators.   The pooled-pollutant 

33 Recall TFPrev = TFPq + ln(p), so ΔTFPrev = ΔTFPq + Δln(p).  If, as we estimate, Δln(p) = -0.35*ΔTFPq, then 
ΔTFPrev = ΔTFPq – 0.35*ΔTFPq, or equivalently ΔTFPq = ΔTFPrev/0.65. 
34 A negative correlation between productivity and exit probability is virtually ubiquitous in the empirical literature 
on the subject.  It has been found in studies using samples from wide ranges of industries, time periods, and 
countries.  See Bartelsman and Doms (2000) and Syverson (2011) for reviews of the empirical literature on plant-
level productivity. 
35 The sample includes all plant-year observations in our benchmark sample for years 1977 and after, as 1977 is the 
first year for which exit indicators can be constructed from the Longitudinal Business Database.  This leaves a 
sample of approximately 896,000 plant-year observations. 
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specification in column 1 indicates that plants in heavy-emitting industries are more likely to exit 

when their county is declared in nonattainment for one of the pollutants they emit.  The 

increment in exit rates is 0.4 percent.  Given the mean annual exit rate in the sample of about 3.7, 

this is about a 10 percent increase in exit likelihood.  The pollution-specific estimates indicate a 

marginally significant 0.4 percent increase in exit associated with ozone nonattainment, and a 

significant decrease in exit probability associate with CO nonattainment (which is consistent 

with the positive TFP effects we have estimated from CO nonattainment).   The TSP and SO2 

estimates are more muddled, however, with insignificant coefficients of mixed sign. 

 A standard approach to address this sort of selection issue is to include a Heckman (1979) 

style correction term (estimated in a first-stage survival regression) in the second-stage 

regressions estimating the TFP effects of interest.  However, our specifications include plant-

level fixed effects, and the average panel length in our sample is rather short (6.2 years), raising a 

potentially severe incidental parameters problem in the first-stage survival equation (Heckman 

1981).  Additionally, we face many practical boundaries in estimating a nonlinear survival 

specification with over one million observations and 200,000 plant fixed effects. 

We therefore take an alternate approach based on logic similar to that of the traditional 

approaches but that is feasible to implement.  Namely, we use observed plant exit rates and the 

distribution of TFP innovations among surviving plants to infer the unobservable in which we 

are interested: the distribution of TFP innovations among exiting plants (and by implication, the 

average TFP innovation among all plants, survivors and exiters).  The difference between the 

conditional (on plant survival) and unconditional average TFP innovations is the correction we 

need to apply to our selection-biased estimates to obtain the true TFP impact of nonattainment. 

Our methodology is based on the notion that the distribution of TFP innovations among 

surviving plants is a truncation of the unconditional distribution.  The truncation point is the 

critical TFP innovation such that plants suffering more negative TFP innovations (i.e., larger 

TFP drops) exit, as their present value from operating falls below their scrap value.  While the 

shape of the TFP innovation distribution below the threshold is unknown, we do know the exit 

rate.  If we assume that exiters had inferior TFP innovations compared to survivors, we can infer 

enough about the shape of the unconditional distribution to measure the difference between the 

averages of the survivorship-biased TFP innovation distribution and the unconditional 

distribution. 
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Note, though, that this threshold TFP innovation is conditional on the plant’s TFP level.  

Profitability depends on a business’s productivity level, not its innovation.36

While the same estimation issues discussed above prevent us from adjusting for 

computing this threshold TFP innovation plant-by-plant, we can make a discrete approximation.  

If we cut the plant TFP level distribution into contiguous sections of sufficiently small size, all 

plants in each section have roughly the same cutoff productivity innovation value.  We can then 

compute the selection correction section-by-section, and average over these to find the correction 

for the entire sample. 

  Indeed, there is an 

inverse relationship between a plant’s TFP level and the TFP decline necessary to cause exit.  

Simply put, higher-TFP plants have further to fall before they become unprofitable.   

We compute the selection correction within each section as follows.  We assume that the 

TFP innovation distribution that we observe among surviving plants within each section is a 

truncation of an unconditional innovation distribution that also includes the (unobserved) TFP 

innovations of plants that exited.  As long as all exiters have TFP innovations below (i.e., more 

negative than) the median of the unconditional distribution, we can easily back out this median 

using the exit rate and the observable median of the truncated distribution.37

While this method involves a compromise in that we approximate a correction in means 

using medians instead, it requires only very weak assumptions about the unconditional 

distribution of TFP innovations.  Estimating the difference in means directly would involve 

assuming both that the unconditional distribution has a particular shape and that all plants that 

exited had more negative TFP innovations than the lowest innovation observed among survivors.  

  Specifically, for an 

exit rate (the fraction of plants that exit) equal to x, the median of the unconditional distribution 

is simply the (50 – x)th quantile of the truncated distribution.  For example, if 6 percent of plants 

in the segment exit, the difference between the 50th and 44th percentiles of TFP innovations 

among surviving plants in the segment equals the difference in the medians of the truncated and 

unconditional distributions.  This difference approximates the difference in means between the 

truncated and unconditional distributions, and we use it as the selection correction for TFP 

changes in the segment. 

                                                 
36 See Jovanovic (1982), Hopenhayn (1992), Melitz (2003), and Asplund and Nocke (2006) for models that predict a 
negative relationship between productivity and survival and a threshold productivity level that determines exit. 
37 This condition can hold as long as fewer than 25 percent of plants exit, which easily holds true in our data. 
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The second of these assumptions, in particular, is very strong, given the myriad factors other than 

TFP that potentially affect exit.  Hence it is likely to lead to an overstatement of the true 

difference in the means of the truncated and unconditional TFP innovation distributions.  Using 

the median-based correction lets us avoid these assumptions.38

Table 9 reports the results.  Panel A begins by displaying the average exit rates for 

deciles of the within-industry TFP distributions.  As expected, the lowest-productivity plants are 

most likely to exit, and average exit rates tend to decline as TFP levels rise.  On average, 9.2 

percent of the plants in the lowest decile of their industry’s TFP distribution exit in a given year, 

almost three times the rate among the other deciles.  The inverse relationship between TFP levels 

generally holds across the higher deciles, though not monotonically and exit rates are 

considerably lower than among the least productive plants. 

  The appendix describes the 

algorithm to calculate these corrections. 

Panel B of Table 9 shows average exit rates and the calculated selection corrections for 

heavy emitters of each pollutant.  The implied selection corrections are notably consistent across 

pollutants, ranging from -0.7 to -0.8 percent.  These values imply that survivorship bias causes 

our composite pollutant benchmark estimate to understate nonattainment designations’ effect on 

(revenue-based) TFP by over 20 percent (i.e., the estimated conditional change is -2.6 percent, 

but the unconditional change is around -3.3 percent).  The understatements in percentage terms 

are even larger for the TSP- and SO2-specific estimates, and the selection-corrected (positive) 

CO effect would drop by about 40 percent. 

Overall, this exercise suggests that survivorship bias is relevant in this setting.  In 

particular, it indicates that the paper’s estimated regulation effects are likely to be 

underestimated.  In total, the application of corrections for the confounding of price changes and 

sample selection on survival produce a 4.8 percent estimated decline in TFP for polluting plants 

in regulated areas.  This corresponds to an annual economic cost from the regulation of 

manufacturing plants of roughly $21 billion. 

 

                                                 
38 That said, we have computed mean-based corrections based on the assumptions that the observed TFP innovations 
among survivors in the truncated distribution are from a normal unconditional distribution and that this all exiters 
have TFP innovations in the truncated portion of the distribution.  We found selection correction factors that were 
about 3 times as large as those found using the median approach above.  Therefore we use the median based 
corrections both because they require fewer assumptions and because they offer a more conservative estimate of 
what are otherwise unobservable TFP effects. 
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VIII. Discussion and Conclusions 

This paper has produced the first large-scale estimates of the economic costs of 

environmental regulations and finds that they are not insubstantial.   Among surviving polluting 

plants, the nonattainment designation is associated with a roughly 2.6 percent decline in total 

factor productivity.  The regulations governing ozone have particularly large negative effects on 

productivity, though negative effects are also evident among emitters of particulates and sulfur 

dioxide.  Carbon monoxide nonattainment, on the other hand, appears to increase measured TFP, 

especially among refineries.  Dynamics matter somewhat; indeed, the impacts of a year’s 

nonattainment designation on a plant’s TFP are detectable two years later.  These results are 

robust to a number of alternative samples and specifications.  Overall, the productivity losses 

among surviving plants in nonattainment counties correspond to annual lost output on the order 

of $11.0 billion in 2010 dollars.   

These estimates, however, are likely underestimates for the three reasons discussed 

earlier.  If we apply our estimated corrections for two of the sources of understatement—price 

mismeasurement and survivorship bias—the implied losses are considerably larger.  We 

calculate that survivorship bias results in an understatement of the revenue-based TFP loss of 

about 0.7 percent, so the total average effect is a roughly 3.3 percent drop.  Further, our inability 

to account for cost-driven price increases imply that the impact on plants’ quantity produced is 

on the order of 54 percent higher than the revenue-based TFP impact (1/0.65 = 1.538).  Applying 

this additional correction implies a total TFP loss for dirty manufacturing plants in nonattainment 

counties of 4.8 percent.   

Are these TFP losses big?  They correspond to annual lost output in the manufacturing 

sector of about $20.8 billion in 2010 dollars.  This is roughly 8.8 percent of average 

manufacturing sector profits over this period.  It is noteworthy that the estimated costs are 

substantially larger than the costs borne by workers in polluting industries (Walker 2012).39

                                                 
39 Walker (2012) finds that the workers employed in regulated plants in counties that were newly designated 
nonattainment due to changes in the Clean Air Act from its 1990 Amendments lost approximately $9 billion in total 
over the next 8 year due to foregone earnings from periods of unemployment and employment at reduced wages.   

  At 

least in the case of the Clean Air Act and the manufacturing sector, it seems reasonable to 

conclude that the claim that environmental regulations are costless or even beneficial for the 
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regulated is contradicted by the available data.40

More broadly, the paper demonstrates that the recent advances in the ability to estimate 

TFP in micro data sets makes it feasible to estimate transparently the economic costs of 

regulation that are borne by businesses.  In principle, this approach can be applied to determine 

the costs of regulations that govern firm behavior in a wide range of contexts.  We envision 

similar exercises being fruitful in areas that regulate worker and labor conditions, health and 

safety legislation, and more broadly any public policy that alters the composition of inputs on the 

expansion path. 

 

   

                                                 
40 It is tempting to use these results to conduct a cost-benefit analysis of the CAAAs, however there are several 
missing pieces that prevent a complete accounting.  For example, the costs of the CAAAs in other industries, 
notably the electricity sector (noting that the incidence may be on households and businesses), remain largely 
unknown.  On the other side of the ledger, the CAAAs has led to tremendous improvements in air quality: this has 
reduced rates of mortality and morbidity, made many cities in the United States more appealing places to live, and 
reduced purchases of drugs that protect people from the harms of air pollution (e.g., Chay and Greenstone 2003 and 
2005; Sieg et al. 2004; Currie and Neidell 2005; Tra 2010; and Deschenes, Greenstone, and Shapiro 2012).  These 
efforts have shed light on the CAAAs’ benefits, but more research is necessary for a full accounting. 



 

Appendix 
 
 
A. Construction of Total Factor Productivity Index 
 
We describe here details on the construction of our production variables. 
 
Output.  Plant output is its inventory-adjusted total value of shipments, deflated to 1987 dollars using industry-
specific price indexes from the NBER Productivity Database. 
 
Labor Hours.  Production worker hours are reported directly in the Annual Survey of Manufactures (ASM) and 
Census of Manufactures (CM) microdata.  To get total plant hours, we multiply this value by the plant’s ratio of 
total salaries and wages to production worker wages.  This, in essence, imputes the hours of non-production workers 
by assuming that average non-production worker hours equal average production worker hours within plants. 
 
Real Materials and Energy Use.  Materials and energy inputs are plants’ expenditures on each, as reported in the 
ASM or CM, divided by their respective industry-level deflators from the National Bureau of Economic Research 
Productivity Database. 
 
Capital.  We construct capital stocks using the perpetual inventory method.  Initial-year capital stocks are 
constructed by deflating plants’ reported book values of capital by the book-to-real value ratio for the corresponding 
three-digit industry (the industry-level equipment and structures ratios are from published Bureau of Economic 
Analysis data).  Thereafter, plants’ reported investments (deflated by industry-specific investment goods price 
indices) are added to the capital stock, and depreciation (using industry-specific rates from the BEA) is subtracted.  
This process is repeated for every year the plant is in existence to get a capital stock series.  For the 1988-1993 ASM 
panel, initial capital stocks could not be constructed for new plants because Census stopped collecting book values 
in the ASM.  We instead use reported stocks from the 1992 CM, which did collect plants’ book values of capital 
stocks, and work backwards using reported investments and imputed depreciation as described above.  For our 
sample of ready-mixed concrete plants from the CM, we simply use the deflated values of plants’ reported book 
values of capital.  Capital is unavailable after 1993. 
 
Total Factor Productivity.  Plant TFP is its logged output minus a weighted sum of its logged labor, capital, 
materials, and energy inputs.  That is, 

𝑇𝐹𝑃𝑖𝑡 = 𝑦𝑖𝑡 − 𝛼𝑙𝑡𝑙𝑖𝑡 − 𝛼𝑘𝑡𝑘𝑖𝑡 − 𝛼𝑚𝑡𝑚𝑖𝑡 − 𝛼𝑒𝑡𝑒𝑖𝑡 
where the weights αj are the input elasticities of input j∈{l, k, m, e}.  Output is the plant’s inventory-adjusted total 
value of shipments deflated to 1987 dollars.  Inputs are plant-specific but the input elastiticies are measured using 
industry-level input cost shares.  These cost shares are computed using reported industry-level labor, materials, and 
energy expenditures from the NBER Productivity Database.  Capital expenditures are the reported plant’s capital 
stocks multiplied by their respective BLS capital rental rates in the corresponding two-digit industry.41

 
 

 
 
  

                                                 
41 Capital rental rates are from unpublished data constructed by the Bureau of Labor Statistics for use in computing 
their Multifactor Productivity series.  Formulas, related methodology, and data sources are described in U.S. Bureau 
of Labor Statistics (1983) and Harper, Berndt, and Wood (1989). 



 

B. Estimating the Selection Corrections 
 

We compute our estimated selection corrections described in Section VII.B using the following algorithm. 
 

1. Estimate the TFP innovations for all plants in our sample that survive to the next year by regressing leads of 
these plants’ TFP levels on our array of fixed effects from the benchmark specification.  Because this array 
includes plant fixed effects, the predicted values from this regression are the surviving plants’ TFP innovations. 

 
2. Divide all plants in a given four-digit-industry-year cell, both those that will survive to the next year and those 

that will cease operating, into deciles by their TFP level.  Doing this separately by industry-year controls for the 
many variations in the other forces that drive exit rates across industries and time.  These deciles are the 
sections described above that ensure all plants within them have roughly the same threshold productivity 
innovation for exit. 

 
3. Compute the exit rate for the decile, which is simply the fraction of plants that exit by the following year. 

 
4. Using the estimated TFP innovations for survivors, the categorization of survivors into deciles, and the 

corresponding decile-specific exit rates, compute the implied differences in means and medians of the 
conditional and unconditional TFP innovation distributions as described in the main text.  Compute these 
differences for every decile. 

 
5. Compute the real-revenue-weighted average of these decile-industry-year specific TFP corrections to obtain the 

implied unconditional TFP innovation for the entire sample. 
 

6. Do this entire process separately for plants subject to nonattainment ratings for each pollutant, so the 
adjustments are pollution-specific, just as the TFP effect estimates are. 
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Figure 1. Share of Polluting Industries’ Output Produced in Counties Nonattaining in Pollutant 
 
A. Any Pollutant 
 

 
 
 
B. By Pollutant 
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Table 1. Polluting Industry Groups and Their Pollutants 
 
 

Industry (applicable SIC codes) Pollutant 
Pulp and paper (2611–31) CO/O3/SO2/TSPs 
Organic chemicals (2861–69) O3 
Petroleum refining (2911) CO/O3/SO2 
Rubber and miscellaneous plastic products (30) O3 
Stone, clay, glass, and concrete (32) O3/SO2/TSPs 
Iron and steel (3312–25, 3321–2) CO 
Nonferrous metals (333–34) CO/SO2 
 
Notes: This table, based on information in Greenstone (2002), shows industries that are classified as heavy emitters 
of one or more of the four primary pollutants the CAAA covers, and which pollutant(s) they emit.  We consider all 
plants in these industries to be heavy emitters and subject to CAAA abatement mandates if their county is declared 
in nonattainment. 
 
 



 

Table 2. Annual Changes in Attainment Status 
 
 
A. Any Pollutant 

  Current Nonattainment 
  No Yes 

Lagged Nonattainment No 52,390 1,461 
Yes 1,181 10,929 

 
 
B. O

 
3 

 Current Nonattainment 
  No Yes 

Lagged Nonattainment No 55,962 1,124 
Yes 640 8,235 

 
 
C. TSPs 

  Current Nonattainment 
  No Yes 

Lagged Nonattainment No 61,217 715 
Yes 878 3,151 

 
 
D. SO

 
2 

 Current Nonattainment 
  No Yes 

Lagged Nonattainment No 64,663 172 
Yes 157 969 

 
 
E. CO 

CO  Current Nonattainment 
  No Yes 

Lagged Nonattainment No 63,034 290 
Yes 243 2,394 

 
Notes: This table shows the distribution from 1972-1993 of counties’ lagged and current nonattainment status.  The 
reported numbers are the category-specific count of from a total number of 65,961 county-years. 



 

Table 3: TFP Effects of Nonattainment, Core Specifications 
Pollutant [1] [2] [3] [4] [5] [6] [7] [8] 
Any -0.024** 

(0.003) 
 -0.023** 

(0.003) 
 -0.026** 

(0.006) 
 -0.044** 

(0.007) 
 

O  3 -0.018** 
(0.004) 

 -0.018** 
(0.004) 

 -0.022** 
(0.007) 

 -0.057** 
(0.008) 

TSPs  0.010** 
(0.004) 

 0.009** 
(0.004) 

 -0.013* 
(0.007) 

 -0.011 
(0.008) 

SO  2 0.000 
(0.006) 

 -0.002 
(0.006) 

 -0.016 
(0.010) 

 -0.021* 
(0.011) 

CO  -0.021** 
(0.005) 

 -0.024** 
(0.005) 

 0.017* 
(0.009) 

 0.022** 
(0.010) 

         
4-Digit SIC x Year Yes Yes Yes Yes No No Yes Yes 
Census Div x Year No No Yes Yes No No Yes Yes 
2-Digit SIC x Period No No No No Yes Yes No No 
Census Div x Period No No No No Yes Yes No No 
Plant No No No No Yes Yes Yes Yes 
         
R 0.766 2 0.766 0.801 0.801 0.887 0.887 0.887 0.887 
Notes: This table reports the results from the estimation of alternative versions of equation (1), which involves the regression of plants’ TFP levels on 
nonattainment indicators, polluting industry indicators, and their interaction, along with alternative sets of fixed effects that are noted in the row headings at the 
bottom of the table.  In the row headings “period” refers to 5-year ASM panel periods and SIC refers to industry following the standard industrial classification 
system..  The entries in the table are the coefficients and standard errors (in parentheses) of the estimates of the interaction of pollutant nonattainment attainment 
and polluting industry indicators.  Observations are weighted by the product of real output and the ASM weight so that the estimates are representative of effects 
on aggregate manufacturing activity.  Standard errors are clustered by county-year.  An asterisk denotes significance at the ten percent level; two asterisks denote 
significance at the five percent level.  N ≈ 1,185,000 (approximate sample sizes are used to eliminate confidential data disclosure issues across samples).   See the 
text for further details. 
 



 

Table 4: TFP Effects of Nonattainment—Dynamic Specifications 
Number of Lags Zero Zero Zero Zero One One Two Two 
Pollutant [1] [2] [3] [4] [5] [6] [7] [8] 

Any -0.026** 
(0.006) 

 -0.017** 
(0.007) 

 -0.020** 
(0.008) 

 -0.031** 
(0.009) 

 

O  3 -0.022** 
(0.007) 

 -0.003 
(0.008) 

 -0.008 
(0.009) 

 -0.013 
(0.009) 

TSPs  -0.013* 
(0.007) 

 -0.013 
(0.009) 

 -0.019* 
(0.010) 

 -0.019* 
(0.011) 

SO  2 -0.016 
(0.010) 

 -0.021* 
(0.012) 

 -0.024* 
(0.013) 

 -0.029* 
(0.015) 

CO  0.017* 
(0.009) 

 0.018* 
(0.011) 

 0.020 
(0.013) 

 0.009 
(0.014) 

         
Approx. N 1,185,000 1,185,000 800,000 800,000 800,000 800,000 800,000 800,000 
R 0.887 2 0.887 0.898 0.898 0.898 0.898 0.898 0.898 
Notes: This table shows the results of estimating specifications similar to our benchmark, except as noted in the column headers some specification include 
various lags of the pollutant nonattainment indicators and their interaction with polluting industry indicators.  The full sample is used in columns [1]and [2] and 
the remaining columns use the sample of plant observations that result from imposing the restriction that plants must be operating for at least three years which is 
necessary for the two lag specifications.  The entries in the table are the sum of the current and lagged interaction coefficients and their standard errors in 
parentheses.  Results for specifications including zero, one, and two lags are reported (see column headers).  Observations weighted by the product of real output 
and ASM weight.  Standard errors are clustered by county-year. An asterisk denotes significance at the ten percent level; two asterisks denote significance at the 
five percent level.  See the Notes to Table 3 and the text for further details. 
 
 



 

Table 5: TFP Effects of Nonattainment—Robustness Checks 
 Excluding industry switchers 7 percent cutoff for “heavy” polluters 

Pollutant 
12 percent cutoff for “heavy” polluters 

[1] [2] [3] [4] [5] [6] 

Any -0.016** 
(0.007) 

 -0.021** 
(0.004) 

 -0.023** 
(0.007) 

 

O  3 -0.011 
(0.009) 

 -0.017** 
(0.006) 

 -0.021** 
(0.008) 

TSPs  -0.027** 
(0.008) 

 0.000 
(0.007) 

 0.013* 
(0.007) 

SO  2 -0.022** 
(0.011) 

 -0.007 
(0.009) 

 -0.016 
(0.010) 

CO  0.023** 
(0.010) 

 0.018* 
(0.009) 

 0.002 
(0.012) 

       
Approx. N 807,000 807,000 1,185,000 1,185,000 1,185,000 1,185,000 

R 0.910 2 0.910 0.887 0.888 0.887 0.887 
Notes: This table shows the results of estimating specifications similar to our benchmark, except with changes in sample or variable definitions.  Columns 1 and 
2 exclude from the sample any plants that change four-digit-SIC industries during the sample.  Columns 3 and 4 define heavy polluting plants as those in industry 
groups that account for at least seven percent of industrial emissions of one of our four pollutants, rather than the ten percent cutoff in our benchmark sample.  
Columns 5 and 6 use a more stringent 12 percent cutoff to define heavy polluters.  Observations weighted by the product of real output and ASM weight.  
Standard errors are clustered by county-year.  An asterisk denotes significance at the ten percent level; two asterisks denote significance at the five percent level.  
See the text and notes to Table 3 for further details. 
 
 



 

Table 6: TFP Effects of Nonattainment, by Industry 
 
A. Effect of Nonattainment in for Any Pollutant 

Pollutant-Industry 
Estimated 

Effect 

Average annual 
output, 1972-93 

(billions of 2010$) 

F-test for H0

Pulp and paper 

 that 
nonattainment effects are 

equal across industries 
0.025** 
(0.009) $26.6 

F-statistic: 15.9 
p-value: 0.000 

Organic chemicals -0.168** 
(0.019) 54.6 

Petroleum refining -0.005 
(0.013) 152.3 

Rubber -0.024** 
(0.008) 59.6 

Stone, clay, glass -0.011 
(0.007) 56.3 

Iron and steel 0.005 
(0.014) 51.6 

Nonferrous metals -0.063** 
(0.026) 11.4 

    
N 1,185,000   
R 0.888 2   

Notes: This table shows the results of estimating a specification similar to the benchmark, except breaking out 
pollution-specific nonattainment effects by specific industry group rather than pooling all heavy emitters together.  
Observations are weighted by the product of real output and ASM weight.  Standard errors are clustered by county-
year. An asterisk denotes significance at the ten percent level; two asterisks denote significance at the five percent 
level.  The table also reports the results of an F-test for equality of effects across all industry groups that emit a 
particular pollutant.  See the text and Table 3 for further details. 
 
  



 

Table 6 (cont.): TFP Effects of Nonattainment, by Industry 
 
B. Effect of Nonattainment, Pollutant-by-Pollutant  

Pollutant-Industry Estimated Effect  
F-test for H0

Pulp and paper/O

 that pollutant nonattainment 
effects are equal across industries 

0.052** 3 
0.010)  

O3 
O

F-statistic: 30.6 
3 

Organic chemicals/O

p-value: 0.000 

-0.168** 3 
(0.019)  

Petroleum refining/O 0.006 3 
(0.013)  

Rubber/O -0.024** 3 
(0.008)  

Stone, clay, glass/O 0.013* 3 
(0.007)  

Pulp and paper/TSPs -0.024* 
(0.012)  TSP F-statistic: 0.310 

TSP p-value: 0.579 Stone, clay, glass/TSPs -0.016** 
(0.008)  

Pulp and paper/SO 0.026 2 
(0.020)  

SO2
SO

 F-statistic: 2.09 
2

Petroleum refining/SO

 p-value: 0.099 

-0.027* 2 
(0.014)  

Stone, clay, glass/SO -0.006 2 
(0.013)  

Nonferrous metals/SO -0.039 2 
(0.029)  

Pulp and paper/CO 0.012 
(0.016)  

CO F-statistic: 2.25 
CO p-value: 0.080 

Petroleum refining/CO 0.028** 
(0.014)  

Iron and steel/CO 0.005 
(0.014)  

Nonferrous metals/CO -0.058* 
(0.031)  

    
N 1,185,000   
R 0.888 2   

Notes: This table reports the results from the estimation of a specification similar to the benchmark one, except 
breaking out pollution-specific nonattainment effects by specific industry group rather than pooling all heavy 
emitters of a particular pollutant together.  Observations are weighted by the product of real output and ASM 
weight.  Standard errors are clustered by county-year. An asterisk denotes significance at the ten percent level; two 
asterisks denote significance at the five percent level.  The table also reports the results of an F-test for equality of 
effects across all industry groups that emit a particular pollutant.    See the text and Table 3 for further details.  



 

Table 7: TFP and Price Effects of Nonattainment, Ready-Mixed Concrete Plants 
 Dependent Variable 

Pollutant Revenue TFP ln(price) Physical Quantity TFP 

Nonattainment for O3, 
TSPs, and/or SO

-0.006 
2 (0.019) 

0.027** 
(0.010) 

-0.033 
(0.021) 

    
R 0.635 2 0.660 0.649 

Notes: This table reports the results from the estimation of a specification similar to the benchmark specification, but 
with several differences.  First, the sample only includes ready-mixed concrete plants from the Census of 
Manufactures for which we observe revenues and output quantities in physical units (cubic yards).  Since the sample 
is restricted to emitters, it is impossible to separately identify the industry indicator I[pollindip] and the constant.  
Consequently, the parameter of interest is the coefficient on the nonattainment variable.  Second, we estimate 
separate regressions (all with the same explanatory variables) for three different dependent variables: the plant’s 
revenue-based TFP (revenue per unit input, our dependent variable in the benchmark specification), the plant’s 
quantity-based TFP (physical units of output per unit input), and the natural log of the plant’s average unit price 
(dollars per cubic yard).  The three dependent variables are linked by the following accounting identity: revenue 
TFP ≡ quantity TFP + ln(price).  Third, nonattainment is defined as a nonattainment designation in one or more of 
the three pollutants of which concrete plants are considered heavy emitters: O3, TSPs, and SO2

 

.  As with the 
benchmark specification, observations are weighted by the product of real output and ASM weight, and standard 
errors are clustered by county-year. An asterisk denotes significance at the ten percent level; two asterisks denote 
significance at the five percent level.  N ≈ 12,000.  See the text for further details. 

  



 

Table 8: Exit and Nonattainment 
Pollutant [1] [2] 
Any 0.0042** 

(0.0021) 
 

O  3 0.0039* 
(0.0023) 

TSPs  -0.0050 
(0.0038) 

SO  2 0.0043 
(0.0055) 

CO  -0.0115** 
(0.0050) 

   
R 0.413 2 0.413 

Notes: This table reports the results from regressing an indicator for plant exit on pollution nonattainment indicators, 
polluting industry indicators, and their interaction, along with fixed effects at the two-digit-SIC-by-ASM-panel, 
Census-division-by-ASM-panel, and plant levels.  The values in the table are the coefficients and standard errors of 
the estimates of the interaction of pollution attainment and polluting industry indicators.  Standard errors are 
clustered by county-year.  An asterisk denotes significance at the ten percent level; two asterisks denote significance 
at the five percent level.  The sample includes all plant-year observations in our benchmark sample for years 1977 
and after (1977 is the first year for which exit indicators can be constructed from the Longitudinal Business 
Database).  N ≈ 896,000 (approximate sample sizes are used to eliminate confidential data disclosure issues across 
samples). 
 
  



 

Table 9: Selection Corrections 
 
A. Exit Rates by TFP Decile for Plants Facing Nonattainment Designation  

Decile Average Exit Rate (percent) 
1st (lowest) 9.15 

2nd 3.85 
3rd 3.25 
4th 2.93 
5th 2.63 
6th 3.11 
7th 2.77 
8th 2.91 
9th 2.63 

10th 3.67 
Notes: This panel shows the average exit rates (the percent of plants that cease operations in the following year) by 
the plant’s decile within its four-digit-SIC-industry’s TFP distribution. 
 
 
B. Selection Correction Factors (I.e., Additional TFP Change from Nonattainment Designation) 

Pollutant Average exit rate Selection Correction for TFP Change 

Any 3.68 -0.007 
O 3.65 3 -0.007 

TSPs 4.05 -0.008 
SO 3.73 2 -0.007 
CO 3.60 -0.008 

Notes: This table shows average exit rates and our calculated survivorship-bias corrections to our benchmark 
estimates of nonattainment’s TFP effects by pollutant (including the pooled, “any pollutant” specification).  These 
corrections, shown in the rightmost column, are the estimated additional changes in TFP in heavy-emitter plants 
associated with nonattainment.  The full effect of nonattainment is obtained by adding these selection corrections to 
the estimated TFP effects from the specifications above, which had only surviving plants in the sample.  See the text 
for details of the calculations. 
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