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Abstract. The separating words problem asks for the size of the small-
est DFA needed to distinguish between two words of length ≤ n (by
accepting one and rejecting the other). In this paper we survey what is
known and unknown about the problem, consider some variations, and
prove several new results.

1 Introduction

Imagine a computing device with very limited powers. What is the simplest
computational problem you could ask it to solve? It is not the addition of two
numbers, nor sorting, nor string matching — it is telling two inputs apart: dis-
tinguishing them in some way.

Take as our computational model the deterministic finite automaton or DFA.
As usual, it consists of a 5-tuple, M = (Q,Σ, δ, q0, F ), where Q is a finite
nonempty set of states, Σ is a nonempty input alphabet, δ : Q × Σ → Q is
the transition function (assumed to be complete, or defined on all members of
its domain), q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states.

We say that a DFA M separates w and x if M accepts one but rejects the
other. Given two distinct words w, x we let sep(w, x) be the number of states
in the smallest DFA accepting w and rejecting x. For example, the DFA below
separates 0010 from 1000.

0, 1

0

1

0 1



However, by a brief computation, we see that no 2-state DFA can separate
these two words. So sep(1000, 0010) = 3. Note that sep(w, x) = sep(x,w), be-
cause the language of a DFA can be complemented by swapping the reject and
accept states.

We let S(n) = max
w 6=x

|w|,|x|≤n

sep(w, x). The separating words problem is to deter-

mine good upper and lower bounds on S(n). This problem was introduced 25
years ago by Goralč́ık and Koubek [5], who proved S(n) = o(n). It was later
studied by Robson [7, 8], who obtained the best upper bound so far: S(n) =
O(n2/5(log n)3/5).

As an additional motivation, the separating words problem can be viewed
as an inverse of a classical problem from the early days of automata theory:
given two DFAs accepting different languages, what length of word suffices to
distinguish them? More precisely, given two DFAs M1 and M2, with m and
n states, respectively, with L(M1) 6= L(M2), what is a good bound on the
length of the shortest word accepted by one but not the other? The usual cross-
product construction quickly gives an upper bound of mn− 1 (make a DFA for
L(M1) ∩ L(M2)). But the optimal upper bound of m + n − 2 follows from
the usual algorithm for minimizing automata. Furthermore, this bound is best
possible [9, Thm. 3.10.6]. For NFAs the bound is exponential in m and n [6].

From the following result, already proved by Goralč́ık and Koubek [5], we
know that the challenging case of word separation comes from words of equal
length:

Proposition 1. Suppose |w|, |x| ≤ n and |w| 6= |x|. Then sep(w, x) = O(log n).
Furthermore, there is an infinite class of examples where sep(w, x) = Ω(log n).

We use the following lemma [10]:

Lemma 1. If 0 ≤ i, j ≤ n and i 6= j, then there is a prime p ≤ 4.4 log n such

that i 6≡ j (mod p).

Proof. (of Proposition 1) Let’s prove the upper bound. If |w| 6= |x|, then by
Lemma 1 there exists a prime p ≤ 4.4 log n such that |w| mod p 6= |x| mod p.
Hence a simple cycle of p states serves to distinguish w from x.

For the other direction, we first recall that a sequence (pi)i≥0 is said to be
ultimately periodic if there exist integers r ≥ 0, s ≥ 1 such that pi = pr+i for all
i ≥ s. In this case s is called the preperiod and r the period.

Now we claim that no DFA with n states can distinguish

0n−1 from 0n−1+lcm(1,2,...,n).

To see this, let pi = δ(q0, 0
i) for i ≥ 0. Then pi is ultimately periodic with period

≤ n and preperiod at most n − 1. Thus pn−1 = pn−1+lcm(1,2,...,n). Since, from

the prime number theorem, we have lcm(1, 2, . . . , n) = en(1+o(1)), the Ω(log n)
lower bound follows. ¤



Example 1. Suppose |w| = 22 and |x| = 52. Then |w| ≡ 1 (mod 7) and |x| ≡
3 (mod 7). So we can accept w and reject x with a DFA that uses a cycle of size
7, as follows:

0. 1

0. 1

0. 1 0. 1

0. 1

0. 1

0. 1

In what follows, then, we only consider the case of equal-length words, and
we redefine S(n) = max

w 6=x
|w|=|x|=n

sep(w, x). The goal of the paper is to survey what is

known and unknown, and to examine some variations on the original problem.
Our main new results are Theorems 2 and 3.

Notation: in what follows, if x is a word, we let x[j] denote the j’th symbol
of x (so that x[1] is the first symbol).

2 Independence of alphabet size

As we have defined it, S(n) could conceivably depend on the size of the alphabet
Σ. Let Sk(n) be the maximum number of states needed to separate two length-n
words over an alphabet of size k. Then we might have a different value Sk(n)
depending on k = |Σ|. The following result shows this is not the case for k ≥ 2.
This result was stated in [5] without proof; we supply a proof here.

Proposition 2. For all k ≥ 2 we have Sk(n) = S2(n).

Proof. Suppose x, y are distinct length-n words over an alphabet Σ of size k > 2.
Then x and y must differ in some position, say for a 6= b,

x = x′ a x′′,

y = y′ b y′′,

for |x′| = |y′|.



Now map a to 0, b to 1 and map all other letters of Σ to 0. This gives two
new distinct binary words X and Y of length n. If X and Y can be separated
by an m-state DFA, then so can x and y, by renaming transitions of the DFA
to be over Σ\b and {b} instead of 0 and 1, respectively. Thus Sk(n) ≤ S2(n).
But clearly S2(n) ≤ Sk(n), since every binary word can be considered as a word
over the larger alphabet Σ. So Sk(n) = S2(n). ¤

3 Average case

One frustrating aspect of the separating words problem is that nearly all pairs of
words can be easily separated. This means that bad examples cannot be easily
produced by random search.

Proposition 3. Consider a pair of words (w, x) selected uniformly from the set

of all pairs of unequal words of length n over an alphabet of size k. Then the

expected number of states needed to separate w from x is O(1).

Proof. With probability 1−1/k, two randomly-chosen words will differ in the first
position, which can be detected by an automaton with 3 states. With probability
(1/k)(1−1/k) the words will agree in the first position, but differ in the second,
etc. Hence the expected number of states needed to distinguish two randomly-
chosen words is bounded by

∑

i≥1(i+2)(1/k)i−1(1−1/k) = (3k−2)/(k−1) ≤ 4.
¤

4 Lower bounds for words of equal length

First of all, there is a lower bound analogous to that in Proposition 1 for words
of equal length. This does not appear to have been known previously.

Theorem 1. No DFA of at most n states can separate the equal-length binary

words w = 0n−11n−1+lcm(1,2,...,n) and x = 0n−1+lcm(1,2,...,n)1n−1.

Proof. In pictures, we have

0−cycle

1−cycle

0−tail

1−tail



More formally, let M be any DFA with n states, let q be any state, and let
a be any letter. Let pi = δ(q, ai) for i ≥ 0. Then pi is ultimately periodic with
period ≤ n and preperiod (“tail”) at most n−1. Thus pn−1 = pn−1+lcm(1,2,...,n).

It follows that after processing 0n−1 and 0n−1+lcm(1,2,...,n), M must be in the
same state. Similarly, after processing

0n−11n−1+lcm(1,2,...,n) and 0n−1+lcm(1,2,...,n)1n−1,

M must be in the same state. So no n-state machine can separate w from x. ¤

We now prove a series of very simple results showing that if w and x differ
in some “easy-to-detect” way, then sep(w, x) is small.

4.1 Differences near the beginning or end of words

Proposition 4. Suppose w and x are words that differ in some symbol that

occurs d positions from the start. Then sep(w, x) ≤ d+ 2.

Proof. Let t be a prefix of length d of w. Then t is not a prefix of x. We can
accept the language tΣ∗ using d + 2 states; such an automaton accepts w and
rejects x. ¤

For example, to separate

01010011101100110000

from

01001111101011100101

we can build a DFA to recognize words that begin with 0101:

0, 1
1010

(Transitions to a dead state are omitted.)

Proposition 5. Suppose w and x differ in some symbol that occurs d positions

from the end. Then sep(w, x) ≤ d+ 1.

Proof. Let the DFA M be the usual pattern-recognizing automaton for the
length-d suffix s of w, ending in an accepting state if the suffix is recognized.
Then M accepts w but rejects x. States of M correspond to prefixes of s, and
δ(t, a) = the longest suffix of ta that is a prefix of s. ¤



For example, to separate

11111010011001010101

from
11111011010010101101

we can build a DFA to recognize those words that end in 0101:

0

0

1

1 0

1

1010

4.2 Fingerprints

Define |w|a as the number of occurrences of the symbol a in the word w.

Proposition 6. If |w|, |x| ≤ n and |w|a 6= |x|a for some symbol a, then sep(w, x) =
O(log n).

Proof. By the prime number theorem, if |w|, |x| = n, and w and x have k and m
occurrences of a respectively (k 6= m), then there is a prime p = O(log n) such
that k 6≡ m (mod p). So we can separate w from x just by counting the number
of a’s, modulo p. ¤

Analogously, we have the following result.

Proposition 7. If there is a pattern of length d occurring a different number of
times in w and x, with |w|, |x| ≤ n, then sep(w, x) = O(d log n).

4.3 Pairs with low Hamming distance

The previous results have shown that if w and x have differing “fingerprints”,
then they are easy to separate. By contrast, the next result shows that if w and
x are very similar, then they are also easy to separate.

The Hamming distance H(w, x) between two equal-length words w and x is
defined to be the number of positions where they differ.

Theorem 2. Let w and x be words of length n. If H(w, x) ≤ d, then sep(w, x) =
O(d log n).



Proof. Without loss of generality, assume x and y are binary words, and x has
a 1 in some position where y has a 0. Consider the following picture:

1 nidi4i3i2i1

y =

x = · · ·

· · ·0

1

Let i1 < i2 < . . . < id be the positions where x and y differ. Now consider
N = (i2−i1)(i3−i1) · · · (id−i1). Then N < nd−1. By the prime number theorem,
there exists some prime p = O(logN) = O(d log n) such that N is not divisible
by p. So ij 6≡ i1 (mod p) for 2 ≤ j ≤ d.

Define ap,k(x) =





∑

j≡k (mod p)

x[j]



 mod 2. This value can be calculated by

a DFA consisting of two connected rings of p states each. We use such a DFA
calculating ap,i1 . Since p is not a factor of N , none of the positions i2, i3, . . . , id
are included in the count ap,i1 , and the two words x and y agree in all other
positions. So x contains exactly one more 1 in these positions than y does, and
hence we can separate the two words using O(d log n) states. ¤

5 Special classes of words

5.1 Reversals

It is natural to think that pairs of words that are related might be easier to
separate than arbitrary words; for example, it might be easy to separate a word
from its reversal. No better upper bound is known for this special case. However,
we still have a lower bound of Ω(log n) for this restricted problem:

Proposition 8. There exists a class of words w for which sep(w,wR) = Ω(log n)
where n = |w|.

Proof. Consider separating

w = 0t−110t−1+lcm(1,2,...t)

from
wR = 0t−1+lcm(1,2,...t)10t−1.

Then, as before, no DFA with ≤ t states can separate w from wR. ¤



Must sep(wR, xR) = sep(w, x)? No, for w = 1000, x = 0010, we have

sep(w, x) = 3

but
sep(wR, xR) = 2.

Open Problem 1 Is
∣

∣sep(x,w)− sep(xR, wR)
∣

∣ unbounded?

5.2 Conjugates

Two words w,w′ are conjugates if one is a cyclic shift of the other. For example,
the English words enlist and listen are conjugates. Is the separating words
problem any easier if restricted to pairs of conjugates?

Proposition 9. There exist a infinite class of pairs of words w, x such that w, x
are conjugates, and sep(w, x) = Ω(log n) for |w| = |x| = n.

Proof. Consider again

w = 0t−110t−1+lcm(1,2,...t)1

and
w′ = 0t−1+lcm(1,2,...t)10t−11.

¤

6 Nondeterministic separation

We can define nsep(w, x) in analogy with sep: the number of states in the smallest
NFA accepting w but rejecting x. There do not seem to be any published results
about this measure.

Now there is an asymmetry in the inputs: nsep(w, x) need not equal nsep(x,w).
For example, the following 2-state NFA accepts w = 000100 and rejects x =
010000, so nsep(w, x) ≤ 2.

0

0, 1

0

However, an easy computation shows that there is no 2-state NFA accepting
x and rejecting w, so nsep(x,w) ≥ 3.



Open Problem 2 Is |nsep(x,w)− nsep(w, x)| unbounded?

A natural question is whether NFAs give more separation power than DFAs.
Indeed they do, since sep(0001, 0111) = 3 but nsep(0001, 0111) = 2. However,
a more interesting question is the extent to which nondeterminism helps with
separation — for example, whether it contributes only a constant factor or there
is any asymptotic improvement in the number of states required.

Theorem 3. The quantity sep(w, x)/nsep(w, x) is unbounded.

Proof. Consider once again the words

w = 0t−1+lcm(1,2,...,t)1t−1 and x = 0t−11t−1+lcm(1,2,...,t)

where t = n2 − 3n+ 2, n ≥ 4.
We know from Theorem 1 that any DFA separating these words must have

at least t+ 1 = n2 − 3n+ 3 states.
Now consider the following NFA M :

0 0 0 0 0

0

0
0 0 0 0

0

1

loop of n− 1 states

loop of n states

The language accepted by this NFA is {0a : a ∈ A}1∗, where A is the set
of all integers representable by a non-negative integer linear combination of n
and n − 1. But t − 1 = n2 − 3n + 1 6∈ A, as can be seen by computing t − 1
modulo n−1 and modulo n. On the other hand, every integer ≥ t is in A. Hence
w = 0t−1+lcm(1,2,...,t)1t−1 is accepted by M but x = 0t−11t−1+lcm(1,2,...,t) is not.

NowM has 2n = Θ(
√
t) states, so sep(x,w)/nsep(x,w) = Ω(

√
t) = Ω(

√

log |x|),
which is unbounded. ¤

Open Problem 3 Find better bounds on sep(w, x)/nsep(w, x).



We can also get an Ω(log n) lower bound for nondeterministic separation.

Theorem 4. No NFA of n states can separate

0n2−11n2−1+lcm(1,2,...,n)

from

0n2−1+lcm(1,2,...,n)1n2−1.

Proof. A result of Chrobak [1], as corrected by To [11], states that every unary
n-state NFA is equivalent to one consisting of a “tail” of at most O(n2) states,
followed by a single nondeterministic state that leads to a set of cycles, each of
which has at most n states. The size of the tail was proved to be at most n2− 2
by Geffert [3].

Now we use the same argument as for DFAs above. ¤

Open Problem 4 Find better bounds on nsep(w, x) for |w| = |x| = n, as a

function of n.

Theorem 5. We have nsep(w, x) = nsep(wR, xR).

Proof. Let M = (Q,Σ, δ, q0, F ) be an NFA with the smallest number of states
accepting w and rejecting x. Now create a new NFA M ′ with initial state equal
to any single state in δ(q0, w) ∩ F and final state q0, and all other transitions
of M reversed. Then M ′ accepts wR. But M ′ rejects xR. For if M ′ accepted xR

then M would also accept x, since the input string and transitions are reversed.
¤

7 Separation by 2DPDA’s

In [2], the authors showed that words can be separated with small context-free
grammars (and hence small PDA’s). In this section we observe

Proposition 10. Two distinct words of length n can be separated by a 2DPDA

of size O(log n).

Proof. Recall that a 2DPDA is a deterministic pushdown automaton, with end-
markers surrounding the input, and two-way access to the input tape. Given dis-
tinct strings w, x of length n, they must differ in some position p with 1 ≤ p ≤ n.
Using O(log p) states, we can reach position p on the input tape and accept if
(say) the corresponding character equals w[p], and reject otherwise.

Here is how to access position p of the input. We show how to go from
scanning position i to position 2i using a constant number of states: we move
left on the input, pushing two symbols per move on the stack, until the left
endmarker is reached. Now we move right, popping one symbol per move, until
the initial stack symbol is reached. Using this as a subroutine, and applying it
to the binary expansion of p, we can, using O(log p) states, reach position p of
the input. ¤



8 Permutation automata

We conclude by relating the separating words problem to a natural problem of
algebra.

Instead of arbitrary automata, we could restrict our attention to automata
where each letter induces a permutation of the states (“permutation automata”),
as suggested by Robson [8]. He obtained an O(n1/2) upper bound in this case.

For an n-state automaton, the action of each letter can be viewed as an
element of Sn, the symmetric group on n elements.

Turning the problem around, then, we could ask: what is the shortest pair
of distinct equal-length binary words w, x, such that for all morphisms σ :
{0, 1}∗ → Sn we have σ(w) = σ(x)? Although one might suspect that the answer
is lcm(1, 2, . . . , n), for n = 4, there is a shorter pair (of length 11): 00000011011
and 11011000000.

Now if σ(w) = σ(x) for all σ, then (if we define σ(x−1) = σ(x)−1) we have
that σ(wx−1) = the identity permutation for all σ.

Call any nonempty word y over the letters 0, 1, 0−1, 1−1 an identical relation

if σ(y) = the identity for all morphisms σ. We say y is nontrivial if y contains
no occurrences of 00−1 and 11−1.

What is the length ` of the shortest nontrivial identical relation over Sn?
Recently Gimadeev and Vyalyi [4] proved ` = 2O(

√
n log n).
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