
MIT Open Access Articles

UPI: A Primary Index for Uncertain Databases

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Hideaki Kimura, Samuel Madden, and Stanley B. Zdonik. 2010. UPI: a primary index for
uncertain databases. Proc. VLDB Endow. 3, 1-2 (September 2010), 630-637.

As Published: http://dl.acm.org/citation.cfm?id=1920922

Publisher: Very Large Data Base Endowment Inc. (VLDB Endowment)

Persistent URL: http://hdl.handle.net/1721.1/73422

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73422
http://creativecommons.org/licenses/by-nc-sa/3.0/

UPI: A Primary Index for Uncertain Databases
Hideaki Kimura
Brown University

hkimura@cs.brown.edu

Samuel Madden
MIT CSAIL

srmadden@mit.edu

Stanley B. Zdonik
Brown University

sbz@cs.brown.edu

ABSTRACT
Uncertain data management has received growing attention from
industry and academia. Many efforts have been made to optimize
uncertain databases, including the development of special index
data structures. However, none of these efforts have explored pri-
mary (clustered) indexes for uncertain databases, despite the fact
that clustering has the potential to offer substantial speedups for
non-selective analytic queries on large uncertain databases. In this
paper, we propose a new index called a UPI (Uncertain Primary
Index) that clusters heap files according to uncertain attributes with
both discrete and continuous uncertainty distributions.

Because uncertain attributes may have several possible values, a
UPI on an uncertain attribute duplicates tuple data once for each
possible value. To prevent the size of the UPI from becoming un-
manageable, its size is kept small by placing low-probability tuples
in a special Cutoff Index that is consulted only when queries for
low-probability values are run. We also propose several other op-
timizations, including techniques to improve secondary index per-
formance and techniques to reduce maintenance costs and fragmen-
tation by buffering changes to the table and writing updates in se-
quential batches. Finally, we develop cost models for UPIs to es-
timate query performance in various settings to help automatically
select tuning parameters of a UPI.

We have implemented a prototype UPI and experimented on two
real datasets. Our results show that UPIs can significantly (up to
two orders of magnitude) improve the performance of uncertain
queries both over clustered and unclustered attributes. We also
show that our buffering techniques mitigate table fragmentation and
keep the maintenance cost as low as or even lower than using an un-
clustered heap file.

1. INTRODUCTION
A wide range of applications need to handle uncertainty. Un-

certainty comes from sources such as errors in measuring devices
(e.g., sensors), probabilistic analysis, and data integration (e.g., in-
tegration of multiple semantic databases that are potentially incon-
sistent). As shown by the large body of recent research in this
area [4–6, 14, 15], there is a high demand to process such uncer-
tain data in an efficient and scalable manner.

The database community has made great progress in the area of
uncertain databases by establishing new data models, query seman-
tics and optimization techniques. Several models for uncertainty in
databases have been proposed. In the most general model, both
tuple existence and the value of attributes can be uncertain. For
example, Table 1 shows 3 uncertain tuples in the Author table of
a publications database modeled after the DBLP computer science

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

Table 1: Running Example: Uncertain Author table
Name Institutionp Existence . . .
Alice Brown: 80%, MIT: 20% 90% . . .
Bob MIT: 95%, UCB: 5% 100% . . .

Carol Brown: 60%, U. Tokyo: 40% 80% . . .

Query 1: Example Uncertain Query.
SELECT * FROM Author WHERE Institution=MIT

Threshold: confidence ≥ QT (QT is given at runtime)

bibliography (see Section 7.1 for how we derived the uncertainty).
Each tuple has an existence probability that indicates the likelihood
it is in the table and an uncertain attribute (denoted as p) Institution
that the author works for. In the example, Alice exists with prob-
ability 90% and, if she exists, works for Brown with probability
80% and MIT with probability 20%.

Possible World Semantics [6] is a widely used model for uncer-
tainty in databases. It conceptually defines an uncertain database as
a probability distribution over a collection of possible database in-
stances (possible worlds). Each possible world is a complete, con-
sistent and deterministic database instance as in traditional DBMS.
For example, there is a possible world where Alice exists and works
for Brown, Bob works for MIT and Carol does not exist. The prob-
ability of such a world is 90% × 80% × 95% × 20% ≈ 13.7%.
Based on possible world semantics, a probabilistic query over an
uncertain database can output tuples along with a confidence indi-
cating the probability that the tuple exists in some possible world
where it satisfies the query predicates. For example, Query 1 would
answer {(Alice, confidence=90% × 20% = 18%), (Bob, 95%)}.
Thus, confidence represents how probable each answer is. Users
can also specify thresholds on the minimum confidence they re-
quire from query results (the QT in Query 1.)

Though possible world semantics is a widely used data model,
achieving an efficient implementation is difficult. In particular, it
requires a new approach to data storage, access methods and query
execution [6]. One active area of research has been in building
index data structures to efficiently answer queries over such prob-
abilistic tables [2, 5, 16]; the primary addition that these data struc-
tures provide over traditional B+Trees and R-Trees is the ability to
find tuples with confidence above some specified threshold.

These proposed indexes, however, are secondary indexes. To the
best of our knowledge, no work has been done to cluster a heap
file containing uncertain attributes as a primary index. To address
this limitation, the key contribution of this work is to propose tech-
niques to build primary indexes over probabilistic databases. Just as
in a conventional (non-probabilistic) database, a primary index can
be orders of magnitude faster than a secondary index for queries
that scan large portions of tables, for example in OLAP workloads.
Because a secondary index stores only index keys with pointers to
corresponding tuples in the heap file, the query executor has to ac-
cess the heap file by following the pointers to retrieve non-indexed
attributes. This can cause an enormous number of random disk
seeks for an analytical query that accesses millions of tuples, even if
the query executor sorts the pointers before accessing the heap file
(e.g., bitmap index scan). Furthermore, recent work has shown that
building primary indexes on appropriate attributes can also boost
the performance of secondary indexes that are correlated with the

primary index [9]. In this paper, we demonstrate that a new primary
index structures on uncertain attributes can be up to two orders of
magnitude faster than a secondary index and can boost the perfor-
mance of secondary indexes by up to two orders of magnitude when
an appropriate correlated primary index is available.

However, building a primary index on uncertain attributes poses
several challenges. If we simply cluster a tuple on one of its pos-
sible values, a query that is looking for other possible values needs
additional disk accesses. For example, if we store Carol in a Brown
disk block, a query that inquires about U. Tokyo authors must access
the Brown block in addition to the U. Tokyo block. One solution
is to replicate tuples for every possible value, but this makes the
heap file very large and increases maintenance especially for long
tail distributions with many low probability values. Furthermore,
building a primary index on attributes other than auto-numbered se-
quences imposes a significant maintenance cost (to keep the heap
clustered) and leads to fragmentation of the heap file over time,
which also slows down the query performance.

In this paper, we develop a novel data structure we call the UPI
(Uncertain Primary Index), which is a primary index on uncer-
tain attributes with either discrete or continuous distributions. UPI
replicates tuples for all possible values but limits the penalty by
storing tuples with a probability less than some threshold in a Cut-
off Index. We propose a novel data structure for secondary indexes
built over UPIs that stores multiple pointers for each entry to take
advantage of the replicated tuples. We also describe the Fractured
UPI which buffers data updates and occasionally flushes them to a
new partition, or a fracture to reduce maintenance costs and frag-
mentation. Our experimental results on two real uncertain datasets
show that UPI has substantial performance gains and similar main-
tenance costs to (unclustered) heap files.

In summary, our contributions include:
• The UPI data structure and corresponding secondary indexes
• Algorithms to answer queries using UPIs
• Methods to reduce update cost and fragmentation of UPIs
• Cost models to help select cutoff values and guide the forma-

tion of cutoff indexes
• Experimental results on real datasets that verify our approach

and demonstrate order-of-magnitude performance gains over
existing secondary indexses

In the next section, we describe a naive implementation of UPI
and discuss its limitations. Sections 3 through 6 extend UPIs to
address these limitations. Section 7 validates our approach with
intensive experiments on two real datasets. Finally, Section 8 sum-
marizes related work and Section 9 concludes this paper.

2. A SIMPLE UPI
We begin by describing a naive implementation of UPIs, fol-

lowed by a discussion of their shortcomings that are addressed in
later sections.

To answer Query 1, an uncertain secondary index on Institution
would be inefficient because there are thousands of researchers who
work for MIT, and each would require a random disk seek to fetch.
Instead, if we build a UPI on Institution, it will duplicate each tuple
once for each possible value of Institution, as shown in Table 2.

Also, we do not need tuples that have less than QT probability
to satisfy the query. Therefore, we order the tuples by decreasing
probability of institution, which allows the query executor to termi-
nate scanning as soon as it finds a tuple that has a lower probability
than the query threshold. Physically, the heap file is organized as
a B+Tree indexed by {Institution (ASC) and probability (DESC)}.
This is similar to the inverted index in [13] except that we duplicate
the entire tuple, rather than just a pointer to the heap file.

Table 2: A Naive UPI. Sorted by institution and probability.
Institutionp↓ (Probability↑) TupleID Tuple Data
Brown (80%*90%=72%) Alice . . .
Brown (60%*80%=48%) Carol . . .

MIT (95%) Bob . . .
MIT (18%) Alice . . .
UCB (5%) Bob . . .

U. Tokyo (32%) Carol . . .

This scheme achieves significantly faster performance than a sec-
ondary index for Query 1 because it requires only one index seek
followed by a sequential scan of matching records. However, this
naive UPI has several limitations.

First, since it duplicates the whole tuple for every possible value
of Institution, the size of the heap file can be significantly larger
than a heap file without the primary index. This is especially true
when the probabilistic distribution has a long tail (i.e., many possi-
ble values with low probabilities).

Second, now that a single tuple exists in multiple places on disk,
it is not clear how we should organize secondary indexes. Specif-
ically, if we could use the duplicated tuples, a query could use the
secondary index to access fewer heap blocks (fewer seeks) and run
substantially faster.

Third, maintaining UPIs causes two problems. As newly inserted
or deleted tuples will have different values of Institution, we need to
update the B+Tree nodes in a variety of locations leading to many
disk seeks. Also, splits and merges of B+Tree nodes will fragment
the disk layout of the UPI and degenerate query performance.

Lastly, the naive approach applies only to tuples with discrete
probability distributions. For continuous distributions like Gaus-
sians, we need index schemes other than B+Trees.

We address these problems in turn. Section 3 describes the de-
sign Cutoff Indexes to address long-tail distributions and proposes a
new index data structure for a secondary index that exploits dupli-
cated tuples in the UPI. Section 4 explains the design of Fractured
UPIs that minimize UPI maintenance cost and fragmentation. Sec-
tion 5 extends UPIs for continuous distributions. Finally, Section 6
defines cost models which are useful to design and maintain UPIs.

3. IMPROVED UPI
In this section, we improve our basic UPI design by addressing

issues with the database size and improving the performance of
secondary indexes on the same table as the UPI.

3.1 Cutoff Index
One problem with our naive UPI is that the database size can

grow significantly when a tuple has many possible values of the in-
dexed attribute. This increased size will not only affect the storage
cost but also increase maintenance costs.

We observe, however, that for long-tailed distributions, with many
duplicated values, the user may not care about very low confidence
tuples, since those are unlikely to be correct answers. For example,
Query 1 includes the threshold QT that filters out low-confidence
tuples. Such queries are called Probabilistic Threshold Queries, or
PTQs, and are very common in the literature [2, 5, 16]. For PTQ’s,
low probability tuples can typically be ignored.

We anticipate that most queries over long-tailed distributions will
be PTQs. To handle such queries, we attach a Cutoff Index to each
UPI heap file. The idea is that the query executor does not need to
read the low probability entries when a relatively high probability
threshold is specified in a PTQ. Therefore, we can remove such en-
tries from the UPI heap file and store them in another index, which
we call the cutoff index. The cutoff index is organized in the same
way as the UPI heap file, ordered by the primary attribute and then
probability. It does not, however, store the entire tuple but only the

Input: t: Inserted tuple, C: Cutoff threshold.
Alternatives = sort by probability (t.primary attribute);
foreach a ∈ Alternatives do

if a = Alternatives.first OR a.probability ≥ C then
Add (key: a, tuple: t) to Heap File;

else
Add (key: a, pointer: Alternatives.first, TupleID:
t.TupleID) to Cutoff Index;

end
end

Algorithm 1: Insertion into a UPI

Input: key: Queried value, QT: Probability threshold, C
Output: S: Set of tuples to return.
S = ∅;
Cur = UPI.seekTo (key);
while Cur.key = key AND Cur.probability ≥ QT do

S = S
S

Cur.tuple;
Cur.advance();

end
if QT < C then

Cur = CutoffIndex.seekTo (key);
while Cur.key = key AND Cur.probability ≥ QT do

CurIn = UPI.seekTo (Cur.pointer);
CurIn.moveTo (Cur.TupleID);
S = S

S
CurIn.tuple;

Cur.advance();
end

end
Algorithm 2: Answering a PTQ using a UPI

Table 3: Cutoff Index to compress UPI (C=10%)
UPI Heap File

Brown (72%) Alice . . .
Brown (48%) Carol . . .
MIT (95%) Bob . . .
MIT (18%) Alice . . .

U. Tokyo (32%) Carol . . .

Cutoff Index
Key↓ TupleID Pointer

UCB (5%) Bob MIT
Stores pointers for possible values

with probability < C

uncertain attribute value, a (pointer) to the heap file to locate the
corresponding tuple, and a tuple identifier (TupleID). For example,
in Table 3, the Bob tuple with institution value UCB, which has
only 5% probability, is moved to the cutoff index with a pointer to
another possible value of Bob (MIT).

Top-k queries and nearest neighbor (NN) queries [14] benefit
from the cutoff index as well. A top-k query can terminate scan-
ning the index when the top-k results are identified. Thus, a cutoff
index is particularly useful when a majority of the queries on the
database are PTQs or Top-k.

Algorithm 1 shows how we build and maintain UPIs and cutoff
indexes. Given a Cutoff Threshold C for the UPI, we duplicate a
tuple in the UPI for every possible value that has probability equal
to or greater than C. For every possible value with probability less
than C, we insert a pointer to the first possible value of that tuple (a
value that has highest probability) into the cutoff index. If a value
has probability lower than C, but is the first possible value, we
leave the tuple in the UPI instead of moving it, to not lose tuples
that do not have any possible value with probability larger than
C.Deletion from the UPI is handled similarly, deleting entries from
the heap file or cutoff index depends on the probability. Updates
are processed as a deletion followed by an insertion.

Algorithm 2 shows how we use the UPI to answer PTQs. When
C is less than QT , we simply retrieve the answer from the UPI
heap file, which requires only one index seek. When C is larger
than QT , we additionally need to look in the cutoff index to retrieve
cutoff pointers and perform an index seek for each pointer.

The value of C is an important parameter of a UPI that the
database administrator needs to decide. Larger C values could re-
duce the size of the UPI by orders of magnitude when the prob-
ability distribution is long tailed. But, they substantially slow the

Input: key: Queried value, QT: Probability threshold.
Output: P: Set of pointers to heap file.
P = ∅;
Entries = SecondaryIndex.select(key, QT);
foreach e ∈ Entries do

if e.pointers.length = 1 then
P = P

S
e.pointers[0];

end
end
foreach e in Entries do

if ∀p ∈ e.pointers : p /∈ P then
P = P

S
e.pointers[0];

end
end

Algorithm 3: Tailored Secondary Index Access

Table 4: Countryp in Author table
Name Institutionp Countryp Existence
Alice Brown: 80%, MIT: 20% US: 100% 90%
Bob MIT: 95%, UCB: 5% US: 100% 100%

Carol Brown: 60%, U. Tokyo: 40% US: 60%, Japan: 40% 80%

Table 5: Secondary Index on Countryp

Countryp↓ TupleID Pointers
Japan (32%) Carol Brown U. Tokyo
US (100%) Bob MIT <cutoff>
US (90%) Alice Brown MIT
US (48%) Carol MIT U. Tokyo

performance of PTQs with query threshold less than C, since such
queries require pointer-following (and many random I/Os.) Smaller
values of C work well for a large mix of queries with varying QT ,
at the cost of a larger UPI. To help determine a good value of C
taking into account both the workload and limits on storage con-
sumption and maintenance cost, we developed an analytic model
for cutoff index performance; we present this model in Section 6.

3.2 Secondary Indexes on UPIs
Another challenge is exploiting the structure of UPIs to improve

secondary index performance. A secondary index in conventional
databases points to a single tuple in the heap file by storing either
a RowID consisting of physical page location and page offset (e.g.,
PostgreSQL) or the value of the primary index key (e.g., MySQL
InnoDB). Unlike such traditional secondary indexes, in UPIs, we
employ a different secondary index data structure that stores multi-
ple pointers in one index entry, since there are multiple copies of a
given tuple in the UPI heap.

For example, suppose Countryp is another uncertain attribute of
the relation Author shown in Table 4 with a secondary index on it
as shown in Table 5. Each row in the secondary index stores all
possible values of the primary attribute (Institutionp), except cut-
off values. Algorithm 3 shows our algorithm for answering PTQs
using these multiple pointers. For example, suppose the following
PTQ is issued on Countryp with QT = 80%:

SELECT * FROM Author WHERE Country=US
We first retrieve matching entries from the secondary index (Bob

and Alice) and then find entries that have only one pointer (Bob).
We record the institution for these pointers (MIT) and then check
other secondary index entries, preferentially choosing pointers to
institutions we have already seen. In the above case, Alice contains
a pointer to MIT, so we retrieve tuple data for Alice from the MIT
record about her. The advantage of this is that because Bob’s data
is also stored in the MIT portion of the heap, we can retrieve data
about both authors from a small, sequential region of the heap cor-
responding to MIT. If there is no pointer to an institution we have
already seen, we simply pick the first (highest probability) pointer.
Note that in this case we would have accessed two disk blocks (MIT
and Brown) if the secondary index stored only the first pointers.

UPI
Heap File

C
u

to
ff

 I
n

d
e
x

2
n

d
a
ry

 I
n

d
e
x

delete set

Main Fracture
Fracture 1 Fracture 2

SELECT

New
Fracture

INSERT DELETE

Insert Buffer
(on RAM)

dump

delete set delete set

Figure 1: Fractured UPI Structure

We call this algorithm as Tailored Secondary Index Access and
demonstrate in Section 7 that it can speed up secondary indexes
substantially for analytical queries . One tuning option for this al-
gorithm is to limit the number of pointers stored in each secondary
index entry. Though the query performance gradually degenerates
to the normal secondary index access with a tighter limit, such a
limit can lower storage consumption.

4. FRACTURED UPI
In this section, we describe a second extension to UPIs called

Fractured UPIs. The idea of fracturing is to reduce UPI mainte-
nance cost and fragmentation. The approach we take is similar to
that taken in log structured merge trees (LSM-Trees) [12] and parti-
tioned exponential files [8] for deterministic databases, which try to
eliminate random disk I/O by converting all updates into appends
to a log similarly to deferred updates of transaction processing.

4.1 The Maintenance Problem
The problem of maintaining a UPI is that insertion or deletion

may perform random I/O to the UPI to retrieve pages. This makes
the maintenance cost of UPIs much higher than for an append-only
table without primary indexes.

Another problem is that insertions cause splits of B+Tree nodes
when nodes become full, and deletions cause merges of nodes.
Thus, over time, these operations result in fragmentation of the
primary index, leading to random disk seeks even when a query
requests a contiguous range of the primary index attribute.

For these two reasons, primary B+Tree indexes sometimes have
adverse effects on performance over time [8], canceling out the ini-
tial benefits obtained by clustering a table on some key.

4.2 Fractured UPI Structure
To overcome these problems, we store UPIs as Fractured in-

dexes [7]. Figure 1 shows the structure of a Fractured UPI. The
insert buffer maintains changes to the UPI in main memory. When
the buffer becomes full, we sequentially output the changes (inser-
tions and deletions) to a set of files, called a Fracture. A fracture
contains the same UPI, cutoff index and secondary indexes as the
main UPI except that it contains only the data inserted or deleted
since the previous flush. Deletion is handled like insertion by stor-
ing a delete set which holds IDs of deleted tuples. We keep adding
such fractures as more changes are made on the UPI, and do not
immediately update the main UPI files.

To answer a SELECT query, the query executor scans the insert
buffer and each fracture in addition to the main UPI, returning the
union of results from each file and ignores tuples that were con-
tained in any delete set. In this scheme, all files are read-only and
are written out sequentially by the clustering key as a part of a sin-
gle write. Therefore, the maintenance cost is significantly lower
and there is essentially no fragmentation.

One difference from prior work (e.g., [12]) is that a fracture con-

tains a set of indexes that constitute an independent UPI. A sec-
ondary index or a cutoff index in a fracture always points to the
heap file in the same fracture. This architecture makes query exe-
cution in each fracture simpler and easier to parallelize. The only
exception is the delete set, which is collected from all fractures and
checked at the end of a lookup.

Another benefit of independent fractures is that each fracture can
have different tuning parameters as long as the UPI files in the frac-
ture share the same parameters. For example, the cutoff threshold
C, the maximum number of pointers to store in a secondary in-
dex entry and even the size of one fracture can vary. We propose
to dynamically tune these parameters by analyzing recent query
workloads based on our cost models whenever the insert buffer is
flushed to disk. This kind of adaptive database design is especially
useful when the database application is just deployed and we have
little idea about the query workload and data growth.

4.3 Merging Fractured UPI
Although fracturing UPIs avoids slowdown due to fragmenta-

tion, query performance still deteriorates over time as more and
more fractures accumulate. The additional overhead to access the
in-memory insert buffer is negligible, but accessing each fracture
causes additional disk seeks. This overhead linearly increases for
the number of fractures and can become significant over time.

Thus, we need to occasionally reorganize the Fractured UPI to
remove fractures and merge them into the main UPI (this is simi-
lar to the way in which conventional indexes need reorganization
or defragmentation to maintain their performance.) The merging
process is essentially a parallel sort-merge operation. Each file is
already sorted internally, so we open cursors on all fractures in par-
allel and keep picking the smallest key from amongst all cursors.

The cost of merging is about the same as the cost of sequentially
reading all files and sequentially writing them back out, as we show
in Section 7. As the size of the database grows, this merging pro-
cess could take quite a long time, since it involves rewriting the
entire database. One option is to only merge a few fractures at a
time. Still, the DBA has to carefully decide how often to merge,
trading off the merging cost with the expected query speedup. In
Section 6, we show how our cost model can help estimate the over-
head of fractures guide the decision as to when to merge.

5. CONTINUOUS UPI
In this section, we extend UPIs to handle attributes with contin-

uous distributions (e.g., spatial attributes). For example, we might
have imprecise GPS data for a position that is within a circle of
100m radius centered at (42◦, 72◦) with a uniform distribution. As
the number of possible values in such distributions is infinite, we
cannot apply the basic UPI presented above to such attributes.

Our solution is to build a primary index on top of R-Tree vari-
ants like PTIs [5] and U-Trees [16]. These indexes themselves are
secondary indexes, and as such require additional seeks to retrieve
tuples. We cannot make them primary indexes by simply storing
tuples in the leaf nodes. As tuples are orders of magnitude larger
than pointers, it would significantly reduce the maximum number
of entries in a node, resulting in a deep and badly clustered R-Tree
with high maintenance costs. Instead, we build a separate heap file
structure that is synchronized with the underlying R-Tree nodes to
minimize disk access. We cluster this separate heap file by the hi-
erarchical location of corresponding nodes in the R-Tree.

Figure 2 shows a continuous UPI on top of an R-Tree. It consists
of R-Tree nodes with small page sizes (e.g., 4KB) and heap pages
with larger page size (e.g., 64KB). Each leaf node of the R-Tree
is mapped to one heap page (or more than one when tuples for the
leaf node do not fit into one heap page). Consider the 3rd entry

root
<2>

<2,1>

<2,2>

R-Tree Nodes
(4KB page)

Heap File
(64KB page)

overflow page

Hierarchical
node location

Tuples for
<2,1>

Tuples for
<2,2>

Figure 2: A Continuous UPI on top of R-Tree
in the R-Tree leaf node that is the 1st child of the 2nd child of the
root node. We give this tuple the key <2, 1, 3> store it in the third
position of heap page <2, 1>. When R-Tree nodes are merged or
split, we merge and split heap pages accordingly. In this scheme,
tuples in the same R-Tree leaf node reside in a single heap page
and also neighboring R-Tree leaf nodes are mapped to neighboring
heap pages, which achieves sequential access similar to a primary
index as long as the R-Tree nodes are clustered well.

One interesting difference from prior work is that UPIs can ex-
ploit duplicated entries in the underlying R-Tree to speed up sec-
ondary index accesses as described in Section 3.2. Duplicating en-
tries in an R-Tree (R+Tree) is also useful to reduce overlap of min-
imum bounding rectangles (MBRs) and improve clustering, which
will lead to better query performance. PTIs and U-Trees are based
on the R*Tree which does not duplicate entries although it tries to
improve clustering by re-inserting entries. Developing an R+Tree
analogue might further improve the performance of UPIs especially
when wider and less skewed (e.g., Uniform) distributions cause too
much MBR overlap. We leave this as future work.

6. COST MODELS
In this section, we develop two cost models that capture the ef-

fects of the number of fractures and query thresholds on the query
runtime respectively. When we need to account for both effects in
one query, both estimates are added to estimate the total query run-
time. The cost models are useful for the query optimizer to pick a
query plan and for the database administrator to select tuning pa-
rameters such as the merging frequency and the cutoff threshold.
We verify the accuracy of our cost models in Section 7 and observe
that the cost models match the observed runtime quite well.

6.1 Parameters and Histograms
Table 6 shows the list of parameters used in our cost model as

well as their values in our experimental environment. We get these
parameters by running experiments (e.g., measure the elapsed time
to open/close a table in Berkeley DB) and by collecting statistics
(using, e.g., DB::stat()) for the particular configuration of interest.

Another input to our cost model is the selectivity of the query.
Unlike deterministic databases, selectivity in our cost model means
the fraction of a table that satisfies not only the given query pred-
icates but also the probability threshold (QT). We estimate the
selectivity by maintaining a probability histogram in addition to an
attribute-value-based histogram. For example, a probability his-
togram might indicate that 5% of the possible values of attribute X
have a probability of 20% or more. We estimate both the number of
tuples satisfying the query that reside in the heap file and that reside
in the cutoff index using the histograms. We also use the histogram
to estimate the size of the table for a given cutoff threshold.

6.2 Cost Model for Fractured UPIs
We estimate the cost of a query on a Fractured UPI with the

following equation. In addition to the sequential read cost, it counts

Table 6: Parameters for cost models
Parameter Description Typical Value

Tseek Cost of one random disk seek 10 [ms]
Tread Cost of sequential read 20 [ms/MB]
Twrite Cost of sequential write 50 [ms/MB]

H Height of B+Tree 4
Stable Size of table 10 [GB]
Nleaf Count of leaf pages Stable / 8KB
Nfrac Count of UPI fractures 10

Costinit Cost to open a DB file 100 [ms]
Costscan Cost to full scan the table Tread · Stable

the cost of table initialization and an index lookup for each fracture.

Costfrac = Costscan · Selectivity + Nfrac(Costinit + HTseek)

Based on this estimate and the speed of database size growth, a
database administrator can schedule merging of UPIs to keep the
required query performance. To estimate how long the merging
will take, she can simply refer the cost to fully read and write all
fractures; Costmerge = Stable(Tread + Twrite).

6.3 Cost Model for Cutoff Indexes
For a query whose probability threshold QT is less than the cut-

off threshold C, we need to access the cutoff index, causing ran-
dom seeks that are much more expensive than the sequential reads
required to access the UPI itself. To confirm this, we ran Query 1
with various values for QT and C.

Figure 3 compares the runtime of a non-selective query over the
Author table that could return as many as 37,000 authors and a se-
lective query which returns as many as 300 authors. In both cases,
the query performs slower for lower QT especially when QT < C
because the query has to access the cutoff index as expected. When
QT ≥ C, the query is very fast because it is answered purely
through sequential I/O.

However, the runtime of the non-selective query is the same for
all QT when C > 0.4. This result is not intuitive because the
number of pointers read from the cutoff index should be larger for
smaller values QT . In fact, QT = 0.05 retrieves 22,000 pointers
from the cutoff index while QT = 0.25 retrieves 3,000, but the
query runtime is the same.

This happens because in both cases we access nearly every page
in the table. We call this case saturation. As the query needs to
retrieve thousands of pointers from the cutoff index, these pointers
already cover almost all of the heap file, and the disk access pattern
degenerates to a full table scan (assuming the database performs a
heap file lookup by ordering the pointers relatively to the positions
in the heap file). At this point, further increasing the number of
pointers (smaller QT) does not make the query slower. Another
interesting observation is that, as demonstrated in the QT = 0.05
curve, a query might perform faster with larger C when pointers
are saturated because the full table scan cost is smaller.

These observations suggest that query runtime is not simply the
number of retrieved pointers multiplied by the disk seek cost, espe-
cially when the number is large. Instead, the growth of the number
of real disk seeks gradually decreases for more pointers because
more and more pointers will land on the same blocks and eventually
get saturated. Our main target is non-selective analytical queries, so
ignoring this effect can cause a huge error in query cost estimation.

In order to model this saturation behavior, we use a generalized
logistic function f(x), which is a type of sigmoid function. A sig-
moid function is often used to model phenomena like population
growth where the rate of reproduction is proportional to the amount
of available resource which decreases as population increases. This
is consistent with our notion of saturation.

 0

 0.4

 0.8

 1.2

 1.6

 0 0.1 0.2 0.3 0.4 0.5

C

 0

 4

 8

 12

Q
ue

ry
 R

un
tim

e
[s

ec
]

QT=0.05 QT=0.15 QT=0.25

Figure 3: Cutoff Index Real Runtime. Non-selective (top) and
Selective (bottom) queries.

Costcut = Costscan · Selectivity + 2(Costinit + HTseek)

+ f(#Pointers)

f(x) = Costscan(
1− e−kx

1 + e−kx
)

The first line is basically the same as Costfrac except that we
access two tables (the UPI Heap File and the Cutoff Index). f(x) is
the cost to retrieve tuples from the heap file which satisfies f(0) =
0 and f(∞) = Costscan. k is a parameter that represents how
quickly we reach saturation. We determine this value by applying
a heuristic f(0.05 · Nleaf) = 0.99 · Costscan, which is based on
experimental evidence gathered through our experience with UPIs.

We propose to use the cost models for selecting the cutoff thresh-
old as follows: First, an administrator collects query workloads of
the database to analyze the frequency of queries to have low QT s.
Second, she figures out the acceptable size of her database given
available disk capacity and expected maintenance time. Finally,
she picks a value of C that yields acceptable database size and also
achieves a tolerable average (or nth percentile) query runtime.

7. EXPERIMENTAL RESULTS
In this section, we evaluate the query and maintenance perfor-

mance of UPIs as well as the accuracy of our cost models. We
implemented a prototype UPI for both discrete and continuous dis-
tributions and compared the performance with prior uncertain in-
dexes on two real datasets.

7.1 Setup
All of our UPI implementations are in C++ on top of BDB (Berke-

leyDB) 4.7 except the continuous UPI because BDB does not sup-
port R-Tree indexes. Instead, we implemented a custom heap file
layer (See Section 5) on top of the U-Tree provided by Tao et al [1]
which pre-computes integrals of probability distributions as MBRs.
For other experiments, we used BDB’s B+Trees. We always sort
pointers in heap order before accessing heap files similarly to Post-
greSQL’s bitmap index scan to reduce disk seek costs caused by
secondary index accesses. Our machine for all experiments runs
Fedora Core 11 and is equipped with a quad core CPU, 4GB RAM
and 10k RPM hard drive. All results are the average of 3 runs, and
were performed with a cold database and buffer cache.

DBLP Dataset and Query: Our first dataset is derived from
DBLP [10], the free bibliographic database of computer science
publications. DBLP records more than 1.3 million publications and
700k authors. This dataset exemplifies uncertainty as a result of
data integration. DBLP itself has no uncertainty but by integrat-
ing DBLP with other data sources, we can produce uncertain data.

For instance, the affiliated institution of each author is useful infor-
mation for analysis, but is not included in DBLP. SwetoDblp [3]
supplies it by integrating DBLP with ontology databases. Nagy et
al [11] applied machine learning techniques to automatically de-
rive affiliation information by querying a web search engine and
then analyzing the homepages returned by that search engine.

Such analysis is useful but inherently imprecise, so the resulting
affiliation information is uncertain. We generated such uncertain
affiliations by querying all author names in DBLP via Google API
and assigning probabilities to the returned institutions (determined
by domain names) up to ten per author. We used a zipfian distri-
bution to weigh the search ranking and sum the probabilities if an
institution appears at more than one ranks for the author.

The resulting data is the Author table exemplified in Table 4
which has uncertain attributes like institution and country for all
700k authors. We also added the same uncertain attributes into the
list of publications (assuming the last author represents the paper’s
affiliation) and stored it as the Publication table which contains in-
formation about 1.3M publications.

We loaded the uncertain data into BDB and built a UPI on the
Institution attribute with various cutoff thresholds. For the Publi-
cation table, we also built a secondary index on Country, which is
correlated with Institution. We then experimented with the follow-
ing queries on the two tables.

Query 1: Author Extraction
SELECT * FROM Author WHERE Institution=MIT

Query 2: Publication Aggregate on Institution
SELECT Journal, COUNT(*) FROM Publication
WHERE Institution=MIT GROUP BY Journal

Query 3: Publication Aggregate on Country
SELECT Journal, COUNT(*) FROM Publication
WHERE Country=Japan GROUP BY Journal

Cartel Dataset and Query: Our second dataset is derived from
Cartel (http://cartel.csail.mit.edu) data. Cartel is a
mobile sensor network system which collects and analyzes GPS
data sent from cars to visualize traffic. During the analysis, the
raw GPS data is converted into car observations which contain the
location, estimated speed, road segment and the direction of cars.
Because of the imperfect accuracy of GPS and probabilistic analy-
sis, the resulting car observations are uncertain.

We generated uncertain Cartel data based on one year of GPS
data (15M readings) collected around Boston. We assigned a con-
strained Gaussian distribution to location with a boundary to limit
the distribution as done in [16] and added an uncertain road seg-
ment attribute based on the location. We built our 2-D continuous
UPI on the uncertain location attribute (i.e., longitude/latitude) and
also built a secondary index on the road segment attribute. We then
experimented with the following queries.

Query 4: Cartel Location
SELECT * FROM CarObservation
WHERE Distance(location, 41.2◦, 70.1◦) ≤ Radius

Query 5: Cartel Road Segment
SELECT * FROM CarObservation WHERE Segment=123

7.2 Results
UPI on Discrete Distributions: We now present our experi-

mental results, starting with DBLP. The DBLP dataset has discrete
distributions on several attributes, therefore, we compare our UPI
with our implementation of PII [13] on an unclustered heap file.
PII is an uncertain index based on an inverted index which orders
inverted entries by their probability. We compared UPI with PII
because PII has been shown to perform fast for discrete distribu-
tions [13].

 0

 1

 2

 3

 4

 5

 6

 7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Q
ue

ry
 R

un
tim

e
[s

ec
]

Probability Threshold

PII
UPI

Figure 4: Query 1 Runtime

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Q
ue

ry
 R

un
tim

e
[s

ec
]

Probability Threshold

PII
UPI

Figure 5: Query 2 Runtime

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Q
ue

ry
 R

un
tim

e
[s

ec
]

Probability Threshold

PII on unclustered heap
PII on UPI

PII on UPI w/ Tailored Access

Figure 6: Query 3 Runtime

 0

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500 600 700 800 900 1000

Q
ue

ry
 R

un
tim

e
[s

ec
]

Radius [m]

Continuous UPI
U-Tree

Figure 7: Query 4 Runtime

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Q
ue

ry
 R

un
tim

e
[s

ec
]

Probability Threshold

PII on Continuous UPI
PII on unclustered heap

Figure 8: Query 5 Runtime

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

Q
ue

ry
 R

un
tim

e
[s

ec
]

Processed Insert Batches

Unclustered heap
UPI

Fractured UPI

Figure 9: Q1 (C=QT=0.1) Deterioration

Figure 4 and Figure 5 show the runtimes of Query 1 and Query
2, comparing UPIs (C = 10%) and PIIs on Institution. Both in-
dexes perform faster with higher thresholds as they retrieve less
data, but the UPI performs 20 to 100 times faster because the UPI
sequentially retrieves tuples from the heap file while PII needs to
do random disk seeks for each entry.

Figure 6 shows the runtime of Query 3 which uses a secondary
index on Country. This time, we also test the UPI with and without
tailored secondary index access as described in Section 3.2. Al-
though both use secondary indexes in this case, our index performs
faster because of correlation between the attributes of the primary
and secondary indexes. However, the UPI without tailored index
access is not very beneficial, and sometimes is even slower than the
unclustered case because it cannot capture the possible overlap of
pointers from the secondary index. Our tailored index access per-
forms up to a factor of 7 faster than the UPI without tailored access,
and up to a factor of 8 faster than PII.

UPI on Continuous Distributions: Next, we compare a contin-
uous UPI with a secondary U-Tree on the Cartel dataset. Figure 7
shows the performance comparison between a 2-D continuous UPI
and a U-Tree on Query 4. We fixed QT = 50% and varied the
radius. The continuous UPI performs faster by a factor of 50 to
60 because the tuples in the UPI heap file are well clustered with
the intermediate nodes. Figure 8 shows the runtime of Query 5,
varying QT (QT = 90% returns no result). Both techniques use
secondary indexes for this query. However, as in the discrete case,
the secondary index performs much faster with a continuous UPI
because of correlation between lat/long (primary index) and seg-
ment ID (secondary index) which reduces the number of disk seeks
by orders of magnitude. The speed up is a factor of up to 180 when
QT < 50%. For queries QT > 50% (more selective queries)
which have many fewer pointers to follow, heap access on both
indexes are much faster so the performance gap is less because sec-
ondary index access cost is the same. However, the gap is still more
than a factor of 50.

Fractured UPIs: We now evaluate maintenance of UPIs. To
measure the maintenance cost, we randomly delete 1% of the tu-
ples from the DBLP Author table and randomly insert new tuples
equal to 10% of the existing tuples. We compare an unclustered
table (clustered by an auto-increment sequence), a UPI and a Frac-

Table 7: Maintenance Cost
Insert Delete

Unclustered 7.8 sec 75 sec
UPI 650 sec 212 sec

Fractured UPI 4.0 sec 0.03 sec

Table 8: Merging Cost
Time DB size
1 150 sec 2.5 GB
2 247 sec 3.6 GB
3 275 sec 4.8 GB

tured UPI. For the Fractured UPI, we drop the insert buffer after all
insertions and deletions.

As shown in Table 7, the non-fractured UPI performs quite poorly
for both insertions and deletions because random locations in the
B+Tree are read, written, split and merged. Unclustered and Frac-
tured UPIs perform well because they sequentially write the in-
serted data to disk. Note that for deletions, even an unclustered ta-
ble performs poorly because tuples are deleted from random places.
The Fractured UPI performs much faster because it simply buffers
TupleIDs of deleted tuples and sequentially writes them to disk as
a batch.

We also tested the query performance deterioration after a num-
ber of insert batches, each of which consists of the 10% insertions
and 1% deletions (as before). For the Fractured UPI, we made one
fracture after each insert batch. Figure 9 shows the query runtime
deterioration. After 10 insert batches, the table size is increased by
only 90% (=10*(10%-1%)), but all three approaches show much
more than 90% deterioration. The unclustered table becomes 4
times slower compared with the initial state, the non-fractured UPI
is 40 times slower and the Fractured UPI is 9 times slower. For
the unclustered table and the UPI, the slowdown is because of frag-
mentation caused by deletion and (for UPI) insertion.

This result illustrates that the Fractured UPI improves not only
the maintenance cost but the query performance by eliminating
fragmentation. Still, the Fractured UPI does gradually slow down
because of the overhead of querying each fracture.

Cost Models: To restore the query performance of the Frac-
tured UPI, we implemented merging of fractures and compared
that with our cost model for fractures described in Section 6.2.
Figure 10 shows the real and estimated query runtime during 30
insert batches. We merged fractures after every 10 insert batches.
The query performance is restored after each merging, and the esti-
mated runtime matches the real runtimes quite well. Table 8 shows
the cost of three merges. As the result shows, the merge cost is
almost the same as reading and writing the entire table in BDB

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30

Q
ue

ry
 R

un
tim

e
[s

ec
]

Processed Insert Batches

Real
Estimated

Figure 10: Fractured UPI Runtime

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

N
um

be
r

of
 p

oi
nt

er
s

Real
Estimated

Figure 11: #Cutoff-Pointers Estimation

 0

 0.4

 0.8

 1.2

 1.6

 0 0.1 0.2 0.3 0.4 0.5

C

 0

 4

 8

 12

 16

 20

Q
ue

ry
 R

un
tim

e
[s

ec
]

QT=0.05 QT=0.15 QT=0.25

Figure 12: Cutoff Index Cost Model
(20+50 [ms/MB]) and conforms to our cost model.

Finally, we test the query runtime when a UPI has to access a
cutoff index, and we verify that our cost model can predict the be-
havior. We again used Query 1 and varied both QT and C. First,
we checked the accuracy of selectivity estimation described in Sec-
tion 6.1 because our cost model relies on accurate estimates of the
number of pointers returned from the cutoff index. Figure 11 com-
pares the true number and the estimated number of cutoff pointers
for various QT and C settings (except QT > C). The result shows
that our selectivity estimation is accurate.

Figure 12 shows the runtimes estimated by our cost model with
the exact same setting as Figure 3 in Section 6.3. As the two figures
show, our cost model (which estimates disk seek costs and satura-
tion of cutoff pointers using a sigmoid function) matches the real
runtime very well for both selective and non-selective queries.

These results above confirm that our cost models can accurately
estimate the query costs in various settings. These cost models will
be useful for the query optimizer to choose execution plans and for
a database administrator or auto tuning program to choose tuning
parameters for UPIs.

8. RELATED WORK
The most closely related work to UPIs relates has to do with

the use of indices for uncertain data. Some work [4] uses tradi-
tional B+Trees to index uncertain data. Other work has shown that
a special index can substantially speed up queries over uncertain
data. For example, Cheng et al [5] developed the PTI (Proba-
bilistic Threshold Indexing) based on R-Trees to speed up PTQs on
uncertain attributes with one dimensional continuous distributions.
Other research has extended these ideas to higher dimensions (U-
Trees [16]) and more variable queries (UI-Trees [17]). Similarly,
Singh et al [13] proposed the PII (Probabilistic Inverted Index) for
PTQs on uncertain attributes with discrete distributions based on
inverted indexes as well as the PDR-tree (Probabilistic Distribu-
tion R-tree) based on R-Trees.

Although these indexes successfully speed up query execution in
some cases, they are essentially secondary indexes and can lead to
many random disk seeks when the query needs to retrieve other at-
tributes from the heap file. This problem arises especially when the
query is not selective as shown in Section 7. Hence, UPIs comple-
ment this prior work by adding support for primary indexes on un-
certain attributes, which are particularly useful for analytical PTQs
which process thousands or millions of tuples.

9. CONCLUSION AND FUTURE WORK
In this paper, we developed a new primary index for uncertain

databases called a UPI. Our empirical results on both discrete and
continuous uncertain datasets show that UPIs can perform orders
of magnitude faster than prior (secondary) indexing techniques for
analytic queries on large, uncertain databases. We proposed sev-
eral techniques to improve the performance of UPIs, including cut-
off indexes to reduce their size, and tailored indexes to improve

the performance of secondary indexes built on top of UPIs. We
also discussed Fractured UPIs that help handle data updates and
eliminate fragmentation, further improving query performance. Fi-
nally, we provide accurate cost models to help the query optimizer
to choose execution plans and the DBA to select tuning parameters.

As future work, we plan to apply UPIs for queries other than
PTQs, especially Top-k. Ilyas et al suggested a query processing en-
gine to determine probabilistic top-k answers with a minimal num-
ber of tuples extracted from a Tuple Access Layer (TAL) which
provides tuples in probability order [14]. A UPI can work as an ef-
ficient TAL. One approach is to estimate the minimum probability
of tuples required to answer the top-k query and use this probabil-
ity as a threshold for the UPI. Another approach is to access UPI
a few times with decreasing probability thresholds until the answer
is produced. Both approaches are promising future work.

Acknowledgments
We thank Newton Ikhariale for his contribution on the fractured in-
dex structure. Samuel Madden was supported in part by NSF grant
IIS-0448124. Hideaki Kimura and Stan Zdonik were supported in
part by the NSF, under the grants IIS-0905553 and IIS-0916691.

10. REFERENCES
[1] www.cse.cuhk.edu.hk/˜taoyf/paper/tods07-utree.html.
[2] P. Agarwal, S. Cheng, Y. Tao, and K. Yi. Indexing uncertain data. In

PODS, 2009.
[3] B. Aleman-Meza, F. Hakimpour, I. B Arpinar, and A. Sheth.

SwetoDblp ontology of Computer Science publications. Web
Semantics: Science, Services and Agents on the WWW, 2007.

[4] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs:
databases with uncertainty and lineage. In VLDB, 2006.

[5] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter. Efficient
indexing methods for probabilistic threshold queries over uncertain
data. In VLDB, 2004.

[6] N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in
the dirt. Commun. ACM, 52(7):86–94, 2009.

[7] N. Ikhariale. Fractured Indexes: Improved B-trees To Reduce
Maintenance Cost And Fragmentation. Master’s thesis, Brown
University, 2010.

[8] C. Jermaine, E. Omiecinski, and W. Yee. The partitioned exponential
file for database storage management. VLDB J., 2007.

[9] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik.
Correlation Maps: a compressed access method for exploiting soft
functional dependencies. VLDB, 2009.

[10] M. Ley. DBLP - Some Lessons Learned. PVLDB, 2009.
[11] I. Nagy, R. Farkas, and M. Jelasity. Researcher affiliation extraction

from homepages. ACL-IJCNLP 2009, page 1, 2009.
[12] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured

merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, 1996.
[13] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch.

Indexing Uncertain Categorical Data. In Proc. ICDE, 2007.
[14] M. Soliman, I. Ilyas, and K. Chang. Top-k query processing in

uncertain databases. In ICDE, 2007.
[15] D. Suciu. Database theory column: Probabilistic databases. SIGACT

News, 39(2):111–124, 2008.
[16] Y. Tao, R. Cheng, X. Xiao, W. Ngai, B. Kao, and S. Prabhakar.

Indexing multi-dimensional uncertain data with arbitrary probability
density functions. In VLDB, 2005.

[17] Y. Zhang, X. Lin, W. Zhang, J. Wang, and Q. Lin. Effectively
Indexing the Uncertain Space. TKDE, 2010.

