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Abstract
Tyrosine kinase inhibitors have significant promise in the fight to develop agents that can target

cancer in a tumor-specific manner. A number of drugs have been and are currently in development to
inhibit specific kinases that can mediate uncontrolled proliferation; however, an unfortunate eventuality
for most patients receiving these treatments is the development of resistance that renders these drugs
almost completely ineffective. While a number of mechanisms can evolve within a tumor to mitigate
effects of kinase inhibitors, we sought to uncover what changes are occurring in the tyrosine
phosphorylation network at both short timescales (minutes to 72 hours) and long timescales (120 hours+)
that can be playing a role in helping a tumor become resistant to driver-kinase inhibition. It is our
hypothesis that specific feedback networks are able to detect and overcome driver kinase inhibition
through activation of potential other pathways, which can go on to mediate a longer term resistance
phenotype.

In order to probe dynamics in the tyrosine phosphorylation network, we employed mass
spectrometry to analyze peptides derived from six non-small cell lung cancer cell lines that we classify as
either EGFR+ or EML4-ALK+. From both mass spectrometry data and growth assays, we identified an
unintuitive boost in signaling and growth in response to low inhibitor concentrations, suggestive of a
cellular mechanism that is adaptive to driver kinase inhibition. Studies of EML4-ALK driven H3122 cells
showed that this short-term response is not the same as the known long-term resistance mechanism to
ALK inhibition, leading support to the notion that the short-term "adaptive response" may be a novel type
of mechanism to aid tumor adaptation to targeted therapies. In an effort to better probe signaling events
occurring downstream of the phosphotyrosine network, a new pull down technique for mass spectrometry
using 14-3-3 protein against phosphoserine and phosphothreonine peptides is described. The results of
these studies open up many potential avenues for further exploration into the immediate and long-term
signaling response of cancer to targeted therapies.

Thesis Supervisor: Forest M. White

Title: Associate Professor
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Chapter 1 - Tumor Adaptive Response to Chemotherapy

1.1 Tyrosine Kinases and their Inhibitors

Landmark work in the 1950s by Rita Levi-Montalcini and Stanley Cohen led to the discovery of

growth factors and generated the idea of specific proteins (termed hormones then) that could drive growth

of transformed cells in a growth factor-specific manner. [1-3] Continued research in the 1960s by Stanley

Cohen led to the discovery of another growth factor, epidermal growth factor (EGF), termed for its ability

to drive cellular proliferation in epithelial cells. [4] It was not, however, until the late 1970s that a

receptor to epithelial growth factor, EGFR, was discovered, and that upon cellular treatment with EGF

that cellular uptake of 32 P increased, leading to the notion that growth factors lead to kinase activity,

possibly by EGFR itself, and that growth factors acting through receptors can induce downstream

phosphorylation events. [5-7] Concurrent to this finding was the discovery of kinases that phosphorylate

tyrosine (tyrosine kinases) and that kinases have the ability to transform cells into a malignant state,

further driving home the notion that growth factors, kinases, and phosphorylation events drive

proliferation in both normal and abnormal contexts.[8, 9]

In a normal context, tyrosine kinases are an integral component of the cellular signaling network that

drive phenotypes like growth, proliferation, migration, differentiation, and even cell death. After research

uncovered that a tyrosine kinase, SRC, can transform a cell into a malignant phenotype, followed by the

discovery that epithelial cancers can highly overexpress another tyrosine kinase EGFR led to intense

speculation that like SRC, it too could be an important oncogenic driver. [10-13] In 1983, in a landmark

study by John Mendelsohn and colleagues, it was shown that monoclonal antibodies engineered to target

EGFR inhibit proliferation, leading to the later development of cetuximab (Erbitux) as a therapy for

colorectal and head and neck cancers, currently on the market today. [14] Around the same time,

researchers at Genentech also developed a monoclonal antibody against the related HER2 receptor

tyrosine kinase and saw similar antiproliferative effects, leading to the first approved kinase-targeted

therapy, trastuzumab (Herceptin) for HER2+ breast cancers. [15]
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In addition to targeting receptor tyrosine kinases (RTKs), a variety of therapies have been developed

to target cytosolic kinases as well. For example, in 1960, Peter Nowell and David Hungerford noted that

in cancer cells derived from leukemia patients that chromosome 22 was smaller than normal, and follow-

up work identified that the so-called "Philadelphia Chromosome" contained a genetic translocation in the

two genes BCR and ABL and that the gene fusion product was constitutively active and could induce

CML in mice. [16, 17] Through high-throughput screening of drug compounds, imatinib (Gleevec) was

discovered and shown to inhibit the BCR-ABL fusion product and slow growth and even induce

apoptosis in CML cells. [18] With the paradigm of kinase inhibition leading to cancer cell death in place,

a rigorous search for both compounds and drug targets ensued, leading to the discovery a number of both

kinases and inhibitors that have had success in the clinic.

Lung cancer is the leading cause of cancer deaths worldwide, primarily due to smoking, and

because of the difficulty of diagnosis it is normally at an advanced, metastatic stage before treatment and

thus has a comparatively poor prognosis. [19] While more kinases have been uncovered over the years as

cancers drivers in lung cancer, a significant number of cancers with no known oncogenic drivers remains.

Genetic mutations found in signaling pathway genes involved with proliferation in NSCLC (with

corresponding frequency) include mutations in KRAS (10-30%), BRAF (2%), EGFR (10-40%), HER2

(4%), ALK (7%), MET (14%), and P13KCA (2%). [19] Even with knowledge of potential drivers, it is

estimated that roughly half of non-small cell lung cancer cases are driven through unknown mechanisms,

and due to the difficulty of diagnosis as well as the lack of effective targeted treatments, five-year survival

rates in patients are only on the order of roughly 15%. [20] In order to address this problem, we selected

a study system of six non-small cell lung cancer (NSCLC) cell lines to probe kinase-driven events that

could be responsible for abnormal cell growth. Of the six cell lines, four we classified as EGFR+ and two

we classified EML4-ALK+.

"Activating" mutations in EGFR that act to destabilize the inactive, non-ligand bound form of the

receptor have been isolated in clinical samples, and provide a rational basis for treatment using targeted
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inhibitors. [21, 22] The activating mutations L858R and delE746-A750 comprise almost 90% of

mutations in EGFR found in NSCLC, and these mutations confer sensitivity to EGFR inhibitors erlotinib

(Tarceva) and gefitinib (Iressa).[23, 24] Interestingly, these mutations are strongly correlated with non-

smoker lung cancer patients, for reasons that as of yet appear to be unknown. [25] However, treatment of

lung cancer with gefitinib in patients that have been preselected for activating mutations in EGFR leads to

an improvement in median progression-free survival to only 10.8 months, compared to 5.4 months with

carboplatin and paclitaxel, lending credence to the idea that identifying driver kinases may only be a

small part of the clinical solution for treating NSCLC. [26]

In addition to mutations in EGFR, roughly 7% of lung cancers contain genetic fusions of

echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) genes,

leading to constitutive growth activation and cellular transformation. [27] This fusion gene was

discovered through a creative study involving creation and isolation of a cDNA library from a single

patient sample. DNA was transfected and screened for transformation ability; from a particular colony of

transformed cells, and one clone was sequenced and found to align to both the EML4 and ALK genes,

suggesting the transforming agent was a fusion product of the two genes. [27] While a provocative

finding, fusions between ALK and nucleophosmin (NPM) have previously been noted in non-Hodgkin's

lymphoma, giving precedence that an ALK translocation event could be possible [28] The exact

mechanism of how a genetic fusion can be possible at such a specific locus appears to remain unclear.

However, from biochemical studies, constitutive activation of the ALK kinase is thought to be due to

induced oligomerization due to the basic domain of EML4. [27] An inhibitor of the ALK kinase,

TAE684, was discovered and found to prevent growth of an EML4-ALK+ tumor model in mice,

providing the basis for clinical develop of this and other ALK inhibitors. [29] Interestingly, though, in the

same study it was found that coactivation of HER2 and EGFR genes can compensate for inhibition of

EML4-ALK, where cells containing HER2 and EGFR overexpression could withstand ALK inhibition.

An EGFR/HER2 inhibitor combined with ALK inhibition, however, lead to loss of phosphorylation on

8



ERK and AKT and subsequent apoptosis, suggesting that these "compensatory" kinases could provide the

basis for targeted cocktail therapies.

1.2 Phosphorylation and Studying Network Dynamics in NSCLC

In order to study the phosphorylation dynamics in NSCLC, mass spectrometry was employed to

analyze and quantify the phosphoproteome of lung cancer cell lines. Liquid chromatography mass

spectrometry (LC-MS/MS) has been developed for the study of proteins with post-translational

modifications, and the advent of faster and more sensitive analyzers has allowed for detection and

quantification of hundreds to thousands of unique peptides and phosphorylation sites. [30-33] Basic

workflow for all mass spectrometry experiments described in this thesis includes the isolation and cleanup

of peptides from crude cell lysates followed by liquid chromatography over an acetonitrile gradient and

MS/MS sequencing and quantification.

At the beginning of this project, the question of timescales of adaptation and selection in cancer

in response to treatment was considered in order to attempt to better understand how resistance develops

in NSCLC. It has previously been shown that long-term adaptation to kinase inhibition can occur in

cancer cell lines, and following a similar pattern, kinase inhibitor resistance has been noted clinically.

Until more recently, however those mechanisms have remained unclear. Further complicating matters,

studies have shown that the cells that develop resistance to TKI treatment tend to display heterogeneity in

their resistance mechanism. For example, in a previous study of EGFR-driven NSCLC H1650 cells,

cancer cells were made resistant to the EGFR inhibitor erlotinib (Tarceva), and of the screened drug

resistance clones, only 13% had a mesenchymal-like morphology and molecular characteristics of having

undergone an epithelial-mesenchymal transition (EMT) that is characteristic of EGFR-inhibitor resistant

cancers, leading to a question of what occurs in the other 87%. [34, 35] Therefore, given this

heterogeneity in response in vitro, it seems possible that tumor bulk could respond in a similar fashion,

and if so, would make downstream treatment significantly more challenging. [36] To address this

concern, we sought to uncover how cells responded to kinase inhibition at shorter time scales (hours to
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days, i.e. before they develop resistance) with the goal of potentially mitigating a heterogeneous long-

term response that may hamper clinical outcomes down the line in patients.

Before performing mass spectrometry, the inhibitors gefitinib (SelleckChem, Houston, TX, USA)

and PF-1066 (ChemieTek, Indianapolis, IN, USA) were applied to the EGFR and EML4-ALK cell lines,

respectively, at a range of 3nM to 10uM to determine sensitivity of these cells to kinase inhibition. Cell

lines at least one passage post-thawing were cultured in RPMI- 1640 supplemented with 10% FBS and 1x

Streptomycin-Penicillin antibiotic solution (referred to in this thesis as RF-10). Three thousand cells were

counted using a Cellometer Vision Analysis System (Nexcelom, Lawrence, MA, USA), and placed into a

96-well plate and allowed to attach overnight. The next day, the media was removed and replaced with

RF-10 and the kinase inhibitors were applied. After 72 hours in the presence of inhibitors, cell viability

was analyzed by adding the CellTiter 96@ AQueous One Solution Cell Proliferation Assay (MTS)

(Promega, Madison, WI, USA) colormetric assay per standard protocols and measured absorbance at

wavelength 490nm using an Infinite® M1000 PRO plate reader (Tecan, Mannedorf, Switzerland) allows

for the approximation of cell numbers remaining. Effective concentration (EC) values were calculated

from dose-response curve fits made using GraphPad Prism software and GraphPad's online ECAnything

calculator (GraphPad Software, La Jolla, CA, USA).

To prepare protein samples, cell lines were cultured in vitro in RPMI-1640 including 10% FBS

and lx Strep-Pen antibiotic solution. Cells were plated at a lower density (1.5 million cells per 15 cm

plate, or roughly 10,000 cells/cm2) to maintain consistency with MTS assays used previously for finding

EC values. Cells were left overnight for 24 hours to allow them to attach to the culture dish and kinase

inhibitors were added with fresh RF-10 media. In order to profile responses to match MTS experiments,

EGFR cell lines were treated with gefitinib at their corresponding EC95 values for 72 hours, and then

washed with cold PBS and lysed using cold 8M urea containing 1mM sodium orthovanadate to inhibit

phosphatases. Bulk protein from cell lysates was quantified using the BCA assay kit per standard

protocols (Pierce Biotechnology, Rockford, IL, USA) and an equal amount of protein from each condition
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was reduced with 10mM DTT for 1 hour at 56'C and alkylated with 55mM iodoacetamide for 1 hour

under constant rotation. Each tube was then diluted with l2mL of 100mM ammonium acetate buffer (pH

8.9) and digested with trypsin (Promega, Madison, WI, USA) overnight at room temperature at a 1:100

enzyme:protein mass ratio. Peptides samples were acidified with lmL of glacial acetic acid and desalted

with 1OmL of 0.1% acetic acid on a C18 Sep-Pak Plus cartridge (Waters, Milford, MA, USA), followed

by elution with 1OmL of a 0.1% acetic acid/25% acetonitrile solution and lyophilized to dryness.

Prior to mass spectrometry analysis, samples for studying dynamics were iTRAQ labeled to allow

for relative quantification of identical peptides across differing conditions. iTRAQ labeling involves the

attachment of an isotopic label to primary amines to "tag" peptides from a specific condition as a basis for

measuring relative changes in peptide levels across different samples. [37] For 8-plex iTRAQ

experiments, 400ug of lyophilized peptide was dissolved in 30 uL of a 0.5 M Triethylammonium

bicarbonate (TEAB) dissolution buffer. iTRAQ reagents (Applied Biosystems, Foster City, CA, USA)

were thawed and 70 uL of isopropanol was added to each tube. After vortexing each tube for 1 minute,

the iTRAQ reagents were individually added to lyophilized peptide, and the subsequent mixture was

vortexed and spun down and allowed to sit at room temperature for 2 hours. Each vial was then spun

down and dried to -30 uL using a speed-vac to stop the labeling reaction, and then each tube was

combined into one tube, followed by two washing steps with 25% acetonitrile in 0.1% acetic acid to wash

iTRAQ-labeled peptides bound to the walls of each tube. After this washing step, the sample was then

dried down in a speed-vac again, however this time to complete dryness.

In order to enrich for peptides with tyrosine phosphorylation, an immunoprecipitation (IP) using

monoclonal antibodies against phosphotyrosine were attached to a bead resin. Twelve micrograms of

three anti-phosphotyrosine antibodies, 4G10 (EMD Millipore, Billerica, MA, USA), PT-66 (Sigma-

Aldrich, St. Louis, MO, USA) and P-Tyr-100 (Cell Signaling Technology, Danvers, MA, USA) were

incubated for 8 hours with 70 uL of washed Protein G slurry (EMD Millipore, Billerica, MA, USA) at

40 C under constant rotation. Once the iTRAQ-labeled pellet was completely dried down, it was
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resuspended in 150 uL of iTRAQ IP buffer (100 mM TRIS, 100 mM NaCl, 1% NP-40, pH 7.4), 300 uL

of HPLC-grade water (Sigma-Aldrich, St. Louis, MO, USA) and the pH was adjusted to 7.4 using TRIS

buffer. Resuspended peptides were added to the Protein G slurry loaded with anti-phosphotyrosine

antibodies and incubated under constant rotation at 40 C overnight.

After overnight incubation, beads were gently spun down and washed with 450 uL of IP buffer

(100 mM TRIS, 100 mM NaCl, 0.3% NP-40, pH 7.4) once for five minutes, followed by three washes

with 450 uL of rinse buffer (100 mM TRIS, 100 mM NaCl, pH 7.4). Peptides were eluted from the

antibody in 60 uL of 100 mM glycine pH 2 for 30 minutes. In order to further enrich and boost the signal

of phosphorylated peptides, immobilized-metal affinity chromatography (IMAC) was performed on

capillary tubing and high pressure bombs. [32] The elution from the peptide IP was applied to a 10 cm,

200 um inner diameter capillary column packed with Poros MC 20 um beads loaded with >10 column

volumes of 100 mM FeCl 3 (Sigma-Aldrich, St. Louis, MO, USA) at a 1 uL/minute flow rate. The column

was rinsed with an Organic Rinse solution (25% acetonitrile, 1% acetic acid, 100 mM NaCl) for 10

minutes at a 10 uL/minute flow rate, acidified with 0.1% acetic acid for 10 minutes at a 10 uL/minute

flow rate, and then eluted onto a 10 cm, 100 um inner-diameter precolumn packed with 5 um C18 beads

(Waters, Milford, MA, USA) with 40 uL of 250 mM sodium phosphate pH 8.0 buffer at a flow rate of 1

uL/minute. The precolumn with loaded peptides was attached to an analytical column packed with 10 cm

of 5 um C18 beads with a sub-micron tip to ensure nanoliter flow. An acetonitrile:acetic acid HPLC

gradient was applied to the columns as previously described. [38, 39] Sequencing and quantification of

peptides was performed by electrospray ionization followed by tandem MS on an LTQ-Orbitrap

instrument (Thermo Fisher Scientific, Waltham, MA, USA).

MS/MS spectra were extracted from Thermo RAW files through generation of an MGF file using

MSQuant software as well as custom MATLAB (Mathworks, Natick, MA, USA) scripts for extracting

peptide quantification information. Peptide sequence identification was extracted through MASCOT

software using the Human-2009 protein database (Matrix Bioscience, Boston, MA, USA). [40] To correct
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for differences in peptide loading, all data was normalized to the supernatant containing non-

phosphorylated peptides from the phosphotyrosine IP at a dilution of 1:1000; the mean and median

iTRAQ values were calculated for each channel and fold-changes were applied such that each peptide in

the 113 (or 114 in 4-plex experiments) channel had a normalized fold change equal to 1. Peptides with

MASCOT scores less than 25 containing no phosphotyrosine or having a missing iTRAQ channel were

removed, and peptides with multiple spectra were averaged together using custom MATLAB scripts

described in Chapter 4.

For short-term adaptive responses in the tyrosine phosphorylation network, 1.5 million cells were

plated and allowed to attach and deplete serum overnight for 24 hours, except inhibitors were added at 10,

100, and 1000 nM for only 10 and 60 minutes followed by lysis and protein collection using the protocol

described above. In order to measure proliferation to correlate phosphorylation data from short-term

experiments, 100,000 cells were plated in a 6-well dish and left 24 hours to settle in a similar fashion.

Inhibitors were added (without fresh media) at concentrations of 10, 100, and 1000 nM and allowed to

incubate for 48 hours. Before harvesting cells, they were washed once with trypsin-EDTA, and then 500

uL of trypsin-EDTA was applied. The cells were incubated with trypsin for 15 minutes (or until they all

detached) at 37 0 C, and then 500uL of RF-10 media was applied and mixed. The 1 mL sample was then

counted on a ViCell instrument (Beckman Coulter, Brea, CA, USA) using the default method.

1.3 Cancer Response to Kinase Inhibition
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As stated previously, the model system chosen for studying changes in the signaling network in

response to kinase inhibitor treatment entails six non-small cell lung cancer (NSCLC) cell lines in vitro.

a) NSCLC (EML4-ALK+) b) NSCLC (EGFR+)

H3122 (PF-1066) -2- H292

1 H2228 (PF-1066) 1 H358
75 H3122 EC50R (PF-1066) ~ HCC827

C 75-z 75 PC90-H3122 (Gef) 0 5- C
6 50-- H3122 EC50R (EC50 16 50

PF-1066 + Gef)
H3122 (PF-1066 + 0.1uM 25
Gef)

0 0 .1 10 0 0.01 0.1 1 10
Drug Concentraton (pM) Gefitinib Concentration (pM)

Figure 1: Sensitivities of NSCLC cell lines to kinase inhibitors (a) Crizotinib (PF-1066) and (b) Iressa (Gefitinib) as
measured by MTT assay 72 hours post-treatment. H3122 EC50R cells are resistant to its EC50 of PF-1066.

Four cell lines, PC9, HCC827, H292, and H358 were studied as models for EGFR+ cancers, while two

other cell lines, H2228 and H3122 contain the EML4-ALK gene fusion previously described. Prior to

mass spectrometry experiments, the sensitivity of the six cell lines to their respective inhibitors was

established (Figure 1). In the two EML4-ALK cell lines studied, both demonstrate sensitivity to the ALK

inhibitor PF-1066, establishing that constitutive ALK kinase activity leads to cell growth (Figure la, red

and green lines). Of the EGFR cell lines, the HCC827 and PC9 cells were found to be the most sensitive,

while the H292 and H358 cell lines display little sensitivity to gefitinib (Figure ib). The two cell lines

most sensitive to gefitinib, HCC827 and PC9, both contain the activating delE746-A750 mutation in

EGFR, which is predictive of sensitivity to gefitinib. [41, 42] In addition, as expected the KRAS-driven

H358 cell line was largely insensitive to gefitinib, since the constitutive G12V mutation can activate

downstream survival and proliferation independently of EGFR. [43] Lastly, the H292 cell line that has

been previously shown to have wildtype EGFR and KRAS demonstrated lower sensitivity to gefitinib.

[23, 44]

1.4 Profiling the phosphorylation network of EGFR driven NSCLC
While the presence of a known driver mutation can be predictive of the sensitivity of cell lines to

inhibitors designed to target it, the MTS assay experiments from Figure 1 suggest that cells can

demonstrate a varied response, leading to the question of how cells adapt at both very short-term (<1
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hour) and medium-term (72 hours) timescales. In order to address the question of adaptation at 72 hours,

1.5 million cells of the four EGFR cell lines were plated in 15 cm plates and analyzed for both basal

levels of signaling as well as treatment with an EC95 concentration of gefitinib to see how the

phosphorylation network changes at that time point (Figures 2 and 3).

In measurements of basal levels of phosphorylation in untreated, serum-depleted cells, not

surprisingly, the two most sensitive cell lines, HCC827 and PC9, contained the highest amounts of

phosphorylation on EGFR, indicative of its status as the predominant driver gene (Figure 2). Interestingly,

phosphorylation of Met in the HCC827 cell line was also very high compared to other cell lines studied. It

has previously been shown that Met can drive resistance to EGFR inhibitors and that a small fraction of

cells contain duplications in the Met gene suggesting that selection of Met overexpressing cells is a

is-BrjM (murine) ecotropic reorral transforming sequence
meo omain niteracting protein nase 3 Insforming

pelln I
1iuphilin 3odin 7
Ibroc1? membran reIn band 4.1-like 2
ICl mng 2 ntaining) transforming protein 1 Issoorm p6fomc

P ornin contl nn 8ma s-s PecitN ing proein 2

at adaPter ofhshtrsine and 3-phone lnosibdes

eeGpmanatt regulated protein TPOI
IP3-mannoge 4.6-detrydratase

sOOMat protein S27

'CptCYystnl amlnopeptotase isoftirm 2

eroopiaton iseterm I
enin. alphe 1
olin receptor substrate 1
On sio or m 1 3

enin, delta I juofom1 lA

ding protein 1 isoform a

preferred translocation partner In lipoma

omain containing, famiyAmember 5

tein Isofbrm 1

clated with glycosphingolipid microdomains 1

trotain 3 bomotog
Ion itotorm 1
se-itke 5

hatase, non-receptor type 11

"in indse 13
) protein 12
sinding protein I
nage, ra tte subunit 2 (beta)

recorma

activator oftranscrption SA
omain containing. familyA member 7tot
roltein 10t2 gsotten a
r oncggene homelog Isoform b

Ong protse 12os lotr

br 1 receptor precursor

in Idnase PRPK

1.srma ror

h r eo tye, A oscform I precursor

0

0.

0
4-
0

a

_5

1.2

1

0.8

0.6

0.4

0.2

0
HCC 292

Cell Line

Figure 2: a) Measurement of basal levels of phosphorylation in untreated, serum-depleted NSCLC cell lines. Data is
mean-centered, log 2 transformed and clustered using a Euclidean distance metric. b) Levels of phosphorylation on
Y1197 in EGFR correlates strongly with sensitivity to gefitinib. Heatmap courtesy of Dan Sears.
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mechanism for how a tumor can adapt to gefitinib. [42, 45] Other data of interest includes the high levels

of phosphorylation in the receptors IGF 1R and AXL, as well as a number of src-family kinases in the

H292 cell line, suggesting other potential drug targets (highlighted in the yellow box in figure 2 to the

left). While not approved for clinical use yet, drugs targeting the IGF 1 R and AXL receptors are currently

being explored for treating lung as well as other types of cancer. [46, 47]

In cells treated with their corresponding EC95 concentration of gefitinib, levels of

phosphorylation on the Y 1197 site on EGFR decreased in the HCC827, H292, and PC9 cell lines 72

hours after treatment with EC95 gefitinib. Interestingly,however, levels of phosphorylation in H358 cells

did not decrease (Figure 3). It has previously been shown that KRAS can drive expression of the EGFR

ligands TGFa, amphiregulin, and heparin-binding EGF-like growth factor, which could explain the robust

levels of phosphorylation seen in the KRAS mutant H358 cells even in the presence of gefitinib. [48, 49]

In addition, phosphorylation of other receptor tyrosine kinases IGF 1 R and HER2 increased in these cells
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as well, potentially through similar mechanisms, suggesting for other means that KRAS-driven tumors

can subvert EGFR inhibition (Figure 3, highlighted in the red box).

In addition to profiling how different cell lines respond to treatment at 72 hours at high

concentration of inhibitor, we sought to understand in a specific cell line how varying the concentration

with which we treat the cancer cell lines would affect the tyrosine phosphorylation network. Clinically,

this may be important due to the fact that some cancers display poor vasculature and drugs may be unable

to penetrate deep inside a tumor. While we can understand a potential mechanism of resistance due to

high drug concentrations in vitro, where drug distribution is not as significant of a concern, there remains

the question of just what effect low drug penetrance has on a tumor. [50] With this is mind, we treated the

HCC827 cell line with gefitinib at its EC5, EC50, and EC95 concentrations and noted a significant

difference in response of the drug (Figure 4). For example, with treatment of EC5 of gefitinib (second

column of the heatmap), somewhat surprisingly, boosts in the levels of phosphorylation can be seen on a

number of tyrosine kinases, including Met, which is known to mediate long-term resistance to gefitinib in

this cell line.
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Figure 4: HCC827 in response to varying doses of gefitinib 72 hours post-treatment, selecting for sites whose
phosphorylation increases at least 1.3-fold at ECS. At EC5, significant increases in phosphorylation are seen,
indicating possible mechanisms of adaptation, in particular in the activation loop of the receptor tyrosine
kinase MET (highlighted in red), a known mediator of gefitinib-resistance. Data is mean-centered, log 2
transformed and clustered using a Euclidean distance metric. Graph to the right highlights the increase in
phosphorylation in the activation loop of Met.

If targeted therapies can have the physiological effect of activation rather than inhibition of

pathways at low concentrations due to feedback mechanisms that are still unclear, it stands to reason that

parts of a tumor that are only exposed to limiting amounts of kinase inhibitor can be stimulated to grow

by activation of survival pathways that mediate survival and eventual resistance. While no known

publications to date explore this idea, there is precedence that initial stimulation of alternate survival

pathways can mediate long-term resistance. Using the same HCC827 cell line, and with the knowledge

that Met amplification leads to eventual resistance to gefitinib, it has been shown that a transient

treatment with hepatocyte growth factor (HGF), which stimulates Met, can accelerate Met amplification

in cells treated with gefitinib, thereby leading to long-term resistance. [45] While it remains unclear in our
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data what is responsible for this boost in signaling at low levels of gefitinib, it may be possible that this

response could have clinical implications and warrants further investigation.

1.5 Response of NSCLC to EC5 leads to a potential boost in proliferation

To examine if the boost in signaling could lead to increased proliferation, growth experiments

using cell counting were performed at a range of drug concentrations from 3 to 100 nM of gefitinib in

HCC827 cells and 10 to 1000 nM of PF-1066 in H3122 cells. In order to maintain consistent cell density

with MTS and mass spectrometry experiments, 90,000 cells were plated in each well of a 6-well plate in

RF-10 media and left overnight for 24 hours to settle and deplete serum. To diminish effects of fresh

serum containing growth factors, inhibitors were added without added fresh media/serum, and cells were

counted 48 hours later using a Vi-cell instrument as described earlier. While no boost in proliferation

could be seen with the HCC827 cells at low concentration of gefitinib, interestingly, H3122 cells treated

with PF- 1066 exhibited a dramatic boost in proliferation (Figure 5).

While examining this data, a question of timescales that are driving this proliferation event

became apparent, in particular, the question of if this is an adaptation-like event versus selection of cells

HCC827 Cell Counts 48hr post Gefitinib H3122 Cell Counts 48hr post PF-1066
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Figure 5: Cell counts relative to untreated 48 hours post treatment with Gefitinib and PF-1066 at the
concentrations indicated. While HCC827 exhibited no discernible boost in proliferation, H3122 cells had a dramatic
boost of proliferation at 10 nM of PF-1066.

that are insensitive to treatment. Therefore, we sought to better understand how inhibitors affect the
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tyrosine phosphorylation network at shorter time scales (less than one hour). An 8-plex mass

spectrometry experiment was set up where 1.5 million H3122 cells were plated in a 15 cm dish, allowed

to attach overnight for 24 hours, and then 10-1000 nM of PF-1066 were added to the cells; four of the

dishes were lysed after 10 minutes and the other four were lysed at 60 minutes of treatment. While

phosphorylation of peptides on EML4 decreased as would be expected with treatment of an ALK

inhibitor, treatment also caused dramatic increases of phosphorylation in other pathways (Figure 6).

In this dataset, of particular interest is the increase in phosphorylation at Y505 on lymphocyte-
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Figure 6: Mass spectrometry analysis of H3122 cells after short-term treatment with PF-1066
reveals both up- and downregulation in a number of different phosphorylation sites. As
expected, phosphorylation of EML4 decreases as a function of drug concentration. Data is
mean-centered, log 2 based and clustered using a Euclidean distance metric.
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specific protein tyrosine kinase as a function of drug concentration up to 1000 nM at the 10 minute time

point. Phosphorylation at this site is mediated by C-src tyrosine kinase (CSK), which when it becomes

activated phosphorylates a number of SRC-family kinases at inhibitory sites, thereby deactivating them.

While CSK has traditionally been thought of as an anti-oncogene due to its inhibitory activities, for

reasons that are not yet known, it has been found to be overexpressed in epithelial cancers, even cancers

with high SRC activity. [51-54] Mediators of activation on CSK are relatively unknown, however a

phosphoproteomic analysis of leukemia driven by another cytosolic kinase fusion, BCR-ABL, found that

inhibiting ABL with imatinib (Gleevec) lead to rapid decreases in phosphorylation in SRC-family kinases

(SFKs), mediated by CSK, suggesting its involvement may be key to cancer adaptation to inhibition. [55]

1.6 Conclusions and looking forward

The mass spectrometry and phenotypic data thus far indicate that cells are rewiring their signaling

networks in response to kinase inhibition, and in particular with the EGFR driven cell lines, quantitative

analysis provides a list of potential drug targets for further study. For example, at low concentration

(EC5) treatment with gefitinib, a boost in signaling was seen in EGFR, Met, and AXL receptor tyrosine

kinases, suggesting potential pathways that cells can respond to loss of driver kinase activity (Figure 4).

While the phenotype of this signaling boost remains unclear for EGFR driven cell lines, in the EML4-

ALK driven H3 122 cell line, treatment with EC5 concentration of PF-1066 leads to a significant (-50%)

increase in proliferation 48 hours later compared to the untreated case. The mechanism of this increase

remains unclear, but the existence of the phenotype suggests that targeted inhibition of driver kinases with

low levels of inhibitor may, perhaps unintuitively, cause increases in proliferation rather than cell death.

Clinically, the issue of drug penetrance has gained traction in the research community, and a number of

potential mechanisms to alleviating poor bioavailability of chemotherapy are currently being pursued and

follow-up work in analyzing cellular response at EC5 concentration may provide explanations of

responses seen clinically. [50]
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A number of papers suggesting the presence of feedback mechanisms in response to targeted

inhibition that can allow for survival and proliferation of cancer cells have arisen, which strongly supports

the importance of continued work in the area to uncover either new mechanisms or how mechanisms

currently known may play a role in resistance and clinical treatment. [56] For example, in V600E mutant

BRAF-driven colorectal cancer (CRC), treatment with a BRAF inhibitor PLX4032 (vemurafenib) has not

been as effective as it has been in melanoma containing the same activating BRAF mutation.[57] With

this in mind, a study was done to try to examine why this is the case; using an shRNA library to test for

what genes may be mediating resistance to BRAF inhibition, researchers noted that knockdown of EGFR

lead to synergy with PLX4032 suggesting that EGFR could be playing a role in these CRCs. In order to

probe a potential feedback between BRAF and EGFR, in CRC cells containing the activating V600E

mutation yet poor sensitivity to PLX4032, they found a strong increase in phosphorylation in EGFR after

6 hours of treatment with 1 uM of inhibitor. From data supported by the shRNA screen, adding an

inhibitor to EGFR restored expected sensitivity to BRAF inhibition, leading to antitumor activity in vivo.

A number of other similar studies have been published demonstrating the presence of other

feedback mechanisms in cancer in response to targeted treatment. [58-62] To date, no known clinical

trials are in existence that are designed around targeted a kinase driver as well as a feedback mechanism

in parallel; however, as more molecular mechanisms are uncovered, and the importance of these

mechanisms are further established in vivo, it is conceivable that treatments with this paradigm in mind

will begin to appear in the clinic. A potential problem that can arise, of course, is the increased amount of

side-effects due to inhibition of the targets present in others tissue that are responsible for normal cellular

function, and these effects may amplified as the number of drugs in a given cocktail is increased.

Therefore, with this and other reasons in mind, research on delivery mechanisms for better targeting

personalized drug cocktails to patient tumors is being aggressively pursued. [63] Further elucidation of

signaling networks via mass spectrometry as well as perhaps the combined use of knockdown-libraries for

hypothesis generation will likely lead to novel targets of adaptation and eventual resistance.
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Chapter 2 - Long-term Resistance to Targeted Therapy

2.1 Mechanisms of long-term resistance to Kinase Inhibitors

An unfortunate inevitability in most patients treated with kinase inhibitors is the eventual

development of tumors that are refractory to treatment. Options that are available to patients once they

have developed resistance are few and often times leads to eventual mortality. Therefore, there exists a

strong need for the development of either more effective front-line therapies that are designed to prevent

known mechanisms of resistance, or alternatively, more second- and even third-line therapies that target

the tumors in the presence of known mechanisms of resistance.

A number of mechanisms that tumors develop to evade therapy have been previously uncovered

and it is likely a number of other mechanisms have yet to be discovered. As a small example of the types

of resistance mechanisms known to exist, tumors have been shown to upregulate alternative survival

signaling pathways, prevent apoptosis through expression of antiapoptotic proteins, increase

activity/expression of membrane "pumps" to actively remove drugs from cells, and even evolve

gatekeeper mutations to block drug target sites themselves. [64] In particular for our studies, we sought to

use mass spectrometry-based phosphoproteomics to uncover which alternative kinases can be upregulated

in cancer cell lines that can mediate growth signaling in the presence of inhibitors to the known driver

kinases.

2.2 Development of TKI resistance in vitro in NSCLC
A distinction to the "adaptive response" as referred to in Chapter 1 and a longer-term response is

the time frame by which the mechanism of resistance develops. For example, early in the project we

sought to understand time scales it takes for cells to develop resistance. As a model system, we again

chose the non-small cell lung cancer cell lines driven by the kinases EGFR and EML4-ALK described in

Chapter 1. To better understand these timescales, 100,000 (or 1,000,000 in the case with PC9 cell since

they are hypersensitive to EGFR inhibition) NSCLC cell lines were plated in full serum, and treated with
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luM of gefitinib with media and inhibitor being replaced every 2-3 days to test how long cell death takes

as well as eventual resistance develops, (Figure 7).
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Figure 7: Growth of EGFR+ NSCLC cell lines in the presence of luM Gefitinib, highlighting the timescales of cell death
as well as ultimate resistance. Note that H292 and H358 are relatively insensitive to gefitinib and thus have little growth
inhibition. The graph to the right highlights the sensitive HCC827 and PC9 cell lines, whose growth begins at ~120-144
hours post treatment.

Cells were trypsinized and resuspended in full RPMI-1640 with 10% FBS (RF-10) and quantified

using a Vi-CELL counter every 24 hours. As stated earlier, the H358 cell line's growth is not inhibited in

the present of gefitinib (Figure 7, purple line), due to the presence of the constitutively activating G12V

mutation on KRAS making the cells' growth independent to EGFR activity. [43] However, in the most

sensitive HCC827 and PC9 cell lines, growth in the presence of greater than EC95 amounts of gefitinib

appears to begin between 120-144 hours, or roughly 5-6 days, suggesting that cancers can evolve within a

few cell cycles to inhibition of driver kinases (Figure 7).

Whether this process occurs by adaptation or selection, however, remains unclear. In EGFR-

driven cancer NSCLC, it has previously been shown that upregulation of Met kinase can drive

proliferation in the presence of gefitinib, and perhaps more interestingly, that a small fraction of NSCLC

cells in a gefitinib-sensitive population appear to naturally contain gene amplifications of Met, which are
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later selected for after treatment with gefitinib. [45, 65] More recently, studies have shown that this

genetic heterogeneity can affect clinical outcomes in other types of cancer. For example, in glioblastoma

multiforme (GBM), tumors that had a clonal origin and an overexpression of EGFR appear to contain

parts which do not express EGFR at all, and in those cells, increased expression of other RTKs like

PDGFR and Met was noted. [66, 67] The presence of these other receptor tyrosine kinases appears to be a

stable co-existence, and cell lines derived from such tumors require inhibition of each of the

overexpressed RTKs to suppress growth. While these studies are suggestive of selective processes being

significant for cancer resistance, another study showed that "crosstalk", or co-activation of Met by an

EGFR variant, EGFRvIII, was found to be significant for cancer growth. Co-treatment with gefitinib and

a Met inhibitor had a synergistic effect, supporting the idea of networks being adaptable. [68, 69] Further

supporting this notion of targeting multiple relevant kinases in cancer, dasatinib (Sprycel) has been quite

successful clinically, hypothesized due to its ability to inhibit over 100 kinases, including a number of

known kinases that can mediate cancer growth, like ABL and SRC-family kinases. [70-72] Therefore,

while the question of adaptation and selection remains unclear and will require further experimental work

to track cells and signaling events with more granularity over the course of treatment, these studies

together strongly support the paradigm of clinically targeting multiple kinases together that can either be

compensatory or present in a stable, co-existing population in cancer.

2.2 EGFR can compensate for loss of EML4-ALK Signaling

In order to better understand the development of long-term resistance to kinase inhibition in

NSCLC, both EGFR and EML4-ALK positive cell lines were made resistant by culturing the cells in the

presence of EC50 concentrations of gefitinib and PF-1066, respectively. While an initial period of cell

death was noted, over time cells began to proliferate despite the presence of drugs targeting the driver

kinase. The EML4-ALK+ H3122 cells displayed a dramatic change in morphology as it developed

resistance to PF-1066 (Figure 8 for images). An MTS assay per standard protocol confirmed increased

resistance to PF- 1066 (Figure 9, orange line). To identify kinase drivers that could be responsible for
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H3122 (PF-1066 sensitive)

Figure 8: Light microscopy images of live H3122 cells that are sensitive and resistant to ALK inhibitor PF-
1066. Of note is in the resistant cell line a "flattening out" of the cell-cell contacts causing a dramatic change in
morphology. 40x magnification.

resistance and development of an epithelial morphology, an 8-plex phosphoproteomics experiment

containing four channels of sensitive and four channels of resistant H3122 cells was set up. 1.5 million

H3122 (PF-1066)
H2228 (PF-1066)
H3122 EC50R (PF-1066)
H3122 (Gef)
H3122 EC50R (EC50
PF-1066 + Gef)
H3122 (PF-1066 + 0.1uM
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0 0.01 0.1 1 10
Drug Concentraton (4M)

Figure 9: Sensitivity of H3122 to various TKI treatment. While sensitive H3122 cells show no sensitivity
to gefitinib, once the cells become resistant to PF-1066, they demonstrate an increase in sensitivity,
indicative of EGFR becoming the driver kinase in these cells. Interestingly, treatment of sensitive cells
with PF-1066 and gefitinib leads to no synergy, suggestion that reliance on EGFR is a longterm response
in these cells.

cells were plated in full RF-10 media and allowed to settle for 24 hours as in previous experiments, and

PF-1066 was added at EC5, EC50, and EC95 concentrations for 72 hours, followed by lysis,

phosphopeptide enrichment, and mass spectrometry.

While treatment with PF-1066 demonstrated a decrease in phosphorylation of ALK and EML4 as

a function of drug concentration, in resistant cells both untreated and treated with PF-1066, EML4 and
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ALK showed decreased phosphorylation while the phosphorylation of EGFR increased dramatically

(Figure 10). Based on this data, it was hypothesized that EGFR could be driving growth in these resistant

cells. In order to confirm the importance of EGFR in these cells, they were treated with a dose-response

of gefitinib and showed a dramatic increase in gefitinib sensitivity (Figure 9, blue line). Interestingly, co-

treatment of sensitive cells with both PF-1066 and gefitinib lead to no synergy (black line, Figure 9),

suggestive that reliance on EGFR is a process that takes longer than 72 hours. Concurrently to this work,

was been published that not only is EGFR a mechanism of resistance to ALK inhibition, but also that high

expression of EGFR in EML4-ALK positive cells is a marker for decreased initial sensitivity to ALK-

inhibitors, presumably due to its ability to compensate for loss of ALK signaling. [73]
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2.3 Conclusions and looking forward

In the course of performing this work it became clear that there is a strong need for the

development of both diagnostic and prognostic tools for both 1) uncovering drivers and 2) predicting

future drivers in response to TKI therapy, and in particular also highlights the utility of mass spectrometry

to identify driver kinases that are upregulated as they evolve resistance. Interestingly, work with evolved

resistance in H3122 to ALK-inhibition suggests that the short-term response that allows for survival of

cells may not match the long-term response, pointing to the need to understand how resistance develops

with more time granularity. In addition to studying signaling dynamics at more time points, applying

phosphoproteomic studies to more cell lines with different drivers could potentially uncover novel

mechanisms that would aid in clinical treatment of cancer. Ultimately, in case factors of 2D culture affect

development of resistance, presumably due to altered cell-cell contact signaling, expansion of studies to in

vivo xenograft models of resistant tumors as well use of 3D cell culture techniques may prove to be more

realistic in rationalizing phenotypes seen clinically in patients. Nonetheless, this work points to a direction

of mass spectrometry studies performed as described as a tool for uncovering other mechanisms of altered

kinase regulation in cancers that evolve resistance to TKI treatment.
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Chapter 3 - Using 14-3-3 to Interrogate Phosphoserine and Phosphothreonine

Signaling

3.1 Phosphoserine and phosphothreonine Signaling - the bigger picture

While significant insight can be derived from studying phosphotyrosine networks, the eventual

phenotype of a cell may be due to downstream signaling networks that are predominantly phosphoserine

and phosphothreonine mediated. For example, Akt, an important kinase involved in proliferation,

transcription, and migration, phosphorylates serine and threonine residues and acts as a conduit between

tyrosine networks and downstream serine-threonine pathways. [74, 75] While a phosphorylated tyrosine

residue provides a large enough epitope for efficient antibody recognition and pull down as required for

our mass spectrometry studies, phosphorylated serine and threonine residues are not as bulky and

antibody generation to these epitopes remains challenging. Further complicating matters, serine and

threonine phosphorylation is extremely abundant inside the cell, and selectively enriching for sites that

are physiologically important remains largely impossible. With this in mind, we sought to develop a

means of enriching for phosphorylated serine and threonine residues that are meaningful within the

context of combining phosphotyrosine data with phenotypic data to offer a potentially more global view

of cellular signaling. Given the complexity of cellular networks in terms of feedback and feedforward

loops, it is our hypothesis that functional characterization of phosphoserine and phosphothreonine

networks will provide significantly better understanding of how perturbations in signaling networks can

affect cellular outcomes and may open up potential opportunities for drug targeting down the line.

3.2 Use of 14-3-3 to interrogate phosphoserine and phosphothreonine signaling

In order to isolate serine/threonine phosphorylation sites that are of importance for the overall

signaling network, we used full length 14-3-3 protein to pull down phosphorylated peptides. Via

recognition of specific serine/threonine phosphorylated sites within the Mode 1 (RXX(pS/pT)XP) and

Mode 2 (LX(R/K)SX(pS/pT)XP) motif, 14-3-3 functions as an important scaffolding protein to help
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regulate signal transduction pathways involved in a variety of cellular functions like apoptosis, DNA-

damage response, growth, and proliferation. [76-78] Of importance to our goal, 14-3-3 isoforms bind to a

significant number of proteins in the cell, thereby maximizing the potential number of sites we can study

via peptide pull down and mass spectrometry. For example, a protein array study identified 1,752 unique

proteins that are pulled down by the 14-3-3 epsilon isoform. [79] In addition, binding of 14-3-3 proteins

has been shown to be phosphorylation-specific with a decrease in Kd by at least 100-fold between a

phosphorylated and unphosphorylated form of a given peptides containing a 14-3-3 motif, suggesting a

14-3-3 peptide pull down approach could work to isolate phospho-specific peptides. [80] With these facts

in mind, we sought to perform mass spectrometry experiments as described in Chapter 1, however

replacing the antibody pulldown step with a 14-3-3 pulldown step instead to isolate phosphorylated

peptides containing Mode 1 and Mode 2 binding motifs.

3.3 14-3-3 puildown of phosphorylated peptides

An E. coli expression vector was constructed using a modified "Avi-tag" biotin ligase system that

was a gift from the Niles lab at MIT. The birA biotin ligase adds a biotin group to the lysine residue of

the recognition sequence, MASSLRQILDSQKMEWRSNAGGS, in order to provide an attachment site to

the streptavidin protein, and to biotin-tag a protein of interest, this recognition sequence is added N-

Noti and Sbfl cutsites for cloning

---- pLac BT Protein of interest

N-terminal biotin-tag
Figure 11: Schematic of the E. coli expression vector for adding a single biotin group N-
terminal to a protein of interest (see text for details)
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terminal to a gene and inserted into a standard E. coli expression vector. [8 1] Eight-base NotI and Sbft

restriction enzyme sites were added after the biotin-ligase recognition sequence and immediately after the

stop codon for ease of shuffling 14-3-3 isoforms or any other protein of interest (see Figure 11 for the

schematic as well as Supplemental Information for vector maps). A birA-expression vector

pACYC177_birA (KanR) and a 14-3-3 expression vector pET16TrxNB-14-3-3 (AmpR) were co-

transformed into E. coli BL2 1 (DE3) cells and selected using half antibiotic concentrations (50 ug/mL

ampicillin, 25 ug/mL kanamycin), as the expression plasmids are low-copy number and growth can be

significantly inhibited at higher antibiotic concentrations. Colonies were picked and grown for 8 hours in

2 mL of LB supplemented with antibiotics, after which 500 uL of culture were added to 250 mL of LB

containing antibiotics as well as 0.1 mM IPTG and 1X biotin and grown for 24 hours at 25"C. Cells were

harvested by spinning at 4,000g for 10 minutes at 40 C, and resuspended in a 25 mL lx TBS buffer

containing 1x protease inhibitor cocktail, 1 kunitz/mL DNase, 1 mg/mL lysozyme, and 0.1% NP-40.

Under constant stirring, the suspension was incubated at room temperature for 2-3 hours to lyse cells;

lysis was further enhanced by several rounds of sonication at 40 C. The lysate was cleared of cell debris by

spinning at 12,000g for 30 minutes at 40 C, and the supernatant was applied to 1 mL of packed

streptavidin-agarose beads (EMD Millipore, Billerica, MA, USA). Lysate was mixed with beads for 2

hours at 4 0C, followed by 4 washes with lx TBS. To confirm isolation of protein, 10 and 40 uL of slurry

was run on a SDS-polyacrylamide gel, followed by transfer and a Western Blot per standard protocols

against a pan- 14-3-3 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) at a 1:10000 dilution

(Figure 12).
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Bead Batch 1 Bead Batch 2
Ladder Lysate 10uL 4OuL 1OuL 40uL

Western Blot with pan 14-3-3 antibody

Lysate Lysate 1OuL bead 30uL bead

14-3-3= 33kDa

Figure 12: Coomassie stain and Western Blot of 14-3-3 lysate and streptavidin beads confirming expression
and purification. The two gels were from different purifications of the same bacterial stock. The two bands on
lysate wells of the Western Blot are potentially from the presence of both biotinylated and unbiotinylated 14-3-
3 protein.

The mass spectrometry protocol was not altered, except peptides were pulled down using biotin-

tagged 14-3-3. Peptides were eluted using 100 mM glycine pH 2 and IMAC was performed to further

enrich for phosphopeptides. A sample list of peptides seen in a run of 2 mg of unlabeled peptide from 30

minute serum-stimulated HCC827 cells is shown in the Supplementary Information.

3.4 14-3-3 Pulldown isolates signaling protein and allows for studying signaling dynamics

Through 14-3-3 pulldowns, peptides were isolated containing Mode 1 and Mode 2 motifs that

correspond to known 14-3-3 binders. In addition to unlabeled peptides, iTRAQ-labeled peptides can be

pulled down using this technique to identify dynamics in response to perturbation. In HGF stimulated

H1975 cells, expected dynamics in a number of signaling proteins can be seen (Figure 13).

H1975 + + + +
HGF (10 ng/ml)
HGF (50 ng/m)
HGF (500 gml)

Protein Sequence 114 115 116 17
aldehyde dehydrogenase 3 family, member Al K.KMIAETSSGGVAANDVIVHITLHSLPFGGVGNSGMGSYHGK.K + 2 Phosph 1.0 1 1 6 L3
AlPase, class VI. 11B R.SWSASDPFYTNDR.S + Phos 7 L9

R.SCTWPLQRPELQASPAKPSGETAADSMIPEEEDDEDDEDGGGR.A + Phosp 1.0
R.SCTwPLPRPEIANQPSEPPEVEPDLGiEK.V + Phospho (ST) L.0 LS L31 L6

RPMSNRR ____ph (T LO 1.1 L513
R.TQSSPLPQSPOALQQLVMQQQHIQQFLEK.Q + Phospho (ST) L.0 1. 0.9 1.0
K.GLSASLPDLDSENW1EVK.K +Phospho (ST) LO 1. L4 L6

hot2 R.TTNPFYNTM.- + Phospho (ST) 1.0 0.9 0.7 0.6
R.WRSLQQLAEER.S +PhosphoR(ST) L12 L.1 .1 (1S
R.DRSSSAPNVHINTIEPVN1DDLUR.D +Phospho (ST) L.0 08 2.6 1

Figure 13: Dynamics from HGF-stimulated H1975 cells showing expected patterns in phosphorylation sites with known
functions. Data courtesy of Dan Sears
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For example, phosphorylation of the pro-apoptotic BCL2-antagonist of cell death (BAD) protein at

serine-99 as seen in Figure 13 has been shown to be pro-survival, which would be consistent with

treatment of a growth factor and subsequent activation of pro-survival kinases like RAF. [82, 83] In

addition to the examples listed above, other phosphorylation sites noted on important kinases in signaling

pathways observed by this method include ARAF, BRAF, CRAF, and the key regulatory Serine-473 site

on AKT. However, a notable shortcoming of the method thus far has been the significant contamination

of acidic, non-14-3-3 specific peptides. Work is continuing to improve binding, washing, and elution of

specific peptides to improve coverage of the phosphoproteome that is bound by 14-3-3.

3.5 Conclusions and future directions

While this technique is still in development, in particular to decrease the amount of acidic

contaminating peptides, we have been able to isolate known 14-3-3 binding pairs at specific key

regulatory sites. Future work to improve the coverage will better be able to elucidate how perturbations in

phosphotyrosine signaling feeds forward, as well as how perturbation of phosphoserine and

phosphothreonine signaling can feed back upstream. In particular to our work in the area of cancer

adaptation and resistance, a well-established 14-3-3 pull down protocol would allow the interrogation of

known driver kinases like BRAF and Akt, as well as identification of potential key nodes that may not be

apparent from the tyrosine signaling network alone. For example, a number of signaling events related to

regulation of apoptosis, like sites on BAD and Caspase 9, are serine and threonine phosphorylation

events, and given the altered regulation of apoptosis in cancer, information about these dynamics may be

useful toward deriving a better understanding of tumor biology. Therefore, in the absence of an antibody

that is able to effectively pull down peptides relevant to 14-3-3-mediated signaling, improvements of this

technique could prove to be valuable in providing potentially clinically relevant information from tumor

cells.
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Chapter 4 - Computational Tools for Analyzing Mass Spectrometry Data

4.1 Computational tools to process peptide data from a mass spectrometer

As the sensitivity and speed of electronics and sensors inside mass spectrometers improves, more

and more proteomic data will be generated. Manual processing of data will likely eventually prove to be

an impossible task, yet given the amount of hypothesis one can derive from high-throughput proteomic

data, there is a strong need for tools that can reliably extract meaningful information that is useful to help

scientists guide experimental design. An ideal computational tool will save time for researchers without

sacrificing quality or integrity of data, as a major concern in proteomics is the quality of data that is being

deposited and used as rationale for project development. [84] Manual validation of spectra data is

currently the best means of ensuring that sequencing and quantitative information from database

searching software like MASCOT is correct. Nonetheless, scripts that automate steps currently done by

hand that require limited to no judgment, like data formatting, routine calculation, and basic cleanup, can

remove cumbersome steps that can take on the order of hours to get data from common mass

spectrometry formats (RAW, MGF, mzXML, etc) into data processing software like MATLAB and

Excel.

4.2 Generation of scripts for the automation of routine steps in data formatting and cleanup

Scripts were written to automate a number of the manual calculation and formatting steps that are

done after the creation of HTML files with peptide information from the MASCOT server. The goal of

these scripts is to streamline and ideally remove some of the manual steps required to generate Excel files

with easily readable and usable data from raw mass spectrometry files. In order to improve accessibility

to those with minimal computation expertise, a graphical user interface (GUI) was written to help with

option selection, as well as providing an intuitive means for a user to customize how scripts are executed

through passing in parameters (Figure 14). In addition, the MATLAB software environment allows a

number of complicated data operations and contains a rich library of both built-in and user community-
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written functions for downstream data analysis. Lastly, a long-term goal that was in mind during

development would be for the software to be as extensible as possible for running as many of the routine

computational analyses that are performed in a proteomic/mass spectrometry lab, including the ability to

easily add new or update existing functionalities as desired.

GUI~

Extract iTRAQ Values from RAWAITML Fles

Choose your pTyr RAW file

C:%UsersAdrianocumentsWATLAB~S iTRAQ Scrrw[

Choose your pTyr HTML fie:

ICWserswdrianmDocumentsATLAB\ST iTRAQ Scr [jee ]

Choose your supernatent RAW file:

C:WJsesdrian\DocumentsWATLAB\ST iTRAQ Scrip [ re j]
Choose your superntart HTML fie:

C:\UsersAdrianMDocumentsWATLAB\ST fTRAQ Scr Brm]
Type the name of your desired outpt Ixt fie (ckade tx

extension)

sampleOutputwithCutoffIxt

Search for 14-3-3 Motifs? Perform Cleanup? Quantification Type Perform averaging?

LI 14peIe~TRAQ

Perform normaization? Outpt to excel? Select what to output to excel

Percentage Cutoff for Averaging 100

14-3- motif dat

Figure 14: A sample image of the GUI highlighting the number of options for
data cleanup and processing

4.3 Design of scripts to automate cleanup, averaging, and normalization of mass spectrometry data
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Previous scripts written in the lab to process RAW files from a Thermo Fisher Orbitrap-LTQ and

MASCOT were used as a starting template to build a GUI and additional scripts for added function. At a

high level, the scripts work sequentially to process both data from a phosphotyrosine as well as a

supernatant run in parallel (for loading control) as desired. The scripts as published here are able to work

to clean up quantification data, average peptide values, normalize to a supernatant run of non-

phosphorylation peptides, and lastly search for and mark peptides containing 14-3-3 motifs. Each

algorithm for the listed functionalities is described at a high level in the following subsections.

4.3.1 Scripts for cleanup ofpeptide and iTRAQ information

Prior to analysis with Excel, MATLAB, or comparable software, data from a mass spectrometry

run must be formatted into a MATLAB-friendly format. Using the mzxmlread function found in the

Bioinformatics Toolbox, a structure of spectra scans as well as a list of peaks can be generated for

extracting iTRAQ data as well as peptide M/Z information for validating sequencing and the presence of

contaminating peaks. This information can be combined with sequencing information from MASCOT to

generate a list of peptides and as their corresponding iTRAQ values. A sample output of the data at this

point is illustrated below in Figure 15.

A C

2 1Scan Protein Sequence
2 27415 serine/threonine-protin kinase PRP4K K.LCDFGSASHVADNDITPYLV5R-F + Phospho (ST)

29210 serine/threonine-protein kinasePRP4K
29211 serine/.threonine-protein kinase PRP4
24301 serine/thronine-protein kinase PRP4K
27825 serin/threonine-protein kinese PRP4K
28371 serine/threonine-protein kinase PRP4K
27952 serineithreonine-protein kinse PRP4K
27953 serine/threonine-protein kinase PP4K
28118 serine/threonn-protein kinase PRP4K
28119 serine/threonine-protein kinase PRP4K
28664 serine/threonine-protein kinase PRP4K
28665 serine/thronine-protin kinase PRP4K
26480 serineftheonine-protein kinase PP4K
26481 serinethreonine-protein kinase PRP4K
27572 serinethreonine-protein kinese PP4K
27573 serine/threonine-protein kinse PRP4K
27026 serine/threonine-proteinkinesePRP4K
27027 serine/threonine-protEinkinasePRP4K
25937 serine/threonine-protein kinse PRP4K
25936 serine/threonine-protein kinase PRP4K
24849 serine/threonine-proten kinase PRP4
23765 serine/threonine-protein kinse PRP4K
28526 serinethreonine-orotein kinse PRP41K

K.LCDFGSASHVADNDITPYLVSR.F + Phospho (Y)
KLCDFGSASHVADNDITPYLVSR-F + Phospho (Y)
K.LCDFGSASHVADNDITPYLVSR.F + Phospho (ST)
K.LCDFGSASHVADNDITPYLVSR.F + Phospho (Y)
KLCDFGSASHVADNDOTPYLVSR.F + Phospho (Y)
KICDFGSASHVADNDTPYLVSR F + Phospho (ST)
K.LCDFGSASHVADNDITPYLVSR.F + Phospho (ST)
K.LCDFG5ASHVADNDTPYLVSR F + Phospho (Y)
K.LCDFGSASHVADNDITPYLVSR.F + Phospho (Y)
K.LCDFG5A5HVADNDITPYLVSR.F +Phospho (Y)
K.CDFGSAHVADNDITYLVSR.F + Phospho (Y)
K.LCDFGSASHVADNDITPYLVSR.F + Phospho (Y)
K.LCDFGSASHVADNDITPYLVSRF + Phospho (Y)
KLCDFGSASHVADNDITPYLVSR.F + Phospho (Y)
K.LCDFGSASHVADNOITPYLVSR.F + Phospho (Y)
K.LCDFGSASWADNDITPYLVS.F + Phospho (Y)
K.LCDFGSASHVADNDITPYLV5R.F +Phospho (Y)
KLCDFGSASHVADNDITPYLVSR.F + Phospho (Y)
KJLCoFGSASHVADNDITPYLVsR.F +Phospho (T)
K.LCDFGSASHVADNDITPYLVSR.F + Phospho (Y)
Ki.CDFGSASVADNDITPYLVSR.F + Phospho (Y)
KICDFGSASHVADNDfTPYLVSR.F + Phospho (ST)

25 44114 vophocyte-specific protein tyrosine king .SVLEDFFTATEGQYQPQP.- + Phospho (Y)
26 43469 ymphocyte-specific protein yrosine kin* .SVLEDFFTATEGQYQPQP.- +Phospho (ST)

0
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8.9E+07

8.9E07

8.9E407

8.9E407

8.9E+07

8.9E+07

14E+08

14E+08

E F
Elution MZ

109833 1411.16
116.065 941111
116.067 941-111
98.482 941.112

111.273 706.086
113.16 706.086

111.712 141117
111.715 1411.17
112.285 941.113

112.287 941.113
114.173 941.113
114.175 941.113
106.492 941.113

106.493 941.113
110.387 941.113
110.388 941113
108.462 941.113
108.463 941.113
104.528 941.114
104.525 941.114
100.517 941.114

96.47 941.115
113.697 1411.17
164.758 1221.07
162.363 814.38

Figure 15: Sample data output from processing with the mzxmlread MATLAB function combined with in-house scripts to
reference and combine peptide sequence information inside an HTML output file from MASCOT
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From visual inspection of Figure 15, the data contains a number of potential errors that need to be

examined and cleaned. For example, in the columns containing iTRAQ data (columns I to P), a number of

zeroes are present indicating the HCD on the instrument could not detect an iTRAQ data for a particular

scan. In addition, in column H, MASCOT outputs a MudPIT score based on estimating the likelihood that

multiple matches to a protein in the database is random in order to estimate the confidence of a given

sequence. As a rule of thumb (with exceptions), a peptide with a score of 25 is likely to be real; shorter

peptide reads can still be real with a score less than 25, however, care must be taken to manually validate

the hit and determine if the sequence read is real. Reading down column C, there are multiple scans for a

given peptide, each with their own iTRAQ data, as well as peptides not containing phosphorylated

tyrosine.

From this raw data output shown and described above, a MATLAB structure containing the text

and numerical is passed into a cleanupTXT.m function which will perform six operations:

* Delete a row of data if there is no phosphorylation group in the peptide

* Delete a row of data if there is no tyrosine amino acid in the peptide

" Delete a row of data if there are any zeroes in any iTRAQ channel. While very low

(<1000) values in a iTRAQ channel may not be real, this must be determined by the

experimenter via manual inspection of a given scan

* Delete a row of data if the MudPIT score is below 20

" Delete a row if MASCOT outputs more than 3 phosphorylation sites in the peptide

" After cleaning up scans based on the preceding rules, correct iTRAQ values for

contamination from other channels due to isotopic impurities

After these operations are completed, this data will be output, and the sample from above is shown below

in Figure 16.
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8 C to

29211 serinie/threonineprotein kinase PRP4K

24301 serine/threonine-protein kinase PRP4X

27953 serine/threonineprotein kinase PRP4K

28119 serine/threonine-potein kinasePRP4K

28665 serine/threonine-protein kinase PRP4K

26481 serine/threonine-protein kinase PRP4K

27573 seri/threonine-protein kinase PRP4K

27027 serine/threonine-protein kinasePP4K

25937 serine/threonine-protein kinase PRP4K

24849 serine/threonine-protein kinase PRP4K

23765 serine/threonine-protein kinase PRP4K

Seauence
K.LCDFGSASHVADNOITPYLVSR F + Phospho (Y)

K.LCDFGSASHVADNDITPYLVSR F + Phospho (ST)

K.LCDFGSASHVADNDITPYLVSR.F + Phospho (ST)

K.LCDFGSASHVADNDITP'LV5R.F + Phospho( )
K.LCDFGSASHVADNDITPYLVSR.F + Phospho(Y)

K.CDFGSASHVADNDITPYLVSR.F + Phospho (Y)

K.LCDFGSASHVADNDITPYLV5R.F + Phospho (Y)

K.LCDFG5ASHVADNDITPYLVSR F + Phospho (Y)

K.LCDFGSASHVADNDITPYLV5R.F + Phospho (Y)

K.LCDFGSASHVADNDITPYLV5R.F + Phospho (Y)

K.LCDFGSASHVADNDITPYLVSR.F + Phospho (Y)

10
89E+07

8.9E+07

89E407
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89E+07
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8.9E+07

89E+07
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8.9E407
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116.067
98.482

111.715

112.287

114.175

106.493

110.388

108.463

104.528

100.517

96.47

941.111

941.112

1411.17

941.113

941.113

941.113

941.113

941.113

941.114

941.114

941.115

H I i K

Sco e 113 114 115
3 51 10956.3 18297 17585.8

3 39 400.075 577027 56915

2 82 76397 1025.06 1234.98

3 59 103245 109792 128916

3 67 29985.8 37102.7 45828.3

3 42 2108.89 2629.14 345278

3 57 61945.9 66877.4 96292.9

3 66 7184.48 11789.5 134762

3 37 738.926 1061.83 103836

3 42 349931 540371 712.506

3 30 403.708 488.246 195-917
R a t 1147 'I" 1x179R & s

Figure 16: Sample output of the cleanupTXT.m script as described above

4.3.2 Script for averaging iTRAQ data from multiple scans

From Figure 16 above, for the given tryptic peptide K.LCDFGSASHVADNDITPYLVSR.F +

Phospho (Y), a number of scans contain different iTRAQ information. In order to get an idea of the trend

in quantification of the data, averaging can be performed of the iTRAQ data. However, straight averaging

may not be appropriate if iTRAQ information is showing different trends for a given peptide; this may be

due to contamination from other peptides if the chromatography is poor, and thus must be accounted for.

Therefore, as a user input, a percent threshold option is added which, if inputted, will look at the trends in

the data and determine if any of the dynamics for a given peptide exceeds the user-defined threshold. For

example, with a 100% threshold option added, data for K.LCDFGSASHVADNDITPYLVSR.F +

Phospho (Y) is not averaged, as the software will detect that dynamics are not consistent and require

manual inspection. Depending on the user's tolerance, this number can be increased or decreased as

3.5

w 2.5

2

1.5

S1-

. 0.5

0

113 114 115 116 117 118 119 121

Figure 17: Sample of iTRAQ data of 9 scans that are not averaged with using a 100%
threshold.
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needed. If the script finds that a given peptide has dynamics that surpass the threshold, it will output an

asterisk in an added column to either the tab-delimited text file or Excel file to alert the researcher that the

dynamics in question for a given peptide need to be manually inspected for contamination from other

peptides or some other problem.

4.3.3 Script for normalizing iTRAQ data from non-phosphorylated supernatantpeptides

In order to obtain more accurate quantification, the iTRAQ data must be normalized to a

supernatant of non-phosphorylated peptides to account for discrepancies in peptide loading. Supernatant

data is converted to a tab-delimited text file as described earlier in Chapter 4.3.1; however, the cleanup

step only entails deleting rows if a given iTRAQ channel is below 1000 as well as any peptides with a

MudPIT score below 25. The iTRAQ data of this cleaned set is corrected for contamination from other

iTRAQ channels, and then the mean iTRAQ value for a given channel is calculated and used to create an

estimated ratio for the loading control. Other methods exist for this normalization step, and a user can

choose to edit the script as desired. The ratio for loading control is applied to each channel in the cleaned

dataset can be output to both a tab-delimited text file as well as an Excel file as desired.

4.3.4 Script for finding 14-3-3 motifs in trypticpeptides

To aid in studies using 14-3-3 protein to pull-down phosphoserine and phosphothreonine

peptides, a motif searcher was added to highlight peptides that match the expected 14-3-3 motif. 14-3-3

protein is known to have two binding modes: Mode 1, RXX(pS/pT)XP, and Mode 2,

LX(R/K)SX(pS/pT)XP, where X stands for any amino acid. [85] The script searches peptide by peptide

and if it finds a sequence that matches either motif, it will mark the line with an asterisk that is stored in

an added column.
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4.4 Conclusions and looking forward

In the preceding chapter, a set of scripts for cleaning and formatting data from raw mass

spectrometry files was presented that can save hours of manual work. The scripts are not meant to replace

manual validation; however, rather they aim to save time by removing repetitive manual calculations, as

well as alerting a researcher when dynamics in a peptide do not match across scans. Eventually as the size

of data files increases and manual validation becomes increasingly difficult, more complex computational

tools will need to be written for both processing and validating proteomic data, for example, matching a

peak list with expected fragmentation patterns to determine if contaminating spectra are present. In the

meantime, the scripts as presented have been designed and written with extensibility in mind such that

new functionalities could be added at will to automate other parts of high-throughput proteomic data

analysis.
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Conclusions and Looking Forward

In this thesis I've discussed projects aimed at exploring three different aspects of cancer biology

from a signaling perspective: 1) how signaling networks adapt and remodel themselves to drug-induced

perturbation, 2) how cancer cells can evolve long-term mechanisms of resistance to targeted therapies,

and 3) the development of a novel technique to better probe signaling networks downstream of the

phosphotyrosine network that may play significant roles in signal transduction.

Life is an especially robust process and signaling pathways appear to be selected for with

redundancy in mind. [86, 87] Currently we seek to inhibit what we view of as main drivers of cancer

growth, as well as potentially other kinases that can mediate survival of a cancer cell population long-

term (i.e. Met compensating for EGFR-inhibition, or EGFR compensating for EML4-ALK inhibiton).

Furthermore, the heterogeneity of a tumor may be great enough that the number of inhibitors needed to

eradicate a cancer's growth will be too high from a side effects standpoint. Perhaps with the further

development of nanoparticles and other means of targeted drug delivery, these effects will be mitigated,

but it remains unclear what their potential is in the future.

Looking forward, I envision the further development of more complex, perhaps even

"computable" therapies that rather than seeking to inhibit cancer, they stimulate means for cells to

apoptose in a cancer-specific manner. In this context, I view the complexity of signaling circuitry almost

as a "waterfall" of growth signals, where cells can dynamically rewire themselves to activate different

pathways that can mediate their survival. In the same sense as building a dam to block water, adding an

inhibitor to a cancerous cell may just lead to an alternate "path" being explored. The effects of the drug

may just be cytostatic rather than cytotoxic, so perhaps looking more in the direction of conditional

therapies that can activate apoptosis inside of a target cell of interest may prove to be more effective

clincially. [88] This idea has been explored by many and numerous studies have been published in the

area of computable therapies for cancer. [89-95] Cancer has a number of immutable targets associated

with it at both the genomic and proteomic level that are sufficient at differentiating it from other cells in
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the body. For example, it has been estimated that a tumor can contain on the order of 20,000 unique

mutations in more than 130 coding exons, and besides a myriad of genetic mutations within a cell, there

will also exist another myriad of mutations within a context of a tumor (i.e. mutations unique to different

sub-clones of a tumor). [96] While the immune system in a normal context should be able to target cells

that have developed mutations in coding regions through MHC-peptide recognition by T-cells, cancers

evolve to adapt in many clever ways, such as secreting cytokines to suppress the immune system, or

altering their apoptotic pathways to become resistant to secreted proteins of the immune system. [97]

With this in mind, given the sheer amount of defects present, it seems eradicating cancer may potentially

be an insurmountable problem from an inhibitory perspective, but from an activation perspective, it may

prove to be a more reasonable direction for therapies in the future as single markers can be sufficient to

delineate a cancerous cell from a non-cancerous cell.

Until these more complex treatments can be administered clinically, there is a significant need to

discover novel "druggable" pathways, as well as develop tools to best predict a priori patient sensitivities

to available treatments. From a practical, economic perspective, with new drug costing on the order of

$100,000 per year, identifying patients likely to benefit versus those unlikely to benefit would be a means

of decreasing unnecessary financial and treatment burden both to the patient as well as society. The

benefit that patients derive from drugs that are currently approved for targeted treatment of cancers can

vary greatly; some even with appropriate genetic preselection (for example, activating mutations in EGFR

or ALK translocations) do not respond to treatments predicted to succeed based on what we currently

know, so there is a strong need for diagnostic tools as well as corresponding computational analyses that

can connect genetic, proteomic, and phenotypic data with clinical outcomes.

With this in mind, there appears to be significant clinical value in technologies that are able to

extract as much information as possible from tumors with very high granularity, ideally at the single-cell

level. Heterogeneity is a natural problem in tumors, given the different clonal expansions that can occur

both with and without treatment over the course of cancer development. If heterogeneity is amplified due
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to cells developing resistance to inhibition, the problem will likely increase even more in complexity, as

multiple new clonal populations can arise in this resistance developing process. Therefore, it seems an

ideal solution would be the development of diagnostic tools that can gather as much relevant information

about a tumor as possible, ultimately even at the single-cell level where resistance can develop, and use

this data to construct predictive models for clinical outcomes. [45] Fortunately, a host of technologies are

currently in development to uncover signaling dynamics at the single-cell level, which could aid in

potentially uncovering novel targets that are masked by bulk studies like those performed in this thesis.

[72, 98] Better identification of critical signaling events at the single-cell level through genomic or

proteomic techniques may prove someday to provide significant value to patients in the clinic through

better personalized treatments aimed at mitigating driver growth signals as well as targets that can drive

resistance. With this in mind, it is my most sincere hope that we're in the midst of truly exciting

developments in our understanding of tumor biology, and that the discoveries we're making now will

prove to be very fruitful for many years to come for those suffering from such a terrible disease.

"If those committed to the quest fail, they will be forgiven. When lost, they will find another way. The moral
imperative of humanism is the endeavor alone, whether successful or not, provided the effort is honorable and
failure memorable. The ancient Greeks expressed the idea in a myth of vaulting ambition. Daedalus escapes from
Crete with his son Icarus on wings he has fashioned from feathers and wax. Ignoring the warnings of his father,
Icarus flies toward the sun, whereupon his wings come apart and he falls into the sea. That is the end of Icarus in the
myth. But we are left to wonder: Was he just a foolish boy? Did he pay the price for hubris, for pride in sight of the
gods? I like to think that on the contrary his daring represents a saving human grace. And so the great astrophysicist
Subrahmanyan Chandrasekhar could pay tribute to the spirit of his mentor, Sir Arthur Eddington, by saying: Let us
see how high we can fly before the sun melts the wax in our wings."

-- Edward 0. Wilson
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Supplemental Information

Maps of 14-3-3 Vectors

pNB-14-3-3zeta plasmid:

biotin tag sequence 40

Ligatco
sequencingrie L 8aio gto

b oin tag Fa&ctorva

pET16Trx_NB- 14-3-3-fixedCodons 2
6.528 bp

pACYC177 birA:
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pNBNotI-Sbfl (for cloning):
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Sample Data from a 14-3-3 Pull-down of Serum Stimulated HCC827 Cells

WD repeat domain 44 protein

CLIP-associating protein 2

DEAD box polypeptide 42 protein

dedicator of cytokinesis 8

eukaryotic translation initiation factor 2B,
subunit 5 epsilon, 82kDa

BCL2-associated transcription factor 1
isoform I

high mobility group AT-hook 1 isoform b

heterogeneous nuclear ribonucleoprotein U
isoform b

insulin-like growth factor 2 receptor
precursor

kinesin family member 13B

DNA topoisomerase II, beta isozyme

cingulin

cleavage and polyadenylation specific
factor 2

cleavage and polyadenylation specific
factor 2

microfibrillar-associated protein I

solute carrier family 4 (anion exchanger),
member 1, adaptor protein

splicing factor 3B subunit 2

v-raf murine sarcoma 3611 viral oncogene
homolog

Yes-associated protein 1, 65 kD

BCL2-antagonist of cell death protein

tight junction protein 2 (zona occludens 2)
isoform 2

ataxin 1

K.SVRDEVFHTDQDDPSSSDDEGMPYTRPVK.F + 3 Phospho (ST)

R.YESYGMHSDDDANSDASSACSERSYSSRNGSIPTYMR.Q + 2 Oxidation (M); 2 Phospho (ST)

R.QQFHSKPVDSDSDDDPLEAFMAEVEDQAAR.D + 2 Phospho (ST)

K.MQVTMSLASLVGR.A + Oxidation (M); 3 Phospho (ST)

R.FIQWLKEAEEESSEDD.- + 2 Phospho (ST)

K.NTPSQHSHSIQHSPER.S + Phospho (ST)

K.KLEKEEEEGISQESSEEEQ.- + 2 Phospho (ST)

R.AKSPQPPVEEEDEHFDDTVVCLDTYNCDLHFK.I + Phospho (ST)

K.LVSFHDDSDEDLLHI.- + Phospho (ST)

R.RSISSPNVNR.L + Phospho (ST)

K.YTFDFSEEEDDDADDDDDDNNDLEELKVK.A + Phospho (ST)

R.SHSQASLAGPGPVDPSNRSNSMLELAPK.V + 2 Phospho (ST)

K.EADIDSSDESDIEEDIDQPSAHK.T + 3 Phospho (ST)

K.KLEQSKEADIDSSDESDIEEDIDQPSAHK.T + 3 Phospho (ST)

K.RPDYAPMESSDEEDEEFQFIKK.A + 2 Phospho (ST)

K.NWEDEDFYDSDDDTFLDR.T + Phospho (ST)

K.GFEEEHKDSDDDSSDDEQEKKPEAPK.L + 3 Phospho (ST)

R.SASEPSLHR.T + Phospho (ST)

R.AHSSPASLQLGAVSPGTLTPTGVVSGPAATPTAQHLR.Q + Phospho (ST)

R.SRSAPPNLWAAQR.Y + Phospho (ST)

R.RHQYSDYDYHSSSEK.L + Phospho (ST)

KRRWSAPESR.K + Phospho (ST)
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