
MIT Open Access Articles

A super-nyquist architecture for reliable 
underwater acoustic communication

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Erez, Uri, and Gregory Wornell. “A Super-nyquist Architecture for Reliable Underwater 
Acoustic Communication.” 49th Annual Allerton Conference on Communication, Control, and 
Computing (Allerton), 2011. 469–476.

As Published: http://dx.doi.org/10.1109/Allerton.2011.6120204

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/73596

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73596
http://creativecommons.org/licenses/by-nc-sa/3.0/


A Super-Nyquist Architecture for Reliable
Underwater Acoustic Communication

Uri Erez
Tel Aviv University
Ramat Aviv, Israel

Email: uri@eng.tau.ac.il

Gregory Wornell
Dept. EECS, MIT
Cambridge, MA

Email: gww@mit.edu

Abstract— A natural joint physical and link layer transmission
architecture is developed for communication over underwater
acoustic channels, based on the concept of super-Nyquist (SNQ)
signaling. In such systems, the signaling rate is chosen signif-
icantly higher than the Nyquist rate of the system. We show
that such signaling can be used in conjunction with good “off-
the-shelf” base codes, simple linear redundancy, and minimum
mean-square error decision feedback equalization (MMSE-DFE)
to produce highly efficient, low complexity rateless (i.e.,“foun-
tain”) codes for the severe time-varying intersymbol-interference
channels typical of this application. We show that not only can
SNQ rateless codes approach capacity arbitrarily closely,but
even particularly simple SNQ-based rateless codes requirethe
transmission of dramatically fewer packets than does traditional
ARQ with Chase combining.

I. I NTRODUCTION

The design of reliable, high-speed digital communication
links for the underwater acoustic (UWA) channel is particu-
larly challenging. Indeed, typically the medium is both highly
dispersive and dynamic. Over the years, considerable progress
has been made in meeting these challenges. A review of some
of these advances can be found in, e.g., [1]–[3].

To meet the requirements of emerging applications, con-
siderable further advances will be required. In particular,
while traditional work in the area has largely focused on the
physical layer, the key to future advances will be careful and
joint design of the physical and link layers in underwater
acoustic modems. Specifically, through such design one aim
is for systems that dynamically adapt to the highly variable
maximum instantaneous rate supported by the medium, and
thereby achieve the highest possible throughput.

The typical approach to ensuring high throughput when
the channel state allows is to exploit higher-order signal
constellations. However, an alternative approach, originally
proposed several decades ago [4], is to exploit super-Nyquist
(SNQ) (equivalently referred to as faster-than-Nyquist) sig-
naling. In SNQ signaling, the symbols are taken from a fixed
constellation, typically BPSK or QPSK, independent of the
transmission rate. Higher rates are achieved by increasing
the signaling rate—i.e., the rate at which the symbols are
modulated onto the bandlimited pulse shape—beyond the
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Nyquist rate. Thus, in SNQ systems, the signaling rate is
decoupled from the transmission bandwidth, and can greatly
exceed the transmission bandwidth.

The relative merits of SNQ modulation with respect to the
more standard Nyquist-rate modulation have been studied from
different perspectives over the past four decades; see, e.g.,
[5]. The most significant drawback to using SNQ signaling
is that it introduces severe intersymbol interference (ISI). For
a channel with a flat frequency response, or having an ISI
span of short duration, this is a major disadvantage. This
is particulary so for a coded system, as it greatly increases
the complexity of equalization and decoding. Largely for this
reason, SNQ signaling was not widely adopted for many of
the early applications of digital communication.

By contrast, even with Nyquist signaling, UWA channels
suffer from severe ISI, and thus the additional ISI introduced
by employing SNQ signaling is much less significant. In fact,
for the most part, it can be well handled by the existing
equalization implemented in such systems. As such, SNQ
signaling is a feasible candidate for future underwater acoustic
modems.

In this paper, we establish that not only is SNQ signaling
feasible for the UWA channel, it has some particularly valuable
properties for this and other related applications. In particular,
we establish the somewhat surprising result that the use of
SNQ signaling allows for highly efficient link layers designs.
Indeed, from such signaling we develop a rich family of
low-complexity, capacity-approaching rateless codes forISI
channels, which gracefully accommodate the highly dynamic
nature of the UWA channel.

To develop this perspective, we begin by noting that in
a typical packetized transmission scheme, data is partitioned
into blocks that are sequentially sent over the channel. If
the channel were time-invariant, the rate of a packet could
be set arbitrarily close to the capacity of the channel. The
UWA channel however exhibits fast variation and therefore the
transmitter does not have accurate knowledge of the maximal
rate it can support. Therefore, in the absence of feedback
the transmitter must resort to setting the rate chosen for a
packet based on an estimate or prediction of the instantaneous
capacity of the channel. To achieve a low probability of packet
loss (outage), one is generally forced to take a conservative
approach and choose a sufficiently low rate, resulting in a



throughput that is far from the capacity of the realized channel.
In many scenarios, however, a low rate feedback link is

established between the two transmission ends, over which
an acknowledgement (either positive or negative) can be sent
back to the transmitter. When such a link is available, a much
higher target rate for a given packet may be chosen.1 When the
receiver is unable to decode a packet, rather than treating the
event as an outage, retransmission of some form is employed,
the simplest example of which is repetition of the packet.

While repetition is a particularly simple means to attain
greater redundancy, it is very inefficient. Numerous superior
methods for achieving variable levels of redundancy via re-
transmissions have been proposed and studied; for instance,
punctured codes are often used. Such error correction mech-
anisms are referred to as (hybrid) ARQ protocols, and the
codes that support variable-rate transmission are referred to
as incremental-redundancy (IR) codes. An IR code has the
property that when truncated to a shorter length, it resultsin a
good code of higher rate. Thus, a single IR code may support
multiple rates by varying the length of the code transmitted.

In some scenarios an even stronger property is required—
viz., the code must be good (i.e., with respect to the total
“received blocklength”) whenany subcollection of the trans-
mitted packets are dropped. A code possessing this property
is sometimes referred to as a fountain code [6]. In this paper,
we refer to it as a variable-redundancy (VR) code.

As the main contribution of this paper, we develop a
simple, yet highly efficient, VR coding scheme utilizing SNQ
signaling. In the proposed scheme, a standard “off-the-shelf”
fixed-rate based code, designed to achieve reliable transmis-
sion over a standard additive white Gaussian noise (AWGN)
channel, is used in conjunction with linear processing and
decision-feedback equalization, to obtain a VR transmission
architecture.

The VR coding architecture developed in this paper is
related to the family of IR redundancy codes developed
for the AWGN channel in [7] [8] in that it is based on
layering (superposition), dithering, and successive interference
cancellation. Indeed, in one respect, this paper represents the
extension of such methods to ISI channels. However, it also
worth noting in advance that whereas the coding scheme of
[7] is limited to IR coding, the present work develops a VR
scheme. In this respect, the architecture developed in thispaper
is more closely related to that of [9], which derives a VR
coding scheme for Gaussian MIMO channels. At the same
time, the scheme developed in this paper may be viewed as
a significant generalization of one in [10], which developeda
SNQ VR-coding scheme for the AWGN channel. The scheme
in [10] was somewhat both less efficient and less practical,
owing to the use of random dithering rather than the more
judiciously chosen (deterministic) modulation we exploitin
this work.

1It is important to emphasize that if there is significant delay in the feedback
link, this affects the latency of the overall scheme, but need not affect the
throughput by appropriate use of multiplexing.

II. SYSTEM AND CHANNEL MODEL

Consider a complex baseband representation of a linear
dispersive Gaussian channel,

y(t) = h(t) ∗ x(t) + z(t),

where z(t) is AWGN noise with one-sided power spectral
densityN0. The input signal is subject to a power constraint
E{|x(t)|2} ≤ P .

We consider transmission over bandwidthW . For spectrally
flat transmission over the bandW , the resulting mutual
information, which we refer to as the white-input capacity
of the channel, is

C[b/s] =

∫ W/2

−W/2

log

(

1 +
P |H(f)|2

N0W

)

df. (1)

A. Super-Nyquist Modulation

We assume pulse-amplitude modulation where the discrete-
time input sequence is modulated to form a continuous-time
input signal according to

x(t) =
∑

n

s[n] · g(t − n · T ), (2)

where T is the symbol duration. We denote the Nyquist
sampling time byT ∗ = 1/W . We further denote the “over-
signaling” ratio byL = T ∗/T .2 We assume that at the receiver
end, the signal is passed through a matched filter (MF), and
sampling is performed at the symbol rate. This results in a
discrete-time channel

y[n] = s[n] ∗ k[n] + z[n], (3)

wherek[n] = k(nT ), wherek(t) = g(t) ∗ g(−t)∗ ∗ h(−t) ∗
h∗(−t), and where

Szz(e
j2πf ) =

N0

2
K(ej2πf )

=
N0

2
·

1

T

∑

i

|H(f/T + i/T )|2|G(f/T + i/T )|2.

The pulse shape is required to be limited to system bandwidth
W , i.e., g(t) satisfies

G(f) = 0 for |f | > W/2. (4)

To simplify our development, we initially restrict our attention
to the ideal case where

g(t) = sinc(t/T ∗), with sinc(u) ,







sin (πu)

πu
u 6= 0,

1 u = 0.
(5)

We note that for an ideal (frequency flat) channel (|H(f)| =
1), the discrete-time channel response in this case becomes
k[n] = T ∗ sinc(n/L), so if we signal at the Nyquist rate, i.e.,
if L = 1, thenk[n] = T ∗δ[n] and no ISI is present. On the
other hand, takingL > 1 necessarily introduces ISI.

2We assume that the over-signaling rateL is an integer for practical reasons.



Taking the symbolss[n] to be i.i.d. circularly symmetric
complex Gaussian with powerP/L results in a (proper)
Gaussian random input signalx(t) with powerP . It follows
that the capacity of the discrete-time channel (3) is

C[b/SNQ symbol]

=

∫ 1/2

−1/2

log

(

1 +
(P/L) · K(ej2πf )

N0

)

df

= T

∫ 1/2T

−1/2T

log

(

1+
P
∑

i |H(f +i/T )|2|G(f +i/T )|2

T ∗N0

)

df

= T

∫ 1/2T

−1/2T

log

(

1 +
P/T ∗|H(f)|2|G(f)|2

N0

)

df, (6)

where the last equality follows from (4).
Note that for sinc modulation,x(t) has a flat power spec-

trum over the bandwidthW , yielding the mutual information
given in (1), i.e., (6) reduces to

C[b/SNQ symbol] =
T

T ∗

1

W
C[b/s]

=
1

L

1

W

∫ W/2

−W/2

log

(

1 +
P |H(f)|2

N0W

)

df.

(7)

B. Linear SNQ Rateless Coding

Consider now packetized transmission where for notational
convenience we let the time axis for the transmission of
each packet be unbounded. We further consider a simplified
model where the channel response experienced throughout
transmission of themth packet,m = 1, . . . , M , is linear time-
invariant (LTI) but the impulse response, which we denote by
hm(t), may vary from packet to packet. We assume for the
moment thatM ≤ L. The channel input-output relation for
the transmission of themth packet is therefore

ym[n] = sm[n] ∗ km[n] + zm[n], (8)

wherekm[n] = km(l·T ) andkm(t) = g∗(−t)∗g(t)∗h∗

m(−t)∗
hm(t). Assuming discrete-time white-input transmission for
all packets, it follows from (7), that the mutual information
(measured in b/SNQ symbol) corresponding to each packet is

Cm [b/SNQ symbol]

=

∫ 1/2

−1/2

log

(

1 +
PKm(e2πf )

N0L

)

df

=
1

L

1

W

∫ W/2

−W/2

log

(

1 +
P |Hm(f)|2

N0W

)

df,

where the second equality holds for ideal sinc modulation.
Upon receiving a setS ⊂ {1, . . . , M} of packets, the aggregate
mutual information is thus

C(S) =
∑

m∈S

Cm. (9)

Our aim is to design a low complexity coding and modu-
lation scheme that (simultaneously) approachesC(S) for all
setsS ⊂ {1, . . . , M} without requiring the transmitter to have
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Fig. 1. Effective spectral efficiency as a function of SNR. The target spectral
efficiency for transmission of a single packet is4 b/s/Hz.

knowledge of the capacitiesCm. Rather, for any given chosen
target rateR, and no knowledge of the channel, transmission
should be successful wheneverC(S) > R holds for the
received set of packetsS.

To illustrate the properties of such a scheme, Fig. 1 depicts
the effective spectral efficiency as a function of the SNR, for
the simple case of an ideal spectrally flat channel and sinc
modulation. In this scenario we have

C(S)[b/SNQ symbol] =
|S|

L
log

(

1 +
P

N0W

)

= |S|C1(SNR)

where SNR = P/(N0W ). Thus, in an optimally designed
(packetized) system, the number of required received packets
as a function of the packet target rateR is given by

number of packets required = ⌈R/C1(SNR)⌉.

Accordingly, we define the effective spectral efficiency as the
ratio of R to the number of required packets.

As a useful normalization, we further define the relative
spectral efficiency as the fraction of capacity that is achieved

η(SNR) =
R

no. req’d packets× C1(SNR)
=

R/C1(SNR)

⌈R/C1(SNR)⌉
.

The relative spectral efficiency, for a target rate of4 b/s/Hz
is depicted in Fig. 2. Clearly, the relative spectral efficiency
will tend to one as the target rate increases (and correspond-
ingly, the number of retransmissions). Nevertheless, as will be
discussed in Section IV, there are practical reasons for not
setting the target rate much greater than the anticipated rate
the channel can support.

We proceed to describe the proposed linear rateless SNQ
construction. All the signalssm[n] are obtained from a single
coded streams[n] as follows

sm[n] = vm[n] s[n], (10)
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Fig. 2. Relative spectral efficiency as a function of SNR. Thetarget spectral
efficiency for transmission of a single packet is4 b/s/Hz.

wherevm[n] are sequences to be specified. The transmitted
signal corresponding to packetm is thus

xm(t) =
∑

i

s[n] vm[n] g(t − i · T ).

We now wish to choose the sequencesvm[n] so that the
transmitted signalsxm(t) are statistically independent, and
sm[n] are white circularly-symmetric complex Gaussian pro-
cesses. This condition ensures that the mutual information
corresponding to each packet remainsCm and furthermore
than upon receiving multiple packets, the aggregate mutual
information is the sum of the individual ones.

A simple means to achieve this is by taking each of the
sequencesvm[n] to be a discrete Fourier transform (DFT)
sequence with frequencies being multiples of the oversignaling
rate1/L. Specifically, we take

vm[n] = e−j2πmn/L.

Let us now denote

xm[n] = xm(nT ) =
∑

i

s[i]e−j2πim/L gSNQ[n − i],

wheregSNQ[n] = g(nT ) = sinc(n/L), with g(t) denoting a
Nyquist-rate sinc pulse as specified in (5). Notice that eachof
the signalss[n]e−j2πnm/L is simply s(·) cyclicly shifted by
m/L in the SNQ frequency domain. Let us denote the “shifted
back” transmit signals by

x′

m[n] = xm[n]ej2πmn/L

= ej2πmn/L
∑

i

s[i] e−j2πim/L gSNQ[n − i]

=
∑

i

s[i] ej2π(n−i)m/L gSNQ[n − i]

=
∑

i

s[i] gSNQ
m [n − i],

Nyquist
band

SNQ band f

W/2 2W

|GSNQ
4 | |GSNQ

1 | |GSNQ
2 ||GSNQ

3 |

Fig. 3. Effective pulse shape for each packet occupies a different (non-
overlapping) SNQ frequency band. Oversignaling rate isL = 4.

wheregSNQ
m [n] = ej2πmn/L gSNQ[n].

Observe that inx′

m[n], rather than having the data sequence
shifted in frequency, the modulation pulsesgSNQ

m [n] are ob-
tained by shiftinggSNQ[n] in the SNQ frequency domain, as
depicted in Fig. 3. This alternative view will be useful in the
sequel.

Clearly, requiring that the signals{xm(t)} are mutually
independent is equivalent to requiring that the associated
discrete-time signals{xm[n]} are. Furthermore, the latter
holds if and only if {x′

m[n]} are mutually independent.
Therefore, it suffices to verify the last condition. Since the
signalsx′

m[n] are jointly Gaussian and stationary, they are
independent if their cross spectra vanish. The latter are given
by

Sx′

m1
x′

m2

(ej2πf )

= Sss(e
j2πf )GSNQ

m1
(ej2πf )G∗SNQ

m1
(ej2πf )

=
1

T 2
Sss(e

j2πf )G

(

f + m1/L

T
mod

1

T

)

· G∗

(

f + m2/L

T
mod

1

T

)

.

Since G(f/T ) occupies no more than1/L of the SNQ
frequency band, it follows that there is no overlap between the
frequency responsesG ((f + m/L)/T mod 1/T ) for different
values ofm, and henceSxm1

xm2
(ej2πf ) indeed vanishes for

m1 6= m2; see Fig. 3.
In summary, the transmission architecture for our SNQ-

based rateless code, depicted in Fig. 4 is as follows: the
information bits are first encoded to form the code sequence
s[n], then themth transmitted packet is generated by first



modulatings[n] with a DFT sequence to obtain

sm[n] = s[n]e−j2πmn/L,

The transmitted signal is then formed by modulatingsm[n]
according to (2).

III. MMSE-DFE EQUALIZATION

The modulation scheme developed is optimal in a mu-
tual information sense. We now describe a low-complexity
receiver architecture that suffices to approach the associated
information-theoretic limits.

The front end of each receive element consists of matched
filtering (i.e., ideal low-pass filtering for sinc modulation),
followed by sampling at the SNQ rateWL. The discrete-
time signals are given by (8). Taking into account the dithered
transmission as given is (10), we have

ym[n] = s[n]e−j2πmn/L ∗ km[n] + zm[n].

We next “shift back” in frequency the received signal to
obtain3

y′

m[n] = ym[n]ej2πmn/L = s[n] ∗ k′

m[n] + z′m[n],

where
K ′

m(ej2πf ) = Km(ej2π[f+m/L]).

We have arrived at an equivalent single-input multiple-output
LTI channel model, wheres[n] is the input signal andy′

m[n]
are the output signals. As the channelsK ′

m(ej2πf ) are non
overlapping in frequency, they may be combined (summed)
with no loss, resulting in an effective scalar ISI channel

y′[n] =
∑

m∈S

ym[n]ej2πmn/L

= s[n] ∗

(

∑

m∈S

k′

m[n]

)

+
∑

m∈S

z′m[n].

As the unbiased MMSE decision-feedback equalizer (DFE)
results in a capacity-optimal receiver structure [11], [12] for
such channels, we may apply it to our linear SNQ rateless
coding scheme, as described next.

The DFE architecture for use in conjunction with our
rateless construction is depicted in Fig. 5. The input to the
slicer is formed as

s̃[n] = a[n] ∗ y′[n] − b[n] ∗ ŝ[n]

=

∞
∑

i=−∞

a[i]y′[n − i] −

∞
∑

i=1

b[i]ŝ[n − i], (11)

where a[n] are the feed-forward (FF) filters andb[n] is a
strictly causal feedback (FB) filter. The output of the slicer
is denoted bŷs[n]. Let e[n] = s[n] − s̃[n] denote the “slicer
error”, i.e., the effective noise at the slicer input. Assuming
correct past decisions, then for optimal (unbiased) FF and FB

3Note that the frequency shift operator is information lossless.

filters, invoking the optimality of the DFE receiver structure,
we have thate[n] is a stationary process satisfying

log

(

1 +
P/L

E[|e[n]|2]

)

=
∑

m∈S

Cm.

An alternative DFE structure is depicted in Fig. 6. Here, the
output for each received packet is passed through a separate
FF equalizer working at the Nyquist rate, so the input to the
slicer is formed as

s̃[n] =
∑

m∈S

(am[n] ∗ y′

m[n]) − b[n] ∗ ŝ[n] (12)

=
∑

m∈S

∞
∑

i=−∞

am[i]y′

m[n − i] −
∞
∑

i=1

b[i]ŝ[n − i]. (13)

Note that the DFE loop must still work at the SNQ rate.

A. Extension: Multiple Hydrophones

The SNQ VR architecture can be applied to a system with
multiple receive elements (hydrophones) essentially without
change, as we briefly describe.

We denote the number of hydrophones byNr, the channel
from transmitter to receive elementi by hi

m(t), and the
associated discrete-time channel byki

m[n]. The equivalent
received signal for packetm at receive elementi is

y′i
m[n] = s[n] ∗ k′i

m[n] + z′
i
m[n],

where
K ′i

m(ej2πf ) = Ki
m(ej2π[f+m/L]).

Note that the frequency shift depends only on the packet, i.e.,
on m, but does not depend on the receive elementi. The
DFE receiver architecture remains essentially unchanged,now
taking the form of multi-channel equalization, and is clearly
still information lossless. The achievable rate is thus given by
(9), whereCm (for sinc modulation) is now given by

Cm [b/SNQ symbol]

=
1

L

1

W

∫ W/2

−W/2

log

(

1 +

Nr
∑

i=1

P |Hi
m(f)|2

N0W

)

df.

IV. PRACTICAL CONSIDERATIONS

In this section, we comment on at least some practical
considerations that affect the deployed system. Among these
are the implications of coding on the equalizer and error
propagation effects; the impact of the choice of oversignaling
rate, and addressing the time-variation inherent in the channel.

A. Combining Decision-Feedback Equalization with Coding

While the unbiased MMSE DFE offers a capacity-optimal
equalization architecture, it is well known that it is a rather
difficult task to combine it with coding as is essential to
approach capacity. In particular, the known approaches call for
either using non-linear precoding (which necessitates channel
knowledge at the transmitter), or very long Guess-Varanasi
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Fig. 6. Alternative decision-feedback equalization architecture using Nyquist-rate multichannel feedforward filters.

interleaving; see, e.g., [11], [12]. As neither approach isattrac-
tive for practical implementation, we opted to follow the well-
established concatenated approach as depicted in Figs. 5 and
6, whereby the received signals are first processed as uncoded
symbols. More specifically, with respect to equalization, the
symbolss[n] are treated as uncoded and decisions are made
using a slicer. This results in an equalized signals̃[n] as
described by (11) and (13). The latter signal is passed to a
soft-input decoder to retrieve the information bits.

An inherent feature of SNQ signaling (in the case of SISO
and SIMO transmission) is that the effective channel, as seen
by the receiver, is strictly bandlimited as long as the number
of received signals|S| is smaller than the SNQ rateL. This
has a significant impact on the DFE operation as it results in
severe error propagation. As a means to mitigate this adverse
effect, delayed decision feedback may be used as described in
[13]. It follows that there is a tradeoff between the dynamic
range offered by the VR-SNQ scheme, which is captured by
the SNQ rateL, and the complexity needed for adequate DFE
equalization.

B. Hybrid DFT/Repetition Scheme

A pragmatic approach to counter the error propagation
phenomenon described above, is to set the SNQ rate at
a moderate level, say between2 and 4, and when further
redundancy packets are needed, allow for somewhat reduced
performance. In the context of an ARQ protocol, where
additional “redundancy packets” are sent sequentially, a simple
means to achieve this goal, is to generate the firstL dither
sequences according to the columns ofL × L DFT matrix,
and then sequentially go through the same dither sequences
for subsequent retransmissions. In other words, form > L,
we revert to repetition. Note that the special case of Nyquist
signaling (L = 1) corresponds to traditional ARQ with Chase
combining (ARQ-CC). As we will see, performance improves
considerably relative to this baseline forL > 1.

For the case of an ideal channel, it is not difficult to show
that the mutual information achieved by such a dithering
scheme, whenm > L consecutive packets are received, is



given by

CDFT
rep ({1, . . . , m})[b/SNQ symbol]

=
m−

L
log
(

1 +
⌊m

L

⌋

SNR
)

+
m+

L
log
(

1 +
⌈m

L

⌉

SNR
)

,

where m+ = m − ⌊1/L⌋L and m− = L − m+. On the
other hand, a simple upper bound, based on dimensionality
considerations, may be obtained for the maximal possible
mutual informationCL−SNQ({1, . . . , m}), attainable with any
possible choice of sequencesv1[n], . . . , vm[n]. Specifically, for
m > L, CL−SNQ({1, . . . , m}) must satisfy

CL−SNQ({1, . . . , m})[b/SNQ symbol]

≤ log
(

1 +
m

L
SNR

)

. (14)

From (14) it is straightforward to obtain a bound on the
spectral efficiencyr of the hybrid DFT/repetition scheme as a
function of SNR for a given target rateR and oversignaling
factor L. In particular, from the equality

r =
R

m
≤

L

m
log
(

1 +
m

L
SNR

)

we obtain, withR andr in b/s/Hz,

r ≤
R/L

2R/L − 1
SNR. (15)

In turn, the spectral efficiency relative to a perfect scheme
(r = log(1 + SNR)) is bounded by

η ≤
R ln(2)/L

e(R ln 2)/L − 1

SNR

ln(1 + SNR)

→
(R/L) ln(2)

2R/L − 1
asSNR → 0. (16)

Finally, by similar analysis, the spectral efficiency gain relative
to Nyquist signaling (i.e., ARQ-CC) in the limit of low SNR
is

γ =
(2R − 1)/L

2R/L − 1
. (17)

Fig. 7 depicts the effective spectral efficiency attainedη
using the hybrid DFT/repetition scheme along with the upper
bound (14), as well as the performance of DFT dithering with
L → ∞ (as was depicted above in Fig. 1).

Fig. 8 depicts the corresponding relative efficiencyη
achieved. From (16), we see that the upper and lower curves
in the figure converge to relative spectral efficiencies ofη =
0.462 and η = 0.185, respectively, in the limit of low SNR.
The lower curve reflects the well-known striking inefficiency
of ARQ-CC: in this limit it requires sending more than 5.4
times the number of packets as a capacity achieving scheme
such as SNQ withL → ∞.

The ratio of the two curves in Fig. 8 yields the spectral
efficiency gainγ of hybrid SNQ DFT/repetition withL = 2
relative to Nyquist signaling and repetition coding (ARQ-CC).
From (17), we obtain thatγ → 5/2 as SNR → 0, which
translates to requiring the transmission of 60% fewer packets,
even for this simplest implementation of SNQ signaling.
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Fig. 7. Effective spectral efficiency as a function of SNR forrateless SNQ
signaling, and for Nyquist signaling with repetition (L = 1). The target
spectral efficiency for transmission of a single packet is4 b/s/Hz. Curves
from top to bottom: optimal, SNQ with DFT dithering withL → ∞, hybrid
SNQ (L = 2) DFT/repetition, and Nyquist signaling (L = 1) with repetition
coding (ARQ-CC). Dashed line is the bound (15).
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Fig. 8. Relative spectral efficiency as a function of SNR for hybrid SNQ
DFT/repetition signaling withL = 2 and for Nyquist signaling (L = 1) where
repetition is used form > L. The target spectral efficiency for transmission
is 4 b/s/Hz.

C. Adaptive Filtering

In principle, any adaption algorithm approach may be used
to adapt the FF and FB filters at the receiver. Nevertheless,
as the UWA channel is characterized by fast variation, perfor-
mance will greatly be affected by the choice of algorithm and
the associated complexity invested. In the experiment carried
out, recursive least squares (RLS) adaptation was employed.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate some preliminary perfor-
mance plots based on data from the recent KAM11 experiment
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Fig. 9. Effective spectral efficiency as a function of SNR forrateless SNQ
signaling, and for Nyquist signaling with repetition (L = 1), with ideal
coding, on a snapshot of a KAM11 UWA channel snapshot.
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Fig. 10. Effective spectral efficiency as a function of SNR for QPSK rateless
SNQ signaling, and for 16-QAM Nyquist signaling with repetition (L = 1),
with a practical rate 9/10 LDPC code, on a snapshot of a KAM11 UWA
channel snapshot.

off the coast of Hawaii.
First, in Fig. 9 we show for a sample snapshot of the

channel during the experiment, the ultimate spectral efficien-
cies achievable by the different signaling strategies (with ideal
coding). In Fig. 10, we show the corresponding results when
a practical rate 9/10 code is used (and the code is ignored in
feeding back decisions.

Finally, in Fig. 11 we plot the ultimate spectral efficiencies
achievable from directly processing the data from a sample
transmission in the KAM11 experiment (with ideal coding).
Since the different signaling methods were used at slightly
different times, and since the channel was changing rapidly,
detailed direct comparisons are difficult, but the trends are
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Fig. 11. Effective spectral efficiency as a function of SNR for rateless
SNQ signaling, and for Nyquist signaling with repetition (L = 1), with ideal
coding, from directly processing KAM11 data.

reflective of the performance potential.
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