
MIT Open Access Articles

Compressive sensing with local geometric features

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Rishi Gupta, Piotr Indyk, Eric Price, and Yaron Rachlin. 2011. Compressive sensing with
local geometric features. In Proceedings of the 27th annual ACM symposium on Computational
geometry (SoCG '11). ACM, New York, NY, USA, 87-96.

As Published: http://dx.doi.org/10.1145/1998196.1998211

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/73013

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73013
http://creativecommons.org/licenses/by-nc-sa/3.0/

Compressive Sensing with Local Geometric Features

Rishi Gupta
MIT

Piotr Indyk
MIT

Eric Price
MIT

Yaron Rachlin
Draper Laboratory

23 March 2011

Abstract

We propose a framework for compressive sensing of images with local geometric features.
Specifically, let x ∈ RN be an N -pixel image, where each pixel p has value xp. The image is
acquired by computing the measurement vector Ax, where A is an m×N measurement matrix
for some m� N . The goal is then to design the matrix A and recovery algorithm which, given
Ax, returns an approximation to x.

In this paper we investigate this problem for the case where x consists of a small number
(k) of “local geometric objects” (e.g., stars in an image of a sky), plus noise. We construct a
matrix A and recovery algorithm with the following features: (i) the number of measurements m
is O(k logk N), which undercuts currently known schemes that achieve m = O(k log(N/k)) (ii)
the matrix A is ultra-sparse, which is important for hardware considerations (iii) the recovery
algorithm is fast and runs in time sub-linear in N . We also present a comprehensive study of
an application of our algorithm to a problem in satellite navigation.

1

1 Introduction

In recent years, a new “linear” approach for acquiring digital images has been discovered [CRT06,
Don06]. Traditional approaches to image acquisition first capture an entire N -pixel image and then
process it for compression, transmission, or storage. In contrast, the new approach obtains a com-
pressed representation directly, by acquiring a small number of nonadaptive linear measurements
of the signal in hardware. Formally, for an image represented by a vector x, the representation
is equal to Ax, where A is an m × N matrix. The advantage of this architecture is that it can
use fewer sensors, and therefore can be cheaper and use less energy than a conventional cam-
era [DDT+08, FTF06, Rom09].

In order to reconstruct the image x from a lower-dimensional measurement vector (or sketch)
Ax, one needs to assume that the image x is k-sparse for some k (i.e., it has at most k non-zero
coordinates) or at least be “well-approximated” by a k-sparse vector. Then, given Ax one finds
(an approximation to) x by performing sparse recovery. The latter problem is typically defined
as follows: construct a matrix A such that, for any signal x, we can recover a vector x̂ from Ax
satisfying

‖x− x̂‖1 ≤ C · Err1
k(x) (1)

where Err1
k(x) = mink-sparse x′ ‖x− x′‖1 and C is the approximation factor. Note that if x is

k-sparse, then Err1
k(x) = 0, and therefore x̂ = x. Although the main focus of this paper is signal

acqusition, sparse recovery has applications to other areas such as data stream computing [Mut05,
Ind07].

The problem of designing matrices A and corresponding recovery algorithms has been a subject
of extensive study over the last few years, with the goal of designing schemes that enjoy good com-
pression rate (i.e., low values of m) as well as good algorithmic properties (i.e., low encoding and
recovery times). It is known by now that there exist binary matrices A and associated recovery algo-
rithms that produce approximations x̂ satisfying Equation (1) with constant approximation factor C
and sketch length m = O(k log(N/k)). In particular, a random Bernoulli matrix [CRT06] or a ran-
dom binary matrix with column sparsity O(log(N/k))
[BGI+08] has this property with overwhelming probability. It is also known that this sketch length
is asymptotically optimal [DIPW10, FPRU10]. See [GI10] for an overview.

In this paper we focus on sparse recovery with ultra-low encoding complexity, i.e., constant or
“almost-constant” column sparsity. In addition, the matrices we construct are binary: all entries
are either 0 or 1. Apart from general interest, our research is motivated by certain architectures
for compressive imaging hardware that acquire all the compressive measurements concurrently by
implementing the matrix multiply Ax. In particular, our “folding” measurements described in
section 4 are readily implementable on systems that use optically multiplexed imaging [UGN+09,
TAN10]. For optical measurement architectures, due to the Poisson distributed shot noise affecting
photon counting devices [HL07], splitting the signal in components of x can decrease the signal
to noise ratio by as much as the square root of the column sparsity. Other potential advantages
of ultra-low encoding complexity in electronic compressive imagers include reduced interconnect
complexity [Mei03], low memory requirements for storing the measurement matrix, and gain in
image acquisition speed due to reduced operations.

Unfortunately, it is known [Nac10] that any deterministic scheme with guarantee as in Equa-
tion 1 requires column sparsity of Ω(log(N/k)). In the randomized case, where A is a random
variable, and Equation 1 is required to hold only with constant probability over the choice of A,
the same paper shows that any binary matrix A must have column sparsity as stated.

In this paper we show how to overcome the above limitations by employing a two-fold approach.

1

First, we consider a class of images that possesses additional geometric structure (see next para-
graph). Second, we relax the recovery guarantee, by requiring that only a constant fraction of the
non-zero entries of the vector x are recovered correctly.

Model description

Our model for sparse images is motivated by astronomical imaging, where an image contains a
small number of distinguishable objects (e.g., stars) plus some noise. We model each object as an
image contained in a small w×w bounding box, for some constant w. The image is constructed by
placing k objects in the image in an arbitrary fashion, subject to a minimum separation constraint.
The image is then modified by adding noise. We formalize the notions of minimum separation
constraint, distinguishability, and noise in the rest of this section.

Let x be an N -dimensional real vector, and assume N = n2 for an integer n. We will treat
x both as a vector and as an n × n matrix, with entries x[i, j] for i, j ∈ [n]. An object o is a
w × w real matrix. Let O = {o1 . . . ok} be a sequence of k objects, and let T = {t1 . . . tk} be a
sequence of translations in x, i.e., elements from [n−w]2. We say that T is valid if for any i 6= j the
translations ti and tj do not collide, i.e., we have ‖ti − tj‖∞ ≥ w′ for some separation parameter
w′ = Ω(w). For o ∈ O and t = (tx, ty) ∈ T , we define t(o) to be a w × w matrix indexed by
{tx . . . tx + w − 1} × {ty . . . ty + w − 1}. The ground truth image is then defined as x =

∑
i t(oi).

During our algorithm, we impose a grid G on the image with cells of size w′ × w′. Let xc be
the image (i.e., an w′2-dimensional vector) corresponding to cell c. We then use a projection F
that maps each sub-image xc into a feature vector F (xc). If y ∈ xc for some cell c, we use F (y) to
denote F (xc) after the entries of xc \ y are set to 0. If y is not a cell and not contained in a cell,
we leave F (y) undefined.

The distinguishability property we assume is that for any two distinct o, o′ from the objects
O ∪ {∅}, and for any two translations t and t′, we have ‖F (t(o)) − F (t′(o′))‖Γ > T (when it is
defined) for some threshold T > 0 and some norm ‖ · ‖Γ. In other words, different objects need
to look different under F . For concreteness, the features we exploit in the experimental section
are the magnitude (the sum of all pixels in the cell) and centroid (the sum of all pixels in the cell,
weighted by pixel coordinates), since the magnitudes of stars follow a power law, and the centroid
of a star can be resolved to .15 times the width of a pixel in each dimension. The distinguishability
constraint is what ultimately allows us to undercut the usual lower bound by a factor of log k.

The observed image x′ is equal to x+µ, where µ is a noise vector. The threshold T determines
the total amount of noise that the algorithm tolerates. Specifically, let ‖µ‖F =

∑
c ‖F (µc)‖Γ, where

µc is the noise corresponding to cell c. We assume that ‖µ‖F < γkT for some constant γ > 0, and
make no other assumptions about the noise.

Theoretical result

Our results assume sparsity parameter k ≥ C logN for some constant C. We construct a distribution
over random binary m×N matrices A, such that given Ax′ for x′ described above, we recover (with
constant probability) a set D of k cells, such that at least k/2 of the cells fully containing an object
are included in D1. The matrix has column sparsity O(logkN). Note that if (say) k = N1/2, then
the column sparsity is constant. Moreover, the matrix A has only m = O(k logkN) rows.

1A simple extension of the algorithm can then recover an approximation to xc for any c ∈ D.

2

Empirical results

Our theoretical model is motivated by a task in satellite navigation formally known as attitude
(i.e., orientation) determination. Many satellites compute their attitude by acquiring a picture
of the night sky, extracting stars from the picture, and matching patterns of stars to an onboard
database. We implement a standard attitude determination routine, with the picture aquisition and
star extraction steps replaced with a simplified version of the algorithm presented in this paper. Our
algorithm performs better recovery on small numbers of measurements and is orders of magnitude
faster than comparable compressive sensing methods.

Our techniques

Our construction of the measurement matrix resembles those of other algorithms for sparse matrices,
such as Count-Sketch [CCF02] or Count-Min [CM04]: we “hash” each cell c s = O(logkN) times
into s arrays of q = O(k) “buckets”, and sum all cells hashed to the same bucket. Each bucket
defines one measurement of w′2 pixels, which gives m = O(k logkN). Hashing is done by using
either the Chinese Reminder Theorem codes (i.e., “modulo prime” hashing) or Reed-Solomon codes.
Both hash functions are standard in the literatue. It should be noted though that unlike in other
scenarios, our use of CRT codes does not incur any additional polylogarithmic factors that typically
lead to sub-optimal results.

The recovery process is based on the following novel approach. For simplicity, assume for now
that the image contains no noise, and ignore the effect of two different objects being hashed to
the same bucket. In this case, all buckets containing distinct objects are distinguishable from each
other. Therefore, we can group non-empty buckets into k clusters of size s, with each cluster
containing buckets with a single value. Since qs > N , each cluster of buckets uniquely determines
the cell in x containing the object in those buckets.

In order to make this approach practical, however, we need to make it robust to errors. The
errors are due to distinct objects being hashed to the same bucket, the noise vector µ, and the grid
cutting objects into pieces. Because of these issues, the clustering procedure aims to find clusters
containing elements that are close to each other, rather than equal, and the procedure allows for
some small fraction of outliers. For this purpose, we use the approximation algorithm for the k-
center problem with outliers [CKMN01], which correctly clusters “most” of the buckets. To handle
the (small fraction of the) buckets that are grouped incorrectly, we construct our hash function
using a constant rate error-correcting code.

2 Hashing

Our scheme works by “hashing” each cell c into s different arrays of size O(k). We can think of this
as a mapping f from [N] to [O(k)]s. As long as each character of the mapping is (approximately)
pairwise independent, then in expectation most of the k objects will be alone in most of the array
locations they map to. Our reconstruction algorithm will cluster the values in the cells, giving us
a noisy version y′ of the true codeword y = f(c) with a constant fraction of errors. We then need
to efficiently decode from y′ to c.

Hence, we need an efficient error correcting code that is also approximately pairwise independent
in each character. This section gives precise definitions of our requirements, then gives two codes
achieving them.

3

2.1 Definitions

Definition 2.1. A hash family H of functions h : A → B is pairwise-independent if, for any
x1, x2 ∈ A and y1, y2 ∈ B with x1 6= x2, we have Prh∈H[h(x1) = y1 ∩ h(x2) = y2] = 1

|B|2 .

In many of our applications the range B is the product of s “symbols” B1 × · · · × Bs. For a
function f : A→ B and i ∈ [s], we use fi(x) to denote the ith coordinate of f .

When B is a product space, we will sometimes settle for a weaker notion of pairwise indepen-
dence. Rather than requiring pairwise independence for the whole range, we only require pairwise
independence in each coordinate:

Definition 2.2. Let B = B1 × · · · × Bs. A hash family H of functions h : A → B is coordinate-
wise C-pairwise-independent if, for all i ∈ [s], any x1 6= x2 ∈ A, and all y1, y2 ∈ Bi, we have
Prh∈H[hi(x1) = y1 ∩ hi(x2) = y2] ≤ C

|Bi|2
.

Definition 2.3. Let B = B1 × · · · ×Bs. A function f : A→ B is C-uniform if, for all i ∈ [s] and
all y ∈ Bi, Prx∈A[fi(x) = y] ≤ C

|Bi| .

Definition 2.4. For any function f : B → D and family H of functions h : A→ B, f ◦ H denotes
the family of A→ D functions {g(x) = f(h(x)) | h ∈ H}.

Claim 2.5. If H is pairwise-independent and f is C-uniform, then f ◦ H is coordinatewise C2-
pairwise-independent.

Proof. Let H be A→ B and f be B → D = D1× · · · ×Ds. Then for any i ∈ [s], any x1 6= x2 ∈ A,
and all y1, y2 ∈ Di we have:

Pr
h∈H

[fi(h(x1)) = y1 ∩ fi(h(x2)) = y2]

=
∑

z1,z2∈B
Pr
h∈H

[h(x1) = z1 ∩ h(x2) = z2 ∩ fi(z1) = y1 ∩ fi(z2) = y2]

=
∑

z1,z2∈B

1
|B|2

Pr [fi(z1) = y1 ∩ fi(z2) = y2]

= Pr
z1,z2∈B

[fi(z1) = y1 ∩ fi(z2) = y2]

= Pr
z1∈B

[fi(z1) = y1] Pr
z2∈B

[fi(z2) = y2]

≤ C2

|Bi|2

as desired.

Definition 2.6. We say that a function f : A→ B for B = B1×· · ·×Bs is an error-correcting code
of distance d if, for any two distinct x1, x2 ∈ A, f(x1) and f(x2) differ in at least d coordinates.

We say that f is efficiently decodable if we have an algorithm f−1 running in logO(1) |B| time
with f−1(y) = x for any x ∈ A and y ∈ B such that f(x) and y differ in fewer than d/2 coordinates.

For any prime P ≥ N , the function family HP : ax + b (mod P) for a, b ∈ [P] is pairwise
independent when viewed as a set of functions from [N] to [P].

Lemma 2.7. If f is an efficiently decodable error-correcting code with distance d, then so is f ◦ h
for every h ∈ HP with a 6= P .

4

Proof. Since a 6= P , there exists an a−1 modulo P , and we can efficiently compute it. Hence
h is injective, so f ◦ h is an error-correcting code of distance d. Furthermore, (f ◦ h)−1(x) =
a−1(f−1(x)− b) (mod P) is efficiently computable.

Definition 2.8. We say that a family G of functions
g : A → B1 × · · · × Bs is a (C,N, s, d)q-independent-code if G is coordinatewise C-pairwise in-
dependent, q ≤ |Bi| < 2q for all i ∈ [s], |A| ≥ N , and with probability at least 1− 1/N over g ∈ G
we have that g is efficiently decodable with distance d.

If f : A′ → B1 × · · · × Bs is C-uniform and efficiently decodable with distance d and |Bi| ≥ q
for all i, then f ◦ HP is a (C2, N, s, d)q-independent code.

2.2 Two code constructions

We explicitly give two (4, N, s, s− r)q-independent codes. Both are achievable for any parameters
with 2N < qr and s < q/ log q (and the first code allows any s < q). We let P be a prime in
{1

2q
r, . . . , qr}.

Reed-Solomon code

Let q ≥ s. The Reed-Solomon code fRS : [qr] → [q]s is defined for f(x) by (i) interpreting x as an
element of Frq, (ii) defining χx ∈ Fq[ξ] to be the rth degree polynomial with coefficients corresponding
to x, and (iii) outputting f(x) = (χx(1), . . . , χx(s)). It is well known to have distance s− r and to
be efficiently decodable [Jus76].

Claim 2.9. Let f : [P]→ [q]s be the restriction of fRS to [P]. Then f is 2-uniform.

Proof. We know that fRS is 1-uniform. Since P ≥ qr/2, f is 2-uniform.

Hence GRS = f ◦ HP is a (4, N, s, s− r)q-independent code.

Chinese Remainder Theorem (CRT) code

Let p1, . . . , ps ∈ [q, 2q] be distinct primes; note that the asymptotic distribution of prime numbers
implies q/ log q = Ω(s). Hence for any x ∈ [N], any r of the residues mod p1, . . . , ps uniquely
identify x. The CRT code fCRT : [P] → [p1] × . . . × [ps] is defined by taking the residues modulo
each prime. It has distance s− r and is efficiently decodable [GRS99].

Claim 2.10. The CRT code fCRT is 2-uniform.

Proof. Let i ∈ [s]. The projection of fCRT onto its ith coordinate is one-to-one over a domain
that is any consecutive sequence of pi integers. Hence over the domain [P], the ratio between the
likelihood of the most common and the least common values in the range is dP/pie

bP/pic ≤ 2.

Hence GCRT = fCRT ◦ HP is a (4, N, s, s− r)q-independent code.

5

2.3 Collisions

Lemma 2.11. Suppose g : A → B1 × . . . × Bs is drawn from a (4, N, s, s − r)q-independent code.
Let S, S′ ⊂ A. Define the set of “colliding” symbols

C = {(a, i) | a ∈ S, i ∈ [s],∃a′ ∈ S′ s.t. gi(a) = gi(a′), a 6= a′}

With probability at least 7/8, |C| ≤ 32 |S| |S′| s/q.

Proof. We observe that

E[|C|] =
∑
i∈[s]

∑
a∈S

Pr[(a, i) ∈ C]

≤
∑
i∈[s]

∑
a∈S

∑
a′∈S′

a′ 6=a

Pr[gi(a) = gi(a′)]

=
∑
i∈[s]

∑
a∈S

∑
a′∈S′

a′ 6=a

∑
z∈Bi

Pr[gi(a) = z ∩ gi(a′) = z]

≤
∑
i∈[s]

∑
a∈S

∑
a′∈S′

a′ 6=a

∑
z∈Bi

4
|Bi|2

≤ s |S|
∣∣S′∣∣ 4/q

Hence, by Markov’s inequality, |C| ≤ 32 |S| |S′| s/q with probability at least 7/8.

3 Recovery

In this section we present the measurement matrix A and the recovery algorithm. A graphical
representation of the algorithm is presented in Appendix B. Let O = {o1 . . . ok} be a sequence of k
features, and let T = {t1 . . . tk} be a sequence of (non-colliding) translations in x. Also, let µ be the
noise vector, and let x′ be the noisy image. Finally, we introduce (small) constants α, β, γ, δ, η > 0,
whose values will be determined in the course of the analysis.

At the beginning, we impose a square grid G with w′ × w′ cells on the image x′, such that
w′ = w/α. The grid is shifted by a vector v chosen uniformly at random from [w′]2. Let S′ be
the set of cells that intersect or contain some object ti(oi), and S ⊂ S′ be the set of cells that
fully contain some object ti(oi). Observe that a fixed object is fully contained in some cell with
probability (1−w/w′)2 > 1− 2α, since each axis of the grid intersects the object with probability
w/w′. This implies that the expected number of cells in S′ − S is at most 2αk, which implies by
Markov that |S′ − S| ≤ 16αk with probability 7/8. From now on, we will assume the latter event
holds. Let k′ = |S′|. We choose α > 0 such that k′ ≤ 2k.

Measurements

Our measurement matrix A is defined by the following linear mapping. Let G denote the set of
cells. Let g : G → B = B1 × · · · × Bs be drawn from a (4, N, s, 4(3δ + β)s)q-independent code
(such as either GRS or GCRT). Moreover, we require that k/q ≤ η; such a code is achievable
per Section 2.2 with s = Θ(logkN) as long as k > C logN for some constant C (such that both

6

q(1−3(3δ+β))s > ks/2 > 2N and s < logN/ log k ≤ q/ log q). For each i = 1 . . . s, we define a
|Bi|-dimensional vector zi whose entries are elements in Rw′2

, such that for any j

zij =
∑

gi(c)=j

x′c

That is, we “hash” all cells into |Bi| ≥ q buckets, and sum all cells hashed to the same bucket. The
measurement vector z = Ax′ is now equal to a concatenation of vectors z1 . . . zs. Note that the
dimension of z is equal to m = w′2

∑
|Bi| = O(qs) = O(k logkN).

Recovery algorithm

The recovery algorithm starts by identifying the buckets that likely contain the cells from S, and
labels them consistently (i.e., two buckets containing cells from S should receive the same label),
allowing for a small fraction of errors. We then use the labels to identify the cells.

The algorithm is as follows. For a set of pairs X, let F (X) denote {F (zij) : (i, j) ∈ X}.

1. Identify R = {(i, j) : ‖F (zij)‖Γ ≥ T/2} (that is, Ri contains the “heavy cells” of the measure-
ment vector z).

2. Partition R into sets R′, R1, . . . , Rk such that |R′| ≤ δsk, and such that for each 1 ≤ l ≤ k
the diameter of F (Rl) is at most T/2.

3. For each label l = 1 . . . k, create a vector ul ∈ B such that for each i = 1 . . . s, uli = j if
(i, j) ∈ Rl (if there are many such j, ties are broken arbitrarily), or uli =⊥ (an arbitrary
erasure symbol) if no such j exists.

4. For each label l = 1 . . . k apply the decoding algorithm2 for g to ul, obtaining a (possibly
invalid) decoded cell dl.

We analyze the algorithm by keeping track of the errors at each step.

Step 1 For any cell c ∈ S and i = 1 . . . s, we say that i preserves c if ‖F (zigi(c)
)− F (xc)‖Γ ≤ T/24

and gi(c′) 6= gi(c) for all other c′ ∈ S. That is, there is no collision from the hashing process, and
the total amount of distortion due to the noise µ is small. Let P = {(i, gi(c)) : i preserves c}. Note
that P ⊂ R. We show that P is large and that most of R is in P .

Lemma 3.1. With probability at least 7/8,

|P | ≥ (1− β)sk.

Proof. Consider any pair (c, i) ∈ S×{1 . . . s}, and let j = gi(c). If i does not preserve c, it must be
because either (i) there is another cell c′ ∈ S′, c′ 6= c such that gi(c′) = j, or because (ii) the total
noise affecting zij , equal to F (µij) ≤

∑
gi(c)=j

F (µc), has norm at least T/24.
By Lemma 2.11 with probability at least 7/8 the number of pairs affected by (i) is at most

32ks|S′|/q. The event (ii) is determined by the noise vector µ. However, for each i, there are at
most ‖µ‖FT/24 ≤ 24γk additional cells c ∈ S that are not preserved under i due to this reason.

Altogether, the total number of pairs (c, i) such that c is not preserved by i is at most

32sk
∣∣S′∣∣ /q + 24γsk = [32η(1 + 16α) + 24γ]sk = βsk

as desired.
2Technically, we replace each ⊥ in ul with an arbitrary j before running the decoding algorithm, since the decoding

algorithms don’t know about ⊥.

7

Lemma 3.2. With probability at least 3/4,

|R \ P | ≤ δsk.

Proof. Any element (i, j) of R \P (“heavy but not preserved”) must belong to one of the following
three categories:

1. j = gi(c) for c ∈ S such that c is not preserved by i. By the previous lemma, there are at
most βsk such pairs (c, i) with probability at least 7/8.

2. j = gi(c) for some cell c ∈ S′ \ S. There are at most 16αsk such pairs (c, i), with probability
at least 7/8.

3. The vector F (µij) =
∑

gi(c)=j
F (µc) has norm at least T/2. There are at most 2γsk such pairs

(i, j).

This implies that with probability at least 3/4 the total number of pairs (i, j) ∈ R \ P is at most

(β + 16α+ 2γ)sk = δsk

as desired.

Step 2 Observe that the elements of F (P) can be clustered into k clusters of diameter T/12.
Thus, by the previous lemma, there is a k-clustering of all but δsk elements of F (R) such that
the diameter of each cluster is at most T/12. We now apply a 6-approximation algorithm for this
problem, finding a k-clustering of F (R) such that the diameter of each cluster is at most T/2. Such
an approximation algorithm follows immediately from the 3-approximation algorithm for k-center
with outliers given in [CKMN01].

Step 3 Consider cells c, c′ ∈ S such that c is preserved by i and c′ is preserved by i′. If F (zigi(c)
)

and F (zi
′

gi(c′)
) belong to the same cluster, then it must be the case that c = c′, since otherwise the

distance between them would be at least T−2T/24 > T/2. In other words, for each l, if ul ⊂ P ∩Rl
contains at least one element of P , then all the elements of ul are “derived” from the same cell.

Lemma 3.3. With probability at least 3/4, u1 . . . uk contain a total of at most 2δsk errors and
(δ + β)sk erasures (i, l such that uli =⊥).

Proof. Let R′′ = R \R′ = R1 ∪ · · · ∪Rk. Let P ′ = P ∩R′, and P ′′ = P ∩R′′.
Note that |P ′| ≤ |R′| ≤ δsk. Each error in u1 . . . uk corresponds to a unique element of R′′ \P ′′,

and we have

|R′′ \ P ′′| ≤ |R′′ \ P |+ |P \ P ′′| ≤ |R \ P |+ |P ′| ≤ δsk + δsk = 2δsk.

Additionally, u1 . . . uk contain at least P ′′ elements total, and so the number of erasures is at most
sk − |P ′′| = sk − |P |+ |P ′| ≤ βsk + δsk, where we use |P | ≥ (1− β)sk from Lemma 3.1.

Step 4 We can replace erasures by errors, and conclude that u1 . . . uk have a total of at most
(3δ+β)sk errors. It follows that at least k/2 of them have at most 2(3δ+β)s errors, and therefore
can be decoded. Therefore, the set D = {d1 . . . dk} contains at least k/2 elements of S.

Theorem 3.4. Assume k ≥ C logN for some constant C, a signal x with k objects, and a noise
vector µ, all subject to the constraints delineated in the Model description of Section 1. There is a
distribution over random binary m×N matrices A, m = O(k logkN), and an associated recovery
algorithm with the following property. Suppose that the algorithm is given Ax′ for x′ = x+µ. Then
the algorithm recovers (with probability at least 3/4) a set D of k cells, such that at least k/2 of
the cells fully containing an object are included in D. Moreover, the matrix has column sparsity
O(logkN).

8

4 Experimental Results

Our theoretical model is motivated by a task in satellite navigation formally known as attitude
determination. An attitude is a triple (roll, pitch, yaw) that describes an orientation relative to the
fixed night sky. Satellites compute their attitude by taking a picture of the night sky, extracting
stars, and matching patterns of stars to an onboard database. We implement our algorithm3,
referred to as Star Recovery with Geometric Features, or SRGF, to perform star extraction in very
small space and time, conforming to the physical constraints of computing on a satellite.

One of the main energy costs in conventional imaging is incurred by analog to digital conversion.
Several (non-satellite) compressive imagers have been built that use compressive sensing to reduce
the number of measurements that need to be digitized [RGL+10, MJS+10]. However, these com-
pressive imagers use dense matrices, which are impractical when the the signal is weak compared
to the noise.

4.1 Star Cameras

In modern satellites, the entire task of attitude determination is encapsulated in a star tracker or
star camera. [Lie02] has an excellent tutorial on star camera fundamentals. To acquire attitude,
such cameras run the following sequence of steps:

1. Acquire the incoming light as an n-by-n pixel analog signal, which we call the preimage.
2. Digitize each of the n2 pixels, to obtain the digital image.
3. Locate a set S of star like objects in the digital image.
4. Match patterns formed by 3-5 element subsets of S to an onboard database. This step is

commonly known as star identification.
5. Recover spacecraft attitude by using the database coordinates of the identified stars.

Step 2 consumes a significant amount of power due to the number of analog to digital conver-
sions, and Step 3 requires significant processing and memory resources due to the large number
of measurements that must be processed. Our compressive sensing solution fits in after Step 1,
by compressing the n2 measurements of the preimage into m � n2 measurements that then get
digitized, reducing the cost of Steps 2 and 3.

4.2 Implementation Details

We fix n = 800 (N = 640000) for all experiments. We expose the camera to a .08 radian by .08
radian (4.6 by 4.6 degree) patch of the sky, which means that a typical image will have 3-10 objects
(bright stars, 10%-ile to 90%-ile) and 50 to 150 stars that act as background noise. To generate test
images, we use the Smithsonian Astrophysical Observatory (SAO) Star Catalog [Smi], randomly
select patches from the sky (subject to the constraints of Appendix A), and convolve the stars with
a gaussian of radius .5 pixels.4 These are typical values for modern star cameras.

Given the physical constraints of the proposed architecture, we set the column sparsity s to the
smallest value our algorithm will tolerate: 2. We set the object size w to 3, as the vast majority of
a star’s mass falls within a 3-by-3 box. The rest of this section follows the structure of Section 3.

3 Source code for the experiments is available from http://web.mit.edu/rishig/papers/local-geo/
4Stars are point sources of light. Stars “cover” more than one pixel in the preimage only because the lens of the

camera convolves the image with a function approximated by a gaussian. See [Lie02] for more details.

9

Measurements

We assume the stars are randomly (rather than adversarially) distributed within the image x′, and
use that to simplify construction of the measurement vector z = Ax′. In particular, we no longer
need to compose our error correcting code with a hash family such as that from Definition 2.1. If
p1 and p2 are the primes used to construct the CRT code in Section 2.2, we find primes5 p′i such
that p′i ≈

√
pi. Notating x′ as an n-by-n image, we define zi to be a p′i-by-p′i image with

zi[j1, j2] =
∑

c1≡j1 (mod p′
i)

c2≡j2 (mod p′
i)

x′[c1, c2].

Since the stars were assumed to be randomly distributed in x′, they are randomly distributed within
each zi as well. We define the “measurement vector” z to be a 1-dimensional representation of the
pair (z1, z2), and construct our measurement matrix A accordingly. However, from here on we will
think of each zi as a 2-dimensional image.

Recovery Algorithm

We follow the presentation of the corresponding paragraph in Section 3. The recovery algorithm
is:

1. In each zi, we identify ten 3-by-3 cells with high mass such that no two cells collide in more
than 4 pixels. We allow the 3-by-3 cells to wrap around the edges of zi.

2. In place of the k-centering algorithm, we greedily choose up to 8 pairs of cells (c1, c2) from
(z1, z2) such that the feature vectors F (c1) and F (c2) are close. In our case, F (c) is a triple
of values: the mass of c, along with two coordinates for the centroid of c.

3. No longer needed. Each pair from Step 2 corresponds to one of the ul.

4. In place of the error correcting code, we simply apply the Chinese Remainder Theorem in
each dimension to recover a 3-by-3 region of the original image for each pair from Step 2.

Star Identification

We now have an image x′′ with up to 8 decoded regions, or “star candidates”. We input x′′ into a
simplified version of the star identification algorithm presented in [MSBJ04]. The algorithm works
as follows: We first extract a subset SAO′ of the Star Catalog SAO, by taking the 10 largest stars
in every ball of radius 4.6 degrees. SAO′ has 17100 stars, compared to 259000 stars in SAO. We
then build a data structure DS that can find a triangle of stars in SAO′ given three edge lengths
and an error tolerance. We query DS with subsets of three stars from x′′ until we find a match.
This portion of the algorithm can be replaced by any regular star identification algorithm that has
some tolerance for incorrect data, such as [MA08], or several in the survey [SM09].

4.3 Results and Observations

There are many sources of noise in real star cameras; we mimicked the major ones by having
photons hit the camera in a random poisson process, and by adding gaussian noise to Ax′. We
report our results as a function of the standard deviation of the added gaussian noise.

5Note that we don’t literally need p′
i and p′

2 to be prime, as long as they are relatively prime, since the Chinese
Remainder Theorem from Step 4 of the Recovery applies in this case as well. We will use the word prime to refer to
p′
1 and p′

2 even when they are just relatively prime.

10

0 100 200 300 400 500
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Std of error per measurement

SRGF under noise

F
ra

ct
io

n
of

co
rr

ec
t

re
co

ve
ri
es

P
ri
m

es 56,59
47,50
38,41
29,32

SRGF SSMP

Figure 1: Experimental results. Each point on the figure is computed using the same 159 underlying images.

We ran SRGF as well as Sequential Sparse Matching Pursuit (SSMP) on 159 randomly generated
images of the sky (subject to the discussion in Appendix A). SSMP is a near-linear (in N) time
procedure with recovery quality on par with other known methods [BI09]. We used the same
measurement matrix A for both algorithms. Both SRGF and SSMP only attempt to recover
portions of the signal x′; we then ran the same star identification algorithm of Section 4.2 on the
outputs of both of them. We note that SSMP is not designed for this level of sparsity, and works
better for d > 2. The results of the experiments are in Figure 1.

The first observation we make is that SRGF works very well down to an almost minimal number
of measurements. The product p′1p

′
2 has to be greater than 800, and the minimal set of primes is

26 and 31. As the number of measurements increases, SSMP catches up and surpasses SRGF, but
we note that running SSMP (implemented in C) takes 2.4 seconds per trial on a 2.3 GHz laptop,
while SRGF (implemented in Octave/Matlab) takes .03 seconds per trial. Computation power on
a satellite is substantially lower than that of a low end laptop, and given that the entire acquisition
has to happen in .1 to 2 seconds, it seems unlikely that any algorithm linear or near linear in N
is going to be practical. Finally, we note that all plot lines in the results could be improved by a
more thorough implementation of a star identification algorithm.

Acknowledgements

The authors would like to thank Tye Brady and Ben Lane from Draper Lab for numerous conver-
sations and help with the data, and the anonymous reviewers for helping clarify the presentation.

This research has been supported in part by a David and Lucille Packard Fellowship, MADALGO
(Center for Massive Data Algorithmics, funded by the Danish National Research Association) and
NSF grant CCF-0728645. R. Gupta has been supported in part by a Draper Laboratory Fellowship.
E. Price has been supported in part by an NSF Graduate Research Fellowship.

11

References

[BGI+08] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss. Combining geometry and
combinatorics: a unified approach to sparse signal recovery. Allerton, 2008.

[BI09] R. Berinde and P. Indyk. Sequential sparse matching pursuit. Allerton, 2009.

[CCF02] M. Charikar, K. Chen, and M. FarachColton. Finding frequent items in data streams.
ICALP, 2002.

[CKMN01] M. Charikar, S. Khuller, D.M. Mount, and G. Narasimhan. Algorithms for facility
location problems with outliers. SODA, 2001.

[CM04] G. Cormode and S. Muthukrishnan. Improved data stream summaries: The count-min
sketch and its applications. Latin, 2004.

[CRT06] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and
inaccurate measurements. Comm. Pure Appl. Math., 59(8):1208–1223, 2006.

[DDT+08] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk.
Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 2008.

[DIPW10] K. Do Ba, P. Indyk, E. Price, and D. Woodruff. Lower bounds for sparse recovery.
SODA, 2010.

[Don06] D. L. Donoho. Compressed Sensing. IEEE Trans. Info. Theory, 52(4):1289–1306, 2006.

[FPRU10] S. Foucart, A. Pajor, H. Rauhut, and T. Ullrich. The gelfand widths of lp-balls for
0 < p ≤ 1. preprint, 2010.

[FTF06] R. Fergus, A. Torralba, and W. T. Freeman. Random lens imaging. MIT CSAIL-TR-
2006-058, 2006.

[GI10] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of IEEE,
2010.

[GRS99] O. Goldreich, D. Ron, and M. Sudan. Chinese remaindering with errors. STOC, pages
225–234, 1999.

[HL07] G. C. Holst and T. S. Lomheim. CMOS/CCD Sensors and Camera Systems. JCD
Publishing and SPIE Press, 2007.

[Ind07] P. Indyk. Sketching, streaming and sublinear-space algorithms. Graduate course notes,
available at http://stellar.mit.edu/S/course/6/fa07/6.895/, 2007.

[Jus76] J. Justesen. On the complexity of decoding Reed-Solomon codes (Corresp.). Informa-
tion Theory, IEEE Transactions on, 22(2):237–238, 1976.

[Lie02] C. C. Liebe. Accuracy performance of star trackers — a tutorial. IEEE Transactions
On Aerospace and Electronic Systems, 38:587–599, 2002.

[MA08] W. Makowiecki and W. Alda. New sky pattern recognition algorithm. ICCS, Part 1,
LNCS 5101:749–758, 2008.

12

[Mei03] James D. Meindl. Beyond moore’s law: The interconnect era. Computing in Science
and Engineering, 5:20–24, 2003.

[MJS+10] V Majidzadeh, L Jacques, A Schmid, P Vandergheynst, and Y Leblebici. A (256x256)
Pixel 76.7mW CMOS Imager/Compressor Based on Real-Time In-Pixel Compressive
Sensing. In IEEE International Symposium on Circuits and Systems (ISCAS), 2010.

[MSBJ04] D. Mortari, M. Samaan, C. Bruccoleri, and J. Junkins. The pyramid star identification
technique. Navigation, 51(3):171–183, 2004.

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications). Foundations and
Trends in Theoretical Computer Science, 2005.

[Nac10] M. Nachin. Lower bounds on the column sparsity of sparse recovery matrices. 6.UAP:
MIT Undergraduate Thesis, 2010.

[RGL+10] R. Robucci, J. Gray, L. K. Liu, J. Romberg, and P. Hasler. Compressive sensing on a
cmos separable-transform image sensor. Proceedings of the IEEE, 2010.

[Rom09] J. Romberg. Compressive sampling by random convolution. SIAM Journal on Imaging
Science, 2009.

[SM09] B. B. Spratling IV and D. Mortari. A survey on star identification algorithms. Algo-
rithms, 2:93–107, 2009.

[Smi] Smithsonian astrophysical observatory star catalog. Available at
http://heasarc.gsfc.nasa.gov/W3Browse/star-catalog/sao.html.

[TAN10] V. Treeaporn, A. Ashok, and M. A. Neifeld. Increased field of view through optical
multiplexing. Optics Express, 18(21), 2010.

[UGN+09] S. Uttam, A. Goodman, M. A. Neifeld, C. Kim, R. John, J. Kim, and D. Brady.
Optically multiplexed imaging with superposition space tracking. Optics Express, 17(3),
2009.

13

A Celestial Intuitions

Spatial distribution of stars

We assume everywhere that stars live on a rectangular interval, rather than a sphere. We index the
rectangle by right ascension (longitude) α ∈ [−π, π] and declination (latitude) δ ∈ [−π/2, π/2]; in
particular, δ = 0 is the equator, and δ = π/2 is the north pole. So that the approximation makes
sense, we ignore the portion of the sky where |δ| > π/2− π/8 (the dashed blue lines in Figure 2).
We also assume without loss of generality that the camera is axis-aligned.

Figure 2: The night sky, as seen from Earth’s orbit. We test our algorithm on the areas between the dashed blue
lines, where the Mercator projection does not skew the distribution of stars too much.

Figure 2 shows the distribution of stars across the night sky. The dense omega-shaped region is
the central disk of our galaxy. In our pictures, if the median total star mass is 1, the 10%-ile mass
is .6, and the 90%-ile mass is 2.25.

Mass distribution of stars

We define the mass of a star to be the number of photons from the star that hit our camera. The
mass of the jth brightest star in the sky is Θ(j−1.17). Figure 3 gives some intuition for the mass of
the biggest stars in our pictures relative to the amounts of noise. There are usually 50 to 150 total
stars in a given preimage.

Sample Images
Figure 4 has a few pictures to help build intuition about star density and what stars look like. It
is generally possible to see where the biggest stars are located, though some fraction of them get
occluded by small stars or noise.

14

7

8

9

10

11

12

Mass of brightest stars in picture

N
a

tu
ra

l
lo

g
 o

f
n

u
m

b
e

r
o

f
p

h
o

to
n

s

1st brightest star
2nd brightest star
3rd brightest star
4th brightest star
5th brightest star
6th brightest star
7th brightest star
8th brightest star

Figure 3: The mass of the brightest stars in our pictures. The x-axis ranges from 100 to 0, and for instance if (x, y)
falls on the green line, it means that in x% of the pictures, the ln(mass) of the 2nd biggest star is greater than y.
The two dashed lines are the expected gaussian L1 noise over a given star when there is a standard deviation of 150
and 400 photons of noise per pixel.

200 400 600 800

200

400

600

800

(a) Underlying signal x (zoom in).

5 10 15 20 25

5

10

15

20

25

(b) p′ = 29, No Noise.

5 10 15 20 25

5

10

15

20

25

0

2

4

6

8

(c) p′ = 29, Noise = 150

Figure 4: log(mass) in sample images from one representative section of the sky. The legend on the right applies
to all three images. All images have poisson noise applied, though (a) and (b) have no additional gaussian noise. We
cut off pixels with values below 0 before taking the log in (c).

15

B The Algorithm in Pictures

Measurements We first computeAx′ from the received signal x′. An element of the (4, N, s, s− r)q-
independent code GCRT = fCRT ◦ HP is depicted below.

Received signal x′ = x+ µ

n pixels

n

There are a total of N = n2 pixels.
The goal is to recover the k objects (colored polygons).
Each object fits in a w × w pixel box.

w

w

n/w′ cells

n/w′
Impose a (randomly shifted) grid G of cells of width w′ = w/α.
For clarity we no longer draw the pixel grid.

P > (n/w′)2 cells

1

Apply a pairwise independent hash function such as
HP : x→ ax+ b (mod P) to a numbering of the cells.

Measured signal z = Ax′

|Bi| ≥ q buckets in row zi

s

Apply an error correcting code f that maps
each cell onto exactly one bucket in every row.
Sum the cells mapping onto each bucket. The
code shown to the left is fCRT , where each cell
is mapped to its index modulo various (rela-
tively) prime numbers.

16

Recovery We now recover from the measurements Ax′.

Compute the feature vector F (zij) of each bucket.
In our experiments, the feature vector contains infor-
mation about mass and centroid.

F(z4
6) = (8, 15, 9.2)

F(z1
5) = (2, 3, 1.1)

F(z2
6) = (8, 14, 9.5)

Set R = {(i, j) : ‖F (zij)‖Γ is large}. Discard buckets
not in R.

R =

Cluster F (R) = {F (zij) : (i, j) ∈ R} into k clusters
(with outliers). This induces a partition R′, R1 . . . Rk

of R, with F (Rl) equal to the l-th cluster.

R1 = R2 = R3 =

Decode each Rl to obtain a cell dl in the original image.

Though we don’t elaborate in the text, a simple min or median
process can be used to obtain an approximation for the contents
of each dl.

17

