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Abstract—We investigate modulation and coding tech-
niques that approach the fundamental limits of commu-
nication and key distribution over optical channels, in
the regime of simultaneously high photon and bandwidth
efficiencies. First, we develop a simple and robust system
design for free-space optical communication that incor-
porates pulse-position modulation (PPM) over multiple
spatial degrees of freedom in order to achieve high photon
and spectral efficiency. Further, in the context of key
distribution, we determine the optimal rate using a Poisson
source of entangled photon pairs and photon detectors,
and show how to approach it using PPM parsing of the
detected photon stream.

I. INTRODUCTION
Classical optical communication can be roughly di-

vided into two regimes, according to the number of
photons sent per channel use. If this number is high,
homodyne or heterodyne detection may be used to effec-
tively transform the channel into an equivalent additive
white Gaussian noise (AWGN) channel. On the other
hand, if the number is low, then photon detection, also
known as direct detection, produces at the decoder a
Poisson count, with mean equal to the energy sent - thus
it is known as the Poisson regime.
In the Poisson regime, which is the focus of this work,

the quantum nature of light is more evident, leading
to somewhat results that defy common AWGN-based
engineering intuition. The role of noise is played by
spontaneous counts known as dark current. The capacity
of the resulting classical channel under various con-
straints has been studied for the last half century, see
e.g. [1]–[4].
Surprisingly, even without any noise (dark current),

the channel capacity is finite. One may think of it as
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a result of the Poisson statistics effectively constraining
the channel output to a finite alphabet; however, even
if quantum-optimal measurements are used rather than
photon detection, the capacity is still finite. In Section II
we give a short account of the “clean” channel capacity
in the low-energy limit, and present pulse-position mod-
ulation (PPM) as a way to aid the task of coding for that
channel by introducing useful structure into the code.
Highly energy-efficient communication is inherently

bandwidth-inefficient. Even in free-space communica-
tions where bandwidth may be abundant, it is still
practically limited by the switching speed of the trans-
mitter and receiver used. Thus, if both high transmission
rates and high photon efficiency are required, one needs
to resort to multiple modes; the most evident source
for this is space. However, multiplexing the data over
multiple parallel modes requires either very large spatial
separation (thus large apertures), or the use of high-
order orthogonal beams that are difficult to produce
and degrade easily over poor atmospheric conditions. In
Section III we propose to solve this problem using simple
dense (thus non-orthogonal) Gaussian beams; by using
spatial PPM modulation, interference between the beams
is transformed into a simple noisy channel. We present
the fundamental hardware tradeoffs for this solution.
In Section IV we turn to key distribution over optical

channels, still with high photon efficiency. The basic
principles of quantum mechanics help facilitate secure
communications, see e.g. [5]. When applied to the optical
channel, the “no-cloning” principle means that a photon
detected at the destination could not be also detected by
an eavesdropper. Furthermore, the terminals can detect
active attacks, i.e., photons detected by the eavesdropper
and then “replaced” by new ones. Popular key distribu-
tion algorithm are based on these principles, but typically
use polarization, thus have limited photon efficiency. We
consider an alternative where timing information is used



to generate the key. For this, we find the optimal key
generation rate, and show how to construct a PPM-
based coding scheme that is optimal in the limit of
low photon count. Section V concludes the paper by
discussing extensions to the work.

II. BACKGROUND: PHOTON EFFICIENCY VIA PPM
We consider a discrete-time lossy bosonic channel,

which serves as a good model for free-space optical
communications. This channel is best described in terms
of its effect on coherent states of light, which are the
states generated by a classical laser. One of the important
properties of a coherent state |n̄〉, is that when fed to
a photodetector it will produce a Poisson number of
“clicks” with mean n̄, see e.g. [6]. When the input of
a bosonic channel is a coherent state |n̄〉, the output
is a coherent state |ηn̄〉, where 0 < η ≤ 1 is the
transmissivity of the channel. We see, then, that the
Poisson statistics of the photon count is maintained by
the channel.
The classical-information capacity of a quantum chan-

nel is given by the Holevo rate [7]. For a bosonic channel
under a mean photon-count constraint n̄, this is given by
g(ηn̄) nats per channel use, where: [8]

g(x) ! (x+ 1) log(x+ 1)− x log(x). (1)

Furthermore, this capacity is achieved by transmitting
coherent states. We will assume throughout the work the
use of these states. As a consequence, we may without
loss of generality constrain the mean photon count at the
channel output rather than input, or equivalently take
η = 1. It is important to note, that while the Holevo
capacity is achievable using a “classical” encoder, the
decoder must still be “quantum”, i.e., some general
quantum measurement must be performed jointly over
the channel output corresponding to multiple channel
uses in order to approach the capacity.
In some applications, it is interesting to consider

the photon efficiency, i.e., the information conveyed per
transmitted photon. Interestingly, in the low-energy limit
n̄ → 0, while the capacity g(n̄) approaches zero, the
photon efficiency g(n̄)/n̄ approaches infinity. In fact,

g(n̄)

n̄
= log

1

n̄
+ 1 + o(1). (2)

A simple scheme for high photon efficiency consists
of the encoder using a binary code. We denote the prob-
ability of logical “1” in that code by p. The states |n̄/p〉
and |0〉 are sent to represent “1” and “0”, respectively. the
receiver will declare logical “1” if the detector clicked at

least once, “0” otherwise. Per pulse, a classical Z channel
is created, where the probability to receive “0” given
that “1” was transmitted is exp{−n̄/p}, according to
the Poisson statistics. If a classical capacity-approaching
code is used over this channel, a rate of

hB

(

p ·
(

1− exp

{

−
n̄

p

}))

− p · hB
(

exp

{

−
n̄

p

})

can be achieved, where hB(·) is the binary entropy
function. The exact analytical optimization of this rate
over p is complicated, but in the high-efficiency regime
the approximate optimum (which yields the best rate up
to the approximation of interest) is given by:

p∗(n̄) =
n̄

2
log

1

n̄
. (3)

Note that when a Z channel is used without constraints,
the optimal input distribution satisfies p > exp(−1);
however in our case, where the photon efficiency require-
ment translates into a constraint on the input, p∗(n̄) can
be arbitrarily small. The resulting efficiency is given by:

RZ(n̄)

n̄
= log

1

n̄
− log log

1

n̄
+ log 2 + o(1). (4)

Comparing to the Holevo rate (2), we see that the
efficiency loss of the Z-channel scheme with respect
to the optimal performance grows as log log 1/n̄ in
the high-efficiency limit. This loss is inherent to any
“classical” transmission scheme, even if general (non-
binary) coherent states are considered, and the receiver
is allowed to use feedback between measurements; see
[9].
While the scheme described above is implementable,

the task of coding is still difficult. Specifically, one needs
mutual-information approaching codes for a Z channel
with a highly skewed input. This can be overcome by
yet another simplification. Every k binary symbols are
grouped together. We now impose the constraint that any
such super-symbol will include exactly one entry that is
“1”, i.e., they become PPM symbols. In the limit of large
k, the channel input resembles a highly-skewed random
binary input. Indeed, using a uniform prior over these
PPM symbols, one may achieve efficiency

RPPM(n̄)

n̄
=

log k

n̄k
· (1− exp {−n̄k}) . (5)

With the optimum (to the approximation order) k =
1/p∗(n̄) (3), this efficiency satisfies (4), i.e., the further
efficiency loss incurred is o(1). The channel for which
one needs to code is now a large-alphabet erasure
channel, much like a packet-erasure channel encountered
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Fig. 1: Tradeoff between photon and bandwidth efficien-
cies. Dashed curve is the Holevo bound, dash-dotted is
the Z-channel model, solid is PPM. The first satisfies the
asymptotic expression (2), while the later two satisfy (4).

in internet applications, and good off-the-shelf codes are
available.
Figure 1 depicts the tradeoff between photon and

bandwidth efficiency, for the different rate expressions
presented in this section. The BW efficiency is the rate,
while the photon efficiency is the same rate divided
by the average photon number n̄. It can be appreciated
that the tradeoff is inherent, and that, while the loss of
“classical” operation (the Z channel model) is large (for
fixed photon efficiency, it may be orders of magnitude
in BW efficiency), the further loss of PPM is small.
However, if one is concerned with this additional loss,
it can be reduced by introducing an additional super-
symbol to the PPM alphabet, where all entries are zero;
see [10]

III. SPECTRAL EFFICIENCY VIA SPATIAL PPM
The Holevo-rate expression (2) represents a funda-

mental tradeoff: if high photon efficiency is required,
the spectral efficiency g(n̄), measured in nat per channel
use, or in continuous time nat/S/Hz, must be low. In
applications requiring both high photon- and spectral-
efficiency, then, the premise of the problem must be
changed. That is, degrees of freedom must be added in a
domain other than time or frequency. One possibility is
polarization, but we choose not to consider it as it cannot
improve the spectral efficiency by more than a factor of
two. We turn, then, to the spatial domain. Obviously,
if we run m independent transmitter-receiver pairs in

parallel, the spectral efficiency may be improved by a
factor m without effecting the photon efficiency. For
the system designer, such a solution implies additional
hardware and space requirements; in the following, we
quantify these costs and show how to reduce them using
spatial modulation, rather than straightforward realiza-
tion of multiple parallel time-modulated modes.
Let the required photon and spectral efficiencies be s

nat/photon and R nat/S/Hz, respectively. Assuming PPM
streams, the number of parallel modes needed is given
by the solution m to

RPPM

( s

m

)

=
R

m
. (6)

We are interested in the regime m % 1, and assume for
simplicity that m is an integer. The number of degrees
of freedom in an aperture is found by prolate spheroidal
function analysis [11]. It turns out that the relevant
geometry to the “spatial bandwidth” is encapsulated in
the Fresnel-number product (see, e.g. [12])

Γ !
AtAr

(λL)2
, (7)

where At and Ar are the transmit and receive apertures,
respectively, λ is the carrier wavelength and L is the
distance between transmitter and receiver. A large value
of Γ translates to hardware cost, e.g., larger aperture.
However, in order to support m modes, Γ ≥ m is
required; that is, the total achievable rate is at most the
rate per single mode times Γ.
A straightforward optimal implementation would in-

clude:
1) m parallel laser-detector pairs
2) Modulation/demodulation in order to carry the par-
allel lasers over an orthogonal set of modes, e.g.
Hermite-Gaussian ones.

The implementation of a scheme which includes many
light sources and modulation has a very high cost.
However, we observe that in the high photon-efficiency
regime the orthogonal approach may not be needed: with
high probability, only a small portion of the modes is
active, thus the potential interference is low. We use this
to make the following modifications in the system.
1) Instead of using multiple parallel modes, over each
of which a PPM-k constellation is sent, we can
group k modes together and send the constellation
over these modes at a single channel use. Conse-
quently, we are assured that only one of these modes
is “active” at any given instant. We can thus replace
k sources by a single source and a switch which



directs its output according to the data. We coin
this transmission method spatial PPM.

2) We abandon orthogonal modes. Instead, each mode
is simply a laser beam, closely approximated by a
Gaussian intensity profile, and different modes are
separated by some translation. Since these modes
are not orthogonal, some inter-mode interference is
created; however, the use of spatial PPM, enables
to translate this effect to noise within a single PPM
signal.

The intensity of a Gaussian beam of unit power and
width σ is given by: (see e.g. [6])

I(z) =
2

πσ2
exp

{

−
2‖z‖2

σ2

}

, (8)

where z is the two-dimensional displacement from beam
center, that is, if we place a detector which covers
an infinitesimal area ds around location z, the average
number of detected photons will be I(z) ·ds.1 The beam
width is related to the geometry of the system via:

σ2 =
π

4
·
(λL)2

At

=
π

4
·
Ar

Γ
. (9)

Due to the noise created by the non-orthogonality of
beams, we can no longer hope to achieve the rate R using
Fresnel-number product and number of detectors that
equalm. Rather, we have higher Fresnel-number product
(achievable by e.g. larger apertures) Γ = α2m and larger
number of detectors β2m; our goal is to characterize the
(α,β ) pairs which support (s,R).
We make the following assumptions, that greatly sim-

plify the analysis:
1) Each detector occupies a square area, and they fill a
Cartesian grid (this reflects a small performance loss
with respect to an array of hexagonal detectors).

2) The number of detectors is very large, thus we may
ignore edge effects and treat each detector as a part
of an infinite grid. The constellation size is also very
large: m,k % 1.

3) If there is more than one detection, the receiver only
makes use of the first one.

Proposition 1: Under the assumptions above, photon
efficiency s and spectral efficiency R can be supported
by Fresnel-number product α2m and number of detectors
β2m, where m is found via (6) and (α,β ) satisfy:

log β ≥ H(Z). (10)

1Note that the standard deviation of the “location” of a click is
σ/2 rather than the more intuitive σ; this is the common way used
to describe Gaussian beams in Physics literature.

In this expression Z is a random variable over the
integers, satisfying:

Pr{Z = z} =Q

(

(2z − 1)
2√
π
·
α

β

)

−Q

(

(2z + 1)
2√
π
·
α

β

)

,

where Q(·) is the complementary Gaussian cumulative
distribution function.

Proof: The optimal transmitter directs a beam to the
center of one of the detectors. Under the first assumption,
the distribution of the detector having the first click
is just as in quadratic amplitude modulation (QAM)
with hard decision. The distance between adjacent QAM
“constellation points” is found using (9):

d =
2√
π
·
α

β
· σ. (11)

The difference between the intended detector and the
detector with the first click is independent between the
axes, and in each axis is distributed as Z defined in the
proposition. For a constellation of size k, the average
number of photons is kn̄/m. If the detectors correspond-
ing to the constellation exactly overlap a receive array,
the corresponding rate is the probability of detection
multiplied by the QAM rate given that a detection has
occurred:

RG =

(

1− exp

{

−
kn̄

m

})

(

log β2k − 2H(Z)
)

.

We note that the detectors corresponding to a constel-
lation may actually only occupy part of the aperture or
span multiple ones, but this has no effect in the limit
k % 1.2 If the modes were orthogonal, the same aperture
area would support a rate of

R = k · RPPM

( n̄

m

)

,

where RPPM is given by (5). Requiring RG = R
in order to maintain the efficiencies translates to the
condition (10).
We can analytically consider the pairs (α,β ) on the

boundary of the region (10) in two opposite limits. If

2Namely, if two constellations share the same aperture, we may
keep a sufficient guard area between them, so that the interference
between them has arbitrary small level, with vanishing cost as k
grows. Similarly, the fact that a constellation may be split between
apertures and thus the noise cannot carry the detection to any
constellation point has a vanishing gain.
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α as a function of the detector number redundancy β.
Dashed line depicts the asymptotic value α0.

α ) β, Z is a high-resolution version of Gaussian noise,
thus

H(Z) ∼=
1

2
log

π exp{1}σ2

2
− log d =

1

2
+ log

πβ

2
√
2α

thus (10) yields:

α =
π

2
√
2
exp

1

2
! α0

∼= 1.83.

This is a minimum value for α at any β, meaning
that there must be a loss in the Fresnel-number product
with respect to orthogonal modes, even if we use many
small detectors. If, to the contrary, α % β, then Z
may have very low entropy. Thus in the limit of a very
large aperture (almost orthogonal beams) we can have β
close to one, representing approximately m detectors,
as expected. Figure 2 depicts a numerical evaluation
of the tradeoff (10). The rather strange curve is due
to the shape of the Gaussian distribution. A working
point that seems to be good for practical purposes is
(α,β ) = (2.15, 1.4). At this point, the radii of the
transmit and receive apertures need to be multiplied by
a factor 1.5 each, comparing to the ideal orthogonal
system, and the number of detectors need to be doubled
comparing to the same.
Finally, we note that there is a potential gain from

considering more than one detection. While with or-
thogonal beams the extra detections cannot help, with
Gaussian beams they can be used to reduce the noise.
Let the number of detections be t, then we have t

observations of the chosen location, with i.i.d. noises
Z1, . . . , Zt. Since t is known at the decoder, the rate in
Proposition 1 is replaced by the mean mutual information
given the number of detections t, where t has Poisson
distribution with rate n̄. In the high-resolution limit
α ) β, the decoder averages the detections and the
entropy is reduced by E{log t}. Outside this limit we
have a discrete additive channel with multiple looks.
The exact capacity gain is an interesting information-
theoretic problem; for t = 2, the noise entropy H(Z) is
replaced by the smaller

2H(Z)−H(Z̃),

where the distribution of Z̃ is that of the sum of two
independent random variables, each one distributed as
Z .

IV. KEY DISTRIBUTION: PARSING A POISSON
PROCESS

In quantum key distribution (QKD), Alice and Bob
want to agree upon a message (“key”), while keeping
the information that Eve has about the message close to
zero. This is carried over in two stages.
1) Quantum stage. Following [13], we distinguish be-
tween two models. In model C, Alice prepares
states, which are observed by Alice and Bob
through a quantum channel. In model S, a source
emits random states, which are observed by all three
nodes.

2) Classical stage. In this stage, Alice and Bob ex-
change information over a classical channel. Eve
is a passive listener that can decode all of this
information.

Photon and spectral efficiencies are defined according to
the key rate, and the photon and bandwidth resources
consumed by the quantum stage. The classical stage is
assumed to have no cost, still communication will be
kept to a minimum since Eve has unlimited access.
Various QKD algorithms have been proposed. The

most popular ones, BB84 and E91 (see e.g. [5], use po-
larization for key generation. However, such methods are
limited to one bit per photon. For high photon efficiency,
one may use time or frequency which may offer more
degrees or freedom. We thus take an approach similar
to the one used for communications in the previous
sections.
For model C, Alice can choose random information

and transmit it using a PPM communication scheme over
a bosonic channel with efficiency η. In an implementa-
tion of model S, the source, co-located with Alice, emits



entangled photon pairs according to a Poisson process
with rate of γ pairs per second. One of the photons is
sent locally to Alice and is always detected; the other
is sent to Bob over the bosonic channel. In principle
both models lead to similar results. We choose to analyze
model S; at the end of this section we comment about
model S.
We formalize the model in discrete time. We use

short time intervals τ such that n̄ = γτ . Alice and
Bob use photon detection to obtain sequences A and
B, respectively, representing the number of detections in
each interval. Eve can make any measurement, or even
perform an active attack, e.g., detect photons, then create
new ones and send them to Bob with low additional
delay. We formally prove security for the case where
Eve obtains a sequence E in a similar manner to the
sequences A and B. Proving that this implies quantum
security is beyond the scope of this work, but we do note
the following points.

• Continuous vs. discrete time. If Alice makes a
measurement that is optimal in the sense of time-
frequency uncertainty, i.e., uses narrow-band filters
of width ∆ω such that τ∆ω = 1/2, then Eve cannot
gain from measurements that have better resolution
than τ .

• General measurement vs. photon detection. The
photon-detection measurement by Alice causes the
state that Eve may observe collapse to a number
state. Consequently, Eve can not gain from any
measurement other than detecting the presence of
a photon in a time bin. In principle Eve could
do that using a nondemolition measurement; that
would detected by the same means as an active
attack.

• Active attack. Such an attack may be detected by ei-
ther interferometry, or alternating between measure-
ment bases (high-reolution time and high-resolution
frequency) similar to what is done in entanglement-
based QKD. These methods do require that some of
the photon pairs are dedicated to the task and not
used for key generation; we ignore these photons,
i.e., normalize efficiencies w.r.t. photons that are
used for key generation.

Are model is thus defined as follows. A is an i.i.d.
Poisson sequence with average count n̄. Given that an
element of A has value a, the corresponding element
of B is binomial with parameters (a,η ); the sequence
E is the difference between A and B (this is a worst-
case assumption: all losses are due to Eve). Alice and

Bob need to agree upon a key K of rate R using public
messages, which Eve also receives. As the blocklength
increases, the probability that they agree of the same key
should approach one, while the mutual information (per
element) between Eve’s data and the key must approach
zero.
Theorem 1: The secret-key rate for the problem de-

fined above is given by:

RK = I(A;B)

Proof: Achievability. We describe the public com-
munication stage. It consists of two steps. In the first,
Bob sends Alice information such that with high prob-
ability Alice knows B. By the Slepian-Wolf (SW) The-
orem [14], this can be done with rate RSW = H(B|A).
By the assumed statistics, the sequence E os is indepen-
dent of the sequence B. Thus, after the SW step Eve
has information about B of (curly brackets denote the
sequences, and the blocklength is l):

IE = I({E},M ; {B}) = I({E}; {B}) + I(M ; {B}|{E})
= I(M ; {B}|{E}) ≤ H(M) = l ·H(B|A).

The second classical communication step will be secrecy
amplification, producing from B a key of rate (see e.g.
[15]):

H(B)−
IE
l

≥ H(B)−H(B|A) = I(A;B) = RK .

Converse. By the upper bound on key generation rate
in [13] (see there remark 2 after Theorem 2, where we
take V to be independent of (A,B,E) ) to assert that
the rate can not exceed I(A;B)
In the limit of low average photon number n̄ we can

neglect the probability of two photon pairs within the
same interval. Thus all sequences become binary: A is
Bernoulli (n̄); Given A = 0, (B,E) = (0, 0). Given A =
1, (B,E) = (1, 0) w.p. η, (B,E) = (0, 1) otherwise.
The mutual information becomes:

I(A;B) = Hb(ηn̄)− n̄Hb(η)

and the photon efficiency is given by:3

RK(n̄)

ηn̄
= log

1

n̄
+ 1−

1− η

η
log

1

1− η
+ o(1). (12)

Favorably, this reflects no log log 1/n loss; in fact, for
η = 1 it coincides with (2). However, Slepian-Wolf
coding as well as amplification need to be carried out

3Similar to the communication setting where we define photon
efficiency w.r.t. the photons arriving at the receiver, here we define
it w.r.t. pairs that arrive at both Alice and Bob



over heavily skewed binary sequences, which may be a
very difficult task. To overcome this we use a PPM ap-
proach, similar to the one described in Section II. Since
we cannot control the source, the actual transmission is
not PPM, but we can still parse the sequences (A,B)
into blocks of length k that typically contain at most one
photon-pair.
In the most naive approach, Alice and Bob first search

for blocks in which each of them has exactly one
detection, and then use the indices within the block
to form the key. Since the location of the blocks is
independent of the key, the key rate per such block
is just log k, and there is no need for SW coding or
amplification. The probability that a block is usable is
given by ηkn̄ exp{−kn̄}, thus the efficiency is given by:

RK−PPM(n̄)

ηn̄
= max

k
[(1− exp{−kn̄}) log k]

= log
1

n̄
− log log

1

n̄
− 1 + o(1), (13)

where the maximizer (to the approximation needed) is
k = 2/p∗(n̄) where p∗ was defined in (3).
We see that PPM parsing inflicts the log log(1/n)

loss, similar to the communication efficiency (4). This
happens because Alice and Bob ignore part of the
common randomness they obtain via the channel, namely
the number of detections per block and the location
of detections beyond the first one. As the analysis that
follows shows, the information that needs to be used in
order to recover most of the loss is whether Bob had
any detection in a block or not. The following two-stage
strategy efficiently extracts this information.
1) Bob sends Alice a SW code describing the indices
of blocks in which he has at least one detection.
The first part of the key is generated by applying
secrecy amplification to this sequence.

2) Alice replies by stating in which of the blocks where
Bob has a detection, she has exactly one detection
(thus Bob must have exactly one as well). The
second part of the key is generated from the indices
of the detection within these blocks, as with the
original PPM parsing.

As the second part of the key is statistically independent
of the first part and of all the information sent over the
public channel, we can find the key rate by evaluating
the additional rate in the first part of the key.
For calculating the additional key rate, let the number

of detections per block that Alice and Bob have be NA

and NB , respectively. Let IB be an indicator of the
event NB > 0. By arguments similar to the proof of

Theorem 1, a rate of ∆R = I(NA; IB) may be achieved.
We use as a lower bound a Z channel with Pr{NA =
1} = kn̄ exp{−kn̄} and Pr{IB = 1|NA = 1} = η as
in the original channel (thus we collapse all NA > 1
to NA = 0, reducing the mutual information). We have,
then, additional photon efficiency of:
∆R

ηkn̄
≥

1

ηkn̄
Hb (ηkn̄ exp{−kn̄})−

exp{−kn̄}
η

Hb(η)

= log log
1

n̄
+ 1−

1− η

η
log

1

1− η
+ o(1), (14)

where the calculation was carried out with k = 2/p∗(n)
as in (13). Comparing (12)-(14), we have:

RK−PPM(n̄)

ηn̄
+

∆R

ηkn̄
≥

RK(n̄)

ηn̄
− 1 + o(1),

showing that we have eliminated the log log 1/n̄ loss. A
constant efficiency loss of one nat per photon remains;
in order to also close this gap, while remaining within
the parsing framework, one would have to extract infor-
mation from multiple detections within the same block,
complicating the algorithm considerably.
Extracting the additional rate ∆R does require SW

coding, as in the original Z-channel model. However, the
sequences are far less skewed, making the coding task
easier. In fact, the probability of “1” in the sequence A
behaves as

1

log 1

n̄

,

cf. n̄ originally. At reasonable values of n̄, the sequence
A may be almost balanced.
We conclude this section by commenting on the

implementation of model C, where entanglement is not
used. For that case, quantum security holds for similar
arguments to those presented above for model S, except
that interferometry cannot be used; rather, Alice will
must randomly use PPM either in time or frequency, and
Bob will measure in a random basis, similar to both of
them measuring in random basis for model S. Further,
for extracting the additional rate ∆R, Alice needs to
have side information, specifying in which PPM blocks
at least one photon was sent to the channel; this may
be obtained in principle by a nondemolition quantum
measurement, but it is not known in practice how to
implement such a measurement. An alternative that is
a hybrid between models S and C is to have a source
of entangled pairs with variable Poisson rate. According
to randomness generated by Alice it will be switched to
generation rate n̄/k for one bin in every PPM block, and
will be kept to zero otherwise.



V. FUTURE DIRECTIONS

In Section III we presented spatial PPM as a simple
way to achieve spectral efficiency without sacrificing
photon efficiency. In Section IV we suggested PPM
parsing of a Poisson source of entangled photon pairs,
for key distribution. A natural goal would be to connect
both: in order to achieve high spectral efficiency in key
distribution, one would need multiple spatial modes.
The channel model we have analyzed is highly ide-

alized. In particular, the following two effects have a
significant impact on performance and coding.
1) Coupling and detection losses. These are additional
to the path loss η. In general they can be included
in η, except that in the key distribution scenario we
have assumed that Alice has perfect access to the
source. When Alice also has losses, the optimal key
rate is still I(A;B). This rate has now an additional
constant asymptotic loss w.r.t. (12). Furthermore,
a variant of the PPM parsing algorithm can be
still used, and the asymptotic gap from the optimal
efficiency is still one nat per photon. However, the
second part of the key cannot be simply Bob’s
indices, since they may differ from the ones that
Alice has in cases where the source generated
multiple pairs, and each terminal received a photon
from a different one; SW coding is now needed for
this stage as well.

2) Dark current. These are detections that are indepen-
dent of transmission. Although they typically arrive
at a very slow rate, they will dominate performance
in the limit of high photon efficiency (slow rate
of true detections). In the context of spatial PPM,
detections may appear in a detector independent
of the intended one (instead or in addition to the
true one); the code over the PPM symbols should
account now for two kinds of errors: small (due
to the Gaussian beams) and large (due to the dark
current). In the key distribution setting, the effect of
dark current is similar to that of both users having
efficiency smaller than 1, discussed above.

Finally, although the PPM approach is a useful tool
in simplifying the task of coding, we have still not
considered specific codes. In the SW setting, low-density
parity check (LDPC) codes may be useful, see e.g. [16].

ACKNOWLEDGEMENT

The authors would like to thank Ligong Wang and
Jeffrey H. Shapiro for helpful discussions.

REFERENCES
[1] K. Abend. Optimum photon detection (corresp.). IEEE Trans.

Info. Theory, 12(1):64–65, jan 1966.
[2] I. Bar-David. Communication under the Poisson regime. IEEE

Trans. Info. Theory, 15(1):31–37, jan 1969.
[3] S. Shamai and A. Lapidoth. Bounds on the capacity of a

spectrally constrained Poisson channel. IEEE Trans. Info.
Theory, 39(1):19–29, jan 1993.

[4] A. Lapidoth and S.M. Moser. On the capacity of the discrete-
time Poisson channel. IEEE Trans. Info. Theory, 55(1):303–322,
jan. 2009.

[5] M. Nielsen and I. L. Chuang. Quantum Computation and
Quantum Inormation. Cambridge University Press, 2002.

[6] L. Mandel and E. Wolf. Optical Coherence and Quantum
Optics. Cambridge University Press, Cambridge, UK, 1995.

[7] A. S. Holevo. The capacity of the quantum channel with general
signal states. IEEE Trans. Info. Theory, 44(1):269–273, jan
1998.

[8] V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro,
and H. P. Yuen. Classical capacity of the lossy bosonic channel:
The exact solution. Phys. Rev. Lett., 92, Jan 2004.

[9] H. W. Chung, S. Guha, and L. Zheng. On capacity of optical
channels with coherent detection. In Proceedings of ISIT-11,
St. Petersburg, Russia, pages 284–288, 2011.

[10] S. Guha, J. H. Shapiro, and Z. Dutton. Addressing the ulti-
mate limits of photon-efficiency vs. spectral-efficiency tradeoffs
for the multiple-spatial-mode free-space optical communication
channel. In Proc. Updating Quantum Cryptography and Com-
munications (UQCC) 2010, Tokyo, 2010.

[11] D. Slepian. Prolate spheroidal wave functions, Fourier analysis
and uncertainty-IV: Extension to many dimensions; generalized
prolate spheroidal functions. Bell Syst. Techn. J., 43, 1962.

[12] H. P. Yuen and J. H. Shapiro. Optical communication with two-
photon coherent states, part I: Quantum state propagation and
quantum noise reduction,.

[13] R. Ahlswede and I. Csiszár. Common randomness in informa-
tion theory and cryptography. I. secret sharing. IEEE Trans.
Info. Theory, 39(4):1121 –1132, jul 1993.

[14] D. Slepian and J.K. Wolf. Noiseless coding of correlated
information sources. IEEE Trans. Info. Theory, IT-19:471–480,
July 1973.

[15] U. Maurer and S. Wolf. Information-theoretic key agreement:
From weak to strong secrecy for free. In Lecture Notes in
Computer Science, pages 351–368. Springer-Verlag, 2000.

[16] T.P. Coleman, A.H. Lee, M. Medard, and M. Effros. Low-
complexity approaches to Slepian-Wolf near-lossless distributed
data compression. IEEE Trans. Info. Theory, 52(8):3546–3561,
aug. 2006.


