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NP-hardness of Deciding Convexity of

Quartic Polynomials and Related Problems

Amir Ali Ahmadi, Alex Olshevsky, Pablo A. Parrilo, and John N. Tsitsiklis ∗†

Abstract

We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time)
algorithm that can decide whether a multivariate polynomial of degree four (or higher even
degree) is globally convex. This solves a problem that has been open since 1992 when N. Z.
Shor asked for the complexity of deciding convexity for quartic polynomials. We also prove that
deciding strict convexity, strong convexity, quasiconvexity, and pseudoconvexity of polynomials
of even degree four or higher is strongly NP-hard. By contrast, we show that quasiconvexity
and pseudoconvexity of odd degree polynomials can be decided in polynomial time.

1 Introduction

The role of convexity in modern day mathematical programming has proven to be remarkably
fundamental, to the point that tractability of an optimization problem is nowadays assessed, more
often than not, by whether or not the problem benefits from some sort of underlying convexity. In
the famous words of Rockafellar [41]:

“In fact the great watershed in optimization isn’t between linearity and nonlinearity,
but convexity and nonconvexity.”

But how easy is it to distinguish between convexity and nonconvexity? Can we decide in an efficient
manner if a given optimization problem is convex?

A class of optimization problems that allow for a rigorous study of this question from a com-
putational complexity viewpoint is the class of polynomial optimization problems. These are op-
timization problems where the objective is given by a polynomial function and the feasible set is
described by polynomial inequalities. Our research in this direction was motivated by a concrete
question of N. Z. Shor that appeared as one of seven open problems in complexity theory for
numerical optimization put together by Pardalos and Vavasis in 1992 [38]:

“Given a degree-4 polynomial in n variables, what is the complexity of determining
whether this polynomial describes a convex function?”

As we will explain in more detail shortly, the reason why Shor’s question is specifically about
degree 4 polynomials is that deciding convexity of odd degree polynomials is trivial and deciding
convexity of degree 2 (quadratic) polynomials can be reduced to the simple task of checking whether
a constant matrix is positive semidefinite. So, the first interesting case really occurs for degree 4
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(quartic) polynomials. Our main contribution in this paper (Theorem 2.1 in Section 2.3) is to show
that deciding convexity of polynomials is strongly NP-hard already for polynomials of degree 4.

The implication of NP-hardness of this problem is that unless P=NP, there exists no algorithm
that can take as input the (rational) coefficients of a quartic polynomial, have running time bounded
by a polynomial in the number of bits needed to represent the coefficients, and output correctly on
every instance whether or not the polynomial is convex. Furthermore, the fact that our NP-hardness
result is in the strong sense (as opposed to weakly NP-hard problems such as KNAPSACK) implies,
roughly speaking, that the problem remains NP-hard even when the magnitude of the coefficients
of the polynomial are restricted to be “small.” For a strongly NP-hard problem, even a pseudo-
polynomial time algorithm cannot exist unless P=NP. See [19] for precise definitions and more
details.

There are many areas of application where one would like to establish convexity of polynomials.
Perhaps the simplest example is in global minimization of polynomials, where it could be very useful
to decide first whether the polynomial to be optimized is convex. Once convexity is verified, then
every local minimum is global and very basic techniques (e.g., gradient descent) can find a global
minimum—a task that is in general NP-hard in the absence of convexity [39], [35]. As another
example, if we can certify that a homogeneous polynomial is convex, then we define a gauge (or
Minkowski) norm based on its convex sublevel sets, which may be useful in many applications. In
several other problems of practical relevance, we might not just be interested in checking whether a
given polynomial is convex, but to parameterize a family of convex polynomials and perhaps search
or optimize over them. For example we might be interested in approximating the convex envelope
of a complicated nonconvex function with a convex polynomial, or in fitting a convex polynomial
to a set of data points with minimum error [30]. Not surprisingly, if testing membership to the set
of convex polynomials is hard, searching and optimizing over that set also turns out to be a hard
problem.

We also extend our hardness result to some variants of convexity, namely, the problems of
deciding strict convexity, strong convexity, pseudoconvexity, and quasiconvexity of polynomials.
Strict convexity is a property that is often useful to check because it guarantees uniqueness of the
optimal solution in optimization problems. The notion of strong convexity is a common assumption
in convergence analysis of many iterative Newton-type algorithms in optimization theory; see,
e.g., [9, Chaps. 9–11]. So, in order to ensure the theoretical convergence rates promised by many of
these algorithms, one needs to first make sure that the objective function is strongly convex. The
problem of checking quasiconvexity (convexity of sublevel sets) of polynomials also arises frequently
in practice. For instance, if the feasible set of an optimization problem is defined by polynomial
inequalities, by certifying quasiconvexity of the defining polynomials we can ensure that the feasible
set is convex. In several statistics and clustering problems, we are interested in finding minimum
volume convex sets that contain a set of data points in space. This problem can be tackled by
searching over the set of quasiconvex polynomials [30]. In economics, quasiconcave functions are
prevalent as desirable utility functions [28], [5]. In control and systems theory, it is useful at times to
search for quasiconvex Lyapunov functions whose convex sublevel sets contain relevant information
about the trajectories of a dynamical system [11], [3]. Finally, the notion of pseudoconvexity is
a natural generalization of convexity that inherits many of the attractive properties of convex
functions. For example, every stationary point or every local minimum of a pseudoconvex function
must be a global minimum. Because of these nice features, pseudoconvex programs have been
studied extensively in nonlinear programming [31], [13].

As an outcome of close to a century of research in convex analysis, numerous necessary,
sufficient, and exact conditions for convexity and all of its variants are available; see, e.g., [9,
Chap. 3], [33], [18], [14], [28], [32] and references therein for a by no means exhaustive list. Our
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results suggest that none of the exact characterizations of these notions can be efficiently checked
for polynomials. In fact, when turned upside down, many of these equivalent formulations reveal
new NP-hard problems; see, e.g., Corollary 2.6 and 2.8.

1.1 Related Literature

There are several results in the literature on the complexity of various special cases of polynomial
optimization problems. The interested reader can find many of these results in the edited volume
of Pardalos [37] or in the survey papers of de Klerk [16], and Blondel and Tsitsiklis [8]. A very
general and fundamental concept in certifying feasibility of polynomial equations and inequalities
is the Tarski–Seidenberg quantifier elimination theory [43], [42], from which it follows that all of the
problems that we consider in this paper are algorithmically decidable. This means that there are
algorithms that on all instances of our problems of interest halt in finite time and always output the
correct yes–no answer. Unfortunately, algorithms based on quantifier elimination or similar decision
algebra techniques have running times that are at least exponential in the number of variables [6],
and in practice can only solve problems with very few parameters.

When we turn to the issue of polynomial time solvability, perhaps the most relevant result for
our purposes is the NP-hardness of deciding nonnegativity of quartic polynomials and biquadratic
forms (see Definition 2.2); the reduction that we give in this paper will in fact be from the latter
problem. As we will see in Section 2.3, it turns out that deciding convexity of quartic forms is
equivalent to checking nonnegativity of a special class of biquadratic forms, which are themselves a
special class of quartic forms. The NP-hardness of checking nonnegativity of quartic forms follows,
e.g., as a direct consequence of NP-hardness of testing matrix copositivity, a result proven by Murty
and Kabadi [35]. As for the hardness of checking nonnegativity of biquadratic forms, we know of
two different proofs. The first one is due to Gurvits [22], who proves that the entanglement problem
in quantum mechanics (i.e., the problem of distinguishing separable quantum states from entangled
ones) is NP-hard. A dual reformulation of this result shows directly that checking nonnegativity
of biquadratic forms is NP-hard; see [17]. The second proof is due to Ling et al. [29], who use
a theorem of Motzkin and Straus to give a very short and elegant reduction from the maximum
clique problem in graphs.

The only work in the literature on the hardness of deciding polynomial convexity that we are
aware of is the work of Guo on the complexity of deciding convexity of quartic polynomials over
simplices [21]. Guo discusses some of the difficulties that arise from this problem, but he does not
prove that deciding convexity of polynomials over simplices is NP-hard. Canny shows in [10] that
the existential theory of the real numbers can be decided in PSPACE. From this, it follows that
testing several properties of polynomials, including nonnegativity and convexity, can be done in
polynomial space. In [36], Nie proves that the related notion of matrix convexity is NP-hard for
polynomial matrices whose entries are quadratic forms.

On the algorithmic side, several techniques have been proposed both for testing convexity of sets
and convexity of functions. Rademacher and Vempala present and analyze randomized algorithms
for testing the relaxed notion of approximate convexity [40]. In [27], Lasserre proposes a semidefinite
programming hierarchy for testing convexity of basic closed semialgebraic sets; a problem that we
also prove to be NP-hard (see Corollary 2.8). As for testing convexity of functions, an approach
that some convex optimization parsers (e.g., CVX [20]) take is to start with some ground set of
convex functions and then check whether the desired function can be obtained by applying a set
of convexity preserving operations to the functions in the ground set [15], [9, p. 79]. Techniques
of this type that are based on the calculus of convex functions are successful for a large range
of applications. However, when applied to general polynomial functions, they can only detect a
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subclass of convex polynomials.
Related to convexity of polynomials, a concept that has attracted recent attention is the alge-

braic notion of sos-convexity (see Definition 2.4) [23], [25], [26], [3], [30], [11]. This is a powerful
sufficient condition for convexity that relies on an appropriately defined sum of squares decomposi-
tion of the Hessian matrix, and can be efficiently checked by solving a single semidefinite program.
However, in [4], [2], Ahmadi and Parrilo gave an explicit counterexample to show that not every
convex polynomial is sos-convex. The NP-hardness result in this work certainly justifies the exis-
tence of such a counterexample and more generally suggests that any polynomial time algorithm
attempted for checking polynomial convexity is doomed to fail on some hard instances.

1.2 Contributions and organization of the paper

The main contribution of this paper is to establish the computational complexity of deciding con-
vexity, strict convexity, strong convexity, pseudoconvexity, and quasiconvexity of polynomials for
any given degree. (See Table 1 in Section 5 for a quick summary.) The results are mainly divided
in three sections, with Section 2 covering convexity, Section 3 covering strict and strong convexity,
and Section 4 covering quasiconvexity and pseudoconvexity. These three sections follow a similar
pattern and are each divided into three parts: first, the definitions and basics, second, the degrees
for which the questions can be answered in polynomial time, and third, the degrees for which the
questions are NP-hard.

Our main reduction, which establishes NP-hardness of checking convexity of quartic forms, is
given in Section 2.3. This hardness result is extended to strict and strong convexity in Section 3.3,
and to quasiconvexity and pseudoconvexity in Section 4.3. By contrast, we show in Section 4.2
that quasiconvexity and pseudoconvexity of odd degree polynomials can be decided in polynomial
time. Finally, a summary of our results and some concluding remarks are presented in Section 5.

2 Complexity of deciding convexity

2.1 Definitions and basics

A (multivariate) polynomial p(x) in variables x := (x1, . . . , xn)T is a function from Rn to R that is
a finite linear combination of monomials:

p(x) =
∑
α

cαx
α =

∑
α1,...,αn

cα1,...,αnx
α1
1 · · ·x

αn
n , (1)

where the sum is over n-tuples of nonnegative integers αi. An algorithm for testing some property
of polynomials will have as its input an ordered list of the coefficients cα. Since our complexity
results are based on models of digital computation, where the input must be represented by a finite
number of bits, the coefficients cα for us will always be rational numbers, which upon clearing
the denominators can be taken to be integers. So, for the remainder of the paper, even when not
explicitly stated, we will always have cα ∈ Z.

The degree of a monomial xα is equal to α1 + · · · + αn. The degree of a polynomial p(x) is
defined to be the highest degree of its component monomials. A simple counting argument shows
that a polynomial of degree d in n variables has

(
n+d
d

)
coefficients. A homogeneous polynomial (or

a form) is a polynomial where all the monomials have the same degree. A form p(x) of degree d is
a homogeneous function of degree d (since it satisfies p(λx) = λdp(x)), and has

(
n+d−1

d

)
coefficients.

A polynomial p(x) is said to be nonnegative or positive semidefinite (psd) if p(x) ≥ 0 for all
x ∈ Rn. Clearly, a necessary condition for a polynomial to be psd is for its degree to be even.
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We say that p(x) is a sum of squares (sos), if there exist polynomials q1(x), . . . , qm(x) such that
p(x) =

∑m
i=1 q

2
i (x). Every sos polynomial is obviously psd. A polynomial matrix P (x) is a matrix

with polynomial entries. We say that a polynomial matrix P (x) is PSD (denoted P (x) � 0) if it is
positive semidefinite in the matrix sense for every value of the indeterminates x. (Note the upper
case convention for matrices.) It is easy to see that P (x) is PSD if and only if the scalar polynomial
yTP (x)y in variables (x; y) is psd.

We recall that a polynomial p(x) is convex if and only if its Hessian matrix, which will be
generally denoted by H(x), is PSD.

2.2 Degrees that are easy

The question of deciding convexity is trivial for odd degree polynomials. Indeed, it is easy to check
that linear polynomials (d = 1) are always convex and that polynomials of odd degree d ≥ 3 can
never be convex. The case of quadratic polynomials (d = 2) is also straightforward. A quadratic
polynomial p(x) = 1

2x
TQx + qTx + c is convex if and only if the constant matrix Q is positive

semidefinite. This can be decided in polynomial time for example by performing Gaussian pivot
steps along the main diagonal of Q [35] or by computing the characteristic polynomial of Q exactly
and then checking that the signs of its coefficients alternate [24, p. 403].

Unfortunately, the results that come next suggest that the case of quadratic polynomials is
essentially the only nontrivial case where convexity can be efficiently decided.

2.3 Degrees that are hard

The main hardness result of the paper is the following theorem.

Theorem 2.1. Deciding convexity of degree four polynomials is strongly NP-hard. This is true
even when the polynomials are restricted to be homogeneous.

We will give a reduction from the problem of deciding nonnegativity of biquadratic forms. We
start by recalling some basic facts about biquadratic forms and sketching the idea of the proof.

Definition 2.2. A biquadratic form b(x; y) is a form in the variables x = (x1, . . . , xn)T and
y = (y1, . . . , ym)T that can be written as

b(x; y) =
∑

i≤j, k≤l
αijklxixjykyl. (2)

Note that for fixed x, b(x; y) becomes a quadratic form in y, and for fixed y, it becomes a
quadratic form in x. Every biquadratic form is a quartic form, but the converse is of course not
true. It follows from a result of Ling et al. [29] that deciding nonnegativity of biquadratic forms is
strongly NP-hard. For the benefit of the reader, let us briefly summarize the proof from [29] before
we proceed, as this result underlies everything that follows.

The argument in [29] is based on a reduction from CLIQUE (given a graph G(V,E) and a
positive integer k ≤ |V |, decide whether G contains a clique of size k or more) whose (strong)
NP-hardness is well-known [19]. For a given graph G(V,E) on n nodes, if we define the biquadratic
form bG(x; y) in the variables x = (x1, . . . , xn)T and y = (y1, . . . , yn)T by

bG(x; y) = −2
∑

(i,j)∈E

xixjyiyj ,
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then Ling et al. [29] use a theorem of Motzkin and Straus [34] to show

min
||x||=||y||=1

bG(x; y) = −1 +
1

ω(G)
. (3)

Here, ω(G) denotes the clique number of the graph G, i.e., the size of a maximal clique.1 From
this, we see that for any value of k, ω(G) ≤ k if and only if

min
||x||=||y||=1

bG(x; y) ≥ 1− k
k

,

which by homogenization holds if and only if the biquadratic form

b̂G(x; y) = −2k
∑

(i,j)∈E

xixjyiyj − (1− k)

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)

is nonnegative. Hence, by checking nonnegativity of b̂G(x; y) for all values of k ∈ {1, . . . , n − 1},
we can find the exact value of ω(G). It follows that deciding nonnegativity of biquadratic forms
is NP-hard, and in view of the fact that the coefficients of b̂G(x; y) are all integers with absolute
value at most 2n− 2, the NP-hardness claim is in the strong sense. Note also that the result holds
even when n = m in Definition 2.2. In the sequel, we will always have n = m.

It is not difficult to see that any biquadratic form b(x; y) can be written in the form

b(x; y) = yTA(x)y (4)

(or of course as xTB(y)x) for some symmetric polynomial matrix A(x) whose entries are quadratic
forms. Therefore, it is strongly NP-hard to decide whether a symmetric polynomial matrix with
quadratic form entries is PSD. One might hope that this would lead to a quick proof of NP-hardness
of testing convexity of quartic forms, because the Hessian of a quartic form is exactly a symmetric
polynomial matrix with quadratic form entries. However, the major problem that stands in the
way is that not every polynomial matrix is a valid Hessian. Indeed, if any of the partial derivatives
between the entries of A(x) do not commute (e.g., if ∂A11(x)

∂x2
6= ∂A12(x)

∂x1
), then A(x) cannot be the

matrix of second derivatives of some polynomial. This is because all mixed third partial derivatives
of polynomials must commute.

Our task is therefore to prove that even with these additional constraints on the entries of A(x),
the problem of deciding positive semidefiniteness of such matrices remains NP-hard. We will show
that any given symmetric n× n matrix A(x), whose entries are quadratic forms, can be embedded
in a 2n×2n polynomial matrix H(x, y), again with quadratic form entries, so that H(x, y) is a valid
Hessian and A(x) is PSD if and only if H(x, y) is. In fact, we will directly construct the polynomial
f(x, y) whose Hessian is the matrix H(x, y). This is done in the next theorem, which establishes
the correctness of our main reduction. Once this theorem is proven, the proof of Theorem 2.1 will
become immediate.

Theorem 2.3. Given a biquadratic form b(x; y), define the the n × n polynomial matrix C(x, y)
by setting

[C(x, y)]ij :=
∂b(x; y)
∂xi∂yj

, (5)

1Equation (3) above is stated in [29] with the stability number α(G) in place of the clique number ω(G). This
seems to be a minor typo.
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and let γ be the largest coefficient, in absolute value, of any monomial present in some entry of the
matrix C(x, y). Let f be the form given by

f(x, y) := b(x; y) +
n2γ

2

( n∑
i=1

x4
i +

n∑
i=1

y4
i +

∑
i,j=1,...,n

i<j

x2
ix

2
j +

∑
i,j=1,...,n

i<j

y2
i y

2
j

)
. (6)

Then, b(x; y) is psd if and only if f(x, y) is convex.

Proof. Before we prove the claim, let us make a few observations and try to shed light on the
intuition behind this construction. We will use H(x, y) to denote the Hessian of f . This is a
2n × 2n polynomial matrix whose entries are quadratic forms. The polynomial f is convex if and
only if zTH(x, y)z is psd. For bookkeeping purposes, let us split the variables z as z := (zx, zy)T ,
where zx and zy each belong to Rn. It will also be helpful to give a name to the second group of
terms in the definition of f(x, y) in (6). So, let

g(x, y) :=
n2γ

2

( n∑
i=1

x4
i +

n∑
i=1

y4
i +

∑
i,j=1,...,n

i<j

x2
ix

2
j +

∑
i,j=1,...,n

i<j

y2
i y

2
j

)
. (7)

We denote the Hessian matrices of b(x, y) and g(x, y) with Hb(x, y) and Hg(x, y) respectively. Thus,
H(x, y) = Hb(x, y) + Hg(x, y). Let us first focus on the structure of Hb(x, y). Observe that if we
define

[A(x)]ij =
∂b(x; y)
∂yi∂yj

,

then A(x) depends only on x, and
1
2
yTA(x)y = b(x; y). (8)

Similarly, if we let

[B(y)]ij =
∂b(x; y)
∂xi∂xj

,

then B(y) depends only on y, and
1
2
xTB(y)x = b(x; y). (9)

From Eq. (8), we have that b(x; y) is psd if and only if A(x) is PSD; from Eq. (9), we see that
b(x; y) is psd if and only if B(y) is PSD.

Putting the blocks together, we have

Hb(x, y) =
[

B(y) C(x, y)
CT (x, y) A(x)

]
. (10)

The matrix C(x, y) is not in general symmetric. The entries of C(x, y) consist of square-free
monomials that are each a multiple of xiyj for some i, j, with 1 ≤ i, j ≤ n; (see (2) and (5)).

The Hessian Hg(x, y) of the polynomial g(x, y) in (7) is given by

Hg(x, y) =
n2γ

2

[
H11
g (x) 0
0 H22

g (y)

]
, (11)
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where

H11
g (x) =



12x2
1 + 2

∑
i=1,...,n
i 6=1

x2
i 4x1x2 · · · 4x1xn

4x1x2 12x2
2 + 2

∑
i=1,...,n
i 6=2

x2
i · · · 4x2xn

...
...

. . .
...

4x1xn · · · 4xn−1xn 12x2
n + 2

∑
i=1,...,n
i 6=n

x2
i


, (12)

and

H22
g (y) =



12y2
1 + 2

∑
i=1,...,n
i 6=1

y2
i 4y1y2 · · · 4y1yn

4y1y2 12y2
2 + 2

∑
i=1,...,n
i 6=2

y2
i · · · 4y2yn

...
...

. . .
...

4y1yn · · · 4yn−1yn 12y2
n + 2

∑
i=1,...,n
i 6=n

y2
i


. (13)

Note that all diagonal elements of H11
g (x) and H22

g (y) contain the square of every variable x1, . . . , xn
and y1, . . . , yn respectively.

We fist give an intuitive summary of the rest of the proof. If b(x; y) is not psd, then B(y) and
A(x) are not PSD and hence Hb(x, y) is not PSD. Moreover, adding Hg(x, y) to Hb(x, y) cannot
help make H(x, y) PSD because the dependence of the diagonal blocks of Hb(x, y) and Hg(x, y)
on x and y runs backwards. On the other hand, if b(x; y) is psd, then Hb(x, y) will have PSD
diagonal blocks. In principle, Hb(x, y) might still not be PSD because of the off-diagonal block
C(x, y). However, the squares in the diagonal elements of Hg(x, y) will be shown to dominate the
monomials of C(x, y) and make H(x, y) PSD.

Let us now prove the theorem formally. One direction is easy: if b(x; y) is not psd, then f(x, y)
is not convex. Indeed, if there exist x̄ and ȳ in Rn such that b(x̄; ȳ) < 0, then

zTH(x, y)z
∣∣∣
zx=0,x=x̄,y=0,zy=ȳ

= ȳTA(x̄)ȳ = 2b(x̄; ȳ) < 0.

For the converse, suppose that b(x; y) is psd; we will prove that zTH(x, y)z is psd and hence
f(x, y) is convex. We have

zTH(x, y)z = zTy A(x)zy + zTxB(y)zx + 2zTxC(x, y)zy +
n2γ

2
zTxH

11
g (x)zx +

n2γ

2
zTy H

22
g (y)zy. (14)

Because zTy A(x)zy and zTxB(y)zx are psd by assumption (see (8) and (9)), it suffices to show that
zTH(x, y)z − zTy A(x)zy − zTxB(y)zx is psd. In fact, we will show that zTH(x, y)z − zTy A(x)zy −
zTxB(y)zx is a sum of squares.

After some regrouping of terms we can write

zTH(x, y)z − zTy A(x)zy − zTxB(y)zx = p1(x, y, z) + p2(x, zx) + p3(y, zy), (15)
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where

p1(x, y, z) = 2zTxC(x, y)zy + n2γ
( n∑
i=1

z2
x,i

)( n∑
i=1

x2
i

)
+ n2γ

( n∑
i=1

z2
y,i

)( n∑
i=1

y2
i

)
, (16)

p2(x, zx) = n2γzTx


5x2

1 2x1x2 · · · 2x1xn
2x1x2 5x2

2 · · · 2x2xn
...

...
. . .

...
2x1xn · · · 2xn−1xn 5x2

n

 zx, (17)

and

p3(y, zy) = n2γzTy


5y2

1 2y1y2 · · · 2y1yn
2y1y2 5y2

2 · · · 2y2yn
...

...
. . .

...
2y1yn · · · 2yn−1yn 5y2

n

 zy. (18)

We show that (15) is sos by showing that p1, p2, and p3 are each individually sos. To see that
p2 is sos, simply note that we can rewrite it as

p2(x, zx) = n2γ

[
3

n∑
k=1

z2
x,kx

2
k + 2

( n∑
k=1

zx,kxk

)2
]
.

The argument for p3 is of course identical. To show that p1 is sos, we argue as follows. If we
multiply out the first term 2zTxC(x, y)zy, we obtain a polynomial with monomials of the form

±2βi,j,k,lzx,kxiyjzy,l, (19)

where 0 ≤ βi,j,k,l ≤ γ, by the definition of γ. Since

±2βi,j,k,lzx,kxiyjzy,l + βi,j,k,lz
2
x,kx

2
i + βi,j,k,ly

2
j z

2
y,l = βi,j,k,l(zx,kxi ± yjzy,l)2, (20)

by pairing up the terms of 2zTxC(x, y)zy with fractions of the squared terms z2
x,kx

2
i and z2

y,ly
2
j , we

get a sum of squares. Observe that there are more than enough squares for each monomial of
2zTxC(x, y)zy because each such monomial ±2βi,j,k,lzx,kxiyjzy,l occurs at most once, so that each
of the terms z2

x,kx
2
i and z2

y,ly
2
j will be needed at most n2 times, each time with a coefficient of at

most γ. Therefore, p1 is sos, and this completes the proof.

We can now complete the proof of strong NP-hardness of deciding convexity of quartic forms.

Proof of Theorem 2.1. As we remarked earlier, deciding nonnegativity of biquadratic forms is
known to be strongly NP-hard [29]. Given such a biquadratic form b(x; y), we can construct
the polynomial f(x, y) as in (6). Note that f(x, y) has degree four and is homogeneous. More-
over, the reduction from b(x; y) to f(x, y) runs in polynomial time as we are only adding to b(x; y)
2n+ 2

(
n
2

)
new monomials with coefficient n2γ

2 , and the size of γ is by definition only polynomially
larger than the size of any coefficient of b(x; y). Since by Theorem 2.3 convexity of f(x, y) is equiv-
alent to nonnegativity of b(x; y), we conclude that deciding convexity of quartic forms is strongly
NP-hard.
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An algebraic version of the reduction. Before we proceed further with our results, we make
a slight detour and present an algebraic analogue of this reduction, which relates sum of squares
biquadratic forms to sos-convex polynomials. Both of these concepts are well-studied in the liter-
ature, in particular in regards to their connection to semidefinite programming; see, e.g., [29], [4],
and references therein.

Definition 2.4. A polynomial p(x), with its Hessian denoted by H(x), is sos-convex if the poly-
nomial yTH(x)y is a sum of squares in variables (x;y).2

Theorem 2.5. Given a biquadratic form b(x; y), let f(x, y) be the quartic form defined as in (6).
Then b(x; y) is a sum of squares if and only if f(x, y) is sos-convex.

Proof. The proof is very similar to the proof of Theorem 2.3 and is left to the reader.

Perhaps of independent interest, Theorems 2.3 and 2.5 imply that our reduction gives an explicit
way of constructing convex but not sos-convex quartic forms (see [4]), starting from any example
of a psd but not sos biquadratic form (see [12]).

Some NP-hardness results, obtained as corollaries. NP-hardness of checking convexity of
quartic forms directly establishes NP-hardness3 of several problems of interest. Here, we mention
a few examples.

Corollary 2.6. It is NP-hard to decide nonnegativity of a homogeneous polynomial q of degree
four, of the form

q(x, y) =
1
2
p(x) +

1
2
p(y)− p

(x+y
2

)
,

for some homogeneous quartic polynomial p.

Proof. Nonnegativity of q is equivalent to convexity of p, and the result follows directly from
Theorem 2.1.

Definition 2.7. A set S ⊂ Rn is basic closed semialgebraic if it can be written as

S = {x ∈ Rn| fi(x) ≥ 0, i = 1, . . . ,m}, (21)

for some positive integer m and some polynomials fi(x).

Corollary 2.8. Given a basic closed semialgebraic set S as in (21), where at least one of the
defining polynomials fi(x) has degree four, it is NP-hard to decide whether S is a convex set.

Proof. Given a quartic polynomial p(x), consider the basic closed semialgebraic set

Ep = {(x, t) ∈ Rn+1| t− p(x) ≥ 0},

describing the epigraph of p(x). Since p(x) is convex if and only if its epigraph is a convex set, the
result follows.4

2See [3] for three other equivalent definitions of sos-convexity.
3All of our NP-hardness results in this paper are in the strong sense. For the sake of brevity, from now on we refer

to strongly NP-hard problems simply as NP-hard problems.
4Another proof of this corollary is given by the NP-hardness of checking convexity of sublevel sets of quartic

polynomials (Theorem 4.10 in Section 4.3).
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Convexity of polynomials of even degree larger than four. We end this section by extend-
ing our hardness result to polynomials of higher degree.

Corollary 2.9. It is NP-hard to check convexity of polynomials of any fixed even degree d ≥ 4.

Proof. We have already established the result for polynomials of degree four. Given such a degree
four polynomial p(x) := p(x1, . . . , xn) and an even degree d ≥ 6, consider the polynomial

q(x, xn+1) = p(x) + xdn+1

in n+ 1 variables. It is clear (e.g., from the block diagonal structure of the Hessian of q) that p(x)
is convex if and only if q(x) is convex. The result follows.

Remark 2.1. Corollary 2.9 does not establish NP-hardness of checking convexity for forms of fixed
even degree d ≥ 6. If needed, such a refinement is possible. One approach, which we just sketch, is
to give a reduction from the problem of deciding nonnegativity of forms of fixed even degree d ≥ 4.
Given such a form p(x), one can construct a form q(x) of degree d + 2 in such a way that p(x) is
a diagonal element of the Hessian of q(x), and p(x) is nonnegative if and only if q(x) is convex. A
construction of this type, although for a different purpose, is given in [1, Thm. 3.18].

3 Complexity of deciding strict convexity and strong convexity

3.1 Definitions and basics

Definition 3.1. A function f : Rn → R is strictly convex if for all x 6= y and all λ ∈ (0, 1), we
have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y). (22)

Definition 3.2. A twice differentiable function f : Rn → R is strongly convex if its Hessian H(x)
satisfies

H(x) � mI, (23)

for a scalar m > 0 and for all x.

We have the standard implications

strong convexity =⇒ strict convexity =⇒ convexity, (24)

but none of the converse implications is true.

3.2 Degrees that are easy

From the implications in (24) and our previous discussion, it is clear that odd degree polynomials
can never be strictly convex or strongly convex. We cover the case of quadratic polynomials in the
following straightforward proposition.

Proposition 3.3. For a quadratic polynomial p(x) = 1
2x

TQx + qTx + c, the notions of strict
convexity and strong convexity are equivalent, and can be decided in polynomial time.

11



Proof. Strong convexity always implies strict convexity. For the reverse direction, assume that p(x)
is not strongly convex. In view of (23), this means that the matrix Q is not positive definite. If Q
has a negative eigenvalue, p(x) is not convex, let alone strictly convex. If Q has a zero eigenvalue,
let x̄ 6= 0 be the corresponding eigenvector. Then p(x) restricted to the line from the origin to x̄ is
linear and hence not strictly convex.

To see that these properties can be checked in polynomial time, note that p(x) is strongly
convex if and only if the symmetric matrix Q is positive definite. By Sylvester’s criterion, positive
definiteness of an n×n symmetric matrix is equivalent to positivity of its n leading principal minors,
each of which can be computed in polynomial time.

3.3 Degrees that are hard

With little effort, we can extend our NP-hardness result in the previous section to address strict
convexity and strong convexity.

Proposition 3.4. It is NP-hard to decide strong convexity of polynomials of any fixed even degree
d ≥ 4.

Proof. We give a reduction from the problem of deciding convexity of quartic forms. Given a
homogenous quartic polynomial p(x) := p(x1, . . . , xn) and an even degree d ≥ 4, consider the
polynomial

q(x, xn+1) := p(x) + xdn+1 + 1
2(x2

1 + · · ·+ x2
n + x2

n+1) (25)

in n+1 variables. We claim that p is convex if and only if q is strongly convex. The only if direction
should be obvious. For the converse, suppose p(x) is not convex. Let us denote the Hessians of p
and q respectively by Hp and Hq. If p is not convex, then there exists a point x̄ ∈ Rn such that

λmin(Hp(x̄)) < 0,

where λmin here denotes the minimum eigenvalue. Because p(x) is homogenous of degree four, we
have

λmin(Hp(cx̄)) = c2λmin(Hp(x̄)),

for any scalar c ∈ R. Pick c large enough such that λmin(Hp(cx̄)) < 1. Then it is easy to see that
Hq(cx̄, 0) has a negative eigenvalue and hence q is not convex, let alone strongly convex.

Remark 3.1. It is worth noting that homogeneous polynomials of degree d > 2 can never be strongly
convex (because their Hessians vanish at the origin). Not surprisingly, the polynomial q in the proof
of Proposition 3.4 is not homogeneous.

Proposition 3.5. It is NP-hard to decide strict convexity of polynomials of any fixed even degree
d ≥ 4.

Proof. The proof is almost identical to the proof of Proposition 3.4. Let q be defined as in (25).
If p is convex, then we established that q is strongly convex and hence also strictly convex. If p is
not convex, we showed that q is not convex and hence also not strictly convex.

12



4 Complexity of deciding quasiconvexity and pseudoconvexity

4.1 Definitions and basics

Definition 4.1. A function f : Rn → R is quasiconvex if its sublevel sets

S(α) := {x ∈ Rn | f(x) ≤ α}, (26)

for all α ∈ R, are convex.

Definition 4.2. A differentiable function f : Rn → R is pseudoconvex if the implication

∇f(x)T (y − x) ≥ 0 =⇒ f(y) ≥ f(x) (27)

holds for all x and y in Rn.

The following implications are well-known (see e.g. [7, p. 143]):

convexity =⇒ pseudoconvexity =⇒ quasiconvexity, (28)

but the converse of neither implication is true in general.

4.2 Degrees that are easy

As we remarked earlier, linear polynomials are always convex and hence also pseudoconvex and
quasiconvex. Unlike convexity, however, it is possible for polynomials of odd degree d ≥ 3 to be
pseudoconvex or quasiconvex. We will show in this section that somewhat surprisingly, quasicon-
vexity and pseudoconvexity of polynomials of any fixed odd degree can be decided in polynomial
time. Before we present these results, we will cover the easy case of quadratic polynomials.

Proposition 4.3. For a quadratic polynomial p(x) = 1
2x

TQx+ qTx+ c, the notions of convexity,
pseudoconvexity, and quasiconvexity are equivalent, and can be decided in polynomial time.

Proof. We argue that the quadratic polynomial p(x) is convex if and only if it is quasiconvex.
Indeed, if p(x) is not convex, then Q has a negative eigenvalue; letting x̄ be a corresponding
eigenvector, we have that p(tx̄) is a quadratic polynomial in t, with negative leading coefficient, so
p(tx̄) is not quasiconvex, as a function of t. This, however, implies that p(x) is not quasiconvex.

We have already argued in Section 2.2 that convexity of quadratic polynomials can be decided
in polynomial time.

4.2.1 Quasiconvexity of polynomials of odd degree

In this subsection, we provide a polynomial time algorithm for checking whether an odd-degree
polynomial is quasiconvex. Towards this goal, we will first show that quasiconvex polynomials of
odd degree have a very particular structure (Proposition 4.6).

Our first lemma concerns quasiconvex polynomials of odd degree in one variable. The proof is
easy and left to the reader. A version of this lemma is provided in [9, p. 99], though there also
without proof.

Lemma 4.4. Suppose that p(t) is a quasiconvex univariate polynomial of odd degree. Then, p(t)
is monotonic.

13



Next, we use the preceding lemma to characterize the complements of sublevel sets of quasicon-
vex polynomials of odd degree.

Lemma 4.5. Suppose that p(x) is a quasiconvex polynomial of odd degree d. Then the set {x |
p(x) ≥ α} is convex.

Proof. Suppose not. In that case, there exist x, y, z such that z is on the line segment connecting
x and y, and such that p(x), p(y) ≥ α but p(z) < α. Consider the polynomial

q(t) = p(x+ t(y − x)).

This is, of course, a quasiconvex polynomial with q(0) = p(x), q(1) = p(y), and q(t′) = p(z), for
some t′ ∈ (0, 1). If q(t) has degree d, then, by Lemma 4.4, it must be monotonic, which immediately
provides a contradiction.

Suppose now that q(t) has degree less than d. Let us attempt to perturb x to x+ x′, and y to
y + y′, so that the new polynomial

q̂(t) = p
(
x+ x′ + t(y + y′ − x− x′)

)
has the following two properties: (i) q̂(t) is a polynomial of degree d, and (ii) q̂(0) > q̂(t′), q̂(1) >
q̂(t′). If such perturbation vectors x′, y′ can be found, then we obtain a contradiction as in the
previous paragraph.

To satisfy condition (ii), it suffices (by continuity) to take x′, y′ with ‖x′‖, ‖y′‖ small enough.
Thus, we only need to argue that we can find arbitrarily small x′, y′ that satisfy condition (i).
Observe that the coefficient of td in the polynomial q̂(t) is a nonzero polynomial in x+x′, y+y′; let
us denote that coefficient as r(x+ x′, y + y′). Since r is a nonzero polynomial, it cannot vanish at
all points of any given ball. Therefore, even when considering a small ball around (x, y) (to satisfy
condition (ii)), we can find (x+ x′, y + y′) in that ball, with r(x+ x′, y + y′) 6= 0, thus establishing
that the degree of q̂ is indeed d. This completes the proof.

We now proceed to a characterization of quasiconvex polynomials of odd degree.

Proposition 4.6. Let p(x) be a polynomial of odd degree d. Then, p(x) is quasiconvex if and only
if it can be written as

p(x) = h(ξTx), (29)

for some nonzero ξ ∈ Rn, and for some monotonic univariate polynomial h(t) of degree d. If, in
addition, we require the nonzero component of ξ with the smallest index to be equal to unity, then
ξ and h(t) are uniquely determined by p(x).

Proof. It is easy to see that any polynomial that can be written in the above form is quasicon-
vex. In order to prove the converse, let us assume that p(x) is quasiconvex. By the definition of
quasiconvexity, the closed set S(α) = {x | p(x) ≤ α} is convex. On the other hand, Lemma 4.5
states that the closure of the complement of S(α) is also convex. It is not hard to verify that, as a
consequence of these two properties, the set S(α) must be a halfspace. Thus, for any given α, the
sublevel set S(α) can be written as {x | ξ(α)Tx ≤ c(α)} for some ξ(α) ∈ Rn and c(α) ∈ R. This of
course implies that the level sets {x | p(x) = α} are hyperplanes of the form {x | ξ(α)Tx = c(α)}.

We note that the sublevel sets are necessarily nested: if α < β, then S(α) ⊆ S(β). An
elementary consequence of this property is that the hyperplanes must be collinear, i.e., that the
vectors ξ(α) must be positive multiples of each other. Thus, by suitably scaling the coefficients c(α),
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we can assume, without loss of generality, that ξ(α) = ξ, for some ξ ∈ Rn, and for all α. We then
have that {x | p(x) = α} = {x | ξTx = c(α)}. Clearly, there is a one-to-one correspondence between
α and c(α), and therefore the value of p(x) is completely determined by ξTx. In particular, there
exists a function h(t) such that p(x) = h(qTx). Since p(x) is a polynomial of degree d, it follows
that h(t) is a univariate polynomial of degree d. Finally, we observe that if h(t) is not monotonic,
then p(x) is not quasiconvex. This proves that a representation of the desired form exists. Note
that by suitably scaling ξ, we can also impose the condition that the nonzero component of ξ with
the smallest index is equal to one.

Suppose that now that p(x) can also be represented in the form p(x) = h̄(ξ̄Tx) for some other
polynomial h̄(t) and vector ξ̄. Then, the gradient vector of p(x) must be proportional to both ξ and
ξ̄. The vectors ξ and ξ̄ are therefore collinear. Once we impose the requirement that the nonzero
component of ξ with the smallest index is equal to one, we obtain that ξ = ξ̄ and, consequently,
h = h̄. This establishes the claimed uniqueness of the representation.

Remark. It is not hard to see that if p(x) is homogeneous and quasiconvex, then one can additionally
conclude that h(t) can be taken to be h(t) = td, where d is the degree of p(x).

Theorem 4.7. For any fixed odd degree d, the quasiconvexity of polynomials of degree d can be
checked in polynomial time.

Proof. The algorithm consists of attempting to build a representation of p(x) of the form given in
Proposition 4.6. The polynomial p(x) is quasiconvex if and only if the attempt is successful.

Let us proceed under the assumption that p(x) is quasiconvex. We differentiate p(x) symboli-
cally to obtain its gradient vector. Since a representation of the form given in Proposition 4.6 exists,
the gradient is of the form ∇p(x) = ξh′(ξTx), where h′(t) is the derivative of h(t). In particular, the
different components of the gradient are polynomials that are proportional to each other. (If they
are not proportional, we conclude that p(x) is not quasiconvex, and the algorithm terminates.) By
considering the ratios between different components, we can identify the vector ξ, up to a scaling
factor. By imposing the additional requirement that the nonzero component of ξ with the smallest
index is equal to one, we can identify ξ uniquely.

We now proceed to identify the polynomial h(t). For k = 1, . . . , d+ 1, we evaluate p(kξ), which
must be equal to h(ξT ξk). We thus obtain the values of h(t) at d + 1 distinct points, from which
h(t) is completely determined. We then verify that h(ξTx) is indeed equal to p(x). This is easily
done, in polynomial time, by writing out the O(nd) coefficients of these two polynomials in x and
verifying that they are equal. (If they are not all equal, we conclude that p(x) is not quasiconvex,
and the algorithm terminates.)

Finally, we test whether the above constructed univariate polynomial h is monotonic, i.e.,
whether its derivative h′(t) is either nonnegative or nonpositive. This can be accomplished, e.g.,
by quantifier elimination or by other well-known algebraic techniques for counting the number and
the multiplicity of real roots of univariate polynomials; see [6]. Note that this requires only a
constant number of arithmetic operations since the degree d is fixed. If h fails this test, then p(x)
is not quasiconvex. Otherwise, our attempt has been successful and we decide that p(x) is indeed
quasiconvex.

4.2.2 Pseudoconvexity of polynomials of odd degree

In analogy to Proposition 4.6, we present next a characterization of odd degree pseudoconvex
polynomials, which gives rise to a polynomial time algorithm for checking this property.
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Corollary 4.8. Let p(x) be a polynomial of odd degree d. Then, p(x) is pseudoconvex if and only
if p(x) can be written in the form

p(x) = h(ξTx), (30)

for some ξ ∈ Rn and some univariate polynomial h of degree d such that its derivative h′(t) has no
real roots.

Remark. Observe that polynomials h with h′ having no real roots comprise a subset of the set of
monotonic polynomials.

Proof. Suppose that p(x) is pseudoconvex. Since a pseudoconvex polynomial is quasiconvex, it
admits a representation h(ξTx) where h is monotonic. If h′(t) = 0 for some t, then picking a = t ·
ξ/‖ξ‖22, we have that ∇p(a) = 0, so that by pseudoconvexity, p(x) is minimized at a. This, however,
is impossible since an odd degree polynomial is never bounded below. Conversely, suppose p(x)
can be represented as in Eq. (30). Fix some x, y, and define the polynomial u(t) = p(x+ t(y− x)).
Since u(t) = h(ξTx + tξT (y − x)), we have that either (i) u(t) is constant, or (ii) u′(t) has no real
roots. Now if ∇p(x)(y−x) ≥ 0, then u′(0) ≥ 0. Regardless of whether (i) or (ii) holds, this implies
that u′(t) ≥ 0 everywhere, so that u(1) ≥ u(0) or p(y) ≥ p(x).

Corollary 4.9. For any fixed odd degree d, the pseudoconvexity of polynomials of degree d can be
checked in polynomial time.

Proof. This is a simple modification of our algorithm for testing quasiconvexity (Theorem 4.7). The
first step of the algorithm is in fact identical: once we impose the additional requirement that the
nonzero component of ξ with the smallest index should be equal to one, we can uniquely determine
the vector ξ and the coefficients of the univariate polynomial h(t) that satisfy Eq. (30) . (If we
fail, p(x) is not quasiconvex and hence also not pseudoconvex.) Once we have h(t), we can check
whether h′(t) has no real roots e.g. by computing the signature of the Hermite form of h′(t); see [6].

Remark 4.1. Homogeneous polynomials of odd degree d ≥ 3 are never pseudoconvex. The reason
is that the gradient of these polynomials vanishes at the origin, but yet the origin is not a global
minimum since odd degree polynomials are unbounded below.

4.3 Degrees that are hard

The main result of this section is the following theorem.

Theorem 4.10. It is NP-hard to check quasiconvexity/pseudoconvexity of degree four polynomials.
This is true even when the polynomials are restricted to be homogeneous.

In view of Theorem 2.1, which established NP-hardness of deciding convexity of homogeneous
quartic polynomials, Theorem 4.10 follows immediately from the following result.5

Theorem 4.11. For a homogeneous polynomial p(x) of even degree d, the notions of convexity,
pseudoconvexity, and quasiconvexity are all equivalent.6

5A slight variant of Theorem 4.11 has appeared in [3].
6The result is more generally true for differentiable functions that are homogeneous of even degree. Also, the

requirements of homogeneity and having an even degree both need to be present. Indeed, x3 and x4− 8x3 + 18x2 are
both quasiconvex but not convex, the first being homogeneous of odd degree and the second being nonhomogeneous
of even degree.
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We start the proof of this theorem by first proving an easy lemma.

Lemma 4.12. Let p(x) be a quasiconvex homogeneous polynomial of even degree d ≥ 2. Then p(x)
is nonnegative.

Proof. Suppose, to derive a contradiction, that there exist some ε > 0 and x̄ ∈ Rn such that
p(x̄) = −ε. Then by homogeneity of even degree we must have p(−x̄) = p(x̄) = −ε. On the other
hand, homogeneity of p implies that p(0) = 0. Since the origin is on the line between x̄ and −x̄,
this shows that the sublevel set S(−ε) is not convex, contradicting the quasiconvexity of p.

Proof of Theorem 4.11. We show that a quasiconvex homogeneous polynomial of even degree is
convex. In view of implication (28), this proves the theorem.

Suppose that p(x) is a quasiconvex polynomial. Define S = {x ∈ Rn | p(x) ≤ 1}. By
homogeneity, for any a ∈ Rn with p(a) > 0, we have that

a

p(a)1/d
∈ S.

By quasiconvexity, this implies that for any a, b with p(a), p(b) > 0, any point on the line connecting
a/p(a)1/d and b/p(b)1/d is in S. In particular, consider

c =
a+ b

p(a)1/d + p(b)1/d
.

Because c can be written as

c =

(
p(a)1/d

p(a)1/d + p(b)1/d

)(
a

p(a)1/d

)
+

(
p(b)1/d

p(a)1/d + p(b)1/d

)(
b

p(b)1/d

)
,

we have that c ∈ S, i.e., p(c) ≤ 1. By homogeneity, this inequality can be restated as

p(a+ b) ≤ (p(a)1/d + p(b)1/d)d,

and therefore

p
(a+ b

2

)
≤

(
p(a)1/d + p(b)1/d

2

)d
≤ p(a) + p(b)

2
, (31)

where the last inequality is due to the convexity of xd.
Finally, note that for any polynomial p, the set {x | p(x) 6= 0} is dense in Rn (here we again

appeal to the fact that the only polynomial that is zero on a ball of positive radius is the zero
polynomial); and since p is nonnegative due to Lemma 4.12, the set {x | p(x) > 0} is dense in Rn.
Using the continuity of p, it follows that Eq. (31) holds not only when a, b satisfy p(a), p(b) > 0,
but for all a, b. Appealing to the continuity of p again, we see that for all a, b, p(λa+ (1− λ)b) ≤
λp(a) + (1− λ)p(b), for all λ ∈ [0, 1]. This establishes that p is convex.

Quasiconvexity/pseudoconvexity of polynomials of even degree larger than four.

Corollary 4.13. It is NP-hard to decide quasiconvexity of polynomials of any fixed even degree
d ≥ 4.
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property vs. degree 1 2 odd ≥ 3 even ≥ 4
strong convexity no P no strongly NP-hard
strict convexity no P no strongly NP-hard
convexity yes P no strongly NP-hard
pseudoconvexity yes P P strongly NP-hard
quasiconvexity yes P P strongly NP-hard

Table 1: Summary of our complexity results. A yes (no) entry means that the question is trivial
for that particular entry because the answer is always yes (no) independent of the input. By P, we
mean that the problem can be solved in polynomial time.

Proof. We have already proved the result for d = 4. To establish the result for even degree
d ≥ 6, recall that we have established NP-hardness of deciding convexity of homogeneous quartic
polynomials. Given such a quartic form p(x) := p(x1, . . . , xn), consider the polynomial

q(x1, . . . , xn+1) = p(x1, . . . , xn) + xdn+1. (32)

We claim that q is quasiconvex if and only if p is convex. Indeed, if p is convex, then obviously
so is q, and therefore q is quasiconvex. Conversely, if p is not convex, then by Theorem 4.11, it is
not quasiconvex. So, there exist points a, b, c ∈ Rn, with c on the line connecting a and b, such
that p(a) ≤ 1, p(b) ≤ 1, but p(c) > 1. Considering points (a, 0), (b, 0), (c, 0), we see that q is not
quasiconvex. It follows that it is NP-hard to decide quasiconvexity of polynomials of even degree
four or larger.

Corollary 4.14. It is NP-hard to decide pseudoconvexity of polynomials of any fixed even degree
d ≥ 4.

Proof. The proof is almost identical to the proof of Corollary 4.13. Let q be defined as in (32). If
p is convex, then q is convex and hence also pseudoconvex. If p is not convex, we showed that q is
not quasiconvex and hence also not pseudoconvex.

5 Summary and conclusions

We studied the computational complexity of testing convexity and some of its variants, for polyno-
mial functions. The notions that we considered and the implications among them are summarized
below:

strong convexity =⇒ strict convexity =⇒ convexity =⇒ pseudoconvexity =⇒ quasiconvexity.

Our complexity results as a function of the degree of the polynomial are listed in Table 1.
We gave polynomial time algorithms for checking pseudoconvexity and quasiconvexity of odd

degree polynomials that can be useful in many applications. Our negative results, on the other
hand, imply (under P6=NP) the impossibility of a polynomial time (or even pseudo-polynomial time)
algorithm for testing any of the properties listed in Table 1 for polynomials of even degree four
or larger. Although the implications of convexity are very significant in optimization theory, our
results suggest that unless additional structure is present, ensuring the mere presence of convexity
is likely an intractable task. It is therefore natural to wonder whether there are other properties of
optimization problems that share some of the attractive consequences of convexity, but are easier
to check.
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Of course, NP-hardness of a problem does not stop us from studying it, but on the contrary,
stresses the need for finding good approximation algorithms that can deal with a large number
of instances efficiently. As an example, semidefinite programming based relaxations relying on
algebraic concepts such as sum of squares decomposition of polynomials currently seem to be very
promising techniques for recognizing convexity of polynomials and basic semialgebraic sets. It would
be useful to identify special cases where these relaxations are exact or give theoretical bounds on
their performance guarantees.
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