
MIT Open Access Articles

Sublinear Algorithms for Approximating String Compressibility

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Raskhodnikova, Sofya et al. “Sublinear Algorithms for Approximating String
Compressibility.” Algorithmica (2012).

As Published: http://dx.doi.org/10.1007/s00453-012-9618-6

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/73520

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73520
http://creativecommons.org/licenses/by-nc-sa/3.0/

Sublinear Algorithms for Approximating String
Compressibility?

Sofya Raskhodnikova1??, Dana Ron2? ? ?, Ronitt Rubinfeld3, and Adam
Smith1†

1 Pennsylvania State University, USA, {sofya,asmith}@cse.psu.edu
2 Tel Aviv University, Israel, danar@eng.tau.ac.il

3 MIT, Cambridge MA, USA, ronitt@csail.mit.edu

Abstract. We raise the question of approximating the compressibility
of a string with respect to a fixed compression scheme, in sublinear time.
We study this question in detail for two popular lossless compression
schemes: run-length encoding (RLE) and Lempel-Ziv (LZ), and present
sublinear algorithms for approximating compressibility with respect to
both schemes. We also give several lower bounds that show that our
algorithms for both schemes cannot be improved significantly.
Our investigation of LZ yields results whose interest goes beyond the
initial questions we set out to study. In particular, we prove combinatorial
structural lemmas that relate the compressibility of a string with respect
to Lempel-Ziv to the number of distinct short substrings contained in it.
In addition, we show that approximating the compressibility with respect
to LZ is related to approximating the support size of a distribution.

1 Introduction

Given an extremely long string, it is natural to wonder how compressible it
is. This fundamental question is of interest to a wide range of areas of study,
including computational complexity theory, machine learning, storage systems,
and communications. As massive data sets are now commonplace, the ability to
estimate their compressibility with extremely efficient, even sublinear time, al-
gorithms, is gaining in importance. The most general measure of compressibility,
Kolmogorov complexity, is not computable (see [14] for a textbook treatment),
nor even approximable. Even under restrictions which make it computable (such
as a bound on the running time of decompression), it is probably hard to ap-
proximate in polynomial time, since an approximation would allow distinguish-
ing random from pseudorandom strings and, hence, inverting one-way functions.
? A full version of this paper is available [17]. These results appeared previously as

part of a technical report [16].
?? Research done while at the Hebrew University of Jerusalem, Israel, supported by

the Lady Davis Fellowship, and while at the Weizmann Institute of Science, Israel.
? ? ? Supported by the Israel Science Foundation (grant number 89/05).
† Research done while at the Weizmann Institute of Science, Israel, supported by the

Louis L. and Anita M. Perlman Postdoctoral Fellowship.

However, the question of how compressible a large string is with respect to a spe-
cific compression scheme may be tractable, depending on the particular scheme.

We raise the question of approximating the compressibility of a string with
respect to a fixed compression scheme, in sublinear time, and give algorithms
and nearly matching lower bounds for several versions of the problem. While this
question is new, for one compression scheme, answers follow from previous work.
Namely, compressibility under Huffman encoding is determined by the entropy
of the symbol frequencies. Batu et al. [3] and Brautbar and Samorodnitsky [5]
study the problem of approximating the entropy of a distribution from a small
number of samples, and their results immediately imply algorithms and lower
bounds for approximating compressibility under Huffman encoding.

In this work we study the compressibility approximation question in detail
for two popular lossless compression schemes: run-length encoding (RLE) and
Lempel-Ziv (LZ) [19]. In the RLE scheme, each run, or a sequence of consecutive
occurrences of the same character, is stored as a pair: the character, and the
length of the run. Run-length encoding is used to compress black and white
images, faxes, and other simple graphic images, such as icons and line drawings,
which usually contain many long runs. In the LZ scheme4, a left-to-right pass of
the input string is performed and at each step, the longest sequence of characters
that has started in the previous portion of the string is replaced with the pointer
to the previous location and the length of the sequence (for a formal definition,
see Section 4). The LZ scheme and its variants have been studied extensively in
machine learning and information theory, in part because they compress strings
generated by an ergodic source to the shortest possible representation (given
by the entropy) in the asymptotic limit (cf. [10]). Many popular archivers, such
as gzip, use variations on the LZ scheme. In this work we present sublinear
algorithms and corresponding lower bounds for approximating compressibility
with respect to both schemes, RLE and LZ.

Motivation. Computing the compressibility of a large string with respect to spe-
cific compression schemes may be done in order to decide whether or not to
compress the file, to choose which compression method is the most suitable, or
check whether a small modification to the file (e.g., a rotation of an image) will
make it significantly more compressible5. Moreover, compression schemes are
used as tools for measuring properties of strings such as similarity and entropy.
As such, they are applied widely in data-mining, natural language processing
and genomics (see, for example, Lowenstern et al. [15], Kukushkina et al. [11],
Benedetto et al. [4], Li et al. [13] and Calibrasi and Vitányi [8, 9]). In these ap-
plications, one typically needs only the length of the compressed version of a file,
not the output itself. For example, in the clustering algorithm of [8], the distance

4 We study the variant known as LZ77 [19], which achieves the best compressibility.
There are several other variants that do not compress some inputs as well, but can
be implemented more efficiently.

5 For example, a variant of the RLE scheme, typically used to compress images, runs
RLE on the concatenated rows of the image and on the concatenated columns of the
image, and stores the shorter of the two compressed files.

between two objects x and y is given by a normalized version of the length of
their compressed concatenation x‖y. The algorithm first computes all pairwise
distances, and then analyzes the resulting distance matrix. This requires Θ(t2)
runs of a compression scheme, such as gzip, to cluster t objects. Even a weak
approximation algorithm that can quickly rule out very incompressible strings
would reduce the running time of the clustering computations dramatically.

Multiplicative and Additive Approximations. We consider three approximation
notions: additive, multiplicative, and the combination of additive and multiplica-
tive. On the input of length n, the quantities we approximate range from 1 to n.
An additive approximation algorithm is allowed an additive error of εn, where
ε ∈ (0, 1) is a parameter. The output of a multiplicative approximation algorithm
is within a factor A > 1 of the correct answer. The combined notion allows both
types of error: the algorithm should output an estimate Ĉ of the compression
cost C such that C

A − εn ≤ Ĉ ≤ A ·C + εn. Our algorithms are randomized, and
for all inputs the approximation guarantees hold with probability at least 2

3 .
We are interested in sublinear approximation algorithms, which read few

positions of the input strings. For the schemes we study, purely multiplicative
approximation algorithms must read almost the entire input. Nevertheless, al-
gorithms with additive error guarantees, or a possibility of both multiplicative
and additive error are often sufficient for distinguishing very compressible inputs
from inputs that are not well compressible. For both the RLE and LZ schemes,
we give algorithms with combined multiplicative and additive error that make
few queries to the input. When it comes to additive approximations, however,
the two schemes differ sharply: sublinear additive approximations are possible
for the RLE compressibility, but not for LZ compressibility.

1.1 Results for Run-Length Encoding

For RLE, we present sublinear algorithms for all three approximation notions
defined above, providing a trade-off between the quality of approximation and
the running time. The algorithms that allow an additive approximation run in
time independent of the input size. Specifically, an εn-additive estimate can be
obtained in time6 Õ(1/ε3), and a combined estimate, with a multiplicative error
of 3 and an additive error of εn, can be obtained in time Õ(1/ε). As for a strict
multiplicative approximation, we give a simple 4-multiplicative approximation
algorithm that runs in expected time Õ(n

Crle(w)) where Crle(w) denotes the com-
pression cost of the string w. For any γ > 0, the multiplicative error can be
improved to 1 + γ at the cost of multiplying the running time by poly(1/γ).
Observe that the algorithm is more efficient when the string is less compressible,
and less efficient when the string is more compressible. One of our lower bounds
justifies such a behavior and, in particular, shows that a constant factor approx-
imation requires linear time for strings that are very compressible. We also give
a lower bound of Ω(1/ε2) for εn-additive approximation.
6 The notation Õ(g(k)) for a function g of a parameter k means O(g(k) ·polylog(g(k))

where polylog(g(k)) = logc(g(k)) for some constant c.

1.2 Results for Lempel-Ziv

We prove that approximating compressibility with respect to LZ is closely related
to the following problem, which we call Colors: Given access to a string τ of
length n over alphabet Ψ , approximate the number of distinct symbols (“colors”)
in τ . This is essentially equivalent to estimating the support size of a distribu-
tion [18]. Variants of this problem have been considered under various guises
in the literature: in databases it is referred to as approximating distinct values
(Charikar et al. [7]), in statistics as estimating the number of species in a pop-
ulation (see the over 800 references maintained by Bunge [6]), and in streaming
as approximating the frequency moment F0 (Alon et al. [1], Bar-Yossef et al.
[2]). Most of these works, however, consider models different from ours. For our
model, there is an A-multiplicative approximation algorithm of [7], that runs in
time O

(
n
A2

)
, matching the lower bound in [7, 2]. There is also an almost linear

lower bound for approximating Colors with additive error [18].
We give a reduction from LZ compressibility to Colors and vice versa. These

reductions allow us to employ the known results on Colors to give algorithms
and lower bounds for this problem. Our approximation algorithm for LZ com-
pressibility combines a multiplicative and additive error. The running time of
the algorithm is Õ

(
n
A3ε

)
where A is the multiplicative error and εn is the addi-

tive error. In particular, this implies that for any α > 0, we can distinguish, in
sublinear time Õ(n1−α), strings compressible to O(n1−α) symbols from strings
only compressible to Ω(n) symbols.7

The main tool in the algorithm consists of two combinatorial structural lem-
mas that relate compressibility of the string to the number of distinct short
substrings contained in it. Roughly, they say that a string is well compressible
with respect to LZ if and only if it contains few distinct substrings of length `
for all small ` (when considering all n − ` + 1 possible overlapping substrings).
The simpler of the two lemmas was inspired by a structural lemma for grammars
by Lehman and Shelat [12]. The combinatorial lemmas allow us to establish a
reduction from LZ compressibility to Colors and employ a (simple) algorithm
for approximating Colors in our algorithm for LZ.

Interestingly, we can show that there is also a reduction in the opposite di-
rection: namely, approximating Colors reduces to approximating LZ compress-
ibility. The lower bound of [18], combined with the reduction from Colors to
LZ, implies that our algorithm for LZ cannot be improved significantly. In par-
ticular, our lower bound implies that for any B = no(1), distinguishing strings
compressible by LZ to Õ(n/B) symbols from strings compressible to Ω̃(n) sym-
bols requires n1−o(1) queries.

1.3 Further Research

It would be interesting to extend our results for estimating the compressibility
under LZ77 to other variants of LZ, such as dictionary-based LZ78 [20]. Com-
pressibility under LZ78 can be drastically different from compressibility under

7 To see this, set A = o(nα/2) and ε = o(n−α/2).

LZ77: e.g., for 0n they differ roughly by a factor of
√
n. Another open ques-

tion is approximating compressibility for schemes other than RLE and LZ. In
particular, it would be interesting to design approximation algorithms for lossy
compression schemes such as JPEG, MPEG and MP3. One lossy compression
scheme to which our results extend directly is Lossy RLE, where some characters,
e.g., the ones that represent similar colors, are treated as the same character.

1.4 Organization

We start with some definitions in Section 2. Section 3 contains our results for
RLE. Section 4 deals with the LZ scheme. All missing details (descriptions of
algorithms and proofs of claims) can be found in [17].

2 Preliminaries

The input to our algorithms is usually a string w of length n over a finite alphabet
Σ. The quantities we approximate, such as compression cost of w under a specific
algorithm, range from 1 to n. We consider estimates to these quantities that
have both multiplicative and additive error. We call Ĉ an (λ, ε)-estimate for
C if C

λ − εn ≤ Ĉ ≤ λ · C + εn , and say an algorithm (λ, ε)-estimates C
(or is an (λ, ε)-approximation algorithm for C) if for each input it produces an
(λ, ε)-estimate for C with probability at least 2

3 .
When the error is purely additive or multiplicative, we use the following

shorthand: εn-additive estimate stands for (1, ε)-estimate and λ-multiplicative
estimate, or λ-estimate, stands for (λ, 0)-estimate. An algorithm computing an
εn-additive estimate with probability at least 2

3 is an εn-additive approxima-
tion algorithm, and if it computes an λ-multiplicative estimate then it is an
λ-multiplicative approximation algorithm, or λ-approximation algorithm.

For some settings of parameters, obtaining a valid estimate is trivial. For a
quantity in [1, n], for example, n2 is an n

2 -additive estimate,
√
n is a

√
n-estimate

and εn is an (λ, ε)-estimate whenever λ ≥ 1
2ε .

3 Run-Length Encoding

Every n-character string w over alphabet Σ can be partitioned into maximal
runs of identical characters of the form σ`, where σ is a symbol in Σ and ` is the
length of the run, and consecutive runs are composed of different symbols. In
the Run-Length Encoding of w, each such run is replaced by the pair (σ, `). The
number of bits needed to represent such a pair is dlog(`+ 1)e+dlog |Σ|e plus the
overhead which depends on how the separation between the characters and the
lengths is implemented. One way to implement it is to use prefix-free encoding for
lengths. For simplicity we ignore the overhead in the above expression, but our
analysis can be adapted to any implementation choice. The cost of the run-length
encoding , denoted by Crle(w), is the sum over all runs of dlog(`+ 1)e+dlog |Σ|e.

3.1 An εn-Additive Estimate with Õ(1/ε3) Queries

Our first algorithm for approximating the cost of RLE is very simple: it samples
a few positions in the input string uniformly at random and bounds the lengths
of the runs to which they belong by looking at the positions to the left and to the
right of each sample. If the corresponding run is short, its length is established
exactly; if it is long, we argue that it does not contribute much to the encoding
cost. For each index t ∈ [n], let `(t) be the length of the run to which wt belongs.
The cost contribution of index t is defined as

c(t) =
dlog(`(t) + 1)e+ dlog |Σ|e

`(t)
. (1)

By definition,
Crle(w)
n

= E
t∈[n]

[c(t)], where Et∈[n] denotes expectation over a

uniformly random choice of t. The algorithm, presented below, estimates the
encoding cost by the average of the cost contributions of the sampled short
runs, multiplied by n.

Algorithm I: An εn-additive Approximation for Crle(w)

1. Select q = Θ
(

1
ε2

)
indices t1, . . . , tq uniformly and independently at random.

2. For each i ∈ [q] :
(a) Query ti and up to `0 = 8 log(4|Σ|/ε)

ε positions in its vicinity to bound
`(ti).

(b) Set ĉ(ti) = c(ti) if `(ti) < `0 and ĉ(ti) = 0 otherwise.
3. Output Ĉrle = n · E

i∈[q]
[ĉ(ti)].

Correctness. We first prove that the algorithm is an εn-additive approximation.
The error of the algorithm comes from two sources: from ignoring the contribu-
tion of long runs and from sampling. The ignored indices t, for which `(t) ≥ `0,
do not contribute much to the cost. Since the cost assigned to the indices mono-
tonically decreases with the length of the run to which they belong, for each
such index,

c(t) ≤ dlog(`0 + 1)e+ dlog |Σ|e
`0

≤ ε

2
. (2)

Therefore,
Crle(w)
n

− ε

2
≤ 1

n
·
∑

t: `(t)<`0

c(t) ≤ Crle(w)
n

. (3)

Equivalently, Crle(w)
n − ε

2 ≤ Ei∈[n][ĉ(ti)] ≤ Crle(w)
n .

By an additive Chernoff bound, with high constant probability, the sam-
pling error in estimating E[ĉ(ti)] is at most ε/2. Therefore, Ĉrle is an εn-additive
estimate of Crle(w), as desired.

Query and time complexity. (Assuming |Σ| is constant.) Since the number of
queries performed for each selected ti is O(`0) = O(log(1/ε)/ε), the total number
of queries, as well as the running time, is O(log(1/ε)/ε3).

3.2 Summary of Positive Results on RLE

After stating Theorem 1 that summarizes our positive results, we briefly discuss
some of the ideas used in the algorithms omitted from this version of the paper.

Theorem 1 Let w ∈ Σn be a string to which we are given query access.

1. Algorithm I gives εn-additive approximation to Crle(w) in time Õ(1/ε3).
2. Crle(w) can be (3, ε)-estimated in time Õ(1/ε).
3. Crle(w) can be 4-estimated in expected time Õ

(
n

Crle(w)

)
. A (1 + γ)-estimate

of Crle(w) can be obtained in expected time Õ
(

n
Crle(w) · poly(1/γ)

)
. The al-

gorithm needs no prior knowledge of Crle(w).

Section 3.1 gives a complete proof of Item 1. The algorithm in Item 2 parti-
tions the positions in the string into buckets according to the length of the runs
they belong to. It estimates the sizes of different buckets with different precision,
depending on the size of the bucket and the length of the runs it contains. The
main idea in Item 3 is to search for Crle(w), using the algorithm from Item 2
repeatedly (with different parameters) to establish successively better estimates.

3.3 Lower Bounds for RLE

We give two lower bounds, for multiplicative and additive approximation, re-
spectively, which establish that the running times in Items 1 and 3 of Theorem 1
are essentially tight.
Theorem 2 1. For all A > 1, any A-approximation algorithm for Crle requires

Ω
(

n
A2 logn

)
queries. Furthermore, if the input is restricted to strings with

compression cost Crle(w) ≥ C, then Ω
(

n
CA2 log(n)

)
queries are necessary.

2. For all ε ∈
(
0, 1

2

)
, any εn-additive approximation algorithm for Crle requires

Ω(1/ε2) queries.

A Multiplicative Lower Bound (Proof of Theorem 2, Item 1): The claim follows
from the next lemma:

Lemma 3 For every n ≥ 2 and every integer 1 ≤ k ≤ n/2, there exists a family
of strings, denoted Wk, for which the following holds: (1) Crle(w) = Θ

(
k log(nk)

)
for every w ∈Wk; (2) Distinguishing a uniformly random string in Wk from one
in Wk′ , where k′ > k, requires Ω

(
n
k′

)
queries.

Proof: Let Σ = {0, 1} and assume for simplicity that n is divisible by k. Every
string in Wk consists of k blocks, each of length n

k . Every odd block contains
only 1s and every even block contains a single 0. The strings in Wk differ in the
locations of the 0s within the even blocks. Every w ∈ Wk contains k/2 isolated
0s and k/2 runs of 1s, each of length Θ(nk). Therefore, Crle(w) = Θ

(
k log(nk)

)
.

To distinguish a random string in Wk from one in Wk′ with probability 2/3, one
must make Ω(n

max(k,k′)) queries since, in both cases, with asymptotically fewer
queries the algorithm sees only 1’s with high probability.

Additive Lower Bound (Proof Theorem 2, Item 1): For any p ∈ [0, 1] and suf-
ficiently large n, let Dn,p be the following distribution over n-bit strings. For
simplicity, consider n divisible by 3. The string is determined by n

3 indepen-
dent coin flips, each with bias p. Each “heads” extends the string by three runs
of length 1, and each “tails”, by a run of length 3. Given the sequence of run
lengths, dictated by the coin flips, output the unique binary string that starts
with 0 and has this sequence of run lengths.8

Let W be a random variable drawn according to Dn,1/2 and W ′, according to
Dn,1/2+ε. The following facts are established in the full version [17]: (a) Ω(1/ε2)
queries are necessary to reliably distinguish W from W ′, and (b) With high
probability, the encoding costs of W and W ′ differ by Ω(εn). Together these
facts imply the lower bound.

4 Lempel Ziv Compression

In this section we consider a variant of Lempel and Ziv’s compression algo-
rithm [19], which we refer to as LZ77. In all that follows we use the shorthand
[n] for {1, . . . , n}. Let w ∈ Σn be a string over an alphabet Σ. Each symbol
of the compressed representation of w, denoted LZ(w), is either a character
σ ∈ Σ or a pair (p, `) where p ∈ [n] is a pointer (index) to a location in the
string w and ` is the length of the substring of w that this symbol represents.
To compress w, the algorithm works as follows. Starting from t = 1, at each
step the algorithm finds the longest substring wt . . . wt+`−1 for which there ex-
ists an index p < t, such that wp . . . wp+`−1 = wt . . . wt+`−1. (The substrings
wp . . . wp+`−1 and wt . . . wt+`−1 may overlap.) If there is no such substring (that
is, the character wt has not appeared before) then the next symbol in LZ(w) is
wt, and t = t+ 1. Otherwise, the next symbol is (p, `) and t = t+ `. We refer to
the substring wt . . . wt+`−1 (or wt when wt is a new character) as a compressed
segment .

Let CLZ(w) denote the number of symbols in the compressed string LZ(w).
(We do not distinguish between symbols that are characters in Σ, and symbols
that are pairs (p, `).) Given query access to a string w ∈ Σn, we are interested in
computing an estimate ĈLZ of CLZ(w). As we shall see, this task reduces to esti-
mating the number of distinct substrings in w of different lengths, which in turn
reduces to estimating the number of distinct characters (“colors”) in a string.
The actual length of the binary representation of the compressed substring is at
most a factor of 2 log n larger than CLZ(w). This is relatively negligible given
the quality of the estimates that we can achieve in sublinear time.

We begin by relating LZ compressibility to Colors (§4.1), then use this
relation to discuss algorithms (§4.2) and lower bounds (§4.3) for compressiblity.

8 Let bi be a boolean variable representing the outcome of the ith coin. Then the
output is 0b101b210b301b41 . . .

4.1 Structural Lemmas

Our algorithm for approximating the compressibility of an input string with
respect to LZ77 uses an approximation algorithm for Colors (defined in the
introduction) as a subroutine. The main tool in the reduction from LZ77 to
Colors is the relation between CLZ(w) and the number of distinct substrings
in w, formalized in the two structural lemmas. In what follows, d`(w) denotes
the number of distinct substrings of length ` in w. Unlike compressed segments
in w, which are disjoint, these substrings may overlap.

Lemma 4 (Structural Lemma 1) For every ` ∈ [n], CLZ(w) ≥ d`(w)
` .

Lemma 5 (Structural lemma 2) Let `0 ∈ [n]. Suppose that for some integer
m and for every ` ∈ [`0], d`(w) ≤ m · `. Then CLZ(w) ≤ 4(m log `0 + n/`0).

Proof of Lemma 4. This proof is similar to the proof of a related lemma
concerning grammars from [12]. First note that the lemma holds for ` = 1, since
each character wt in w that has not appeared previously (that is, wt′ 6= wt for
every t′ < t) is copied by the compression algorithm to LZ(w).

For the general case, fix ` > 1. Recall that wt . . . wt+k−1 of w is a compressed
segment if it is represented by one symbol (p, k) in LZ(w). Any substring of lenth
` that occurs within a compressed segment must have occurred previously in the
string. Such substrings can be ignored for our purposes: the number of distinct
length-` substrings is bounded above by the number of length-` substrings that
start inside one compressed segment and end in another. Each segment (except
the last) contributes (`−1) such substrings. Therefore, d`(w) ≤ (CLZ(w)−1)(`−
1) < CLZ(w) · ` for every ` > 1.

Proof of Lemma 5. Let n`(w) denote the number of compressed segments of
length ` in w, not including the last compressed segment. We use the shorthand
n` for n`(w) and d` for d`(w). In order to prove the lemma we shall show that
for every 1 ≤ ` ≤ b`0/2c,

∑̀
k=1

nk ≤ 2(m+ 1) ·
∑̀
k=1

1
k
. (4)

For all ` ≥ 1, since the compressed segments in w are disjoint,
∑n
k=`+1 nk ≤

n
`+1 .

If we substitute ` = b`0/2c in the last two equations and sum them up, we get:

n∑
k=1

nk ≤ 2(m+ 1) ·
b`0/2c∑
k=1

1
k

+
2n
`0
≤ 2(m+ 1)(ln `0 + 1) +

2n
`0
. (5)

Since CLZ(w) =
∑n
k=1 nk + 1, the lemma follows.

It remains to prove Equation (4). We do so below by induction on `, using
the following claim.

Claim 6 For every 1 ≤ ` ≤ b`0/2c ,
∑̀
k=1

k · nk ≤ 2`(m+ 1) .

Proof: We show that each position j ∈ {`, . . . , n − `} that participates in a
compressed substring of length at most ` in w can be mapped to a distinct
length-2` substring of w. Since ` ≤ `0/2, by the premise of the lemma, there are
at most 2` ·m distinct length-2` substrings. In addition, the first `− 1 and the
last ` positions contribute less than 2` symbols. The claim follows.

We call a substring new if no instance of it started in the previous portion
of w. Namely, wt . . . wt+`−1 is new if there is no p < t such that wt . . . wt+`−1 =
wp . . . wp+`−1. Consider a compressed substring wt . . . wt+k−1 of length k ≤ `.
The substrings of length greater than k that start at wt must be new, since
LZ77 finds the longest substring that appeared before. Furthermore, every sub-
string that contains such a new substring is also new. That is, every substring
wt′ . . . wt+k′ where t′ ≤ t and k′ ≥ k + (t′ − t), is new.

Map each position j ∈ {`, . . . , n−`} in the compressed substring wt . . . wt+k−1

to the length-2` substring that ends at wj+`. Then each position in {`, . . . , n−`}
that appears in a compressed substring of length at most ` is mapped to a distinct
length-2` substring, as desired. (Claim 6)

Establishing Equation (4). We prove Equation (4) by induction on `. Claim 6
with ` set to 1 gives the base case, i.e., n1 ≤ 2(m + 1). For the induction step,
assume the induction hypothesis for every j ∈ [` − 1]. To prove it for `, add
the equation in Claim 6 to the sum of the induction hypothesis inequalities
(Equation (4)) for every j ∈ [`−1]. The left hand side of the resulting inequality
is

∑̀
k=1

k · nk +
`−1∑
j=1

j∑
k=1

nk =
∑̀
k=1

k · nk +
`−1∑
k=1

`−k∑
j=1

nk

=
∑̀
k=1

k · nk +
`−1∑
k=1

(`− k) · nk = ` ·
∑̀
k=1

nk .

The right hand side, divided by the factor 2(m + 1), which is common to all
inequalities, is

`+
`−1∑
j=1

j∑
k=1

1
k

= `+
`−1∑
k=1

`−k∑
j=1

1
k

= `+
`−1∑
k=1

`− k
k

= `+ ` ·
`−1∑
k=1

1
k
− (`−1) = ` ·

∑̀
k=1

1
k
.

Dividing both sides by ` gives the inequality in Equation (4). (Lemma 5)

4.2 An Algorithm for LZ77

This subsection describes an algorithm for approximating the compressibility of
an input string with respect to LZ77, which uses an approximation algorithm for

Colors as a subroutine. The main tool in the reduction from LZ77 to Colors
consists of structural lemmas 4 and 5, summarized in the following corollary.

Corollary 7 For any `0 ≥ 1, let m = m(`0) = max`0`=1
d`(w)
` . Then

m ≤ CLZ(w) ≤ 4 ·
(
m log `0 +

n

`0

)
.

The corollary allows us to approximate CLZ from estimates for d` for all ` ∈ [`0].
To obtain these estimates, we use the algorithm of [7] for Colors as a subrou-
tine (in the full version [17] we also describe a simpler Colors algorithm with
the same provable guarantees). Recall that an algorithm for Colors approxi-
mates the number of distinct colors in an input string, where the ith character
represents the ith color. We denote the number of colors in an input string τ
by CCOL(τ). To approximate d`, the number of distinct length-` substrings in
w, using an algorithm for Colors, view each length-` substring as a separate
color. Each query of the algorithm for Colors can be implemented by ` queries
to w.

Let Estimate(`, B, δ) be a procedure that, given access to w, an index ` ∈
[n], an approximation parameter B = B(n, `) > 1 and a confidence parameter
δ ∈ [0, 1], computes a B-estimate for d` with probability at least 1− δ. It can be
implemented using an algorithm for Colors, as described above, and employing
standard amplification techniques to boost success probability from 2

3 to 1 −
δ: running the basic algorithm Θ(log δ−1) times and outputting the median.
Since the algorithm of [7] requires O(n/B2) queries, the query complexity of
Estimate(`, B, δ) is O

(
n
B2 ` log δ−1

)
. Using Estimate(`, B, δ) as a subroutine,

we get the following approximation algorithm for the cost of LZ77.

Algorithm II: An (A, ε)-approximation for CLZ(w)

1. Set `0 =
⌈

2
Aε

⌉
and B = A

2
√

log(2/(Aε))
.

2. For all ` in [`0], let d̂` = Estimate(`, B, 1
3`0

).
3. Combine the estimates to get an approximation of m from Corollary 7:

set m̂ = max
`

d̂`
`

.

4. Output ĈLZ = m̂ · AB + εn.

Theorem 8 Algorithm II (A, ε)-estimates CLZ(w). With a proper implementa-
tion that reuses queries and an appropriate data structure, its query and time
complexity are Õ

(
n
A3ε

)
.

Proof: By the Union Bound, with probability ≥ 2
3 , all values d̂` computed by

the algorithm are B-estimates for the corresponding d`. When this holds, m̂ is
a B-estimate for m from Corollary 7, which implies that

m̂

B
≤ CLZ(w) ≤ 4 ·

(
m̂B log `0 +

n

`0

)
.

Equivalently,
CLZ − 4(n/`0)

4B log `0
≤ m̂ ≤ B · CLZ. Multiplying all three terms by A

B

and adding εn to them, and then substituting parameter settings for `0 and B,
specified in the algorithm, shows that ĈLZ is indeed an (A, ε)-estimate for CLZ.

As explained before the algorithm statement, each call to Estimate(`, B, 1
3`0

)
costs O

(
n
B2 ` log `0

)
queries. Since the subroutine is called for all ` ∈ [`0], the

straightforward implementation of the algorithm would result in O
(
n
B2 `

2
0 log `0

)
queries. Our analysis of the algorithm, however, does not rely on independence of
queries used in different calls to the subroutine, since we employ the Union Bound
to calculate the error probability. It will still apply if we first run Estimate to
approximate d`0 and then reuse its queries for the remaining calls to the subrou-
tine, as though it requested to query only the length-` prefixes of the length-`0
substrings queried in the first call. With this implementation, the query complex-
ity is O

(
n
B2 `0 log `0

)
= O

(
n
A3ε log2 1

Aε

)
. To get the same running time, one can

maintain counters for all ` ∈ [`0] for the number of distinct length-` substrings
seen so far and use a trie to keep the information about the queried substrings.
Every time a new node at some depth ` is added to the trie, the `th counter is
incremented.

4.3 Lower Bounds: Reducing Colors to LZ77

We have demonstrated that estimating the LZ77 compressibility of a string re-
duces to Colors. As shown in [18], Colors is quite hard, and it is not possible
to improve much on the simple approximation algorithm in [7] , on which we
base the LZ77 approximation algorithm in the previous subsection. A natural
question is whether there is a better algorithm for the LZ77 estimation problem.
That is, is the LZ77 estimation strictly easier than Colors? As we shall see, it
is not much easier in general.

Lemma 9 (Reduction from Colors to LZ77) Suppose there exists an al-
gorithm ALZ that, given access to a string w of length n over an alphabet Σ,
performs q = q(n, |Σ|, α, β) queries and with probability at least 5/6 distinguishes
between the case that CLZ(w) ≤ αn and the case that CLZ(w) > βn, for some
α < β.

Then there is an algorithm for Colors taking inputs of length n′ = Θ(αn)
that performs q queries and, with probability at least 2/3, distinguishes inputs
with at most α′n′ colors from those with at least β′n′ colors, α′ = α/2 and
β′ = β · 2 ·max

{
1, 4 logn′

log |Σ|

}
.

Two notes are in place regarding the reduction. The first is that the gap
between the parameters α′ and β′ that is required by the Colors algorithm
obtained in Lemma 9, is larger than the gap between the parameters α and β for
which the LZ-compressibility algorithm works, by a factor of 4 ·max

{
1, 4 logn′

log |Σ|

}
.

In particular, for binary strings β′

α′ = O
(

log n′ · βα
)

, while if the alphabet is

large, say, of size at least n′, then β′

α′ = O
(
β
α

)
. In general, the gap increases

by at most O(log n′). The second note is that the number of queries, q, is a
function of the parameters of the LZ-compressibility problem and, in particular,
of the length of the input strings, n. Hence, when writing q as a function of
the parameters of Colors and, in particular, as a function of n′ = Θ(αn), the
complexity may be somewhat larger. It is an open question whether a reduction
without such increase is possible.

Prior to proving the lemma , we discuss its implications. [18] give a strong
lower bound on the sample complexity of approximation algorithms for Colors.
An interesting special case is that a subpolynomial-factor approximation for
Colors requires many queries even with a promise that the strings are only
slightly compressible: for any B = no(1), distinguishing inputs with n/11 colors
from those with n/B colors requires n1−o(1) queries. Lemma 9 extends that
bound to estimating LZ compressibility: For any B = no(1), and any alphabet
Σ, distinguishing strings with LZ compression cost Ω̃(n) from strings with cost
Õ(n/B) requires n1−o(1) queries.

The lower bound for Colors in [18] applies to a broad range of parameters,
and yields the following general statement when combined with Lemma 9:

Corollary 10 (LZ is Hard to Approximate with Few Samples) For
sufficiently large n, all alphabets Σ and all B ≤ n1/4/(4 log n3/2), there exist
α, β ∈ (0, 1) where β = Ω

(
min

{
1, log |Σ|

4 logn

})
and α = O

(
β
B

)
, such that

every algorithm that distinguishes between the case that CLZ(w) ≤ αn and the

case that CLZ(w) > βn for w ∈ Σn, must perform Ω
((

n
B′

)1− 2
k

)
queries for

B′ = Θ
(
B ·max

{
1, 4 logn

log |Σ|

})
and k = Θ

(√
logn

logB′+ 1
2 log logn

)
.

Proof of Lemma 9. Suppose we have an algorithm ALZ for LZ-compressibility
as specified in the premise of Lemma 9. Here we show how to transform a Colors
instance τ into an input for ALZ, and use the output of ALZ to distinguish τ
with at most α′n′ colors from τ with at least β′n′ colors, where α′ and β′ are
as specified in the lemma. We shall assume that β′n′ is bounded below by some
sufficiently large constant. Recall that in the reduction from LZ77 to Colors,
we transformed substrings into colors. Here we perform the reverse operation.

Given a Colors instance τ of length n′, we transform it into a string of
length n = n′ · k over Σ, where k = d 1

αe. We then run ALZ on w to obtain
information about τ . We begin by replacing each color in τ with a uniformly
selected substring in Σk. The string w is the concatenation of the corresponding
substrings (which we call blocks). We show that:

1. If τ has at most α′n′ colors, then CLZ(w) ≤ 2α′n;
2. If τ has at least β′n′ colors, then Prw[CLZ(w) ≥ 1

2 ·min
{

1, log |Σ|
4 logn′

}
·β′n] ≥ 7

8 .

That is, in the first case we get an input w for Colors such that CLZ(w) ≤ αn for
α = 2α′, and in the second case, with probability at least 7/8, CLZ(w) ≥ βn for

β = 1
2 ·min

{
1, log |Σ|

4 logn′

}
·β′. Recall that the gap between α′ and β′ is assumed to

be sufficiently large so that α < β. To distinguish the case that CCOL(τ) ≤ α′n′
from the case that CCOL(τ) > β′n′, we can run ALZ on w and output its answer.
Taking into account the failure probability of ALZ and the failure probability in
Item 2 above, the Lemma follows.

We prove these two claims momentarily, but first observe that in order to
run the algorithm ALZ, there is no need to generate the whole string w. Rather,
upon each query of ALZ to w, if the index of the query belongs to a block that
has already been generated, the answer to ALZ is determined. Otherwise, we
query the element (color) in τ that corresponds to the block. If this color was
not yet observed, then we set the block to a uniformly selected substring in Σk.
If this color was already observed in τ , then we set the block according to the
substring that was already selected for the color. In either case, the query to w
can now be answered. Thus, each query to w is answered by performing at most
one query to τ .

It remains to prove the two items concerning the relation between the number
of colors in τ and CLZ(w). If τ has at most α′n′ colors then w contains at
most α′n′ distinct blocks. Since each block is of length k, at most k compressed
segments start in each new block. By definition of LZ77, at most one compressed
segment starts in each repeated block. Hence,

CLZ(w) ≤ α′n′ · k + (1− α′)n′ ≤ α′n+ n′ ≤ 2α′n.

If τ contains β′n′ or more colors, w is generated using at least β′n′·log(|Σ|k) =
β′n log |Σ| random bits. Hence, with high probability (e.g., at least 7/8) over the
choice of these random bits, any lossless compression algorithm (and in particular
LZ77) must use at least β′n log |Σ| − 3 bits to compress w. Each symbol of the
compressed version of w can be represented by max{dlog |Σ|e, 2dlog ne}+ 1 bits,
since it is either an alphabet symbol or a pointer-length pair. Since n = n′d1/α′e,
and α′ > 1/n′, each symbol takes at most max{4 log n′, log |Σ|} + 2 bits to
represent. This means the number of symbols in the compressed version of w is

CLZ(w) ≥ β′n log |Σ| − 3
max {4 log n′, log |Σ|}) + 2

≥ 1
2
· β′n ·min

{
1, log |Σ|

4 logn′

}
where we have used the fact that β′n′, and hence β′n, is at least some sufficiently
large constant.

Acknowledgements. We would like to thank Amir Shpilka, who was involved in
a related paper on distribution support testing [18] and whose comments greatly
improved drafts of this article. We would also like to thank Eric Lehman for
discussing his thesis material with us and Oded Goldreich and Omer Reingold
for helpful comments.

References

1. Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approxi-
mating the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

2. Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling algorithms: lower
bounds and applications. In Proceedings of the thirty-third annual ACM sym-
posium on Theory of computing, pages 266–275, New York, NY, USA, 2001. ACM
Press.

3. Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complex-
ity of approximating the entropy. SIAM Journal on Computing, 35(1):132–150,
2005.

4. Dario Benedetto, Emanuele Caglioti, and Vittorio Loreto. Language trees and
zipping. Phys. Rev. Lett., 88(4), 2002. See comment by Khmelev DV, Teahan
WJ, Phys Rev Lett. 90(8):089803, 2003 and the reply Phys Rev Lett. 90(8):089804,
2003.

5. Mickey Brautbar and Alex Samorodnitsky. Approximating the entropy of large
alphabets. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, 2007.

6. John Bunge. Bibligraphy on estimating the number of classes in a population.
www.stat.cornell.edu/∼bunge/bibliography.htm.

7. Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya.
Towards estimation error guarantees for distinct values. In PODS, pages 268–279.
ACM, 2000.

8. Rudi Cilibrasi and Paul M. B. Vitányi. Clustering by compression. IEEE Trans-
actions on Information Theory, 51(4):1523–1545, 2005.

9. Rudi Cilibrasi and Paul M. B. Vitányi. Similarity of objects and the meaning of
words. In Jin-Yi Cai, S. Barry Cooper, and Angsheng Li, editors, TAMC, volume
3959 of Lecture Notes in Computer Science, pages 21–45. Springer, 2006.

10. T. Cover and J. Thomas. Elements of Information Theory. Wiley & Sons, 1991.
11. O. V. Kukushkina, A. A. Polikarpov, and D. V. Khmelev. Using literal and gram-

matical statistics for authorship attribution. Prob. Peredachi Inf., 37(2):96–98,
2000. [Probl. Inf. Transm. (Engl. Transl.) 37, 172–184 (2001)].

12. Eric Lehman and Abhi Shelat. Approximation algorithms for grammer-based com-
pression. In Proc. 18th Annual Symp. on Discrete Algorithms, pages 205–212, 2002.

13. Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M. B. Vitányi. The similarity met-
ric. IEEE Transactions on Information Theory, 50(12):3250–3264, 2004. Prelim.
version in SODA 2003.

14. Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer, 1997.

15. David Loewenstern, Haym Hirsh, Michiel Noordewier, and Peter Yianilos. DNA
sequence classification using compression-based induction. Technical Report 95-04,
Rutgers University, DIMACS, 1995.

16. Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, Amir Shpilka, and Adam
Smith. Sublinear algorithms for approximating string compressibility and the
distribution support size. Electronic Colloquium on Computational Complexity,
TR05-125, 2005.

17. Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam Smith. Sublinear
algorithms for approximating string compressibility. Full version of this paper, in
preparation, Arxiv Report 0706.1084 [cs.DS], June 2007.

18. Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. On the difficulty
of approximating the support size of a distribution. Manuscript, 2007.

19. Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23:337–343, 1977.

20. Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-
rate coding. IEEE Transactions on Information Theory, 24:530–536, 1978.

