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ABSTRACT

A THEORETICAL AND EXPERIMENTAL INVESTIGATION

OF A DECELERATION PROBE FOR MEASUREMENT

OF SEVERAL PROPERTIES OF A DROPLET-LADEN AIR STREAM

Jules L. Dussourd.

(Submitted to the Department of Mechanical Engineering in October
1954, in partial fulfillment of the requirements for the degree of
Doctor of Science in Mechanical Engineering)

In this .report, the problem of complete determination, at any point,
of the state of a gas-liquid stream, with liquid in droplet form is, attacked
from a general standpoint. Means are suggested by which all the signifi-
cant properties of the stream can be obtained either experimentally or
theoretically.

The developing of the corresponding appropriate instrumentation was
carried out on a selective basis, the measurement of the most indicative
properties being given priority.

1. Instruments recording the stagnation pressure of the gas phase
alone have been thoroughly investigated both from a theoretical and an
experimental standpoint. "Production" probes have been built and cal-
ibrated against data recorded with research instruments.

2. A bid has been made for a simple means of measuring mean droplet
size. While the soundness of this method has been ascertained by theory
and experiments, a satisfactory calibration still remains to be achieved.

3. Finally some efforts have been expended towards the measurement
of the local rate of liquid flow, of the liquid velocity when it differs
from the air velocity and of the liquid temperature.

The underlying principle of operation of these measuring instruments
rests in all cases solely upon the dynamic behavior of the liquid droplets
in their response to the local accelerations of the gas stream within or
in the immediate vicinity of the testing probes. A theoretical study of
this dynamic behavior is included for a broad range of the significant.
parameters and for the specific geometries of the test instruments.

Thesis Supervisor: Ascher H. Shapiro

Title: Professor of Mechanical Engineering
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FOREWORD

The work of which the results are presented in this report, was under-

taken as an offshoot study evolved from and running parallel to the Aero-

thermopressor Project. This project is currently carried out at the

Massachusetts Institute of Technology in contract with the Office of Naval

Research. It is under the supervision of Professor Ascher H. Shapiro of

the Department of Mechanical Engineering. Test facilities are situated

in the M.I.T. Gas Turbine Laboratory.

The content of this report deals on the one hand with the theoretical

aspects of the problem and on the other offers the results of the accom-

panying experimental investigations.

The results of the former have been presented in detail in terms of

generalized coordiates. They cover a broad range of the significant

parameters and are intended for reference purposes.

The material concerned with the work done in the laboratory covers

both the experimental results and a description of the experimental tech-

niques used. Satisfactory consistency of the laboratory data found to

call for rather stringent rules of procedure, and while it is outside of

the scope of this report to elaborate on the details, attention should

be called upon some of the main points to observe. They include the hold-

ing of all equipment to its simplest form with the aim of eliminating all

possible uncertainties and provide greatest ease in the detection of ano-

malities. They also include the continuous use of rather laborious and

time consuming proven experimental techniques. A policy of sacrificing

everything else to accuracy and reliability was adopted throughout.



In the presenting of the experimental data, while it would be desir-

able to express all information in a way which is independent of the test

apparatus, this has not been found feasible throughout. In too many

occasions it is necessary to involve the characteristics of the tunnel

to explain certain behaviors.

A special effort has been made to present the plotted material in such

a manner that it may easily be understood and utilized without the need

of having predigested the remaining of the report. For the purpose a

descriptive index to the graphs is provided; it briefly summarizes the

significance, basis and use of individual charts.

Finally, in bringing a lengthy undertaking to an end, it always is

a great satisfaction to find an opportunity to voice a note of appreciation

to those who have contributed to it their ideas and their efforts. This

opportunity, or better, this privilege, will here be made use of as an

expression of gratitude towards all concerned.

The author wishes first to mention the Procter and Gamble Company.

The major part of the research work was done under a Procter and Gamble

Fellowship at M.I.T. It is beyond doubt that the aid received from this

organization was the determining factor that made possible the pursuance

of advanced graduate studies.

Of all individuals and by far, permanent indebtness is due to Profes-

sor A. H. Shapiro, the author's thesis advisor. His supervision has

touched virtually every critical or difficult aspect of the work. It may

easily be said that while everyone of his suggestions has resulted in a

step forward, everyone of his constructive criticism has brought about

an improvement. It has been a most rewarding experience to have the
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opportunity to work under his guidance.

Professor Arthur A. Fowle will be remembered for his interest in the

various problems encountered together with the free expression and com-

munication of his ideas, many of which have been proven excellent.

While in the handling of lengthy computations and in the typing the

help of Miss Margaret Tefft has been an invaluable one, the work in the

laboratory has been greatly facilitated with the help of Mr. Harry Foust

and especially of Mr. Dalton Baugh of the M.I.T. Gas Turbine Laboratory

who repeatedly has gone out of his way to provide his able and enthusi-

astic cooperation.

To these as well as to the many others, the author wishes to express

his most sincere appreciation.
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SUMMARY AND CONCLUSIONS

The problem investigated here involves a theoretical and experimental

investigation of practical means for the measurement of the properties

of a high velocity stream of air laden with water droplets. The con-

tent of this report, on the one hand sets forth the theoretical founda-

tion for a line of suitable instruments, and on the other engages into

the development and calibration of some of these. While all the experi-

mental program was carried out at atmospheric temperatures, several of

the proposed instruments are suitable for high temperatures. At the date

of completion of this report, a great deal of development work remains

to be done in regard to improvements and calibration. This is presently

being done by other investigators.

Some Physical Quantities

The experimental set up involves the 'use of a subsonic 2" atmospheric

tunnel equipped for water injection. Air atomization of the water is

done near the inlet with atomization velocities up to 600 ft/sec. Meas-

urements are taken 32 diameters downstream where Mach numbers up to 0.8-

0.9 and water-air ratios up to 0.35 can be attained.

In order to determine the state of such a stream, eleven properties

are required. However application of the continuity and energy relations,

together with the assumptions of spherical drops and complete gaseous mix-

ing cuts the number of variables down to five. For practical reasons,

these five were selected as : stream static pressure, stagnation pres-

sure of the gaseous phase, mean droplet size, local rate of water flow

and droplet velocity.
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The basic instrument and its theoretical treatment.

It is of extreme interest that one particular instrument, namely a

vented deceleration tube may be used in variously modified forms to meas-

ure four of the five above properties. For this reason, a good deal of

effort has been expended in establishing the characteristics of the flow

field around the inlet of such a tube and its influence upon the trajec-

tories of oncoming droplets. From this study, such information as probe

capture efficiency, rates of water deposition on the inside walls and

changes in droplet velocity becomes available for a broad range of the

significant parameters.

Measurement of static pressure.

While there are no basic obstacle in measuring the static pressure in

a two-phase stream by means of conventional wall statics, there exist how-

ever technical difficulties associated with the presence of water in small

pressure transfer passages. A complete cure for this condition has been

found possible in the form of pressurized manometers and with the estab-

lishment of a rigid one-way flow direction from the manometer into the

stream.

Measurement of stagnation pressure of the gas.

Stagnation pressure of the gas alone can be recorded near the front

end of an infinitely small deceleration tube with an exit vent area less

than 5% of inlet area. Such an instrument brings the gas phase to rest,

with little loss in velocity of the water at the pressure pick-up tap

and yet permits scavenging of the water from the tube.

The error in readings occasioned by conveniently sized instruments
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can be calculated by theory. It was also checked experimentally through

the means of a series of test probes of varying diameter (from 0.020" to

0.350") and varying diameter ratio (from 0.1 to nearly 1.0). Two main

conclusions may be drawn from this study: 1) Excellent agreement exists

between theory and experiment both in regard to the effect of tube dia-

meter and diameter ratio 2) The magnitude of the errors registered by

a forward situated tap are small enough to permit the use of a stagnation

probe of practical size.

From the data a production probe featuring the most desirable con-

figuration was designed and built.

Measurement of drop sizes.

The internal pressure gradient brought about by the droplet deceler-

ation in the tube is related to the drop size. The mathematical formu-

lation of this relation is expressed herein. It offers a novel method

for the measurement of the surface-volume mean drop size.

Data collected by means of the experimental probes of the previous

section and interpreted in terms of drop sizes shows the droplet dia-

meter to vary from 7p. to 2 2p depending upon the atomization air velocity

at the tunnel inlet. For a given tunnel flow, the bulk of the data from

the various probes indicates a spread of the order of + 15%. These re-

sults on the average substantiate other experimental results extremely

well. They are further in accordance with the findings of Other invest-

igators.

At this stage of the work considerable refining of the measuring

techniques is feasible. There exists also the need of a rigorous cali-

bration. Means thereof are suggested and schemes presently under



consideration are described.

Measurement of local water rate.

Starting with a tube designed to have a water collection efficiency

near 100%, it is an easy matter to lead the captured air-water mixture

outside the tunnel, separate the water out and return the air to the

tunnel at static pressure. It features a continuous sampling technique

for measurement of the rate of water flow at the tip of the probe.

Little has been done here with this instrument than use it in ascer-

taining the shape of water flow profiles across the duct, together with

a few spot checks against other means of measuring water flow. The re-

sults have been extremely encouraging. While the extreme simplicity of

this instrument is most attractive, it is unfortunately rather ill-suited

for high-temperature work.

Measurement of droplet velocity.

The total impact pressure resulting from complete deceleration of the

air and water of the stream is shown to exceed the stagnation pressure :of

the gas phase alone by an amount which is a function of the velocity of

the water and the concentration of the water in the stream. This total

impact pressure can be measured in a deceleration tube with vent closed

off so that the entire momentum of the droplets is felt by the water which

fills the tube to the brim.

This instrument can be used to measure droplet velocity at a point

where the rate of water flow is known. Conversely, in a stable stream

where the droplet and air velocities are nearly alike, the readings og

the instruments can be interpreted in terms either of local water rate
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or local water-air ratio.

A few measurements of this kind have been made and comparison made

with data taken by the sampling probe. Agreement is within a few percents.

This scheme is far less sensitive to high temperatures than is the samp-

ling technique.

Miscellaneous investigations.

A certain amount of work has been undertaken to establish the char-

acteristics of the tunnel. It involves mainly a calibration of the en-

trance nozzle and air velocity profile studies in the instrumentation

plane for both cases, with and without water injection.

It was also hoped to obtain measurements on the external pressure

field existing immediately upstream of the inlet of a deceleration tube.

Great difficulties were encountered in attempting to avoid separation

off the probing needle. For this reason but little confidence is being

expressed in the correctness of this data.
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INTRODUCTION

In several fields of engineering applications, there exists the prob-

lem of ascertaining the properties of a stream carrying liquid or solid

particles in suspended form. Typical of such applications are measurement

of the properties of aero- and hydrosols, atmospheric measurements from

an airplane, vaporization of fuels, flow of moist steam, atomization re-

search, heating or cooling of a gas stream through the injection of liquids

etc.

The work summarized herein was undertaken in conjunction with an

application of this latter kind, namely the Aerothermopressor. The object

*
of this device is the practical realization of the rise in stagnation

pressure that Gas Dynamics indicate to accompany the rapid cooling of a

high-temperature, high-velocity gas stream, such as the exhaust of a gas

turbine. In the Aerothermopressor this cooling is achieved with the in-

jection of water in dispersed form. Inasmuch as the optimum performance

of the device is primarily dependent upon the two variables of stream Mach

number and rate of water evaporation, it becomes of paramount importance

in an operational set-up to be in a position to measure these quantities

reliably.

Thus the originally intended function of the instrumentation proposed

and investigated herein is its suitability for use in a stream of hot or

cold air (or products of combustion) with water particles as the suspended

Reference Zo



agent. Because of the nature of the investigation and the availability

of test facilities however, the work was entirely carried out at low tem-

peratures (room temperatures). The result was that several of the proposed

instruments are equally well suited for high and low temperature work,

while others would require special means for cooling before introduction

into a high temperature stream. The directly useful range of operation

resides with subsonic velocities, for water droplet sizes from perhaps 5

to 100 microns and with water-air ratios from 0 to 0.5 on a weight basis.

Further since the underlying principle of operation involves only dynamic

interractions between the air and the water, it becomes practical to make

use of this instrumentation with little modification for other kinds of

applications involving particles of a different nature (composition, size

or shape) conveyed by a medium with characteristics different from those

of the present investigation. Thus solid or liquid particles in a liquid

or gaseous stream are equally in order as long as the density of the sus-

pended element remains appreciably greater than that of the carrier. Like-

wise a wider range of the above stream variables can be secured provided

the significance of the governing dynamic parameters is duly kept in mind

and respected.

The realized development of a full line of functional instruments

reliably producing complete information on the state of the two phase

stream is an undertaking of sizeable magnitude. Only a small fraction of

the task has been accomplished in this report. Its main object has been

to lay down the basic theoretical groundwork and to push the development

of those instruments for which there was a more urgent need in the
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development of the Aerothermopressor. In accordance with this line of

action, efforts have been centered upon three instruments. The first of

these, the stagnation pressure probe has been pushed through the cali-

bration stages. "Production" models have been built and tested in the

light of data obtained with experimental instruments. Secondly an instru-

ment for measuring droplet size has been launched and pre-tested. Its

further development and calibration is presently being actively pursued

by other investigators . Finally a start has been made on simple devices

for the measuring of local water content and water velocity. No system-

atized course of experimentation has yet been applied to these instruments.

It is fitting here to call attention to some earlier similar invest-

igations also carried out in conjunction with the Aerothermopressor.

Wadleigh and Larson devised and built instruments to extract from the

stream a sample of the gas and vapor phase only. Subsequent analysis of

the sample for water vapor content revealed the state of evaporation of

the injected water. Vose and Kosiba experimented with probes intented

to take out from the stream a representative sample of the air water mix-

ture for the purpose of establishing the local water-air ratio.

References 15

References 16 ,

Reference r6
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CHAPTER I

THE STATE OF A TWO-PHA E MIXTURE AT A POINT IN A STREAM

Among the several possible kinds of two-phase mixtureslet it be

considered here the fairly complicated case of a steady air stream

loaded with suspended water particles. The conditions at entrance where

the phases are mixed are known and it is proposed to obtain experimental

information as to the state of the mixture at some plane downstream. The

following quantities are required:

1) For the air: pressure, temperature and velocity; or respective-

ly P , T and V .
a a a

2) For the water: water-air ratio w w/wa ; water temperature and

velocity, T and V ; size and shape of the water droplets.
w w

3) For the water vapor: vapor pressure P v= Ptream P velocity

V and temperature T .

In order now to streamline the number of variables we may make use

of the following well known laws:

1) Continuity, expressed as (wa)initial wa ; (ww + w )initial

w + w initial conditions being known.
w vi

2) Energy relation, in the form

h +(w /w)x h +(W /w)x h = (h +tw /wa h + (w/wb h)...
a0 w a w0 v a v0 a w aw va v init-ial

if the process has been an adiabatic one with no work done and negli-

gible effects of surface tension.

*
In the size range of droplets considered the amount of surface tension

energy is small in comparison to the enthalpy terms. Refer-eee
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Further the following reasonable assumptions may be made:

1) Local gaseous mixing is sufficient to bring about local uniformity

of gas phase velocity and temperature, i.e. T = T , V = V .
v a' y a

2) The water droplets may be visualized as spherical in shape and

tightly drawn together by surface tension effects. As such the

*
size and shape of the droplets will be defined by their diameter d

Thus the original eleven variables are reduced to five and therefore

**
five quantities must be measured empirically . From a practical stand-

point the desired five quantities have been selected as 1) the stream

static pressure P 2) the air velocity Va, 3) the droplet diam-
static'a

eter, d, 4) the water air-ratio, and 5) the velocity of the water droplets

V . It is easy to ascertain that direct measurement of most of the

remaining quantities seem to present a greater degree of difficulty, while

a few appear rather hopeless.

It is proposed in this report to offer means for the experimental de-

termination of these five quantities. All but two of them are to be meas-

ured directly. The remaining ones (air velocity and water-air ratio) are

to be arrived at from measurements of the stagnation pressure of the gas

phase and rate of water flow per unit area at the point in question.

This is the significant mean diameter in s spectrum of droplets. See
Appendix A for the definition of this diaeter.

**
It must be noted here, that two- and three-dimensional effects across

the stream will be obtainable only for the directly measured quantities.
The remaining variables will be had only in the form of average values
across the duct i.e. only their one-dimensional variation will be known.
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CHAPTER II

DYNAMICS OF PARTICLES SUSPENDED IN A STREAM

FLOWING AROUND A BODY

As previously expressed, the fundamental principle of operation of

the instrumentation proposed herein resides in the dynamic effects that

occur between the air and the water as a result of disturbances intro-

duced by the presence of a body. The body considered here will be a

deceleration tube. It consists

INET AREA EX1T basically of a hollow thin-wall
VENT

AREA cylinder with its axis aligned

AIR AND WATER DROPLETS with the stream direction. Var-

ious amounts of restriction of

FIG. 1 - DECELERATION TUBE the exit area bring about various

flow conditions in the main body of the tube. The interesting feature

of this basic configuration lies in the fact that it supplies the means,

either in its.original form or with small modifications, to measure

practically all the desired properties of an air-water stream. These

various applications will be described in detail under separate headings.

Let us for the present time limit ourselves to the general case and

describe the general behavior of the oncoming particles. There exists

in front of the instrument a rather complex three-dimensional field.

In traversing it, the droplets are subject both to a retarding force and

a radial force. The resultant droplet trajectory is one that is deflected

outward. The loss in axial velocity, the gain in radial velocity, the
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general shape of the trajectory,

the collection efficiency of the

TRAJECTORIES probe and the rate of water de-

position on the inside wall are

STREAMLINES all a function of four quanti-

ties: the geometry of the flow

field, the shape of the droplets

FIG. 2 - FLOW PATTERN AROUND THE
INLET OF A TUBE and two numerical parameters,

the particular form of which is

arrived at in Appendix D , namely the drop Reynolds Number in the free

3 Oa Dstream and the obedience parameter I p d . The mathematical treatments
w

of the flow field and of the dynamics of the droplets within this field

are elaborated upon in Appendices B and D . The trajectory plots of

figure 40 to 48 express the results for spherically shaped droplets and

for an idealized flow pattern around the tube entrance. A table of sig-

nificant quantities intended to provide a feel for orders of magnitude

is presented on page 15155a.. While this solution is not offered as an ex-

act description of the droplet behavior, it supplies nevertheless the

basic trends and sufficient information to describe the order of magni-

tude of the effects we are interested in.

The exit end of the tube essentially performs two functions. On the

one hand it controls the gas velocity within the tube and on the other

allows for evacuation of the water captured through the inlet. With exit

wide open, such that Ainlet = Aexit' the average internal air velocity is

almost equal to free stream velocity, the disturbance created by the presence

Fig. 49, 50, 52, 53 are derived from these plots.
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of the tube in the stream can be made small.

Partial closing of the exit vent reduces the internal gas velocity

and brings about an internal gradual deceleration of the water particles

in low velocity air. Appendix F and figures 55 and 56 are descriptive

of the motion of the particle within the probe for the case of negligible

internal gas velocity. Appendix E also derives an expression for the

order of magnitude of the accompanying pressure variation as caused by

the droplet deceleration. This pressure gradient is intim&tely connected

to the size of the water droplet.

Complete closing of the exit will cause the tube to become filled with

water. This water will be at a pressure corresponding to that resulting

from bringing both air and water down to zero velocity. This pressure

will be somewhere between the two limits as expressed by equation (E-3)

or (E -10) depending upon the magnitude of the s ignificant parameter.

These various effects are fully utilized in the design of the instru-

mentation originated here for the measurement of the stream properties.

They will be examined individually and in greater details in subsequent

chapters.



TYPICAL DROPLET

TABLE I

BEHAVIOR NEAR THE PROBE INLET

PROBE GEO1METRY ID/OD = 1.0

HIGH VELOCITY

Probe diameter - inches 0.050 0.100 0.300

Droplet diameter - microns 5 10 20 4o 5 10 20 4o 5 10 20 40

a D fo 0.055ar 0.017 20
p o a.14o 0.070 0.035 0.0175 0.467 0.233 0.1165 0.0583 1.4o 0.70 0-35 0.1

* density

Ree for standard air and 76.5 153 306 613 76.5 153 306 613 76.5 153 306 613
V = 700 ft/sec

Probe capture efficiency 0.982 0.9954 0.9976 0.99915 0.955 0.977 o.9914 0.997 o.810 0.9375 0.974 0.9905

Rate of water deposition

on wall between x/D= 0 0.026 0.0094 0.0036 0.0013 0.070 0.025 o-114 0.00425 0.17 0.0775 0.032 0.0125

and -0.25

Rate of water deposition

on wall between x/D= -0.25 0.031 0.011 0.0045 0.00175 0-095 0.054 0.013 0.00475 0.14 0.060 0.034 0.014

and -0 -50

Average fractional loss in

the x-compcaent of velocity 0.052 0.0105 0.00375 0.00155 0.100 0.034 0.015 o.0045 0.250 0-090 0.038 0.0l60

from far upstream to x/D=0.0

Average fractional loss in

the x component of velocity 0.130 0.042 0.0155 0.0062 0.40 0.135 0.0054 0.021 0.725 0.360 0.16 0.065

from far upstream to x/D=-0.5

Amount of overpressure on

the plane of the inlet as a 0.0065 0.0021 0.00075 0.00027 0.019 0.0067 0.0026 0.0009 0.045 0.018 0.0076 0.0027
fraction of the gas dynamic

pressure and for w /wa = 1.0 J

I.

Order of magnitude of initial
slope obtained inside probes

for w /wa = -0.1 ,

dp 1 -/ where x is
dx a at /2 in inches

1.10 o.427 o.167 0.0648- o.84 o.41o o.166 0.065 0.414 0.280 0.147 0.065

* In fraction of water flow through an equivalent capture area equal to iD 2/4 and located far upstream

1W



TABLE I (cont.)

TYPICAL DROPLET BEHAVIOR NEAR THE PROBE INLET

PROBE GEOMETRY ID/OD = 1.0

LOW VELOC ITY

Prcbe diameter - inches 0.050 0.100 0.500

Droplet diameter - microns 10 20 4o 10 20 40 10 20 ho

3 Da D
for standard air 0.070 0.035 0.0175 0.255 0.1165 0.0585 0.70 0.35 0.175
density

Be for standard air ando 76.5 153 306 76.5 155 306 76.5 155 506
V = 50 ft/sec

Probe capture efficiency 0.9915 0.9969 0.99875 0.971 0.9895 0.9957 0-907 0.969 0.987

Rate of water deposition

on wall between x/D = 0 0.0130 0.0046 0.00195 0.039 0.0145 0.0062 0.127 0.039 0.017

and - 0.25__

Rate of water deposition
on wall between x/D = -0.25 0.0145 0.0055 0-000257 0.080 0.045 0.018

and - 0.50*

Average fractional loss in

the x-compcnent of velocity 0.t16 0.0050 0.00185 0.055 0.0165 0.063 .14 0.048 0.019

from far upstream to x/D=0.0

Average fractional loss in

the x-component of velocity o.062 0.020 0.0077 .235 0.070 0.0265 0-52 0.205 0.081

from far upstream to x/D=-0.5

Amount of overpressure on

the plane of the inlet as a 0.0054 0.0010 0.00057
fraction of the gas dynamic
pressure and for w /w=1.0

Order of magnitude of initial

slope obtained inside probes
for w /w = 1.0, . 0.547 0.220 0.0835 0.510 0.216 0.082 0.334 0.1835 0.082

d w a

dp V _/2 where x is in
a a inches

In fraction of water flow through an equivalent capture area equal to vD2/4 and located far upstream.

--- , :: n - fi A.W I - -l



-16-

CHAPTER III

MEASUREMENT OF STATIC PRESSURE

Measurements of static pressure presents no difficulty provided a

few elementary rules are observed regarding the treatment of slugs of

water entrained in the lines.

In a water-air stream in a duct, there will usually exist a film of

water traveling along the inside wall, or along the side of any object in

the stream. Changes of stream pressure from low to high are accompanied

by gas displacement from the stream into the lines connecting manometers

to pressure sensing orifices. Inevitably this process will involve some

water as well. This water is usually present in the form of individual

slugs completely bridging the passage and separated by elongated air bub-

bles. If the lines or the tap diameters are small, say below 0.030",

difficulties will arise from surface tension effects. The water slugs

will tend to affix themselves on any small irregularity in the line, if

the irregularitity is such as to tend to reduce the passage area. In or-

der to dislodge the slug there will be required a pressure differential

across it with a corresponding error in the pressure reading of the gage

or manometer. Furthermore for any passage other than horizontal, because

of gravity effects, the accumulated water will produce a head which will

either add or subtract from the indicated reading. The avoidance of these

undesirable effects is made easy or difficult depending upon the require-

ments of the particular situation.

Measurement of stream static pressures of an air-water stream can best

be done through wall static pick-ups. An adequate tap diameter is from



0.04o" to 0.060".

HORIOThis combined with
PRESSURE MANOMETER Ti obndwt

TRANSFERA
PASSAGE the arrangement shown

on fig. 3 eliminates
M N TUNNEL

HORIZONTAL all difficulties from
CENTER LINE

the presence of water.

It has also been es-

WATER tablished that for a

SEPARATOR
water-air mixture,

whether the main stream

flow be fully devel-

oped or not, the stream pressure is accurately constant in a particular

plane perpendicular to the axis of a constant area duct. A wall static

will then correctly read the stream static pressure.

While in the experiments carried out, the actual system differed from

the proposed one pf fig. 3 in that line MN was in a vertical instead of

a horizontal postion, it was nevertheless possible to detect the presence

of water easily through the transparent lucite walls and transparent plastic

tubing. Blowing the water out was easily accomplished since the tunnel

was at sub-atmospheric pressure.

Because of the smallness of some of the instrumentation involved in

this report, it has been found necessary to deal repeatedly with extremely

small pressure pick up orifice's and correspondingly small pressure trans-

fer passages (down to 0.007" inside diameters). Pressure thus measured

consisted mainly of local static pressures, such as, the pressures at
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various points within the deceleration tube of fig. I etc. It is not dif-

ficult to see that extreme care must be exercised because water clogging

of the pressure transfer passages will cause errors of 10 to 20 inches of

water to be the rule rather than the exception.

Several possible ways have been explored to get around this difficulty.

By far the most successful one consists in exercising utmost care in keep-

ing the water permanently out of the pressure transfer passages. A bleed

from a high pressure air source must be connected to the pressure tubing.

The most essential rule to keep in mind is that the displaced air to or

from manometer and tubing
A x

must always be allowed to

ER TO HIGH flow from A to B and never

M TO PRESSURE
AIR SOURCE from B to A. If the pressure

at B is made to increase,

PROBE 4T CElTER the manometer must first be
OF TtJML

pressurised by means of the

air bleed so that its pres-
B

sure be kept above that at B.

FIG. 4 To obtain a reading, the

bleed is closed and equilib-

rium is allowed to establish itself.

In addition, starting with thoroughly dry lines initially and frequent-

ly flushing the lines for several minutes with bleed air will dry out any

droplet that may have gotten in through the pressure tap and prevent it

from growing to a point where it can bridge and clog the passage.



A simpler system than that of fig.4 was made possible in the exper-

imental set-up of this report because of the fact that the tunnel was at

subatmospheric pressure. Element C in the system performs the combined

functions of connector to

various tubing sizes, trap

CONNECTOR TRANSPARENT against spillage of manom-
PLAST IC

eter fluid and bleed for

pressurizing the manometers

with atmospheric air . Max-

imum possible use is made-
PROBE AT
CENTER OF of transparent plastic tub-
TUNNEL

ing throughout .

-19-
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CHAPTER IV

MEASUREMENT OF THE GAS STAGNATION PRESSURE

General considerations

If the reader is referred back to the basic deceleration tube intro-

duced in Chapter II , he may visualize the exit vent area so proportioned

as to allow satisfactory scavenging of the water catch and yet hold the

internal gas velocity to a value sufficiently low as to have a negligible

dynamic pressure of its own. The velocity of the droplets about to enter

the probe is altered first in the complex flow field immediately upstream

of the entrance and then some more, inside. Since any deceleration of

the water causes local pressures to be increased above those of the gas

phase alone (equation E-6 ), it becomes essential in the measurement of

stagnation pressure to keep these decelerations to a minimum . The effects

of internal deceleration can be avoided by recording the stagnation pres-

sure close to the inlet, while the external decelerations are related to

the probe size and to the shape of the inlet. It is one of the objects

of this investigation to establish what sizes and shapes will best reduce

this effect to a tolerable magnitude.

Experimental probes

A series of instruments was designed and built with the object of

undertaking experimental verification of these effects. Fig. 25 to 30

illustrate the variety of configurations. Each configuration is fitted

True gas stagnation pressure will be realized at a point where the gas
velocity is isentropically redticed to tero afdethe water Velocity is
unchanged.
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for the measuring of pressure in the deceleration tube either by means

of a single row of wall static orifices arranged axially near the en-

trance or by means of a pressure pick-up needle with axial motion along

the wall. The discharge vent orifices are of fixed diameter; however

their effdctive area can be varied by insertion of tapered wires. The

various configurations differ from one another in their external diameters

(from 0.020" to 0.35") and their ratio of internal to external diameter

as measured at the inlet (from 0.1 to nearly 1.0). It is proposed, with

these instruments to investigate the order of magnitude of the errors

associated with some of the effects mentioned earlier, so as to be in a

position to judge on the accuracy of a proposed "production probe" of

convenient size and feasible practicability.

Experimental technique

Successful comparative testing of the various configurations, pri-

marily depends on two requirements

1) Precise adjustment of the exit vent area by simultaneous

calibration against a conventional total pressure probe. This

can best be done in the tunnel without water injection. An

ideal method consists of making such a calibration with each

probe prior to each test in order to detect errors introduced

by gradual dirt fouling of the probes, by accidental disturb-

ances of the settings or by variations in daily atmospheric

humidity which reflects itself in the readings. This however

was found prohibitive timewise. Instead, the various instru-

ments were calibrated against a reference curve taken with a
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Pitot tube. This involves correcting the pressure readings for

initial atmospheric humidity to allow for condensation in the

tunnel. (see Appendix J ) Typical calibration curves are pre-

sented on fig. 56. They indicate that the calibation correc-

tions to be made are of the order of 1% of the dynamic pressure;

except on very humid days when the errors generally appear larger

because of the imperfections of the humidity correction (see

Appendix J ). The setting of the proper exit vent area, while

fairly easy for the larger probes, becomes very tedious for the

little ones. With exit areas reduced to an equivalent diameter

of the order of 0.005" or less, and with accompanying small exit

Reynolds numbers, very minute changes in exit area have signif-

icant effects. An area that is too small will show up during

runs with water injection by the presence of water in the pres-

sure lines and by "frozen" manometer menisci. Too large an

area will of course show up upon calibration. While no rigorous

systematic study of required vent area was possible because of

the unconventional orifice shapes brought about by the presence

of the inserted tapered wires, it may nevertheless be general-

ized that vent areas from 4 to 6% of the inlet area proved ade-

quate with the smaller probe, while 2 to 4% was sufficient on

the larger ones.

The dry calibration runs, in addition reveals the effect of the

probe inlet geometry upon records of internal pressure distri-

bution near the inlet. Fig. 57 shows all pick-ups to register

stagnation pressure except for those located extremely close to
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the inlet and for the rear tubes on small dibmeter probes which

exhibit the frictional losses associated with the probe inter-

nal velocities.

2) The feasibility of testing all probes under identical Mach

numbers. This requirement is a difficult one because the anti-

cipated duration of the test program will reguire operating

under changing conditions of tunnel inlet total pressure, temper-

ature and humidity (atmospheric conditions), and various injec-

tion water temperature. Aside from evaporation or condensation,

there are heat transfer effects as well, between the gas and the

liquid. They involve variation in the stream stagnation temper-

ature and will here be designated as "energy effects".

Simple analysis of one-dimensional flow of a perfect gas in a

duct with injection of liquid particles but without energy ef-

fects, indicates that a fixed local Mach Number will be main-

tained for all initial pressures and temperatures if the ratio

of the local pressure to the inlet pressure is held constant

*
and the water-air ratio remains the same . This basic require-

ment was adopted throughout this test phase. In all cases,

sufficient data was collected over a zone on either side of the

test point by means of small perturbations. Interpolation of

this data yielded the conditions at the desired pressure ratio.

Allowances for energy effects (Appendix J ) and for variations

in water-air ratio brought about by changes in barometric pressure

*See Appendix H for proof.



(Appendix H ) were made analytically. The energy corrections

are not by any means negligible (fig. 69 to 70 ). It was in-

deed fortunate that most of this testing was carried out in

winter time when low relative humidities prevail indoors.

In all cases the physical procedure consisted in locating each piece

of test equipment in turns, at a center of the tunnel and in a fixed test

plane far downstream from the injection plane. The tunnel air and water

flow were then adjusted to meet the requirements described above.

In all, the instrumentation was tested carefully for four different

flow conditions of Mach numbers and water-air ratios. While it would be

desirable to cover a yet wider range of operation, this was found imprac-

tical. Very high rates of water injection give rise to an unstable con-

dition in the tunnel diffuser just downstream of the test plane. This

condition creates an intermittent mass of water, or wave, to back up along

the bottom of the diffuser almost up to the diffuser inlet. The accompany-

ing pressure fluctuation renders the taking of any reliable data highly

questionable. Conversely, for very low rates of injection or low air vel-

ocities, the dynamic effects of the water to be studied become so small

as to be difficult to be measured.

Results

Fig. 58 to 61 are a presentation of the data collected for each

of the four flow conditions. In general a fair degree of similarity

exists between the curves except perhaps configuration (I). The compara-

tively abrupt curve for this very small probe however can easily be linked

to the water fouling that was evident during testing. Linear interpolation
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of these curves to the inlet plane locates point M. Point M thus repre-

sents the stagnation pressure , plus whatever overpressure was caused by

droplet deceleration in the flow field immediately upstream of the probe.

Point N is arrived at by correcting point M to zero internal pr-obe veloc-

ity (using the data of fig. 56 ) and zero energy effects (with figure

70 ).

Then, the pressure ratios represented by points N must be a function

of probe sizes and inlet geometries only. This is illustrated by fig. 62

which is a comparison of the test data with theoretically computed over-

pressures ('fig. 50 53). These overpressures correspond to the two ex-

treme cases of geometry studied (ID/OD = 0.0 and ID/OD = 1.0). The given

droplet diameters are as measured by the method presented in Chapter V.

While the scatter present leaves much to be desired, there nevertheless

exists a significant agreement as to orders of magnitudes.

In fig. 62 the true stagnation pressure ratio is that measured by a

probe of very small diameter. The special significance of this data how-

ever resides in that they demonstrate the feasibility of construction of

a probe of convenient size and yet of satisfactory accuracy.

A Production Probe

On the basis of the above discussed data from experimental instruments,

a practical probe (herein called a "production probe") was designed. The

details of construction can be found in reference (5 ). It will suffice

to describe here some of its most significant features. The gross diameter

of the instrument is up at 0.25" but the frontal end is contoured so as

to reduce this effect some. The inlet diameter ratio (ID/OD) is kept high
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FRONT TAIL
END END

WITH
VENT so as to take advantage of

0 the effects of inlet geom-

etry illustrated on fig. 62

A 3600 pressure pick-up

annulus located very near

PRESSURE PRESSURE the probe inlet minimizes
PICK-UP TRANSFER

PASSAGE the possibility of water

FIG. 6 clogging of the pressure

transfer lines. The pres-

sure pick-up annulus is further protected from water impingement by a

slightly projecting frontal lip. Finally a vent orifice of 5% of the

inlet area is provided.

Reference (5 ) presents further the results of calibration of this

instrument. These results in general are not entirely conclusive inasmuch

as the presence of this large probe and support in the tunnel gave rise

to the kind of diffuser instability earlier described in this chapter.



-27-

CHAPTER V

MEASUREMENT OF DROPLET SIZE

It is proposed in this chapter to introduce a novel approach to

measure practically and conveniently the mean size of the particles or

droplets carried in a stream. The method has the advantage of affording

instantaneous readings at any point of the stream. On the other hand it

requires the knowledge of the local time rate of flow of the droplets at

the point considered, as well as the velocity of the droplets. At the

present time it gives indication only as to some mean droplet diameter

*
of the spectrum , although it is possible that information as to whether

**

the spectrum band is a wide or a narrow one can be had as well

The method involves the use of the pressure gradient associated

with the deceleration of the droplets within the probe. Clearly little

droplets will decelerate at a much more rapid rate, and thus for the same

flow will bring about a greater rate of pressure rise. Appendix F elab-

orates on the mathematical aspect and formulates the relations between

dmp sizes and measured pressure gradients. One form that has been found

convenient is

(Equ.V-l) d- ___ VI CL VW) tCC>

in terms of the undisturbed water velocity and water rate; in terms of the

Appendix A defines precisely which mean droplet diameter is involved.

**
See refference 1S
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familiar parameters of Re and ( ) both measured inside the

probe; and in terms of two quantities V /V and e which have to do
w wooav

with the geometry of the measuring device and the point where the pres-

sure gradients are measured. A plot of this expression is presented on

fig. 51. Using a cut and try method it affords means of obtaining drop

sizes from slope data measured at x = -D/2.

From the above equation it is apparent that a suitable config-

uration would feature a small diameter probe with pressure measurement

taken close to the inlet. This eliminates the uncertainty involved as

to the collection efficiency and initial loss in drop velocity, both of

these terms being then close to 1.0.

Instrument Development and Test Results

Although in the present work, a great deal has been learned by

experimenting with instruments suitable for ineasuring drop sizes, there

remains a long way before a fully calibrated instrument with optimum

characteristics in all respects is created. It is intended in this section

to discuss some of the problems encountered as well as offer suggestions

to further the development of the instrument.

The first probes used for the present purpose were those of fig. -

25 to 27, and fig. 31. These probes, while originally designed as exper-

imental instruments in the development of a stagnation pressure probe,

also provided data on internal pressure gradients. These may be found on

fig. 58 to 61 associated with configurations I to VI. Computed drop sizes

from this data are tabulated in Table III. They vary from about 7. to

23i depending upon the atomization Mach Number. It is at once apparent

that, while an average drop size can easily be inferred, much better

A



TABLE III

DROPLET SIZES AS CALCUIATED BY PRESSURE

GRADIENT METHOD - DATA ON FIG. 58-61

Tunnel InletMuch nle 0.52 o.48 6.44 o.38 0.55 o.48
Mach Number

Atomization 0.56 0.53 0.46 0.39 0.57 0.59
Mach Number

stat 2/ atm 0.62 0.648 0.7337 0.810 0.597 0.516

Gas Velocity
at the Probe io800 731 623 521- 853 359
ft/sec

(Xg-Ic 2
slugs/ft

2
sec 0.163 0.244 0.204 0.163 0.0815 0.407

** * **
Configuration P p P 

Pmeas . measdc meas meas dMmicr dmeasd d(micr) d - d(micr) d r) d d(micr) P d(mier)
stat stat stat stat stat stat

dx dx dx dx dx dx

per inch per inch per inch per inch per.inch per inch

II Ser. A 0.125 13.5 0.200 11.6 0.100 14.6 0.045 19.0

II Ser. B o.14o 12.5 0.210 11.0 0.105 13.9 0.040 21.4

IIA 0.225 7.5 0.325 7.5 0.115 12.7 0.055 15.5 0.1215 8.5 0.806 6.75

IIB 0.155 10.9

III 0.180 8.6 0.210 13.8 0.090 14.6 0.035 24.0 0.0243 11.5 0.575 9.6

IIIA o.160 9.6 0.250 11.6 0.110 13.3 o.045 18.7 0.107 7.5 0.626 6.4

IV 0.180 8.6 0.230 12.6 0.100 13.2 0.045 18.o 0.099 8.9 0.704 6.5

IVA 0.195 7.9 0.235 12.6 0.115 11.5 0.047 17.9 0.1005 7.8 o.626 6.4

V 0.145 9.8 0.195 9.5 0.100 13.2 0.035 23.2 0.0697 12.5 0.601 6.5

VI 0.155 9.2 0.180 10.0 0.110 12.0 o.o47 17.3 o.o843 9.0 0.64o 6.1

VIIA 0.075 18.0 0.125 12.6 0.060 18.5

V.130 10.6 0.160 9.9 0.100 11.1

VIIC 0.150 10.5 0.050 22.5

All slopes measured at x = - D/2

i .. -Am
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consistency of the data is desirable. In general, the lack of uniformity

can be attributed variously as following:

a) Several of the probes exhibit various inlet diameter

ratios (ID/OD). Fig. 51 which was made use of in computing

droplet diameter, strictly applies to thin walled probes only.

b) Very small diameter probes are sensitive to their align-

ment with the stream. A small probe slightly out of line will

indicate too large a drop size because of inordinately large

water impingement on that part of the inside wall which is

exposed to the drops.

c) There is a great deal of uncertainty as to the true water

rate at the center of the tunnel. Hardly sufficient amounts

of data concerning the distribution of the water in the tun-

nel has been obtained; and to complicate matters this distri-

bution has been found to change in the course of time . For

lack of precise data an average value of 1.3 has been used

throughout for the ratio of w A)local . This is
(w /A)ea

w/mean injected

a mean value based on what data had been collected. This

possibly is the greatest single factor contributing to the

scatter of the data.

d) It was felt that the curve of probe pressure vs. distance

was not sufficiently well determined with five points, corre-

sponding to the five pressure pick-ups. The frontal one is

particularly critical, in that the value it records establishes

*
See Chapter VI and fig. 71 for details on water profiles.
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a good part of the initial slope and hence of the calculated

drop size. It is with this in mind that the probe of Con-

figuration VII A, B, C etc. was introduced. It features a

traversing needle moving along the wall and picking up as

many pressure data points as desired. These are plotted on

fig. 58 to 61. The shape of the curve is very clearly

defined; in fact a little too much so, in that it also brings

out tiny secondary effects, perhaps attributable to the com-

plexity of the air flow around the probe inlet but usually

rather difficult to explain satisfactorily. The magnitude

of the slopes recorded comes somewhat as a disappointment

with one or two radical departures from anticipated values.

They are however explainable on the basis of variations in

the water distribution throughout the tunnel cross-section.

Measured variations are well sufficient (fig. 71) to account

for the differences

The design of a refined instrument for measuring drop size by this

method involves a great deal of work for the purpose of establishing an

optimum tube diameter. With too large a diameter, the events taking place

immediately outside of the inlet are too significant to be negligible.

The effects of these events must be minimized to the point where it is

safe to make V /V and e equal to 1.0 in equation ( V-1) and to the
wx woo av

point where the rate of internal deposition of water on the wall attribu-

table to trajectory deflection is a negligible quantity. Conversely if

*
Note that the area covered by the probe at the center of tunnel is large

enough to show within itself large variations in local water rates.
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the tube diameter is too small, exceptional care will be required to hold

the instrument in accurate alignment with the stream direction. Further-

more it may be predicted that water deposition unto the inside walls

would be a problem for too small a probe, even a perfectly aligned one.

This is not an inertia effect, it is not attributable to trajectory deflec-

tions, but is entirely created by the physical dimensions of the droplet

and of the passage the droplet is going through. Thus if d - 1.0,Probe ID'

the water deposition on the wall approaches 100%.

From the experience gained here so far it is felt that a good num-

ber of closely spaced pressure readings near the inlet are a necessity.

Readings every 1/64 are desirable, while readings every 1/32 are a must.

A traveling needle offers the advantage of picking-up all the pressures

with the same pressure tap. This will be found of great value when very

accurate data is necessitated as in runs at low air velocity or with low

water rates or large drop sizes.

The problem of calibration is a thorny one. A start has been made

to calibrate a typical probe (config. IV) by means of an air stream

carrying glass beads of known size. The erosion problems associated with

this procedure have not yet been brought under control. Fig. 31 is a

photograph of probe configuration IV after a few minutes of exposure to

a high-velocity, high-density stream of glass beads. This problem is pre-

sently been worked on from the standpoint of finding appropriate designs

and materials to resist the erosion . Operation at lower velocities and

lower bead flows is also contemplated."

Reference : O mon 4 Ecd - e-svs tn Proew . - M I T
**

As well as calibration against data obtained by optical means ref . E> E i3.
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Upon concluding this sectionmention should be made of the fact that

the calibration work of this instrument may well open the door for a new

topic, namely: Thes determination of drag coefficients of bodies at high

Mach numbers and low Reynolds numbers. A tentative glance into these pos-

sibilities, suggests that if low Mach Number drag data checks the meas-

urements satisfactorily, high Mach Number drag data is obtainable.

An Evaluation of the Results

It is fitting at this point to examine critically the validity of

the results obtained independently of the uncertainties of measurement.

Examination of the data of Table III reveals certain broad bands of

drop sizes for each flow condition or better for each atomization Mach

Number . Consideration of the bulk of the data only, might perhaps lead

to the following four bands of droplet sizes: 
8 -lOp., 10-12 t, 12-15t, 18-22p

respectively for the atomization Mach numbers of 0.56, 0.55, 0.46, and 0.39.

These are the ranges which have been selected in the plot of the theoret-

ical curves of fig. 62. The agreement with experimental points is seen

**
to be very satisfactory

A general expression for drop size by air atomization and developed

in reference (21) indicates considerably larger (roughly a factor of 2)

We may define this Mach Number as the tunnel inlet Mach Number modified

for the drag of the water on the assumption that the effect of this drag

occurs in zero distance at the entrance of the tunnel. It may readily be

calculated from fig. 63 with the help of the "wet" points shown and by
replacing the water drag by an equivalent length of duct.

**
A relevant point is that this satisfactory agreement is pretty much in-

dependent of the value used for local water flow, since this latter enters

both into the calculation of overpressure and drop sizes.

Table III also exhibits additional runs where partial data was obtained.



droplet sizes for equivalent atomization velocities. This general expres-

sion however is also in conflict with the results of other investigations

as being too high. It is felt that these divergences are probably largely

attributable to the particular geometry of the atomization equipment used

by the various investigators.

As might be expected, some uncertainty exists as to the correct value

to be used for the drag coefficient entering into equation (V-1). In

this report, for lack of better information, the incompressible flow values

have been used ( CD = 5 (Re) ). Desired drag information is in the

high velocity range (up to M = 0.8) but a low Reynolds Number (Re < 1000).

While no information has been found in that area, it is suspected that

actual drag coefficients run higher than those used herein. This would

tend to make the predicted droplets sizes too small.

Reference Z .



CHAPTER VI

MEASUREMENT OF LOCAL RATE OF WATER FLOW

In this chapter will be proposed a simple continuous sampling method

designed to indicate the rate of water flow in the tunnel at the tip of

the probe.

The Instrument

Consider the original deceleration tube (fig. 1 ) with pressure

taps removed and so proportioned as to have a collection efficiency near

100%. It is an easy matter to pipe the captured water-air mixture through

the exit vent to the outside of the tunnel, separate the water out and

return the air back to the tunnel at static pressure. The restricting

vent may here be conveniently enlarged, since the sole function of the

entrained airflow is as a carrier; besides a large airflow will better the

probe capture efficiency.

Such an instrument was tested and found to be very simple to operate.

Probe configuration (VIII) (fig.30 ) was used in conjunction with the

arrangement of fig. 6 .

Among the limitations of this system, an obvious one is its unsuita-

bility for high temperature work. This would require the instantaneous

freezing of a thermodynamic reaction. Other difficulties involve the

need of knowing the probe capture area to a great degree of accuracy.

This is particularly inconvenient when the extreme smallness of the drop-

lets calls for a small diameter probe. The rate of collection of the sam-

ple will then also be extremely slow.
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Experimental Results

At this time very little data has been accumulated and no systematic

calibration has been attempted. Traverses of the tunnel for the purpose

of ascertaining the water flow profile as well as a few spot checks against

other means of measurement have however been undertaken. These data are

plotted on fig. 71 and will be discussed below.

In all experimental work, there is always a time when the peculiari-

ties of the test installation come unexpectedly into light. They assumed

in this case the form of rather unanticipated shapes of water profiles.

These profiles were furthermore found to follow faithfully the character-

istics of the water injector of the tunnel, as these characteristics

changed with time as a result of progressive plugging up. Thus early pro-

files were found to be bell-shaped, sharply peaked and symmetrical. Typ-

ical ones are shown on fig. 71 as measured both with the sampling probe

and with the pressure gradient probe (from equation V-1 with assumed
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uniform values of droplet size across the tunnel). They reflect faith-

fully the manner in which the water is initially distributed by the in-

jector. Later profiles were found to be flatter and asymmetrical.

Examination of the injectors revealed asymmetrical plugging of the inner

prongs.

At this stage of experimentation, little is known as to the amounts

of water present on the tunnel walls. As such it was not possible to

calibrate the probe by flow integration. An attempt at such an integra-

tion was able to account only for a little over half of the total tunnel

flow.

A few check points were made against readings with the total impact

probe (Chapter VII ) used as a water flow measuring device. The agree -

ment may be seen to be excellent (fig. 71). This is encouraging, although

at this time too little data has been taken to lead to any definite con-

clusions.



CHAPTER VII

MEASUREMENT OF DROPLET VELOCITY AND ALTERNATE

MEASUREMENT OF LOCAL WATER FLOW

Means of measuring droplet velocity became apparent from a glance at

equation (E-1

which expresses the condition of total conversion of the water momentum

into pressure. This can be realized in the elemental probe by restrict-

ing the vent. Water fills the probe to the brim and absorbs the full

momentum of the oncoming droplets. This in turn raises the pressure of

this water to a value which will here be called the "total impact pres-

sure" P = P . The knowledge of this quantity together with that of
000 max

gas stagnation pressure and the local water rate afford the means of cal-

culating the droplet velocity.

Conversely in a stable stream where little or no relative velocity

exists between air and water, the total impact probe offers then an alter-

nate scheme for calculating either local time rates of water flow or local

water air ratio from equation (E-11)

2.0

The only design requirement of the instrument is that e 1.0.

For high temperature work a coolirg jacket can easily be provided as in

fig. 8 . The only function of the jacket is to keep the water in the

probe from boiling off.

In this investigation, a few experimental runs were made by adapting
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TOTAL
IMPACT PROBE
IN TUNNEL

Manometers should be first pressurized.

TO
MANOMETER

WATER
RESERVOIR

Water is then allowed to from

water reservoir to the probe until equilibrium is obtained.

FIG. 8 - TECHNIQUE OF TAKING TOTAL IMPACT PRESSURE MEASUREMENTS

PROBE
MOUTH COOLING WATER

FIG. 9

A TOTAL IMPACT PRESSURE FOR HIGH

TEMPERATURES

PRESSURE
TAKE OUT

COOLING
WATER

F iG. 8



probe configuration V and VIII tCL thi6 Undid s Fig. 71 shows two such

typical points. The registered value of (ww/gA) is within a few per-

cents of the data by direct sampling.

The configuration of fig. 7 was used in these tests. Pressure lines

partly filled with water must be used to avoid difficulties from surface

tension; and balanced levels as shown must be maintained. Equilibrium

must always be achieved by allowing flow from the manometers to the tun-

nel, else air will enter the probe, poisoning the entire system.

Observations during the tests showed the water surface at the probe

mouth to respond to the stream fluctuations. In large probes, some extra

friction or damping should be introduced to stabilize it. Even in its

stable position, the water surface remains at a distance of the order of

the diameter from the plane of the inlet.

A survey of the instrumentation presented thus far indicate that

three instruments in all are suitable either directly or indirectly to

record rates of water flow. They afford interesting possibilities for

mutual calibration.

-3 -
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CHAPTER VIII

MFASUREMENT OF DROPLET WATER TEMPERATURE

While the knowledge of the temperature of the water was found to be

of secondary importance in connection with the Aerothermopressor, it may

assume greater significance in other processes where, for instance, the

water-air ratio is very large, or in heat transfer studies between drop-

lets and gas, in a, stream.

Thus, while no attempt was made to develop a probe measuring water

temperature, this section is intended to expose a few ideas on the sub-

ject, together with a brief evaluation of its merits and limitations.

If one considers the instrument described in the previous chapter,

it is apparent that a small pool of droplet water forms within the probe.

The water in the pool is representative of nearly all droplet sizes since

the instrument was designed for nearly 100% collective efficiedcy, which

means that all drops, except the tiniest ones, (representing but an insig-

nificant mass fraction) find their way through the entrance.

The pool must be suitably vented, by appropriate control of the exit

area, in a manner that permits continuous renewal of the water accumula-

tion while keeping the probe full at all times. In this manner the pool

temperatures as measured by a thermocouple will be representative of the

mean droplet temperature, provided no significant heat flow occurs be-

tween the probe and its surrounding.

The heat transfer problem is a delicate one that must be thoroughly

investigated. Up to a certain gas temperature, there will exist a water

film along the outside wall, the presence of which will be effective as



an insulator. At higher temperatur-es however, it is expected that all

water deposited externally will be immediately evaporated. Remedi'es for

this situation are not however entirely lacking. Among others are the

use of porcelains, and enlargement in the probe diameter with perhaps

little loss in accuracy.

Conclusions

In Chapter I there were required five directly measured stream

properties to establish the state of the water-air mixture. Means for

measuring one extra property have been proposed in Chapter III through

VIII . It is now apparent that each proposed instrument is a close rel-

ative of the original deceleration tube. In fact, it may be said they

differ among themselves only in the size of the exit vent and in nature

of the desired reading. A further refineMent consists in combining sev-

eral of the desirable features into one unit. Thus stagnation pressure

measurements and pressure gradient measurements may easily be combined.

The feature of collecting the exit flow for sampling purposes can easily

be added without disturbing the other requirements.

-41-



LIST OF SYMBOLS

a: droplet profile area = icd2 /41 ft2

A: area

A : with probe configuratior'VII, A when referred to as "distance A" sig-
nifies the distance between the needle tip and the pressure pick-up
orifice

A: tunnel cross section area, ft?

c: sonic velocity, ft/sec.

C D drag coefficient .
meas stat

C : pressure coefficient P - stat

d: diameter of droplets

: needle diameter

D: characteristic diameter of probe or body under consideration

ID: diameter of tunnel, ft

e: local collection efficiency

F B buoyancy force

f: friction coefficient of tunnel

k: ratio of specific heats

K: ratio of probe internal velocity to free stream velocity

1: distance measured along the test tunnel

].Ia: total significant length of tunnel from section 1 to 2, ft

m: droplet mass, slugs

M: Mach Number

P: pressure

Re: Local Reynolds number

Re0

Re : - **\W 0C

R: characteristic radius of probe or body under consideration

t: time

T: temperature F . abs.

V: velocity, ft/sec



LIST OF SYMBOLS (cont.)

V': velocity as used for the potential flow around a three-dimensional
tube with zero internal velocity.

V": velocity as used for the potential flow into a two-dimensional channel.

V : component of air velocity parallel to the x-axis.

Vy : component of air velocity parallel to the y-axis.
ay

V : component of water droplet velocity parallel to the x-axis.

V : component of water droplet velocity parallel to the y-axis.
wy

V : component of water velocity along a streamline.
wS

V : air velocity at infinity.
ao

V : water droplet velocity at infinity.
wwr

w: rate of flow,, lbs/sec.

x, y: conventional rectangular coordinates.

x: distance from inlet or from forward extremity of probe, positive upstream.

y: distance measured from plane or axis of symmetry.

'ratio of the velocity of condensing water vapor to the stream velocity.

water drag term in discontinuity analysis.

z: complex variable x + iy.

Greek Symbols

a: angle between trajectory and X-axis.

P: angle between streamlines and trajectories.

5: 02/P 2t m - 1 a correction term for energy effects.

02/'stat. 2)ref

pi: dynamic viscosity.

p: density, slugs/cu ft.

Pa: air density.

p water density.

: velocity potential

stream function



LIST OF SYMBOLS (cont.)

Greek Symbols (cont.)

o: complex potential. = + ,

complex function = + il

Subscripts

a: air

av: average

atm: atmospheric

g: gas

loc: local

m: moist air

meas: measured

0: stagnation of gas phase alone.

00: stagnation of gas and liquid phases, in a reversible manner.

000: stagnation of both phases, the liquid being decelerated into the

stagnation air.

ref: reference condition in the tunnel for which no evaporation, conden-

sation or heat transfer between air, water or tunnel walls take place.

s: along a streamline

stat: static

v: vapor

w: water

x: parallel to x-direction

y: parallel to y-direction

ao : at infinity



APPENDIX A

DEFINITION OF VARIOUS PRESSURES AND DEFINITION OF DROP SIZE

A number of items used in this report call for precise definitions

in order to avoid ambiguity.

I) Pressure

In a two phase stream, there exist four significant pressure levels

that might with justification be given a name:

a) The pressure brought about by isentropic deceleration of the

gas phase alone. To this pressure and this pressure only will the

expression "Stagnation pressure" be applied, P0 .

b) If both phases are slowly decelerated to zero velocity in an

isentropic manner, the resultant pressure will be greater than

stagnation pressure. Equation (E-3 ) yields an expression for it:

(Eq. A-i) o - + eoUjo C

which is valid for compressible and nearly valid for incompressible

fluids if a mean density p is selected.

c) If the suspended phase is allowed to come to rest by irrever-

sible deceleration through a stagnant gaseous phase, itself having

been brought to rest isentropically, a still higher pressure is

produced

as derived from equation (E-11). This pressure was given the name

of total impact pressure. In this report, the term overpressure



has been applied to any pressure in excess of true stagnation.

d) The conventional stream static pressure.

2) Droplet Diameter

Water droplets as suspended in an air stream exhibit a spectrum of

sizes according to various distribution laws. It is convenient however

to speak of a given droplet diameter to represent a given batch of drops.

In this report, it is to be understood that this selected mean value is

that one diameter which produces specified equivalent dynamic effects as

the corresponding random distribution under identical conditions. To be

sure a uniform distribution of drops cannot be made to duplicate exactly

the behavior of a random one, and it is necessary to establish which dynamic

effect is the pertinent one.

All the work of this report deals with values of overpressures as meas-

ured near the entrance of the probes. It appears therefore that the init-

ial rate of overpressure rise furnishes the logical criterion.

Accordingly we may utilize equations (F-1) and either (E-5 ) or (F-4)

c -, -,, ___

and dp = -(ww/gA) d V .

If all drops are of same size

where the starred condition refers to uniform drops.

Now if a spectrum of drops is present

(Eq. A -4j) I = C , (S CLU
dx/ V caLU
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Near the probe entrance V V for all drop sizes.

a) If Re is large so that CD is constant for all drops, in order

to have (dp/dx) (dp/dx) there is required

0

(Eq. A-5) (A 9:cLoU

0

Since the ratio a/m for a drop differs from the value of surface-

volume ratio only by a constant, equation ( A-5) is tantamount as

saying that the mean size that will produce equivalent initial rates

of overpressure rise is the surface-volume mean diameter, provided

C is constant.

b) If Re is small, so that Stokes Law applies, CD a

cLO)fl j L A cLL#iL,

(Eq. A-6) W

Diameter d as obtained from this equation is the reciprocal-sur-

face mean. This is valid for the entire droplet deceleration zone

instead of the initial deceleration only since each side of equa-

tion ( A-6) is independent of V .

c) Experience shows that for orders of magnitude of velocities,

drop sizes, densities etc. as encountered in this report, C dwells
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on the knee of the CD vs Re curve, that is between the above ex-

tremes cases of constant C and the Stokes Law area. The equiv-

alent diameters are then between the surface-volume mean diameter

and the reciprocal-surface mean. The relation between these

quantities depend of course upon the particular distribution func-

tion. In practice however the various means involved are reasonably

close together.
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APPEDCIX B

GAS FLOW FIELD EXISTING NEAR THE PROBE INLET

The problem to be studied here is the determination of the physical flow

pattern near the entrance of an open-end cylindrical tube aligned with

the flow. The tube carries an internal fluid velocity equal to 5% of the

undisturbed main flow velocity. Besides the effect of size as expressed

by the diameter of the tube, it is also desired to obtain information on

the effect of the wall thickness, i.e. the tube diameter ratio.

It may be quickly recognized that the exact solution of this problem is

an impossibly complicated one. Besides satisfying the geometry of the prob-

lem, viscosity effects should be included. And since it is known that Mach

numbers up to 0.8 - 0.9 will be encountered, compressibility should be

allowed to play its part.

On the other hand it may be observed that a potential flow solution should

provide a fair approximation of the real flow. Compressibility effects are

not of excessive significance because of the three-dimensional character of

the body; and viscous effects will be pronounced only at low Reynolds num-

ber and in the vicinity of the sharp corners of the tube. Neither of

these effects are very significant in the zone immediately upstream of the

body. The effect of diameter ratio is difficult to account for. However

ID
the two extreme cases of an infinitely thin walled tube ( D = 1.0) andOD

ID*
a solid cylinder ( D = 0) can be approximated.OD

A fEw words should be said in regard to the effect of the presence of the

droplets upon the gas field just ahead of the tube. Upon crossing this

zone, the particles impart some of their momentum to the fluid. This trans-

of momentum partly appears in the form of additional fluid momentum, (cont.)
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A) Case of a thin-walled tube ( ID 1.0)

The solution for this case consists of making use of the known potential

flow solution for the flow entering a thin-walled two-dimensional channel.

Superposition of the appropriate uniform velocity reduces the internal flow

velocity to 5% of the velocity far upstream. Finally the two dimensional

case can be modified to be representative of the three dimensional axi-sym-

metrical one by matching it to the difference existing between the flows

around a cylinder and a sphere.

a) The case of a two dimensional channel can be solved with the help

of the inverse transformation

~+

from which

(Eq. B-1) + 6, SLtrl

In order to find the velocities

I + co
-I

V A, V

partly tendcs to modiry the pressure distribution. Both mOdiry the strean-

line pattern. It will be appreciated later however, that they are second

order effects. In fact, the instrumentation presented here is specifically

designed to keep them small.

Reference IO
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where the V" Symbols stand for the two-dimensional channel flow veloci-

ties. From this:

VLx +V
(Eq. B-2)

V"+ VO_

Equations (B-1 ) and ( B-2) afford means to calculate V and V at any
ax ay

point x and y. They emerge from the equations as fractions of V "in
aco

the tube which equals unity at x=-o.

b) The flow about a two-dimensional tube with an average internal vel-

ocity of 5% of the velocity at infinity may now be obtained by super-

posing upon the above obtained flow pattern a uniform velocity parallel

to the x-axis and equal to 1.05. Thus denoting the new velocities by

primed symbols.

In this flow pattern the velocity at plus infinity becomes equal to

I.~V 1 005#5

V =-l.0 and at minus infinity equal to V 5% ofV
ax ax 1.05a-o

The computed velocity field for this flow is shown on FR..36.

c) From two to three dimensions.

The rigorous conversion from two to three dimensions for this problem

is a difficult one. As far as the author is aware of no such three

dimensional case has been solved.
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We may however approximate the three-dimensional solution by modifying

the flow pattern according to the observed differences between the flow

patterns of typical two- and three- dimensional bodies, here taken as a

cylinder and a sphere. Such flow patterns can readily be obtained from

well known equations. They are shown on Fu33L

The flow around the front end of any shape body may easily be broken

into three zones. A zone of rapid deceleration directly upstream and

near the axis of symmetry. A zone of rapid reacceleration close to the

wall as the stream flows around the body towards the point of maximum

thickness. And finally, further out from the body, a zone where these

effects are much less pronounced and gradually approaching zero. By

matching zone for zone and noting the differences in velocities between

corresponding points in the two- and three-dimensional cases it is pos-

sible to approximate the flow aroubid the tube starting with the flow

around a channel. For example if for y/R = 0 and x/R = 2.0, (deceler-
V V

ation zone) ( ax) =0.750 and (ax) 0.875, the point
) V, cyl. V. sphere VI

ax
of the two-dimensional field of flow for which y/R = 0 and where ax, =

0.750 will be labeled ax 0.875, apoint of the desired three-dimen-

sional field; and so on. This method obviously is but an approximation.

However, if it is appreciated that the order of magnitude of the correction

always remains reasonably small in the significant regions, it may be

taken that the final velocity pattern cannot be very far from the theo-

retically correct solution. Fig. 38 is a two-dimensional plot of this

pattern.

References RO .
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B) Case of the solid cylinder with its axis aligned with the flow direction

(- 0)OD

In this case again, the two-dimensional flow will be solved first and then

modified from two to three dimensions. Since it is representative of the

case of a tube with a very thick wall, we shall concern ourselves with the

flow field along the center line only.

The two dimensional configuration is that of a submerged rectangle, or that

of a step in the bed of a deep stream . This geometrical configuration has

been solved with the help of the Schwarz-Christoffel Theorem. From its

solution:

(Eq. B-3) hA=T +- Coxrh'

iT

with the origin as indicated on Fig. 13

ctz d S

9- _DLTY'. FLo\^ Overy 0- t)

J _-_J

Tv-I

Reference RO.



and from

CL $
ctow

so that d C

Since the origin is

that is real values

may be written

hT vo'

TC

= W-7-

( Eq. B-4)

I V +-V

at 0, we will need to consider real values of X only,

of and V . On this basis equations ( ) and (

_x ha0 o,1o

(fk- LxL1s of

where the plus sign produces the velocity distribution along OA and the

minus sign along BC. In the plot of fig. 51a is shown the variation of

velocity along OA for the case of a two-dimensional rectangle, and its

modified form applying to the case of the center line of a solid cylinder

aligned with the flow.

F-

)

S5jvyek rj
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APPENDIXC C

MEASUREMENT OF THE GAS PRESSURE VARIATION UPSTREAM

OF AND ALONG THE AXIS OF SYMMETRY OF AN

AXI-SMETRICAL BODY

The theoretical analysis of Appendix B results in an idealized solution

of the flow pattern immediately upstream of a thin-walled tube and of a

solid cylinder, both with their axis parallel to the flow direction. A

series of attempts were made to check this calculated flow pattern against

directly measured pressure readings along the axis of symmetry. In general,

these attempts were not successful in that it was found extremely difficult

to prevent separation off the probing spike. A short summary of this work

will however here be presented.

Experimental Procedure

Probe configurations VII D, E, F were tested in an air stream without

water injection. The nose of the instrument is a physical replica of the

well known body shape identified as a three-dimensional semi-infinite body,

mathematically obtainable by superposing the incompressible potential flow

of a source on a uniform velocity field. It was proposed to record the

static pressure upstream of and along the axis of symmetry of the body by

means of a thin static pick-up spike moved along this axis of symmetry and

from there find the variation in velocity. Comparison of the known ideal

flow with measured points would give an idea of the accuracy of the method.

If satisfactory accuracy was observed, the method would be utilized simi-

larly with less well known body geometries.



-56-

It soon became apparent that some phenomenon was disturbing the flow

pattern. On the one hand it was never possible to record stagnation pres-

sure near the stagnation point, and on the other the smooth pressure vari-

ation along the stagnation streamline was consistently disturbed by a

sudden jump in pressure, as if caused by a shift from one flow pattern to

another (fig- 15 left hand plot). It is suspected that with a needle pro-

*
truding out far into the stream, flow separation occurs along the needle,

and the recorded pressure distribution cannot be said to be that of the

body in question. As the needle is made shorter, because of the resulting

thinner boundary layer, the separation point relocates itself closer to the

body. Several schemes were attempted to prevent this condition.

The needle diameter itself has little effect. It was varied from

0.035"''o 0.014"' -without, s ign if icafit 'chanige.

Relocating the pressure pick-up hole closer to the tip, from A/ = l4

to A/Q5= 2.0 (where distance A is the distance from needle extremity to

the pressure pick-up orifice, and 0 is the needle diameter) brings about

but little difference.

Tripping the boundary layer with a wire at various locations near the

tip of the needle produces no results either.

Finally the application of suction at the base of the needle causes

some improvemeht. It makes it possible to record a pressure, near to the

stagnation point, which is closer to the stagnation pressure than by any

other means. It does not however solve the problem.

The Pohlhausen criterion indicates separation to occur.
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Results

Fig. 15 presents a few pressure plots for typical runs. The left hand

curve applies to the case of a movable spike with and without suction at

the base. It is to be compared with the theoretical plot for the center line.

pressure variation in front of an axi-symmetrical semi-infinite body.

The configuration of the right hand plot is that of a movable needle

= 0.022") traveling inside a stationary slotted spike (0 . 0.05"t).

The pressures recorded are those existing within a separation zone. Clearly

these pressures far from being constant appear rather to be in conformity

with the pressure that might be anticipated from the expected curvature of

the separation zone boundary.
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APPENDIX D

DYNAMICS OF A PARTICLE IN AN INCOMPRESSIBLE

TBREE-DIMENSIONAL FLOW FIELD

The problem is to set up the dynamic equations for the motion of a

particle (herein assumed spherical in shape) in a three-dimensional flow

field.

While the flow field is a three dimensional one, two coordinates x and

y will suffice to describe the motion because of the cylinder-symmetry of

the entire system. Of the many forces acting upon the particle only two

are of significance namely the drag and the inertia forces. Of the other

* **
forces, gravity , virtual mass turn out to be of negligible consequences.

The buoyancy caused by the sharp pressure gradient becomes of importance

only for a specific range of the characteristic parameters. The magnitude

of this effect will be investigated separately . Then the equations of

motion will be of the form

(Eq. D-1l) CM (Vw - V-- -r~c~VA

or in x and y coordinate form

Reference 2- indicates gravity effects to be negligible for droplet

velocities above 60 ft./sec.

**
Virtual mass has the effect of increasing the mass of the droplet by

( + pa/Pw ) which is negligible.

See appendix G
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- xVLV
C C

+

+ a _,3

where CD, the drag coefficient is a function of the local relative Reynolds

number

o.ncL f AJ6

cos C =

Equations ( D-2 ) may be rearranged

Vw x _
-d- vC..

V )x (as
vY v.6 VO-CO

___ x (V c

VOCOcc C-) /:

vo.co vO )

* C is a function of Mach number as well, however this effect was omitted
because of lack of information on the drag coefficient of a sphere at low
Re=(.< 1000) and high subsonic Mach numbers. Drag coefficients for incom-
pressible flow as published in Reference 3 were used. Fig. 39 is a plct
thereof.
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where the right hand side of the second equation has been modified accord-

ing to the following

CLA= \/,CLL-

cL = VLAJ CL

eliminating CL t~

CL- V Y C4L&X

(Eq. D-4) CL t3AJ % j

The trajectory deflection may be calculated as

(Eq. D-5) - - n(

Equations (D-3 ) and (D-4 ) afford a solution describing the motion of a

droplet in a flow field in two coordinates. Two parameters are seen to

determine the motion, herein called the obedience parameter

because its magnitude is a measure as to how closely the droplet obeys the

signals from the flow field, and the Reynolds number Re =

The solution of the equations was carried out numerically using the method

*
of isoclines . The first equation of (D-3) was first solved with the

assumption that the trajectories are straight lines parallel to the axis

V
of symmetry. This causes the term to drop out of the equation.

aco
With this solution the second equatioa was solved graphically. From (D-5 )

then, the first approximation of the trajectories was established. All the

information obtained by this first approximation were then fed back into

the equations and a second application of the method of isoclines was then

Reference 12.



made. This produced the results shown on FL5. Jo t>b .2. These results

are valid only for initial droplet velocities equal to the stream velocity.

Fig. 4o-41-42 afford a quick means of arriving at the probe collection

efficiency as well as calculation of the percentage of the water in the probe

that has not impinged on the walls at various distances x/D within the probe.

The particular trajectory that hits the inside wall at any location x/D

can immediately be found from curves of trajectory deflection. Let it be

identified by its ( y/R ) value. The collection efficiency e (or percent

of water still in droplet form in the probe) is then e = (y/R) 2
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-APPENDIX E

MOMENTUMW RLAT IONS

I) Momentum Relation Along a Streamline

It is proposed here to derive an expression for the variation in

pressure along a streamline of a flow field traversed by water parti-

cle trajectories. The derivation will be made on a two-dimensional basis

but the results are equally applicable to a three-dimensional field with

cylinder-symmetry. The fluid is taken as incompressible.

DROPLET TRAJECTORY
STREAMLINE

Let the principle of

conservation of momen-

------- \tun for steady flow be

--- applied to the control

FIG. 14 surface shown, and along

a streamline.

+ fv,;( U-&i & Lw) (vLA..+ c-v..)

- ly L-" -w_ o -L WS--6

w W0_~
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Simplifying this and eliminating second order terms

-- cl -0 -~. rco. + pfc. W W CL WS
(Eq. E-l) WcV wo

The expression for pressure rise is seen to consist of two terms. The

first one p V dV is simply the conventional kinetic energy term of the
a a a

continuous fluid. The second term corresponds to an additional pressure

rise caused by the deceleration of the suspended water particles. It will

here be called the overpressure term. It becomes of interest to express

equation (E-1 ) for the extreme cases of very small and very large values

of the obedience parameter - d (see Appendix D for the significance

of this parameter).

1) if - is very small, the droplet trajectories are
4 w

practically straight lines. Furthermore they show but negligible changes

in velocity. Then dV = 0 and dp = - p V dV . The presence of the water
ws a a a

has no effect on the stream pressure field. This corresponds to the case

of very large droplets or a very small probe.

2) If I a is large (very small droplets, or a very large
w

body), the motion of the droplets follows the motion of the air particles

very closely. In this case

dV = dV = dV since V and V are everywhere identical,
a ws a ws

also wlwa = (w/wa)o = constant

(Eq. E-2) (

The mixture behaves as would a fluid oftdensity pa (1 + ww/wa). At the

stagnation point the pressure would be P -P - a( 1 + w'wa V 2

00~ stat a ao

for an incompressible fluid. (Eq. E-3)
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It becomes of interest to study further the case of finite size drop-

lets between the above extremes.

- cel + aVo -ILj CLVL

also wa pa A

(Eq. E-4) - dLP = ~oVc.Vo dNL + CtVJr

In this equation wy/gA is the mass rate of flow of water per unit of area

perpendicular to the streamlines. If a expresses the trajectory direction

with respect to the X-axis and P the angle between streamlines and tra-

jectories.

QR = A y =PRCos
cos C

STREAMLINES I Further V = V cos awx w

and V =V cosp

TRAJECTORIES w
so thatV = wx cos@

ws cos a

~~ .substituting all this

into ( E-4)

FIG. 15

. d -CLVL- OO L CoS 
Coso( cos

qV cL)\/o. + LL C. Lc '
(Eq. E -4a) S cos\NA0
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where e is the local collection efficiency as expressed by the divergence

ofy
of the trajectories e = - . Equation (E-4a) is useful in calculating

the variation in pressure along any streamline in a two-dimensional flow

carrying suspended particles. The equation applies also for the axi-

symmetric three-dimensional case provided e is understood as the three-

dimensional collection efficiency and w /gdy. as (w /gA) .

II) Mean Overpressures in Planes Perpendicular to the Flow Direction

While equation (E-ha) is useful in establishing the pressure at a

point, it becomes cumbersome when it is desired to find the mean pressure

in any one plane normal to the direction of flow. In the case of an open-

mouth probe facing the stream for example, one might suspect that a pres-

sure tap close to the entrance would, because of internal pressure read-

justments, record an overpressure which is better represented by the aver-

age overpressure at the plane of the inlet, rather than the local over-

pressure on the streamline immediately adjacent to the pressure tap. It

____ becomes then of usefulness
TRAJECTORY to derive an expression for

ca: the mean pressure in such

V-+ cL 0a plane. The momentum

theorem will again be ap-

UJW plied to the control vol-

ume shown.

FIG. 16
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FAR - (fg Le (A +c d R + (P + C cLF

+ c XV A ( WL)+ clIL "N (\/Ux + ctvL, -A)L W. CL. C v .v

- pa A \/V- pW X oVoAd t V + v.,R Ui.,j 
___xR - W

Where the subscript ( )av designates average values of the area A in

Fig. 16.

Simplifying now and eliminating secord order differentials

-X A) clfx LvO + V A _lv
0- G- 0 .- V a_ -V

Here again ww av VaxAp3 and

(Eq. E-5) -CLE= VP- &V +L (-ZX OcLV G

This expression is seen to be identical to equation (E-4 ) except insofar

that it uses average quantities and components of velocity parallel to

(ww/A )av
the X-axis. Again e = (w,/A av ,so that

av (ww/A)OD

(Eq. E-6) - CL = Vo.. ..CLVax + CoIv W X

Again the change in pressure is seen to be the result of superposing the

effect of the water deceleration upon the streamline pattern.

The overpressure resulting from droplet deceleration from V, to

V . in front of a probe will bew inlet
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(Eq. E -7) ovevryss = A a v 0 oo 0 x,

where e should be the integrated value of e from oo to the inlet.
av av

In practice it remains close to 1.0 and a mean value will prove satis-

factory. Likewise if all the deceleration of the droplets takes place

in stagnant air within a deceleration tube, the recorded overpressure at

any point in the tube will be

AFp(Eq. E-8) overpressure - (*) %V - VX
~~0 O /V"

Introduction of the water-air ratio of the undisturbed stream yields

AF ( )c VCOQV a-
-r ) vVLo-- V

(Eq. ) V V0,0 )

( L~vi -Eo V.o .. O

(Eq. -9 -W ooCX , IV

if V =V =V
wxe axon 4

When all droplets are completely brought to rest, the maximum pos-

sible pressure is recorded

('q. E-10)A eW Ae) a-v from Eq. E-8

As may be seen from fig. 50 this amount of overpressure is smali, too
small to markedly affect the original pressure distribution. In fact,
this effect is zero for both extreme cases of . 4-D 0 and infin-
ity. 1 P



A
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-- V0
- - from (E-9)

S9-V

(Eq. E-11) .

It is of interest to compare these results to those previously derived

for isentropic deceleration along a streamline (equation E-5 ).

A? 'L

This is one half the value of (E-11) if e = 1.0. The irreversible

process produces the greater pressure rise because the local water air

ratio during deceleration increases as the air slows down.

It may here be pointed out that the above equations are equally

valid for compressible and incompressible fluids while in the differential

form. The integrated equations will be equally rigorous for the compres-

sible cases if care is taken to make use of the correct values for the

dynamic pressure of the gas.
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APPENDIX F

MECHANICS OF DROPLET MOTION WITHIN THE PROBE

AND RATE OF OVERPRESSURE RISE

Following entrance into the probe, through the complex three-dimen-

sional flow near the inlet, the droplets very quickly find themselves in

a zone of comparatively stationary air, with mean velocity less than 5o

of the free stream velocity. Because of the radial velocity component

imparted the droplets near the entrance, some will impinge upon the walls,

others will gradually be decelerated down to the gas velocity.

For this latter case, the rate of deceleration can readily be calcu-

lated from the equations of motion. For convenience the gas phase within

the probe will first be assumed to have no velocity.

(Eq. F-1) C-1> aN 'q 'a X _

(Eq. F-2) CX - 9 - W__

Q..VLA cl
Since pa' a, d are constant and Re =

ce-

Then

'FuI LR~
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(Eq-F-3) -

The value of the integral is a function of Reynolds number only. Equation

(F-3) is plotted on figure 54 for the case of a spherical particle. From

it, values of droplet velocity vs. distance traveled can readily be obtained

for any initial conditions and values of parameters. The quantity x denotes

the distance traveled along which the change in droplet velocity produces

a change in Reynolds Number from Reinitial to Re; it is reckoned from the

point where Re = 0.

Since in several of the instruments under study, there exists a small

gas velocity of magnitude KV within the probe, a similar analysis may

be set up for this case.

LV cL y v 2 1-(& - W Z

Bu (vL" ci-QL

0 -

and if V =V ,= Re.woo ao



then, neglecting variations in viscosity

recknedfro thepoitwere R -= -1000 anR er valu canb akna

Cee- 4- VC Reoo

>+

For specific values of K Re~ pD P/Pac this integral is a function of Re

only. The variation of the distance parameter eu Lis illustrated on

fig. 55. It must be kept in mind that even though $l-'- in fig. 55, is

reckoned from the point where Re =1000, any lower value can be taken as

initial Reynolds number. It is not possible however to carry Re down to

Re = K Rec pa1 a a This is apparent from the fact that it takes infin-

ite time for the droplet velocity to become equal to stream velocity and

that, in that time, the droplet moves at a velocity at least equal to the

air velocity.

Accompanying the droplet deceleration within the probe, there exists

a resultant pressure gradient, the magnitude of which can be expressed

mathematically according to the methods of Appendix E Allowance will

also be made for mass transfer and loss of momentum by impacts against the

walls of the tube.

d-= (VL4±c+tLA,

+ CL /L.VV
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for a control volume with boundaries just inside of the tube wall and with

gas velocities equal at entrance and exit.

F &LULAJ ~

# 11

VU-)IVL.) + cLVL

v v---c--v--vX\ N

FIG. 17 (Eq. F-5)

Then:

5 9

+ VW3

CL - w CV

Thus the variation in overpressure may be calculated if the loss in velocity

V and the instantaneous mass rate of water flow in suspension, w /g A, is
ww w

known.

The variation in velocity can be had from the equations of motion for

a drop (equation F-2 ) . Then

ct = +o - - C

C3A wO cL

(Eq. F-6)

(Eq. F-7)

cL? - LUWCV 3 V
1Cc

I c L f I C o D )L .
-d ('I \ W L o"' \ VI O'\-JI\S A /co

To be exact, the fact that the air velocity within the probe is not zero

should be allowed for. This effect has here been neglected.

**
Note further that equation (F-6) may also be written in the form

intdre I 3c t ratio

in terms of the local water-air ratio.

I L)-) - cLLu ,
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S d2 3 'D, Voj

(Eq. F-- repeat) ".> W (~ Ec V

Some clarification needs to be given concerning the significance of some

of the terms in this equation. All terms on the right hand side are taken

CL2as average quantities in the plane where is measured. This plane
cgX/-D)

is a plane perpendicular to the probe axis, located near the probe inlet

and so chosen that the slope may be conveniently read from

measured data.

The parameter (.. - ) is a constant which should be calculated

on the basis of the air density within the probe, or stagnation density

pa 0. It is important that the correct density be used here inasmuch as

any error in density will be reflected as an equivalent error in drop size.

This parameter will be called 0-

The drag coefficient C is a function of Reynolds number Re = Re aL

We shall define here Re Re O
0 CO -PC

The values of e and V /V can be, obtained very closely from figures

43 to 45 and fig. 49, since for a practical probe, designed to measure drop

sizes, e and Vw/Vwoo will be selected close to 1.0. As such it becomes

permissible as a good approximation to calculate these quantities on the

assumptions that . ,D P (-D ) and Re = Re.

CL W~ C 1* 00

*
Reference Is contains a more elaborate form of equation (F-7 ) in which

normal distributionsof droplets sizes are taken into account.

Again neglecting air velocities.
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On this basis, the left hand term of equation (F-7 ) can be expressed

entirely as a function of Re and (). It is plotted on fig.

51 . With the help of these curves and from empirically measured values

of slope , (w/Ag) and V , the droplet size d can be computed by
CLx/D 'o

matching the Reynolds nunber and at the given value of

LI C

This has been done for a value of x/D = - 0.50 only since at that distance
the three-dimensional entrance effects have pretty well died down. For
larger negative values of x/D use of fig. $S should be made to establish
the droplet behavior within the probe.



APPEND IX G

RELATIVE ORDER OF MAGNITUDE OF BUOYANCY EFFECTS

ACTING UPON A DROPLET MMIEDIATELY BEFORE IMPINGEME1NT

It is the object of this section to investigate the relative order cf

magnitude of the buoyancy forces acting upon a droplet as it crosses the

three-dimensional flow field ahead of a body, as compared to the viscous

drag forces acting upon the same droplet.

As will be seen from the results of this analysis, the zone of rela-

tively large buoyancy forces is confined to large values of the ratio d/D.

This corresponds to a condition of nearly straight trajectories and for

this reason, the assumption of straight trajectories with V = V will

be used in this analysis. Further, for the sake of mathematical simplicity,

a simple flow field will be selected: that existing along the stagnation

streamline of a sphere placed in a stream uniform at infinity. Then,

= 1 - R = 1 - 3 along the center line The buoy-
VaC0 (X+R.-) 3 (X/g;:-+ _)

ancy force on a droplet, created by a pressure field

dS yr O x
1_Cd5 36( V C)

Reference RO.

(Eq. G-1)

-75-
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after introducing Euler's equation and normalizing the expression.

From ( G-1 )

so that

(Eq. G-2) F
I.C

wcL V R0 /) - ]

Now the drag force upon the droplet

Drag = C ( Vx - Va-x

where CD= f(iRe cL (ic.(VJx -Vox

and V remains close to V

Then

Drag =

(Eq. G-3) C Vcox

The ratio FB/Drag is now

(Eq. G-4) FB/Drag = C4 ± [X +i1 -

This ratio is zero at x/R = 0. That it is also zero at x/R = co can be seen by

substituting Stokes Law for CD since this law applies there.

rTCV

7b ( Vo. IVCJj 
_

%- /%V . TTCO
VqeCO - o ~
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F /Drag =

But 1 - V /Va

'-

tI I - VO)[() )

X +-jI

and

F /Drag = Vw I
B 2. + (~+~yi]

as x/R -p o , FB/Drag ---- 0.

Therefore the function F /Drag must go through a maximum somewhere between
B

x/R = 0 and infinity. An estimate of the maximum value may be obtained by

substitution of an approximate expression for C as a function of Re.
D

A

well known expression is

o.ra
+ + O-197 Fee + 2.6 xIO e

For ranges below Re = 1000 the simplerform

(Eq. G-6)CD = 3.8
N4

*
is however satisfactory.

This becomes

C,, = 4-
F?(i-. \/LX)

____ ___ 3 L

~Cc~V 0-)0

I )

*
See Fig, 59 for the validity of this expression.

I]

(Eq. G-5) C'o -- ,C =

+
4

+

I
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Then

FB

Drag
oLF R- + ) - 1+

3 4, +

X/(X/ + ) - X (NF+ 1
(Eq. G-7)

Attempting to maximize this expression by rigorous methods becomes rapidly

cumbersome. Its variation however can be ascertained by substitution of

values. Thus for three values of Reynolds Number, the maxima of F B/Drag

are as following:

For Re. = 1000

F

Drag max.

For Re, = 300

F( B )
Drag max.

For Re., = 100

= 37 d/D at x/R '-' 4.0

= 16 d/D at x/R 'y 2.2

FB = 7.2 d/D at x/R '1.6
Drag max.

For the case of water droplets in air, - = 1 , then the following
6 m toco

table of ( F B/Drag ) can be set up for the selected values of the Rey-

nolds number and the obedience parameter 34 -

Re = 100 Re = 300 Re = 1000

2L PO 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

D/cL 10 30 100 10 30 100 10 30 100

0.72 0.24 0.072 1.6 0.53 0.16 3.7 1.2 0.37
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It is apparent from this table that buoyancy forces become very significant

at low values of O. and large Re. In fact, in these ranges of

the parameters, the data of fig. 40 to 48 must be considered inaccurate.

Fortunately however these areas are the ones for which the effects of the

air streamline curvature upon droplet trajectories and velocities are com-

pletely negligible.
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APPENDIX H

THE NECESSARY CONDITION FOR CONSTANT MACH NUMBER

IN THE TUNNEL TEST PLANE

It will be recalled that the comparative calibration of the various

stagnation pressure probe configurations of Chapter IV , calls for sub-

jecting all instruments to identical Mach Numbers. Inasmuch as the total

test running time involved covered a period of several months, it becomes

of importance to establish what tunnel flow conditions will produce the

desired Mach Number for varying conditions of tunnel inlet pressure and

temperature (atmospheric). It will be shown here that:

1. A fixed Mach number at section 2 will follow, it the ratio

P stat 2 /atm is kept a constant and the water-air ratio is kept

the same.

2. The error introduced by holding a constant water flow ( as

was found most practical ) instead of a constant water-air ratio

is an unconsequential one.

1. In proving the first statement, there will be excluded all energy

effects such as condensation, evaporation and heat transfer. These effects

are extraneous. Corrections for them are developed in Appendix J and K

Making use of the conventional influence coefficients

I Ct~I
W.

Reference ZA .
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For zero mass transfer between the liquid and gaseous phase dw = 0. Fur-

ther it will be shown that

3

Then

(Eq. H-1)

Also

d -L
o a

Ca~e)

wa-

L7'R v0- T

W, CL V-
#1E~aj

or L-fS h CL--

F2o 1

and

cLf~ _ ~~j ~r)
WWCL(VW4J

Integrating between section 1 (inlet throat) and section 2

. U W RQen Pm _- _ __ NqL(e)
Sol

0

But P01 atm.

-t E

4e +

W*a> 3I? V(Eq. H-2)

*
Appendix J , Part II

R~T~'k
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Where M and T are appropriate average quantities between sections 1 and

2. , For convenience we will make

1 ~ - T t2.
9z

Then (H1-2 ) becomes

[~~~~~~ Mc~.t 2.r~ik -n

LCC

ev-1- -I - cL(ei)

(Eq. H-3)

-

In this equation T and T2 may be related by means of the First Law.

h + VO
3k

- I - Y a . I L A . a

L :P -T -3 -

I7 I V
leI--9kp

i + H +1~ M I+ WLJ

le -I Wk-1 9- 1- ( -0

+ H L4
f?-- I LJ -

(Eq. H-4)

7- +
72-

- P T,
IP- - I

-5L A- VI + UjW
19-1 P 3 tz W 0-

~TI { I + ----
~ ix \ k -I 9.
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Thus T /T2 = function (Mi, M2 , and w /wa). Substitution of ( H-4 )

into equation ( H-3 ) shows that for a given value of Pstat 2/patm and a

given value of w /w , the equation is a function of Mach number only. This
y a

implies a unique solution and therefore a unique value for M2. This proves

that M2 is a function of Pstat 2 1 atm and w /wa only.

2. In order to demonstrate the validity of the second above statement, the

error involved in keeping w constant instead of w w/wa constant will be

calculated. Consider the two cases where (Patm r at ; they re-

sult in (ww/wa)ref (w/w a)b

Subracin aref sipiyn ab nApni

( GLYXb
26D± -

Subtracting and simplifying as in Appendix J

- = J_ b a e-f - d
/Ja10 M

+ 0 C

RkL 0 f 2e i
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Here the two wall friction terms may be treated as in Appendix J . The

result takes the form

2-
\~ r2 - d . e;

Now t 3 = ' V

and the right hand member may be written

2.
Sd lref -

- Vb7
Wo re b

3 WIC L

-' L.MA C' 2 1.

M refp-. 2 b(Eq. H-6)

Since ww ref ww b

Vw ref = Vw b 1 = 0

and C ref 2 'zi Cb 2

If P is taken as

2.

atm + P2
2

, equation ( H-6) becomes

-f .ea-re

Mbt 
0-V

C HNret 9-7. M6b-. ,

I 4.- .-. a 1fe , M re , Re-kw,LUo- ],
since

-E 11 - J?%

(Eq. H-5)

d X6
'213



This may now be substituted back into equation ( H-5 )

Cs.NnCL
I+4C1~e(Eq. H-7) .L o

If now, use is made of equation ( J-3 )

I

the value of 8 m.y be calculated for typical variations in barometric pres-

sure knowing that = 0.45

and taking w 6g = 0.15 which is a typical value

M 2rf 0.707M2 ref'

P2/Patm 7

C2 = 1000 ft/sec

for a 5% fluctuation in barometric pressures, i.e. Patm ref "atm b = 1.05,

equations ( H-7 ) and ( J-3 ) reduce to

20. 35~ S = I - LOs. N2b

Solution of this pair- of equations yields

M2 b/M2 ref= 0.996

8 = - 0.00230

A survey of test data shows a maximum barometric pressure fluctuation from

30.500 Hg. to 29.7 Hg. or + 1.25%. Thus the maximum variation in 5

will be + 0.0006. This is a very small quantity.

(Eq. H-8)

M 2, Te

M b_ e

U , ( I - -! Z- 2- 1 -S' -= - ? H mrq- ) (T 'f ef

i - M 6.,-
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APPENDIX J

CORRECTION OF EXPERIMENTAL STAGNATION PRESSURE DATA

FOR ENERGY EFFECTS

As atmospheric air is accelerated by expansion through a duct to a

lower pressure, the energy effects due to the presence of normal atmos-

pheric humidity cause the gas behavior to deviate appreciably from the

ideal. These effects are noticeable from day to day with carefully con-

trolled testing and become intolerably large on humid summer days. In winter-

time, they are quite small inasmuch as room temperatures are considerably

higher than outside air temperatures. With water injected into the stream

and finely atomized, additional energy effects occur in the form of heat

exchanges between air and water.

There will be derived here theoretical expressions to correct for these

effects. In order to fully realize the significance of these corrections,

it must be kept in mind that the test procedure consists of holding at the

mouth of the test instrument a fixed value of Pstat. 2 atm. on several

test runs. For a fixed geometry and a perfect gas, there will result at

that point a fixed value of p02/stat. 2 i. e. a fixed M2 which is the

desired testing condition. Because of energy effects however the duplicity

of PO2 /stat. 2 is not realized. The order of magnitude of this devi-

ation will here be calculated.

I) Case of no water injection.

Making use of the conventional influence coefficients

Reference 24.
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CL*C
-k '-Fok;L -

since = 1.0

(Eq. J-1)
CLP

c To
kM 2

a %Fa cl)

Let the subscript "ret" denote the reference dry air condition and "m" the

moist condition.

Integrating ( J-1) between the atmosphere and the test plane (section 2)

for dry air

-e-L 2 o

Lz

and for the moist condition

nn ( oZ -
L/M

d, m d
VVA

f 
ID

0
S 

A

Subtracting

-ro~--en

P O- C A eSin is close to 1.0
( eo 0/-. O-fv , ) ,

( o 2/Poc') m _
PO A-v -t r~~V\

and since in the experiments 2
0 o- 'vw.Y'

(N- C" Mr ~'-.\

LA)

-

d-LO 5
Lu, ) -

ce

(fa 
r e
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Then, by using average Mach numbers M

(Eq. J-la) 5 - -- ----- M -M
-F-;

Ai re.± +-

r1 - M)

where subscript 1 refers to the plane of nozzle throat at the tunnel inlet.

In this expression we wish to relate M2 and PO2 /stat. 2 Using the

isentropic relations

) ~
z ? -: .

-I-..

M +

since is small compared to 1.0

+ Mt1.reI

4- M e -

k- I

using the binomial series a second time

Here

FN- -- 7

(Eq. J-2)

MIVVN + 2.M

119~- t2y

2D,-

k QL '- ( 
(

+ T;Lysl

M9,

-1D

§ r M A 
L

8 9, re
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/-e.taQ) r-

-I-

2.

0 0 09 -

leaving out all powers of M2 greater than fourth

or

9- ) -k

.~ x t+.2

2I( zM - K 9
9. refJ

I.

after letting re + -

combining this with (J-la) and (J-2 )

o cL.

4

8 + M
9 rc

+ IL

(Eq. J-3)

Now

[I( -e - Mt
L MVY

(Eq. J-4)

)
- re

To

VV., kw

CLT 0

+ ,- 2 \ - e 2

2.
M2-

k. 2- ML z

rc - re +

M M2- M 2-, r e.,

4- k

2-V'A 
)i
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Equation ( J-4 ) may be used to compute the value of the correction between

two runs with different humidities. In practice M and M can berefi1 ml1

calculated from pressure data assuming isentropic relations. This assump-

tion is justified on the basis of a rapid expansion in the nozzle causing

a temporary state of supersaturation. From experimental data it turns out

that the second term of the right hand member is negligible compared to

the first term. Therefore

To2.L

(Eq. J-5) ( + 4- = - 3-d h
=>)2(t- 2 M-r 0, I L

The right hand member must be computed from the initial conditions.

Appendix K covers the underlying theory. Equation ( J-5) is plotted on

Fig. 69 for typical air flow rates.

II) Case with water injection.

Introducing the water drag term into equation (J-1 )

sLRo I& 1 dtTo H d(e) dt X(Eq. J-6) - f : r . 1 __ - -Y 2_

in which it is assumed that all mass transfer between gas and water takes

place at = 1.0.

If the same process as above in part I is here carried out, there results

an equation similar to (J-4) but with the water drag terms in addition.

To o
(Eq. J-7) -2

+ I " - *. see next page
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(cont'd)

CE _ XM______e ctoref i9.5jA r

In this equation we wish to express the water drag terms in a more conven-

ient form. This drag term is equal to the change in momentum of the water.

(Eq. J-8) -ct dV

Then, substituting and integrating

Water drag terms = -

3 rel

X r 2..

aC 3Cr

where the p are mean pressures.

Now wm = Ww ref as carried out in the experiments and V l w ref l' 0

since the injection water velocity is negligibly small.

For simplicity we will assume P stat. ref P stat. m This assumption

is justified for similar atmospheric pressures, since then Patat. ref 2 P stat.m2.

The effect of variation in barometric pressure will be investigated in

Appendix H .
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Now

Drag term =

At section 2

Drag term =

cref 2

£S,

V =Va w

Uuj Ci-
wRse c9.

( Vwre )

( 11

- v W )

- H~)

S-m 2

-9Drag term =

(Eq. J-9)

(
L .

H~ef-
1-

(

Combining (J-9 ) and (J-3 ) into (J-6 )

z>)

2- k DV-

(l- H h p\
+4 .P CL

2?-~~t-e(2.

= , . . . (over )

) cl~Te

N ( - HV,

26 2

619+

U

2.

oJ cV
re 2.

-L-

-+ D

(Eq. J-10)

A4 I L
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(coy cV ) 2

-I ? -L

In (J-10), it again turns ou$ that the last term is negligibly smail so

that, the final expression is

+ Me + 2) 1U]

(E g. J -1)re

Fig. 70 illustrates the magnitude of the correction ( OL/f S

for flow rates corresponding to those used in tests.

It must be born in mind that the above correction term 6 was evaluated on

a one-dinensional analysis of the flow in the tunnel. No doubt the three-

dimensional effects associated with the tunnel boundary layer are of sig-

nificance. Comparison of test runs with air only but various degrees of

atmospheric humidity reveals that equation (J-11) somewhat undercorrects

for the energy effects. This is apparent from fig. 56 which shows that

runs made under humid days still exhibit the greatest calibration errors

even after corrections. This is understandable since the instruments were

centrally located in the tunnel where the Mach number is appreciably greater

than the mean Mach number for the section. Furthermore complete thermody-

namic equilibrium along the duct was assumed in the analysis. If conden-

sation is delayed by supersaturation (but still takes place ) the terma

S( d'-o will be larger than calculated. On the other hand
M iT>
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if thermodynamic equilibrium is not realized in the duct, the calculated

value of the iztegral would be too large.
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APPENDEDC K

ENERGY EFFECTS

The calculation of the coprrection term 6 in Appendix J involves an

C 2 CL~T
evaluation of the integral Mj - along the tunnel. The stag-

nation temperature changes as a result of evaporation and condensation

effects as well as heat transfer from air to water. The value of the

above integr.l can be calculated through application of the first Law of

Thermodynamics and from a knowledge of the pressure variation along the

duct, if it is assumed that complete thermodynamic equilibrium exists at

each sectiorn of the tunnel, The First Law then yields:

+ Vo.M h + W

LI- V ,V_+4 + L 4- ) V2.

For given initial conditions for atmospheric temperature and humidity,

amounts and temperature of injection water, it is possible to relate T2

and V for various values of Pstat 2 at This has been done on fig.

64 for the case of "no water injection"; and on fig. 65 to 68 with water

injection. These curves are perfectly general and entail only the re-

striction of negligible initial water velocity and equilibrium conditions

throughout.

In order to be able to apply these data to the given tunnel it is

necessary to know the variation of pressure with Mach Number along the

duct. The conventional Fanrio line plot is presented on Fig.6). For the
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purpose of estimating corrections for energy effects, pressure variations

judiciously read from this plot are sufficiently accurate. Even with water

injection, the plot is useful if one replaces the effect of water drag by

an equivalent additional length of duct. In all cases the pressure-Mach

number relationship can be read approximately by following a line of con-

stant initial Mach number. Combining this relationship with the data of

figure 64 to 68, the variation of T with Mach number is known. Then
ToL

M M * can be evaluated.

To.*,,
Several test points may be seen to represent condition 2 on the Fanno

line plot of fig. 65. These points were located with coordinates M and

P stat. 2P .atm Taken together they show the value of for the

duct to be approximately 0.45*. This number was used in equations (J-5 )

and (J-11) to compute the value of the correction coefficients 6.

Note the decrease in with Reynolds Number.



APPENDIX L

TUNNEL AND TUNNEL CHARACTERISTICS

It is not intended in this report to give a detailed description of

the test set -up used in conjunction with this instrumentation program.

Elaborate description of this apparatus will be found in Reference 5~

On the other hand the characteristics of the tunnel will be described at

length inasmuch as they have some effect upon the measurements taken and

frequently offered serious limitations to testing procedures.

Very basically the tunnel consists of a 72 inch long constant area

transparent lucite duct with an internal diameter of 2 1/8 The duct

opens to the atmosphere through a rounded air nozzle or bellmouth at the

inlet end. It discharges at the other end into a 60 conical transparent

diffuser which in turn leads to a surge tank. The surge tank is evacu-

ated by a steam ejector, thus pulling atmospheric air through the duct

up to a rate of about 1 lb/sec. The maximum tunnel inlet Mach number is

about 0.58 under which flow condition the tunnel becomes chocked at the

inlet of the diffuser and a shock appears about 5 inches downstream of

the plane of the diffuser inlet. The test plane where all data was taken

(section 2) is located four inches upstream of the diffuser inlet. Aver-

age duct Mach numbers of 0.8 - 0.85 are attainable there.

A water injection system, with parallel downstream injection is in-

stalled near the tunnel inlet. All the work was done with a 13 prong

injector nozzle (6 tubes on a 1 1/4 Diameter circle, 6 on a 5/8 eircle

*
Injector No. 6 in reference 2Eo



-97-

and are centrally located, with each tube made out of 0.072 OD - 0.054

ID hypodermic tubing). The plane of injection was held at 4 1/2 inches

downstream of the bellmouth throat. A maximum water flow rate of 0.350

lbs/sec is possible. The highest possible atomization Mach Number depends

upon the water rate but is of the order of 0.55 - 0.60.

Installed instrumentation consisted of closely spaced wall statics

along the tunnel and a rotameter for measurement of water flow. Addit-

ional instrumentation was provided as required by the - specific experiment.

Limitations of Tunnel

As may easily be visualized, but little flexibility is incorporated

in this tunnel. Independent variation of one variable only is not feas-

ible. The performance of the atomizer is tied both to the tunnel Mach

Number and the amount of water injected.

A serious limitation is present in the form of water back flow along

the underside of the diffuser. This condition is present at the higher

water-air ratios and is aggravated by the presence of a probe in the test

plane. It takes the form of successive waves traveling back from diffuser

exit to diffuser inlet at a rate of about one every 3 to 5 seconds. Each

wave is accompanied by a pressure fluctuation of 5 to 10 cm Hg in the

entire tunnel.

Fig. 73 presents typical air velocity profiles in the duct. As anti-

cipated a more pointed profile is characteristic of the lower flow rates

and a flatter profile of the higher flow rates. Injection of water causes

a caving in of the profile, because of the drag associated with the accel-

eration of the water near the center of the duct where the water concen-

tration is highest. While it is not the object of this discussion to
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elaborate on this behavior per se, it should be pointed out that only for

certain flow conditions is the velocity constant near the center of the

duct. Thus for example a probe with a diameter of 0.350" (corresponding"

to~D/g = 0.165) would be subjected to a velocity gradient for most of

the flow profiles of fig. 73 and therefore record a different reading

than a smaller probe. It therefore becomes necessary to restrict one-

self to flow conditions for which a flat profile prevails near the cen-

ter. This eliminates very high water-air ratios at low Mach Numbers.

The nature of the distribution of the water across the tunnel flow

area has been discussed at length in Chapter VI . Clearly it is a prob-

lem of first order magnitude. It is fortunate however that the calibra-

tion of the stagnation pressure probe was influenced by it only insofar

as the water distribution affects the air velocity profile. This is a

second order effect. In the measurement of drop sizes by the pressure

gradient method however it is present as a first order effect.

Tunnel Bellmouth Calibration

Fig. 72 shows the results of a calibration of the tunnel inlet nozzle

with the water injector in place. The exact location of the injector is

as described earlier in this Appendix; the injector body is downstream

of the nozzle but its support (a 5/8" tube) enters the bellmouth along

its center line. Calibration was done by making traverses of the flow

in the tunnel running dry. The integrated flow is then compared to the

ideal isentropic flow through the nozzle, the ratio of the two being equal

to the flow coefficient.
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INDEX TO GRAPHS

THEIR SIGNIFICANCE, APPLICATIONS AND LIMITATIONS

Fig. 25-30 Drawings of test probes.

Fig. 31-33 Photographs of test probes.

Fig. 34 Drawing of traversing mechanism.

Fig. 35 Photograph of traversing mechanism.

Fig. 36 x- and y-components of velocity for incompressible-irrotational

flow of fluid originally at rest and into the inlet of a two-dimen-

sional channel with infinitely thin walls and with a mean channel

velocity of 1.0.

Fig. 37 x- and y-components of velocity for incompressible-irrotational

flow around a sphere and around a cylinder in a uniform stream with

stream direation parallel to the cylinder axis of symmetry.

Fig. 38 x- and y-components of velocity for incompressible-irrotational

flow around the inlet of a three-dimensional axi-symmetric cylindri-

cal tube with axis parallel to the unifrom stream velocity far up-

stream. The tube has an infinitely thin wall (ID/OD = 1.0 ). Its

average internal velocity is 5% of the stream velocity far upstream.

Fig. 39 Drag coefficient for a sphere in an incompressible fluid for

Re < 1000. Also plot of an approximate equation for this curve.

Fig. 40-48 These curves describe the motion of spherical particles

(diameter d) as they traverse the flow field of fig. 38 and enters

a short distance x into the tube of diameter D. The individual

trajectories are identified by their ordinates far upstream, (y/R)

The properties of the particle and of the stream (pa' w pW 2 are
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assumed constant and equal to p an' p and . Far upstream the
woo W

particle velocity equals the stream velocity (V = V ). The dot-
aoo woo

ted line labeled y/R = 1.0 represents the tube wall.

Fig. 40-42 give the amounts by which the trajectories are defl-

ected from their original ordinate Thus y/R = (y/R) +L (y/R)

at given value of x/D.

Fig. 43-45 give the fractional loss of the x-componeht of vel-

ocity for each trajectory.

Fig. 46-48 give the acquired y-component of velocity for each

trajectory.

All these data are the results of a graphical colution of the dif-

ferential equations ( D-3). It is felt that the accuracy of this

method is of the order of + 5% of the computed changes [ velocity,

as A (V,/V ); or distances, as L (y/R )c. Under these conditions

it is likely that some of the curviness present in the above mentioned

figures is at least partly attributable to the method of solution.

Fig. 49 This figure presents the theoretical water captured by a thin-

walled tube, as well as means for calculating the rate of water

deposition upon the inner wall for a short distance into the tube.

This plot directly follows from the information of fig. 40-42. The

symbol e as used really represents an average value of e over the

cross section, eav.

Fig. 50 The overpressures plotted are theoretical and based on the losses

in velocity of fig. 43-45 integrated over the probe entrance area.

They are a measure of the discrepancies in pressures existing in the

plane of the probe inlet as caused by the presence of the water.



-103-

Fig. 51 This plot is to be used for calculation of droplet sizes from

experimentally obtained pressure gradients within the probes. The

slopes must be measured at a distance x = D/2 from the inlet. Knowl-

edge of the initial droplet velocity, rate of water flow in airstream,

and air density within the probe is necessary. For the given

L dP , the obtained value of d must satisfy both Re andW/g oL2L Vo 0

Fig. 51a, 52, 53 present the same information as figures 36, 38, 43-45

and 50 except that they apply to a solid cylinder with axis parallel

to the flow direction (thick-walled probes) and that they limit them-

selves to the events occurring along the cylinder center line.

Fig. 54-55 affords means of computing the changes in droplet velocity

versus distance within a probe for stagnant air and for very low

velocity air. This information is useful if it is desired to extend

the droplet trajectories to a greater distance within the probe (for

x/D , -0.5 the air flow field is essentially uniform).

Fig. 56-57 express the performances of the various probes in a stream of

air only; without water injection. Fig. 56 is calibration data show-

ing the deviation of the probe readings from a reference pitot tube

readings. Both raw data and points corrected for humidity are shown

for comparison. Fig. 57 pictures the variation in pressure recorded

by the various pick-ups located along the deceleration tube.

Fig. 58-61 Are typical runs made with water injection. From these data

the pressure at the probe mouth was obtained by extrapolation. Also

from these data were taken the pressure gradients used in the calcu-

lation of droplet sizes. All light points are raw data. At 4 = 0
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however, comparison of points M and N indicate orders of magnitude

of corrections.

Fig. 62 This figure shows a comparison between the experimental and

theoretical data of the effects of probe size and diameter ratio

upon the readings recorded by a pressure tap theoretically located

at the mouth of the probe. The experimental points were obtained

from fig. 58-61 after correction for calibration error (fig. 56) and

energy effects in the air stream. The theoretical curves were com-

puted from fig. 50 for the range of droplet sizes measured from the

slopes of fig. 58-61.

Fig. 63 Is a theoretical plot of the one-dimensional variation in pres-

sure and Mach number along the tunnel. A few test points are shown

to locate section 2 (test area).

Fig. 64-68 If atmospheric air (with and without the presence of water

droplet$ ) is accelerated under assumed conditions of complete ther-

mal equilibrium, condensation effects and heat interchanges between

air and water will take place. Changes in stream stagnation temper-

ature express a measure of these effects. These changes can be read

for fig. 64 for no water injection and from 65 to 68 for two water

injection temperatures and rates of flow. These curves are valid

for complete thermal equilibrium only. They are otherwise of a per-

fectly gneral nature and are not in any way tied to the tunnel

characteristics.

Fig. 69-70 These apply to those specific tunnel flow conditions for

which probe calibration data were taken. They are the result of

applying the corresponding pressure variation in the tunnel ( as

read from fig. 63) to the general data of fig. 64-68. Variations
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in stagnation temperatures were then converted into correction fac-

tors via equations (J-5 ) and (J-11).

Fig. 71 Pictures the results of measurements of local water flows in the

tunnel by three separate methods: 1. The slope-gradient method for

which the droplet size must be known. 2. The direct sampling tech-

nique. 3. The total inpact pressure method.

Fig. 72-73 Give a picture of some of the characteristics of the tunnel

in regard to air velocity profiles with and without water and to

nozzle calibration data.



F-

___ __ Fq Q~5

a 255 - --

SILVER SOLDERED
BUTT-JOINT WITH LEADS

No. 30 GAUGE
HYPODEMI TUBING

0.012 0.D.
0.057 I.D.

HEAD OF

0.213

'-No. 25 GAUGE
HYPODERMIC TUBING

0.020 0.D.
00.10 I.D.

0.020 DIA. PROBE CONFIGURATION (I)

AIRFLOW

0oo2Z

SILVER SOLDERED
BUTT-JOINT WIH
LEADS COMING
IN AT4* 

No. 20 GAUGE
HYPODHRIA'LC TUBING

.U .T5:.
0.023 I.D.

TUBING SPUN DOWN
TO 0.011 I.D.

TO FORM EXIT VENT

'A1

HEADOF 0 0351 DIA. PROBE- CONFIGURATION (II)

-CMN C EMENT -:
FILU FILLER CONFIGURATION (IIB)------- COiIG. (IIA)

FRONT E D OF 0.035" PROBE FRONT END OF 0.035" PROBE
COVERED WITH 0.109" JACKET COVERIED WITH 0.245" JACKET

AT 90*



0-Rso
o.so
O.0so

SILVER
SOLDERED
1UTT-JOINT s
WITH LEADS
COMING IN AT 45*

No. 20 RAUG
HYPODERMIC TUBI

0.035 0.D. & 0.02

KeL , 26

HEAD OF

8 0*109" DIA.
PR OBE

AIRFLOW

CONFIG. (III

No.12 GAUGE TUBING SPUN
HYPOD. TUBING TO 0.020" I.D.
0.109 0.D. TO FORM EXIT
0.085 I.D. VENT.

_ _VNR ADJUSTM.

E -OBTAINED BY

NG AINSERTED TAPE-

3 I.D. "r ecc-r RED WIRE.

LETcprH I V4

CEMENT o.0O0O
_ILLER -o-o0

CONFIG.(I1 IA)

FRONT END OF 0.10V"

PROBE C OVERED WI TH 0. 2 4 b" JAC KET

SILVER
SOLDERED
JOIT IfTH
LEADS AT 90*

AIRFLOW

= -

READ INTERCHANGEABLE COUPLING
EXTT VENT. MEMBER
VET ORIICE

0.028 DIA. DISASSEMBLED 0.177" PROBE

No..20 GAUGE
HYF. TUBINGTO
0.035 O.D. -
0.023 I.D. -

CONFIG. (IV)

HEAD 0O' ASITLED ~1 COVERED WITH 0.2451, JACKET

I - :p -

-rr- rr-ly-

I



rF
o.48

O.73-
o- -s

0o1s7 F 
-1 '

-.--

INTERCHANGEABLE COUPLING

SILVER EXIT VENT. MEMBER
SOLDERED V TUORIAE
JOINTS WITH 6.035'' DIA.

LEADS AT 9O" l

No. 20 GAUGE DISASSEMBLED
HYPOD. TUBING -----
0.0 35" U.D. 0.245" PROBE
0.023" I.D. AIRFLOW

HEAD OFf ASSFNTBLED 0.245"1 PROBE- CONFIGURATION lyl

O.'oT-
0.228-

o~gooAIRFLOW
o.os

VENT ORIFICE
U047" DIA.

SILVER-No. 20 GAUGE
=7 I T 77 7?E D YPODER4. TUBING
SOLDRED0.03.5" O.D.
OIN I SblHI6. 023" I. D.

rkADs- AT 90o-

CONFIGURATION (VI]

O OF .41 I.PRB IHTI



3-L

PROBE INLET &
DROPLET DECELERATING ZONE

GUIPE PIN & ROLLER GEAR
16~7rfH

LONGITUDINAL SLIT

FOR GUIDE PIN

0.3so

24CTHREADS/INCH

No.8 GAUGE s,

HWT !NG
0.G165"0.D.
0.135"I.D.

PRESSURE

ORIFICE

FLEXIBLE
METAL SHEATHED~TMII

- DRIVE.
ROTATE"AAR &

PRODC XA
OF TRAVSING E & NEEDLE.

360 DRIVE ROTATIONCAUSEM1764"NEDLMOTION.

AIRFLOW

PRESSURE,

DISASSEMBLED *0.o350" PROBE

CONFIGU3RATION--VIIA)

HEAD Of ASSEMBLED_09.350" PROBE

I



FOR ALL C ONFIGURATIONS

8

T-PROBE INLET AND,
INTERNAL DECELERATION ZONE[

dA d

-r8

DETAILS OF
TRAVERSING NEEDLE

No.24 GAUGE-
HYPOD. TUBING

0.022" 0.D.
=0.2" I.Do.

o.o30

0
('3

0

NEEDLE MOTION
FOR ALL CONFjURATION

3 3

- ALL NEEDLES
WITH ROUNiEDTIPS

-FLOATING SLEEYE
No. 20 GAUGE
HYPOD. TUBING
0035" D.D.
5.023" I.D.

DETAILS OF
TRAVERSING NEEDLE

C ONFIGURATI ON -(VIIB)

INLET TO 0.,350"1 PR OBE WITH 0.172" I.D. INSER T

AND PRESSURE PICK-UP TRAVERSED ALONG THE WALL

CONFIGURATION (VIIC)

INLET TO 0.350" PROBE WITH 0.076" I.D. INSERT

AN- PRESSURE PICK-UP TRAVERSED ALONG 7HE WALL

PRESSURE

~T- PICK- UP
I ORIFICE
0 . 0 1It0" -m.D.

-VON

No. 28 GAUGE
HYPOD. TUBING
0.014" 0.D.
A. n~o rr

U.007" I.D.I

SPIKE 0.034" .D DLONGITUDINAL SLOT 0.016" WIDE

MAGNIFIED VIEW OF TIP
OF TRAVERSING NEEDLE

INSIDE OF STATIONARYSPIKE

CONFIGURATION (VIIF)

INLT TO 0.350" PROBE
WITH ROUND NOSE

OF 3-DIM. -SEMIINF.HALF-
AND NEEDLE TRAVERBED AXIALLY

INSIDE OF A STATIONAB SPK

~2.

CONFIGTJRATION (VIID)

INLET TO 0.350".PROBE

WITH ROUND NOSE

OF a-DIM. -SEMI-INF. HALF-BODY

AND NEEDLE TRAVERSED AXIALLY

CONFIGURATION (VIIE)-

INLET TO 0.350" PROBE

WITH ROUND NOSE

OF 3-DIM. -SEMI-INF. HALF-BODY

AND NEEDLE TRAVERSED AXIALLY

i

-

r-

Fg . 2

AIRFLOW DIRECTION It



MEASURED ORIFICE
DIAMETER 0.0143" ,No.24 GAUGE

HYPOD. TUBING
0.022" O.D.
0.012" I.D.

No -l? GAUGE No.20 G. :3
HYPOD. TUBING HYP. TUB. 0

0.058"t O.D. 0035 .D. rxc

PRESSURE

SILVER SOLDERED JOINTS

CONFIGURATION VIII)

lIPACT AND WATER. SM1PLING

ORIFIC:

No. 17 GAUGE T O71
HYPODER. TUBING
0.058" 0.D. ~

PRESSURE 0.042" I.D.

SILVER SOLDERED JOINTS

TIP CLOSED AND ROUNDED

No.20 GAUGE
HYPOD. TUBING
0.035" 0.1.
0.023" I.D.

C0NFIGIURATION (IX)
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FIG. 31 - EXPERIMENTAL STAGNATION PRESSURE PROBES----------------------- --------
.IrI~ _JA C KETS -REMOVED

Config. (IV) shows evidence of erosion damage
from glass beads.
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FIG. r35 - ABOVE :CONFIG. (IX) STATIC PRESSURE PROBE.

C ONFIG. -(VII I) STAGNATI ON PRESSURE PROBE-
ALSO USFD AS SAMPLING PROBE

AND TOTAL IMPACT PRESSURE PROBE

BELOW : 0. 350" PROBE SHOWN WITH VARIOUS NEEDLES

AND NOSE CONFIGURATIONS
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MECHANISM SHOWING TYPICAL P

I' T A MfNI'WQ ____ SCALE DRAWING

TO FIT VARIOUS PROBE
STEMS.

I

0.



FIG. 35 - TRAVERSING MECHANISM.

TUNNEL HAS BEEN "REMOVED" TO SHOW PROBE IN PLACE.
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x represents distance from the plane of the inlet

as measured along the probe axis.

x is positive upstream of the plane of the inlet.
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DROPLET TRAJECTORIES

NEAR THE MOUTH OF THE PROBE.

(cont'd)

Re- 1000

x represents the distance from the plane of the inlet

as measured along the probe axis.

x is positive upstream.
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DECREASE IN THE X-COMPONENT OF TIE DROPLET VELOCITY

NEAR THE MOUTH CF THE PROBE.
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Y-COMPONERT OF DROPLET VELOCITY NEAR THE MOUTH OF THE PROBE.

Ril ~ 100

30 mil1 : 0

- 4.0 11 11'r 1 i t1

107

117 URI
HIT 1 lilil!''IPRO" Y1+
LLL0 0.2 0.4 0.6 0.8 1.0

-lit N fl 11' if I -m f
t i tffl:
It Ifl: - 1 -19 M AI 411

0.10

VIN t t
:VHT11jI1I flIIlII I-Iff I: ]ITHIlItIlIll Hill Mill III III

M ffi-T 1-111

IN Il lM ll V flVITIN it IT

I lig.till '[1L1'Iq1 11
Til 11

R
Ll

H M 11 PH [11-- TTTI

All

Jill

1 ;111 IlH ill

111, 11111 iM h III

ILI,
I

T T
0.2 0.4( 0.8 0.6 1.0 0

0.12

0.10

0.08 ill

0.06

0.04

0.02

0.0

0.0018

0.0014

0.0012

0.0010

-f I 11 1 1 11oolll fl, I p il T I

0.0008

0.0004

0. 0002

0.2 0.4 0.8
(y/R ),

0.8 1.0

TRAJECTORIES. IDENTIFIED BY THEIR ORDINATES FAR UPSTREAM - (Y/R)

0.

0.

0.

0.

0

0

0.05

0.0

0.014

0.012

3 

.

.0.010

8

0
N
0

[~.

E-.
N
1~1
N
0

I-

0.008

0.008

0.004

0.002

-alm-Ailiflillidild 141 H MUNN] Tl4 111141111111111MIC

1 . 1 1 1 1 1 1 1 .1 1 1 1ll , I', 1 '111 IM Ii 11

IT' I T
1;!il Jill i I 11X

L

IT

it

0

0.

I

7 1 , 1 i I 
ill

I! :h 11; '1 T,;11 IT i l P v f ill , I



Y-COM'PONENT OF DROPLET VE~LOCITY-

NEAR TME MOUTH OF THE PROBE.

(cont'd)
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Y-COPOENT OF DROPLET VELOCITY NEAR THE MOUT8 OF THE PNOBE.

(cont' d)

Re, 1000

0.060

0.050

0.040

0.030

0.020

0.010

0.0
0

0.0006

ji i:1 :1j 0.0004

IT F

, I.00

0.8 1.0 0 0.20 0.2 0.4 0.6

~ ~ 0.010
CL

ljd

TRAJECTORIES, IDENTIFIED BY THEIR ORDINATES FAR UPSTREAM - (y/R)e

0. 1bO

0.100

0.050

0.0

0.008

0.006

0.004

0.002

0.0
0.8 1.0

omaananmaami nIn ,10 I

I RIF 1 4 1 Ti

.1- 1-111-1-1, ... ... I ..

T,



Fig. .e

'yi4Ta CAPTRED ' A IN-AED PRO5

AND WATER IPINGEMENT ON

The symbol "e" denotes :

INSIDE WALLS.

1) The capture efficiency at the mouth of the probe.

2) The rate of water flow still in droplet form at location x/D
within the probe, and expressed as a fractiog of the amount
of water flowing through an area equal to D /4 in the undis-
turbed stream.
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AMOUNT OF OVERPRESSURE (P - P )------T -- - - -PLANE OFTinlet .

PRESET IN THE PLANE OF THE PROBE INLET.
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OF

-DETERMINATION OF DROPLET SIZES-
FROM SLOPE MEASUREMENTS

,T A DISTANCE- x/D = -0.5 FROM TI
A THIN-WALLED PROBE WITH I.D. /0.

HE INL1.
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VARIATION OF THE STREAM VELOCITY, ALONG THE AXIS OF SYMMETRY OF :

1) A RECTANGLE IN A TWO

2) A CYLINDER IN A THRE

WITH AXIS PARALLEL TO

9 K H'

CYLINDER IN A
3-DIM. STREAM.

i -] 7
1 T I T
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THICK-WALLED PROBE WITH I.D' = 0.0-------------------------- O.D.-------

DECREASE IN THE X-COM'PONENT OF DROPLET VELOCITY

ALOG THE PROBE CENTER LINE
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AMOUNT OF OVERPRESSURE (P inlet - P0 )

PRESENT IN THE PLANE OF THE PR OBE INLET

THICK-WALLED PROBE WITH I.D. - 0.0O.D -------
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DROPLET DECELERATION IN STILL AIR

In t w-L

Re

A DROPLET ENTERING WITH INITIAL REYNOLDS NUMBER Rero '
HAS ITS REYNOLDS NUMBER REDUCED TO Re
IN DISTANCE xLt - x, AS CALCULATED FROM -
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DROPLET DECELERATION IN LOW VELOCITY AIR

IF j
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K is the ratio of the air velocity in the probe
to the velocity of the air far upstream.

Do- designates local air density, i.e. the density
of the air within the probe.

A droplet entering with initial Reynolds number Re-;t,;A-
into a stream of velocity K V a , has its Reynold
number reduced to Re in distance X'LflhL- x as calculate
from x Po x . J
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CAIRTC OF fgIL - NO WATER INJWTION
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LC). 515
9SURD PEUE VARIATION

WITHIN AND CLOSE TO HEFRNTEN
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MEASURED 'PRESSURE VARIATION

WITHIN AND CLOSE TO THE FROjT END

OF THE EXPERIMENTAL PROB ES
SHOWING EXTRAPOLATION TO THE INLET.

MEAN
NOMIlNAL

1.42

1.41

I
8

54
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On all ourves.
points "N" represent the corresponding points "M",
after application of corrections for energy effects
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MEASURED PRESSURE VARIATION

WITHIN AND CLOSE TO THE PR ONED

OF THE EXPERIMENTAL PROBES.

SHOWING EXTRAPOLATIOS To THE I--ET.

Patat.2' atm. - 0.7337
MEAN TUNNA .186

NOMINAL TUNNEL AIRFLOW : 0.752 lbs/sec.
NOMINAL MACH NUMBE AT PR INLET : V06

On all curves,
pointB"N" represent the corresonding Points "M"
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MEASURED PRESSURE VARIATION

WITHIN AND CLOSE TO THE FRONT END

OF THE EPERIMENTAL PROBES,
SHOWING EXTRAPOLATION TO THE INLET.

Pstat.2 /atm. : 0.8103
MEAN TUNEL WATER-AIR RATIO : 0.151

NMINAT, TUNNEL AIRFLOW : 0.62 lbs/sec.
NEMINAL MACH NUMER AT PROBE INLET 0.48

On all curves,
points"N" represent the corresponding points "M",
after application of corrections for energy effects

and internal velocity.
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EFETOF DIAMETER AND DIAMETER RATIO
ON STAGNATION PRESSURES

AS MEPASUTRED IN THE PLANE OF THE PROBE INLET.

ALL TEST POINTS CORRECTED TO ZERO ENERGY EFFECTS
RATIO OF LOCAL RATE OF WATER FLOW TO MEAN RA-TE OF WATER FLOW :1.30

SYMBOL
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THEORETICAL ONE-DIMENTIONAL VARIATION

OF PRESSURE AND MACH NUMBER

ALONG THE LENGTH OF THE TUNNEL.
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EfFECT OF CONDESATION

OF ATMOSPHERIC WATER VAPOR ON

THE STREAM STAGNATION TEMPERATURE

FOR VARIOUS INLET DRY AND WET BULB TMPERATURES.
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FL. 9
EFFEC OF ATMOSPHERIC WATER VAPOR

AND HEAT TRANSFER FROM THE INJECTION WATER

UPON THE STREAM STAGNATION

TEMPERATURE

y6 VRIOU§ INLET DRY AND WET BULB TEMPERATURl

AD VARIOUS WATER-AIR RATIOS

AND WATER TEMPERATURES.
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(cont'd)
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C WATER PROILES IN THE TUNNEL AT THE TEST PLANE.
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TUNNEL CHARACTERISTICS
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TUNNEL CHARACTERISTICS
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