
MIT Open Access Articles

Wilis: Architectural Modeling of Wireless Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Fleming, Kermin Elliott et al. “WiLIS: Architectural Modeling of Wireless Systems.” in
Proceedings of the 2011 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), IEEE, 2011. 197–206. Web.

As Published: http://dx.doi.org/10.1109/ISPASS.2011.5762736

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/73653

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73653
http://creativecommons.org/licenses/by-nc-sa/3.0/

WiLIS: Architectural Modeling of Wireless Systems

Kermin Elliott Fleming, Man Cheuk Ng, Samuel Gross,
and Arvind

CSAIL, Massachusetts Institute of Technology
{kfleming,mcn02,sgross,arvind}@csail.mit.edu

Abstract
The performance of a wireless system depends on the

wireless channel as well as the algorithms used in the
transceiver pipelines. Because physical phenomena af-
fect transceiver pipelines in difficult to predict ways,
detailed simulation of the entire transceiver system is
needed to evaluate even a single processing block. Fur-
ther, some protocol validations require simulation of rare
events (say, 1 bit error in 109 bits), which means the
protocol must simulate for a long enough time for such
events to materialize. This requirement coupled with the
heavy computation typical of most physical-layer pro-
cessing, rules out pure software solutions. In this pa-
per we describe WiLIS, an FPGA-based hybrid hardware-
software system designed to facilitate the development of
wireless protocols. We then use WiLIS to evaluate sev-
eral microarchitectures for measuring very low bit-error
rates (BER). We demonstrate, for the first time, that the
recently proposed SoftPHY [16, 30] can be implemented
efficiently in hardware.

1 Introduction
In digital wireless communication, a transmitter sends
data to a receiver by modulating the carrier signal with
a signal that represents the digital data being transmit-
ted. The receiver recovers the data from the on-air sig-
nal through a reverse process called demodulation. Un-
fortunately, the carrier signal observed by the receiver is
perturbed by various physical phenomena such as noise,
interference, multipath induced fading, and shadow fad-
ing. In order to permit reliable transmission, both mod-
ulation and demodulation involve applying various types
of algorithms in series to minimize the impact of these
physical phenomena. Examples include: 1) avoidance
of bursty errors by shuffling bits, 2) error correction by
adding redundancy, and 3) estimations and corrections
of noise and fading by sending pre-defined training se-
quences.

A wireless protocol is defined by the series of algo-
rithms comprising its modulation and demodulation pro-
cess. Various protocols are designed for different use

cases in which the significance of these physical phe-
nomena differs. As a result, to evaluate or validate a
particular algorithm in a wireless protocol, it is neces-
sary conduct experiments with other protocol algorithms
in-place and with an accurate channel model capable of
simulating the effects of the physical phenomena under
expected use cases. For example, recent wireless re-
search [16, 30] proposes to modify the physical layer
(PHY) of existing 802.11a/g to provide accurate bit-error
rate (BER) estimates and to pass these estimates to the
upper layers of the protocol stack, where they may be
used to improve overall performance. Figure 1 shows
the components required to validate and evaluate their
protocol. This system represents most of a fully func-
tional 802.11a/g pipeline, with only synchronization and
channel estimation absent, even though their suggested
modifications are limited to two components, namely the
Soft-Decision Convolutional Decoder and the BER Es-
timator. There are three primary challenges to simulate
such wireless systems for protocol evaluations.

First, validating a protocol often requires observation
of events that occur infrequently. This is because many
wireless protocols are intended to be able to recover
data even when the signal is severely corrupted. On the
other hand, the validation process is most interested in
rare cases in which the data is corrupted. For exam-
ple, the aforementioned proposal requires BER estimates
that can predict BER as low as 10−9, an operating point
at which the vast majority of bits are received correctly.
Therefore, to achieve reliable measures for an algorithm
that produces BER estimates, one needs to produce a sta-
tistically significant number of very uncommon events.

Second, most protocols are going to be implemented
in ASIC hardware to meet the power, throughput, and la-
tency requirements necessary for deployment. In order
to do so, the hardware implementations of many algo-
rithms in a wireless system can only be approximations
of the originals. Let us consider BER estimation again:
the proposed algorithm requires the whole packet to be
buffered before it can produce BER estimates. While the

1

Figure 1: Components required to validate a BER estimator in a co-simulation environment.

original floating point implementation of the algorithm
has been proven effective through off-line trace simula-
tion, real-time hardware deployment will require the al-
gorithm to be modified and simplified. Common approx-
imation techniques that might be applied include: 1) us-
ing fixed point arithmetic instead of floating point arith-
metic; 2) replacing complicated arithmetic with simpli-
fied one; 3) replacing full-block processing with a sliding
window approach; 4) ignoring less significant terms in
the algorithms. In general, these approximations distort
the input, and hence the behavior, of downstream mod-
ules in ways that are difficult to quantify. Thus to get
an accurate characterization of a hardware implementa-
tion, even of a single module, we must simulate a large
numbers of surrounding hardware modules.

Third, it is difficult to obtain realistic traffic to test and
debug the wireless systems. Broadcasting data on-air
presents difficulty because it is nearly impossible to con-
trol the broadcast environment, rendering experiments ir-
reproducible. On the other hand, generating synthetic
traffic using set of mathematical channel models usually
involves heavy use of high-complexity floating point op-
erations and is best suited for software.

The first two challenges imply that pure software sim-
ulator is not suitable because software simulation of de-
tailed hardware is extremely slow; nodes in our simula-
tion cluster process only a few kilobits per second. Par-
allel simulation across dozens of machines is not suf-
ficient to produce enough of the rarer events for accu-
rate characterization. Meanwhile, the last challenge sug-
gests that accelerating the whole testbench on FPGA can
also be problematic because the channel model is not
amenable to hardware implementation. Therefore, we
opt for FPGA co-simulation, which accelerates the sim-
ulation of the hardware pipeline using FPGAs but keeps
the channel model implementation in software. The
communication between the two are handled by a fast
bi-directional link between the FPGA platform and the
host PC.

In this paper, we introduce the Wireless Latency In-

sensitive Simulator (WiLIS) an FPGA-based simulator
that facilitates evaluations of wireless protocols at speed
close to line-rate. WiLIS is implemented as an extension
of Airblue [21], an FPGA software-defined radio plat-
form aimed at providing on-air operation. However, Air-
blue lacks facilities to validate protocols through high-
speed simulation, which WiLIS provides. Therefore,
WiLIS and Airblue complement each other in the pro-
cess of protocol development.

We make two novel contributions in this paper: 1)
We implement WiLIS, 2) Using WiLIS, we show that
the proposed SoftPHY can be implemented efficiently in
hardware, providing insight into a practical microarchi-
tecture of this implementation.
Paper organization: §2 discusses the characteristics of
WiLIS that allows it to be an efficient, usable for proto-
col evaluations. Then, we briefly describe the physical
implementation of WiLIS in §3. In §5, we explore other
potential approaches to protocol modelling. In §4, we
demonstrate the effectiveness of WiLIS through by ex-
ploring hardware implementations SoftPHY. Finally, we
conclude in §6.

2 WiLIS Properties
We developed WiLIS with the intention of providing a
configurable system for high-speed architectural mod-
elling of wireless systems. The following properties of
WiLIS are useful for rapidly assembling various wireless
models for evaluation.
Latency-Insensitivity: We observe that we require only
functional and not cycle-accurate simulation to charac-
terize our hardware. Taking advantage of this obser-
vation, we implement our functional models using the
Airblue [21] toolkit. Modules in latency-insensitive de-
signs do not make assumptions about the latencies of the
other modules in the pipeline, a property which has been
shown to be useful in modular refinement [7].

In WiLIS, the latency insensitive property of these
modules permits us to completely decouple the transmit-
ter, receiver, and channel model, allowing each to oper-

2

ate on its input as soon as that input is available. From a
practical perspective, this allows us to improve our com-
munication throughput by way of large, pipelined trans-
fers of data between FPGA modules and software mod-
ules and obviating the need for precise synchronization
between hardware and software. These optimizations
increase our throughput by approximately one order of
magnitude.

In addition to performance benefits, the latency-
insensitive property also gives us the flexibility to refine
or swap the design of any module in the system without
affecting the correctness of the whole system. This ap-
proach was particularly useful for us in developing our
case study, because it enabled us not only to interchange
major architectural components but also to transition to
the FPGA from software simulation without modifying
any source.
Automatic Multi-Clock Support: In the hardware
portion of our functional model, the throughput of each
module in the pipeline may not necessarily match if the
whole design is running at the same clock frequency.
As a result, the peak performance of the whole pipeline
can be bottlenecked by a single slow module. In DSP
systems, this rate matching issue, if not addressed, can
greatly reduce performance. WiLIS solves this problem
by providing automated support for multiple clock do-
mains. A user can change the throughput of a module
by specifying a desired clock frequency. WiLIS will au-
tomatically instantiate an FPGA primitive providing the
specified clock frequency and add special cross-domain
communication constructs between every pair of con-
nected modules that are in different clock domains. We
achieve this service by extending the mechanisms used
by the SoftConnections [24] design tool to carry clock
information. In practice, multi-clock support improves
modularity. In a typical hardware design users must ei-
ther pollute their module interfaces to supply submod-
ules with clocks, or the submodule must know its par-
ent’s clock frequency to synthesize its own clock. Nei-
ther of these cases is portable. Because our compila-
tion tools handle multiple clock domains, WiLIS mod-
ules gain a degree of portability.
FPGA Virtualization: In principle, WiLIS can be exe-
cuted on an FPGA platform as long as the hardware de-
sign fits into the FPGA and there is a bi-directional link
between the FPGA and a host processor. In reality, vari-
ous FPGA platforms are connected to the PC through dif-
ferent types of links, e.g., PCI-E and USB. Each type of
link requires specific RTL and software codes to be run
on both the FPGA and the host processor. Users should
be insulated from these details. We implement WiLIS on
top of LEAP [23], which is a collection of device drivers
for specific FPGA platforms. LEAP provides a set of
uniform interfaces across devices like memory and off-
FPGA I/O and automatic mechanisms for multiplexing
access to these devices across multiple user modules.

By porting Airblue modules to LEAP, we gain porta-
bility and modularity. WiLIS models can be run auto-
matically and without code modification on any platform
supported by LEAP and providing LEAP I/O function-
ality, including future high-speed platforms. Because
LEAP handles multiplexing of these resources automat-
ically, user modules are insulated from one another in
sharing common devices, aiding in modular composi-
tion.
Plug-n-Play: In general, WiLIS provides multiple im-
plementations of each module. In many cases, users
want to experiment with different combinations through
mix-and-matching different implementations. Users may
also wish to use their own modules in combination with
existing ones. While this can be achieved by modify-
ing the source code, this sort of work is usually tedious
and, therefore, prone to error. To facilitate this process,
WiLIS provides bindings for AWB [9], an open devel-
opment tool which provides GUI support for plug-n-play
designs. AWB users pick the implementation of each
module by choosing from a list of available implemen-
tations. This plug-n-play approach greatly increases the
speed of constructing a working wireless system.

3 WiLIS Implementation
As a base for WiLIS, we implemented a functional model
of a 802.11-like Orthogonal Frequency Division Modu-
lation (OFDM) baseband pipeline, based on the Airblue
toolkit. Our design language is Bluespec [6], which is a
high-level description language that facilitates develop-
ment of latency-insensitive designs [22, 10].

For software channel, we implement an Additive
White Gaussian Noise (AWGN) channel with a variable
Signal-to-Noise-Ratio (SNR). To take advantage of the
computation power of multi-core processors, our soft-
ware channel implementation is multi-threaded.

Our simulation environment consists of a Virtex-5
based ACP FPGA module [15] attached to a 1066 MHz
front-side bus (FSB) and a quad core Xeon proces-
sor mounted to the same bus. This configuration pro-
vides a fast FIFO communication with bandwidth in ex-
cess of 700MB/s between the FPGA and the processor.
Currently, we configure the FPGA to run the baseband
pipeline at 35 MHz with the exception of the BER pre-
diction unit, which runs at 60 MHz since it operates at
per-bit granularity. This configuration allows our base-
band pipeline to be capable of achieving the throughput
of the fastest rate in 802.11g at 54 Mbps.

Figure 2 shows the simulation speed of different rates
achieved by our baseline 802.11 system with the soft-
ware channel. We are able to achieve simulation speeds
which are between 32.8% and 41.3% of the line-rate
speeds of the corresponding 802.11g rates. At the highest
rate, we are able to achieve simulation speeds in excess
of 20 Mbps. Experimental results show that all the sim-
ulation runs constantly use up only about 55 MB/s of the

3

Modulation Simulation
Speed (Mb/s)

BPSK 1/2 (6 Mbps) 2.033 (33.9%)
BPSK 3/4 (9 Mbps) 2.953 (32.8%)
QPSK 1/2 (12 Mbps) 4.040 (33.7%)
QPSK 3/4 (18 Mbps) 6.036 (35.3%)
QAM-16 1/2 (24 Mbps) 8.483 (35.3%)
QAM-16 3/4 (36 Mbps) 12.725 (35.2%)
QAM-64 2/3 (48 Mbps) 15.960 (33.2%)
QAM-64 3/4 (54 Mbps) 22.244 (41.3%)

Figure 2: Simulation speeds of different rates. Numbers
in parentheses are the ratios of the simulation speeds to
the line-rate speeds of corresponding 802.11g rates

700 MB/s available communication bandwidth between
the FPGA and the processor, indicating that our software
modules are the bottleneck of our system. Program anal-
ysis shows that computing noise values for the AWGN
channel dominates our software time, even though the
software is already multi-threaded to take advantage of
the four available cores. Since noise generation alone
was sufficient to saturate a quad core system, our choice
of co-simulation was sound.

4 Case Study: Estimating BER
As mentioned earlier, it would be useful for the phys-
ical layer (PHY) of a wireless system to provide accu-
rate bit-error rate (BER) estimates to the upper layers of
the protocol stack. For example, Partial Packet Recovery
(PPR) [17] uses per-bit BER estimates, the probability
that the given bit is in error, to determine the bits to be re-
transmitted, improving the efficiency of the conventional
Link Layer’s Automatic Repeat-reQuest (ARQ) mech-
anism. Conventional ARQ requires the retransmission
of the entire packet in the event of any bit error. An-
other example is SoftRate [31], which uses per-packet
BER estimates, i.e., the expected number of bits in the
packet that are in error divided by the size of the packet,
to dynamically choose the optimal rate for each packet
transmission.

It is difficult to estimate the BER of a channel accu-
rately, because the receiver normally does not know in
advance the content of the transmitted data. Further-
more, the channel behavior itself may be highly variable,
even across a single packet, and must be measured fre-
quently to obtain accurate BER estimates. The recently
proposed SoftPHY abstraction [16, 30] offers a solution
to the problem of fine-grained BER estimations. Soft-
PHY makes use of a soft-decision convolutional-code
decoder to export a confidence metric, the log-likelihood
ratio (LLR) of a bit being one or zero, up the networking
stack. While this work has shown that SoftPHY is able
to produce high quality BER estimates, it has been eval-
uated only in software and does not meet the throughput
(54-150 Mbps) or the latency (25 µs) requirements of

high-speed wireless standards such as 802.11a/g/n. For
SoftPHY to be useful, it must be implemented efficiently
in hardware while meeting these performance targets.

Soft-decision convolutional-code decoders are com-
monly used as a kernel for decoding turbo codes [5],
and numerous hardware implementations [19, 3, 4, 1, 18]
have been optimized for this purpose. These imple-
mentations are based on either the BCJR algorithm [2]
or the SOVA algorithm [12]. The former usually pro-
vides better decoding performance but involves more
computation and more complex hardware. To reduce
hardware complexity, all these implementations ignore
the signal-to-noise ratio (SNR) during the calculation
of LLR. While this optimization does affect the perfor-
mance of turbo codes because they require the LLR out-
puts only to maintain their relative ordering, it is unclear
that the same optimization will be as effective to Soft-
PHY BER estimations which need to also take into ac-
count the magnitude of these values.

To study whether these implementations can be used
for BER estimations, we implemented SoftPHY based
on both BCJR [3] and SOVA [4] in WiLIS. Then, we em-
pirically evaluated and characterized our designs through
simulations of SoftPHY in the context of an 802.11-like
OFDM baseband processor shown in Figure 1.

4.1 Convolutional Code Processing
The accuracy of our BER estimation is, in part, deter-
mined by the performance of the baseband processor in
which it operates. We will briefly describe the baseband
components most relevant to BER estimation in the fol-
lowing. [22] contains a more complete description of
OFDM baseband processing.
Convolutional encoder: A convolutional encoder is a
shift register of k −m bits where k and m are the con-
straint length and input symbol bit-length respectively.
At each time step, an encoder with coding rate of m/n
(n > m) generates an n-bit output according to n gen-
erator polynomials, each specifying the bits in the shift
register to be “XORed” to generate an output bit. In our
experiment, we use the convolutional code of 802.11a
which has constraint length of 7 and code rate of 1/2.
Soft-Decision Convolutional Code Decoder: A soft
convolutional decoder produces at its output a decision
bit b̂i and an log-likelihood ratio (LLR) denoting the con-
fidence that the decision is correct with the following def-
inition:

LLRdec(i) = log
P [b̂i = bi|y]
P [b̂i 6= bi|y]

(1)

which is the ratio of the probability that the bit is cor-
rectly decoded (b̂i = bi) to the probability that the bit is
incorrectly decoded (b̂i 6= bi). Given y, the decoder de-
termines the most likely state sequence of the shift regis-
ter from the encoder that would generate y. There are two
common algorithms to decode convolutional code and

4

output LLRs: the SOVA algorithm [12] and the BCJR al-
gorithm [2]. We implemented both, which are discussed
in details in §4.3, for a proper hardware evaluation. Next,
we discuss the demapper that provides the inputs of the
decoder and its hardware implementation.
Demapper: The convolutional code demapper maps
each subcarrier’s phase and amplitude to a particular
set of bits, based on the transmitter modulation scheme.
Since these values maybe distorted by the channel, the
demapper also assigns a LLR to each demapped bit with
the following definition.

LLRdemap(i) = log
P [bi = 1|r[k]]
P [bi = 0|r[k]]

(2)

which is the ratio of the probability that the i-th decoded
bit is 1 to the probability that the decoded bit is 0 given
the received symbol r[k] at time k that contains bit i.

A good approximation [27] of this LLR under a flat-
fading Additive White Gaussian Noise (AWGN) channel
can be obtained with the following equation.

LLRdemap(i) =
Es

N0
× Smodulation ×Rdist(i) (3)

which is the ratio (Rdist(i)) between the Euclidean dis-
tance of the received symbol to the closest 1 and the dis-
tance to the closest 0, multiplied by the signal-to-noise-
ratio (Es

N0
) and a constant depending on the modulation

scheme (Smodulation).
We base our demapper on Tosato et al. [29], who fur-

ther optimize the calculation of Rdist(i) by eliminating
multiplications and divisions. If Es

N0
remains roughly the

same for all data subcarriers and across the packet trans-
mission, further optimization can be made by ignoring
Es

N0
and Smodulation due to the fact that the bit-decoding

decisions are determined by the relative ordering of the
terms in the convolutional decoding computation instead
of their magnitudes. This optimization allows the de-
coder to achieve the same decode performance with re-
duced bit-width (23-28 bits→ 3-8 bits), which helps sig-
nificantly reduce the area of the decoder. Unfortunately,
the magnitude of the computation is important when es-
timating the BER.

4.2 BER Estimation

Our BER estimator takes per-bit LLR estimates from
the soft decision decoder and translates them into per-
bit BER estimates. These estimates may be processed
before they are passed up to higher levels, for example
by calculating the packet BER.

From equation 1, the LLR estimate can be converted
to a per-bit BER with the following equation.

BERbit =
1

1 + eLLRdec
(4)

Unfortunately, the LLR estimates produced by either
BCJR or SOVA are only approximations of the true LLR.
This imprecision has two causes: first, the SNR and the
modulation factors (as shown in equation §3) are ignored
when the hardware demapper generates the inputs for the
decoder; second, the input values are interpreted using
different scales by the hardware BCJR and SOVA. We
study the impact of these input scalings to a LLR esti-
mate output from both algorithms [2, 12] and find this
estimate can be converted to to the true LLR (ˆLLRdec)
with the following equation.

ˆLLRdec =
Es

N0
× Smodulation × Sdec × LLRdec (5)

where Es

N0
is the SNR, Smodulation is a constant scaling

factor determined by the modulation scheme and Sdec is
another scaling factor determined by the decoder.

One way to implement the per-bit BER estimator is to
mathematically calculate the precise value for each scal-
ing factor and then adjust the LLR according to equation
5. After that, the per-bit BER can be obtained by using
a lookup table generated following equation 4. While
the last two factors can be computed statically, the SNR
needs to be estimated at run-time.

Instead of implementing an SNR estimator, we believe
that a pre-computed constant for SNR is sufficient. We
observe: 1) we only need the BER prediction to be ac-
curate up to the order of 10−7 because a maximum size
of a packet is usually in the order of 104 bits. While
the order of 10−5 is sufficient for checking packet er-
rors, extra margin can help rate adaptation protocols like
SoftRate [31] to identify potential of sending packets at
higher rate; 2) the range of SNR over which a modula-
tion’s BER drops from 10−1 to 10−7 is only a few dB [8].
Therefore, we can pick an appropriate SNR constant,
i.e., a value in the middle of the SNR range mentioned
above for each modulation and still get reasonably accu-
rate BER estimates. This proposal will slightly underes-
timate the BER if the actual SNR is lower than the cho-
sen middle value and overestimate the BER if the SNR
is higher. With this simplification, we can implement
a BER estimator as a two-level lookup. Given an LLR
output from the decoder and the modulation scheme, we
look up the right table and obtain the BER.

4.3 Soft Decision Decoder Architecture
A convolutional encoder is implemented with a shift reg-
ister. At each time step, it shifts in an input bit, transits
to the next state, and produces multiple bits as an output
based on the transition. By observing only these outputs,
as determined by the demapper, a decoder attempts to de-
termine the most likely state transitions of the encoder. In
contrast to hard decision decoders, which output a single
decision bit, soft decision decoders produce at their out-
put a decision bit and an LLR denoting the confidence

5

that the decision is correct. Both SOVA and BCJR re-
quire minor augmentation to calculate these ratios.

Theoretical work [20] has shown that BCJR and SOVA
are deeply related: both SOVA and BCJR decode the data
by constructing one or more trellises, directed graphs
comprised of all the state transitions across all time steps.
Each column in a trellis represents all the possible state
of the shift register in a particular time step. For ex-
ample, there will be 2n nodes in a column if the size
of the shift register is n bits. Two nodes are connected
with a directed edge if it is possible for the encoder to
reach one from the other by way of a single input. Each
node is associated with a value called the path metric.
Although path metrics have different meanings in BCJR
and SOVA, they generally track how likely it is that the
encoder was in a particular state at a particular time.

Two kernels are used to calculate path metrics: the
branch metric unit (BMU) and the path metric unit
(PMU). At each time step, the BMU produces a branch
metric for each possible transition by calculating the dis-
tance between the observed received output and the ex-
pected output of that transition. This distance constitutes
an error term: if it is large, then the output associated
with the distance is not likely. Then, the PMU calculates
the new path metric for each transition by combining the
corresponding branch metric with the path metric of the
source node from the previous timestep. As both SOVA
and BCJR use BMU and PMU, the designs of these two
components are shared. The PMU is parameterized in
terms of path permutation, which differs between the for-
ward and backward trellis paths of BCJR, and the Add-
Compare-Select (ACS) units, which can be different be-
tween SOVA and BCJR. The BMU is identical in SOVA
and BCJR.

SOVA and BCJR differ in the way they use path met-
rics to determine the directed edges in the trellis. SOVA
attempts to determines the most likely state sequence
along a period of time. SOVA requires the PMU to
provide the path metrics and their corresponding previ-
ous states, i.e., survivor states, at each time step. Using
this information, it constructs a sliding traceback window
that stores columns of survivor states it received most re-
cently. For each window, SOVA performs a traceback
which starts from the node with the smallest path metric
for the current time step, and then iteratively follows the
survivor state at each earlier time step until it reaches a
node belong to the earliest time step in the window. This
node is then used to determine the original input to the
encoder at that time step.

On the other hand, BCJR seeks to compute the most
likely state of the convolutional encoder at each timestep.
Given the complete set of encoder outputs, BCJR first
calculates the path metric for each state at each timestep
moving in a forward direction (αi) and then computes the
path metric for each state in each timestep in the reverse
direction (βi), determining the new path metrics by sum-

Figure 3: SOVA pipeline: Blocks in white exist in hard-output
Viterbi while blocks in grey are SOVA exclusive. Text in italic
describes the latency of each block.
ming the branch metric - path metric product of incoming
trellis edges. Finally, the forward and reverse probabili-
ties for each timestep are combined with the branch tran-
sition metric (γi) to produce a likelihood for each state at
each timestep. The most likely state at each timestep de-
termines the most likely bit input into the convolutional
encoder at that timestep.

In the remaining of the section, we discuss the archi-
tectures and the implementation challenges of SOVA and
BCJR respectively.

4.3.1 SOVA
Figure 3 shows the structure of our hardware SOVA
pipeline, which is based on the one shown in [4]. The
pipeline consists of a BMU, a PMU, a delay buffer and
two traceback units, all connected by FIFOs.

The two traceback units construct two traceback win-
dows to find the most likely state at each timestep. The
results from the first are used as better initial estimates
for the second. The second traceback unit also outputs
the LLRs. It does so by also keeping track of soft deci-
sions, one for each timestep. Each soft decision repre-
sents the confidence of the decoded bit at that timestep.
The second traceback unit performs two simultaneous
tracebacks, tracking the best and the second best paths,
starting with the output state received from the first trace-
back unit. At each step of the traceback, the states from
the two paths are compared. If the two states output dif-
ferent hard decode decisions and the difference of the
two path metrics is smaller than the corresponding soft
decision, this decision is updated with this smaller value.

The total latency of our SOVA implementation is
l + k + 12 cycles. l and k are the traceback lengths of
the first traceback unit and the second traceback unit re-
spectively. Each BMU and PMU adds an extra cycle of
latency. Each FIFO has 2 elements and thus adds at most
2 cycles to the total latency. Therefore, 5 FIFOs add an-
other 10 cycles. If the l and k are both 64, the total la-
tency will be 140 cycles. As our design runs at 60 MHz
at least, the latency is no more than 2.3 µs, which implies
it can be used in protocols with tight latency bound (25
µs for 802.11a/g).

4.3.2 BCJR
The major difficulty in implementing BCJR lies in the
calculation of the backward path metrics. Waiting for an

6

Figure 4: BCJR pipeline.
entire frame of data before beginning computation is un-
acceptable, both in terms of the latency of processing and
in terms of storage requirements. To avoid these issues,
we approximate BCJR by operating on sliding blocks of
reversed data, the SW-BCJR [3]. Thus, we reverse each
block of n data, and determine the backward path met-
rics of that block in isolation. By making n small, we
reduce the latency of the algorithm and reduce storage
requirements, at the cost of some accuracy.

However, blocking alone is not enough. In order to
process the backwards path for a block p, BCJR must
know the final path metric for the succeeding block p+1.
Unfortunately, this information can only be determined
by calculating the reverse path metrics on the remainder
of the packet, which we have not yet received. To pro-
vide an estimated final path metric for block p+ 1 when
calculating block p, we perform a provisional path metric
calculation on block p+ 1. Of course, this computation
also has uncertain start state, but in this case we use a
default “uncertain” state as the initial metric. This con-
figuration shows reasonable performance if block size n
is sufficiently large (larger than 32).

Figure 4 shows our streaming BCJR pipeline. Our im-
plementation consists of three major streaming kernels,
PMU, BMU, and decision unit, which selects the most
likely input bit. In addition to the extra PMU needed
for calculating provisional backward path metrics, the
backward path also needs a pair of memories to reverse
and unreverse blocks. The reversal buffers that we use
to re-orient the data frames in the backwards path are
based on dual-ported SRAMs. They are streaming, with
a throughput of one data per cycle and a latency equal to
their size. The pair of reversal buffers and the large FIFO
required to cover the latency of the provisional PMU rep-
resent a substantial overhead in our architecture. Adding
SoftPHY functionality to the architecture is simple: we
modify the decision unit to choose both the most like ’1’
state and the most likely ’0’ state, subtracting the path
metrics of the two states to obtain the LLR. This ap-
proach adds only a single subtracter to the pipeline and
has no impact on timing.

The latency of BCJR is dominated by the latency of
the reversal buffer units, which must buffer an entire
block before emitting data. With a reversal buffer of size
n the latency of BCJR is 2n+7, with pipeline and FIFO
latency causing the extra constant term. At 60 MHz with
a block size of 64 this corresponds to a latency of 135

cycles, or 2.2µs, which is comparable to the latency of
SOVA with traceback length set to 64.

4.4 Evaluation

Using WiLIS, we evaluate different aspects of our Soft-
PHY implementations. First, we study the relationship
between the LLR values produced by our hardware de-
coders and the actual BERs. Then, we evaluate the ac-
curacy of our per-packet BER estimator in the context of
SoftRate. Finally, we compare the hardware complexi-
ties of our SOVA and BCJR decoders.

4.4.1 Relationship between LLRs and Per-Bit BERs

As our WiLIS implementations are approximate algo-
rithms, we must show that the LLR values produced by
the hardware decoders correspond well to the LLR sug-
gested by theory. To determine the relationship between
these LLR values and the BERs, we simulated the trans-
mission of trillions (1012) of bits on the FPGA. Several
resulting curves are shown in 5. Both BCJR and SOVA
are able to produce LLRs showing the log-linear rela-
tionship with BERs as suggested by the equation 4 in
§4.2. As expected, the slopes of the curves vary with
SNR, modulation, and decoding algorithm, validating
the 3 scaling factors we proposed in equation 5. As a
result, we can use these curves to determine the values
of these scaling factors and to generate lookup tables for
our per-bit BER estimator.

It is important that our implementations are able to
produce LLRs that cover a wide range of BERs (i.e.,
10−7 to 10−1). High per-bit BERs (10−2 or above) can
predict which bits in the packet are erroneous while low
BERs (10−7 to 10−5) can predict how likely the whole
packet has no error. Although both SOVA and BCJR can
produce LLRs that can predict BERs lower than 10−7 for
some SNRs, BCJR can produce them at a wider range of
SNRs than SOVA.

4.4.2 Accuracy of Per-Packet BER Estimates

Per-packet BER (PBER) can be obtained simply by cal-
culating the arithmetic mean of the per-bit BER estimates
in a packet. This measure is useful as means of con-
densing the per-bit BER for communication with higher
level protocols. Figure 6 shows the graph plotting the ac-
tual PBERs against the predicted PBERs. The predicted
PBERs are reasonably clustered around the ideal line, ex-
cept for high BERs (10−1 or above), where there is slight
underestimation. These underestimations are a result of
the constant SNR adjustment we apply to the decoder’s
LLR outputs, as discussed in §4.2.

To further test the accuracy of our PBER calculations,
we implement SoftRate [31] in WiLIS. SoftRate is a
recently proposed MAC protocol which makes use of
PBERs to better decide rates at which packets can be
transmitted. If the calculated PBER at the current rate is
outside of a pre-computed range (for the ARQ link layer
protocol, the range is between 10−7 and 10−5), then Sof-

7

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

B
E
R

SoftPHY Hints

QAM16, AWGN SNR 6dB
QPSK, AWGN SNR 6dB

QAM16, AWGN SNR 8dB

(a) BCJR

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

B
E
R

SoftPHY Hints

QAM16, AWGN SNR 6dB
QPSK, AWGN SNR 6dB

QAM16, AWGN SNR 8dB

(b) SOVA

Figure 5: BER v. LLR Hints, across different modulation schemes and noise levels

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

G
ro

u
n
d
 t

ru
th

 B
E

R

BER estimate from SoftPHY hints

x

Figure 6: Actual PBER v. Predicted PBER (Rate = QAM16
1/2, Channel = AWGN with varying SNR, Packet Size = 1704
bits). The line represents the ideal case when Actual PBER
= Predicted PBER. Each cross with the error bar represents the
average of the actual PBERs for that particular predicted PBER
value with a standard deviation of uncertainty.

tRate will immediately adjust the future transmission rate
up or down accordingly.

In this experiment, the transmitter MAC observes the
predicted PBERs emitted by the receiver estimator and
adjusts the rate of the future packets, approximating a full
transceiver implementation, in which the packet BER es-
timate would be attached to an ARQ acknowledgement
message. We use a pseudo-random noise model which
allows us to test multiple packet transmissions at various
rates with the same noise and fading across time. We
consider the optimal rate to be the highest rate at which a
packet would be successfully received with no errors: a
rate picked by SoftRate is overselected (underselected) if
this rate is higher (lower) than the optimal rate. Figure 7
shows the performance of our SoftRate implementations
with BCJR and SOVA under a 20 Hz fading channel with
10 dB AWGN. Both implementations are able to pick
the optimal rate over 80% of the time, suggesting that
both produce sufficiently accurate PBERs. As expected,
SOVA picks the optimal rate less frequently than BCJR
by a small margin: SOVA underselects the rate 4% more

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

BCJR SOVA

Pe
rc

e
n
ta

g
e

Channel Type

Underselect
Accurate

Overselect

Figure 7: Performance of SoftRate MAC under 20 Hz fading
channel with 10 dB AWGN.

often than BCJR while both overselect 2% of the time.

4.4.3 Implementation Complexity

Experimental evaluation suggests that BCJR produces
superior BER estimates, both per-bit and per-packet.
However, this production comes at a high implementa-
tion cost. Figure 8 compares the synthesis results of
the BCJR and the SOVA decoders using Synplify Pro
2010.09 targeting the Virtex 5 LX330T at 60 MHz. As a
baseline, we also show the synthesis results for a Viterbi
decoder implementation, as is typically used in commod-
ity 802.11a/g baseband pipelines. We target a process-
ing speed of 60 Mbps, since the maximum line rate of
802.11a/g is rate of 54 Mbps and our decoders are capa-
ble of emitting one bit per cycle. Although our designs
are optimized to use FPGA primitives like Block RAM,
for the purpose of comparison we force the tools to syn-
thesize all storage elements to register.

BCJR is about twice the size of SOVA, primarily
due to the three path metric units used by BCJR and
its larger buffering requirements. Although BCJR uses
fewer registers, this is because it uses large amounts of
BRAM. Meanwhile, SOVA itself is about twice the size
of Viterbi. The area of both SOVA and BCJR can be
reduced by shrinking the length of the backward analy-

8

Module LUTs Registers
BCJR 32936 38420
Soft Decision Unit 6561 822
Initial Rev. Buf. 804 2608
Final Rev. Buf. 8651 30048
Path Metric Unit 4672 0
Branch Metric Unit 63 41
SOVA 15114 15168
Soft TU 13456 13402
Soft Path Detect 7362 4706
Viterbi 7569 4538
Traceback Unit 5144 3927

Figure 8: Synthesis Results of BCJR, SOVA and Viterbi.
SOVA is about half the size of BCJR.

sis. In our current implementation, we use a backward
path length of 64 for SOVA and a block length of 64 for
BCJR. We find that increasing these values provides no
performance improvement.

4.4.4 Accuracy of WiLIS Modelling

All models, including those constructed using WiLIS,
lose some fidelity as compared to a real implementation.
In the case of our WiLIS experiments, our model of the
wireless baseband is extremely detailed and accurate: it
has been used to build high quality radio transceivers in
Airblue. However, the channel models used by WiLIS
are certainly approximations of a real wireless channel,
and the on-air capabilities of the modules that we have
introduced in this study are unknown.

Because we do not have an on-air implementation of
SoftPHY or SoftRate, the best comparison that we can
make is against previously published [31]. Although the
original SoftPHY results were trace-driven, they were
based on on-air data collection and provide at least some
basis for comparison. WiLIS based-simulation suggests
an accuracy rate of 85% for the SoftRate protocol, while
the original paper achieved only a 75% accuracy, a dif-
ferential of 16%. Our hardware model, being an approxi-
mation, should have intuitively underperformed the ideal
software implementation originally proposed. There are
likely three contributing error terms in WiLIS simulation.
First, our channel model is relatively simple. Second, we
took steps to compensate for SNR variability in our Soft-
PHY implementation, while the original implementation
ignored these issues. Third, we did not model chan-
nel estimation or synchronization in the receiver. These
three factors would serve to increase the apparent perfor-
mance of SoftRate. Ultimately, we view the discrepancy
between the two experiments as acceptable: the offered
performance gain of SoftRate is high, around 2x to 4x
depending on the base of comparison.

5 Related Work
While WiLIS achieves high simulation speed by the
technique of decoupled latency-insensitive design, there
are other simulation alternatives which could provide
equally high performance. On one hand, we could have
built software functional simulation using existing soft-
ware radios. On the other hand, we could have used a
latency-sensitive hardware design, such as one created in
Simulink [14] and an emulation technique like the Stan-
dard Co-Emulation Modelling Interface (SCE-MI) [13].

Software radios like GNU Radio [11] can be used for
architectural exploration. GNU Radio in particular offers
a well developed and freely available library of wireless
components written in C++. However, GNU Radio, like
other software radios, suffers from a performance of only
a few Kbps [26]. Even recent, highly optimized software
radios [28] find that Viterbi’s algorithm alone requires
a full processor core to maintain performance of sev-
eral Mbps. In WiLIS, however, we seek to model algo-
rithms that are known to be 3-4 times more complex than
Viterbi [25]. We believe that, in the best case, a well-
tuned software radio will be able to achieve a few tens
to hundreds of Kbps performance for these algorithms,
whereas WiLIS has no problem achieving performance
near the line rate.

Emulation of latency-sensitive hardware focuses on
the maintenance of cycle accuracy. In the case of SCE-
MI, cycle accuracy is maintained by appropriately gat-
ing the clock to the latency-sensitive hardware, with the
clock ticking only when all the inputs for a given module
in a give cycle have been collected. This permits slower
modules, for example those implemented in software, to
appear to operate at the same speed as the gated mod-
ules. The speed at which a design may be emulated is
determined by the combination of the speed at which the
slower modules can source data to or sink data and the
overhead incurred by SCE-MI control model. Although
WiLIS is also constrained by its slowest module, SCE-
MI emulation will likely incur a larger overhead because
the time that the slow module uses for processing typi-
cally cannot be used by other modules to perform their
own internal work.

Another difficulty in using latency-sensitive hardware
for modelling is modification. If a component module
is modified, for example, switching Viterbi to BCJR, an
architecture that has a very different latency, many mod-
ules up and down the pipeline may need to be modified.
For a simulator to be useful, particularly to a domain spe-
cific audience not completely familiar with hardware de-
sign, this level of modification is unacceptable.

6 Conclusion
We believe that FPGAs represent an ideal platform for
the development of new wireless protocols. First, a satis-
factory FPGA implementation generally implies that a
satisfactory ASIC implementation exists. Second, be-

9

cause of the infrequency of many events associated with
wireless transmission, high-speed simulation is needed
to validate and characterize the implementation. To this
end, we developed WiLIS, a flexible and detailed co-
simulation platform capable of detailed modelling of an
OFDM baseband at speed near the line rate.

WiLIS achieves high-performance yet detailed sim-
ulation by accelerating computationally intensive por-
tions of the wireless simulator on the FPGA. WiLIS
achieves flexibility through the ability to substitute mod-
ules into an existing pipeline without having to modify
the remainder of the pipeline and by permitting non-
performance critical modules to be implemented in soft-
ware. The techniques that enable this flexibility are
latency-insensitive design, a plug-and-play module sub-
stitution, and FPGA virtualization.

We used WiLIS to evaluate two hardware implemen-
tations of SoftPHY, a recently proposed protocol. Al-
though the BCJR implementation of SoftPHY outper-
formed the SOVA implementation, the latter performed
acceptably well, and at less than 50% of the area of the
former. Generally speaking, the hardware implementa-
tions were quite successful at predicting BER with what
we believe is an acceptable hardware cost (around 10%
increase in the size of a transceiver), indicating that Soft-
PHY is a competitive augmentation to future wireless
chips and protocols. Without a flexible, high-speed sim-
ulator like WiLIS, the rapid evaluation of these designs
would not have been possible.

References
[1] E. Y. S. Augsburger, W. R. Davis, and B. Nikolic. 500

Mb/s Soft Output Viterbi Decoder. In ESSCIRC’02.
[2] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal de-

coding of linear codes for minimizing symbol error rate.
IEEE TIT, 20(2), 1974.

[3] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara.
Soft-Output Decoding Algorithms for Continuous De-
coding of Parallel Concatenated Convolutional Codes. In
ICC’96.

[4] C. Berrou, P. Adde, E. Angui, and S. Faudeil. A Low
Complexity Soft-Output Viterbi Decoder Architecture. In
ICC’93.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima. Near
Shannon Limit Error-Correcting Coding and Decoding.
In ICC’93.

[6] Bluespec Inc. http://www.bluespec.com.
[7] N. Dave, M. C. Ng, M. Pellauer, and Arvind. Modular

Refinement and Unit Testing. In MEMOCODE’10.
[8] A. Doufexi, S. Armour, P. Karlsson, A. Nix, and D. Bull.

A Comparison of the HIPERLAN/2 and IEEE 802.11a
Wireless LAN Standards. IEEE Commun. Mag., 40,
2002.

[9] J. Emer, P. Ahuja, E. Borch, A. Klauser, C. Luk,
S. Manne, S. Mukherjee, H. Patil, S. Wallace, N. Binkert,
R. Espasa, and T. Juan. Asim: A performance model
framework. IEEE Computer, 2002.

[10] K. Fleming, C.-C. Lin, N. Dave, J. Hicks, G. Ragha-
van, and Arvind. H.264 Decoding: A Case Study in
Late Design-Cycle Changes. In MEMOCODE’08, Ana-
heim, CA, 2008.

[11] GNU Radio. http://www.gnu.org/software/
gnuradio/.

[12] J. Hagenauer and P. Hoeher. A Viterbi Algorithm with
Soft-Decision Outputs and its Applications. In GLOBE-
COM’89.

[13] http://www.eda.org/itc/scemi.pdf. Standard co-emulation
modelling interface (sce-mi): Reference manual.

[14] http://www.mathworks.com/products/simulink/. Math-
works simulink.

[15] http://www.nallatech.com. Nallatech acp module.
[16] K. Jamieson. The SoftPHY Abstraction: from Packets to

Symbols in Wireless Network Design. PhD thesis, MIT,
Cambridge, MA, 2008.

[17] K. Jamieson and H. Balakrishnan. PPR: Partial Packet
Recovery for Wireless Networks. In SIGCOMM’07.

[18] L. Lin and R. S. Cheng. Improvements in SOVA-Based
Decoding For Turbo Codes. In ICC’97.

[19] G. Masera, G. Piccinini, M. Roch, and M. Zamboni.
VLSI Architectures for Turbo Codes. IEEE Trans. on
VLSI Systems, 1999.

[20] R. J. Mceliece. On the bcjr trellis for linear block codes.
IEEE Trans. Inform. Theory, 1996.

[21] M. C. Ng, K. E. Fleming, M. Vutukuru, S. Gross, and
A. H. Balakrishnan. Airblue: A System for Cross-
Layer Wireless Protocol Development. In ANCS’10, San
Diego, CA, 2010.

[22] M. C. Ng, M. Vijayaraghavan, G. Raghavan, N. Dave,
J. Hicks, and Arvind. From WiFI to WiMAX: Techniques
for IP Reuse Across Different OFDM Protocols. In MEM-
OCODE’07.

[23] A. Parashar, M. Adler, M. Pellauer, K. Fleming, and
J. Emer. Leap: An operating system for fpgas. 2010.

[24] M. Pellauer, M. Adler, D. Chiou, and J. Emer. Soft Con-
nections: Addressing the Hardware-Design Modularity
Problem. In DAC’09, San Francisco, CA, 2009.

[25] P. Robertson, E. Villebrun, and P. Hoeher. A comparison
of optimal and sub-optimal MAP decoding algorithms
operating in the log domain. In ICC’95.

[26] T. Schmid, O. Sekkat, and M. B. Srivastava. An Ex-
perimental Study of Network Performance Impact of In-
creased Latency in Software Defined Radios. In 2nd ACM
International Workshop on Wireless Network Testbeds,
Experimental Evaluation and Characterization, Mon-
treal, Quebec, Canada, 2007.

[27] M. Speth, A. Senst, and H. Meyr. Low Complexity Space-
Frequency MLSE for Multi-User COFDM. In GLOBE-
COM’99.

[28] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang,
Y. Zhang, H. Wu, W. Wang, and G. M. Voelker. Sora:
High Performance Software Radio Using General Pur-
pose Multi-core Processors. In NSDI’09, Boston, MA,
2009.

[29] F. Tosato and P. Bisaglia. Simplified Soft-Output Demap-
per for Binary Interleaved COFDM with Application to
HIPERLAN/2. In ICC’02.

[30] M. Vutukuru. Physical Layer-Aware Wireless Link Layer
Protocols. PhD thesis, MIT, Cambridge, MA, 2010.

[31] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-
Layer Wireless Bit Rate Adaptation. In SIGCOMM’09.

10

