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Abstract—This paper studies network information theory
problems where the external noise is Gaussian distributed. In
particular, the Gaussian broadcast channel with coherent fading
and the Gaussian interference channel are investigated. It is
shown that in these problems, non-Gaussian code ensembles can
achieve higher rates than the Gaussian ones. It is also shown
that the strong Shamai-Laroia conjecture on the Gaussian ISI
channel does not hold. In order to analyze non-Gaussian code
ensembles over Gaussian networks, a geometrical tool using the
Hermite polynomials is proposed. This tool provides a coordinate
system to analyze a class of non-Gaussian input distributions that
are invariant over Gaussian networks.

I. INTRODUCTION

Let a memoryless additive white Gaussian noise (AWGN)
channel be described by Y = X + Z, where Z ∼ N (0, v)
is independent of X . If the input is imposed an average
power constraint given by EX2 ≤ p, the input distribution
maximizing the mutual information is Gaussian. This is due
to the fact that under second moment constraint, the Gaussian
distribution maximizes the entropy, hence

arg max
X:EX2=p

h(X + Z) ∼ N (0, p). (1)

On the other hand, if we use a Gaussian input distribution,
i.e., X ∼ N (0, p), the worst noise that can occur, i.e., the
noise minimizing the mutual information, among noises with
bounded second moment, is again Gaussian distributed. This
can be shown by using the entropy power inequality (EPI), cf.
[11], which reduces in this setting to

arg min
Z:h(Z)= 1

2 log 2πev
h(X + Z) ∼ N (0, v) (2)

and implies

arg min
Z:EZ2=v

h(X + Z)− h(Z) ∼ N (0, v). (3)

Hence, in the single-user setting, when optimizing the mutual
information as above, a Gaussian input is the best input for
a Gaussian noise and a Gaussian noise is the worst noise for
a Gaussian input. This provides a game equilibrium between
user and nature, as defined in [7], p. 263. With these results,
many problems in information theory dealing with Gaussian
noise can be solved. However, in Gaussian networks, that is,
in multi-user information theory problems where the external
noise is Gaussian distributed, several new phenomena make
the search for the optimal input ensemble more complex.
Besides for some specific cases of Gaussian networks, we still

do not know how interference should be treated in general. Let
us consider two users interfering on each other in addition
to suffering from Gaussian external noise and say that the
receivers treat interference as noise. Then, if the first user has
drawn its code from a Gaussian ensemble, the second user
faces a frustration phenomenon: using a Gaussian ensemble
maximizes its mutual information but minimizes the mutual
information of the first user. It is an open problem to find
the optimal input distributions for this problem. This is one
illustration of the complications appearing in the network
setting. Another example is regarding the treatment of the
fading. Over a single-user AWGN channel, whether the fading
is deterministic or random, but known at the receiver, does
not affect the optimal input distribution. From (1), it is clear
that maximizing I(X;X + Z) or I(X;HX + Z|H) under
an average power constraint is achieved by a Gaussian input.
However, the situation is different if we consider a Gaussian
broadcast channel (BC). When there is a deterministic fading,
using (1) and (3), the optimal input distribution can be shown
to be Gaussian. However, it has been an open problem to show
whether Gaussian inputs are optimal or not for a Gaussian BC
with a random fading known at the receiver, even if the fading
is such that it is a degraded BC.

A reason for these open questions in the network in-
formation theoretic framework, is that Gaussian ensembles
are roughly the only ensembles that can be analyzed over
Gaussian networks, as non-Gaussian ensembles have left most
problems in an intractable form. In this paper, a novel tech-
nique is developed to analyze a class of non-Gaussian input
distributions over Gaussian noise channels. This technique is
efficient to analyze the competitive situations occurring in the
network problems described below. It allows in particular to
find certain non-Gaussian ensembles that outperform Gaussian
ones on a Gaussian BC with coherent fading channel, a
two user interference channel, and it allows to disprove the
strong Shamai-Laroia conjecture on the Gaussian intersymbol
interference channel. This tool provides a new insight on
Gaussian networks and confirms that non-Gaussian ensembles
do have a role to play in these networks. We now introduce
with more details the notion of competitive situations.

A. Competitive Situations

1) Fading Broadcast Channel: Consider a degraded Gaus-
sian BC with coherent memoryless fading, where the fading
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is indeed the same for both receivers, i.e.

Y1 = HX + Z1,

Y2 = HX + Z2

but Z1 ∼ N (0, v1) and Z2 ∼ N (0, v2), with v1 < v2. The
input X is imposed a power constraint denoted by p. Because
the fading is coherent, each receiver also knows the realization
of H , at each channel use. The fading and the noises are
memoryless (iid) processes. Since this is a degraded broadcast
channel, the capacity region is given by all rate pairs

(I(X;Y1|U,H), I(U ;Y2|H))

with U−X−(Y1, Y2). The optimal input distributions, i.e., the
distributions of (U,X) achieving the capacity region boundary,
are given by the following optimization, where µ ∈ R,

arg max
(U,X):U−X−(Y1,Y2)

EX2≤p

I(X;Y1|U,H) + µI(U ;Y2|H). (4)

Note that the objective function in the above maximization is
given by

h(Y1|U,H)− h(Z1) + µh(Y2|H)− µh(Y2|U,H).

Now, each term in this expression is individually maximized
by a Gaussian distribution for U and X , but these terms
are combined with different signs, so there is a competitive
situation and the maximizer is not obvious. When µ ≤ 1,
one can show that Gaussian distributions are optimal. Also,
if H is compactly supported, and if v is small enough as
to make the support of H and 1/vH non overlapping, the
optimal distribution of (U,X) is jointly Gaussian (cf. [13]).
However, in general the optimal distribution is unknown. We
do not know if it because we need more theorems, or if it
is really that with fading, non-Gaussian codes can actually
perform better than the Gaussian ones.

2) Interference Channel: We consider the symmetric mem-
oryless interference channel (IC) with two users and white
Gaussian noise. The average power is denoted by p, the
interference coefficients by a, and the respective noise by
Z1 and Z2 (independent standard Gaussian). We define the
following expression

mSa,p(X
m
1 , X

m
2 ) (5)

= I(Xm
1 ;Xm

1 + aXm
2 + Zm1 ) + I(Xm

2 ;Xm
2 + aXm

1 + Zm2 )

= h(Xm
1 + aXm

2 + Zm1 )− h(aXm
2 + Zm1 )

+ h(Xm
2 + aXm

1 + Zm2 )− h(aXm
1 + Zm2 ),

where Xm
1 and Xm

2 are independent random vectors of dimen-
sion m with a covariance having a trace bounded by mp and
Zmi , i = 1, 2, are iid standard Gaussian. For any dimension
m and any distributions of Xm

1 and Xm
2 , Sa,p(Xm

1 , X
m
2 ) is

a lower bound to the sum-capacity. Moreover, it is tight by
taking m arbitrarily large and Xm

1 and Xm
2 maximizing (5).

Now, a similar competitive situation as for the fading broadcast
problem takes place: Gaussian distributions maximize each
entropy term, but these terms are combined with different

signs. Would we then prefer to take X1 and X2 Gaussian
or not? This should depend on the value of a. If a = 0, we
have two parallel AWGN channels with no interference, and
Gaussian inputs are optimal. We can then expect that this
might still hold for small values of a. It has been proved
recently in [2], [8], [10], that the sum-capacity is achieved
by treating interference as noise and with iid Gaussian inputs,
as long as pa3 + a − 1/2 ≤ 0. Hence, in this regime, the iid
Gaussian distribution maximizes (5) for any m. But if a is
above that threshold and below 1, the problem is open.

Let us now review the notion of “treating interference as
noise”. For each user, we say that the decoder is treating
interference as noise, if it does not require the knowledge of
the other user’s code book. However, we allow such decoders
to have the knowledge of the distribution, under which the
other user’s code book may be drawn. This is for example
necessary to construct a sum-capacity achieving code1 in [2],
[8], [10], where the decoder of each user treats interference
as noise but uses the fact that the other user’s code book is
drawn from an iid Gaussian distribution. But, if we allow
this distribution to be of arbitrarily large dimension m in
our definition of treating interference as noise, we can get a
misleading definition. Indeed, no matter what a is, if we take
m large enough and a distribution of Xm

1 , Xm
2 maximizing (5),

we can achieve rates arbitrarily close to the sum-capacity, yet,
formally treating interference as noise. The problem is that the
maximizing distributions in (5) may not be iid for an arbitrary
a, and knowing it at the receiver can be as much information
as knowing the other user’s code book (for example, if the
distribution is the uniform distribution over a code book of
small error probability). Hence, one has to be careful when
taking m large. In this paper, we will only work with situations
that are not ambiguous with respect to our definition of treating
interference as noise. It is indeed an interesting problem
to discuss what kind of m-dimensional distributions would
capture the meaning of treating interference as noise that we
want. This also points out that studying the maximizers of (5)
relates to studying the concept of treating interference as noise
or information. Since for any chosen distributions of the inputs
we can achieve (5), the maximizers of (5) must have a different
structure when a grows. For a small enough, iid Gaussian are
maximizing distributions, but for a ≥ 1, since we do not want
to treat interference as noise, the maximizing distributions
must have a “heavy structure”, whose characterization requires
as much information as giving the entire code book. This
underlines that an encoder can be drawn from a distribution
which does not maximize (5) for any value of m, but yet, a
decoder may exist in order to have a capacity achieving code.
This happens if a ≥ 1, iid Gaussian inputs will achieve the
sum-capacity if the receiver decodes the message of both users
(one can show that the problem is equivalent to having two
MAC’s). However, if a ≥ 1, the iid Gaussian distribution does
not maximize Sa,p(X1, X2) (for the dimension 1, hence for
arbitrary dimensions).

1in a low interference regime



In any cases, if the Gaussian distribution does not maximize
(5) for the dimension 1, it means that iid Gaussian inputs and
treating interference as noise is not capacity achieving, since a
code which treats interference as noise and whose encoder is
drawn from a distribution can be capacity achieving only if the
encoder is drawn from a distribution maximizing (5). Hence,
understanding better how to resolve the competitive situation
of optimizing (5) is a consequent problem for the interference
channel.

B. ISI channel and strong Shamai-Laroia Conjecture

Conjecture 1: Let h, p, v ∈ R+, XG
1 ∼ N (0, p) and Z ∼

N (0, v) (independent of XG
1 ). For all X,X1 i.i.d. with mean

0 and variance p, we have

I(X;X + hXG
1 + Z) ≤ I(X;X + hX1 + Z). (6)

This conjecture has been brought to our attention by
Shlomo Shamai (Shitz), who referred to the strong conjecture
for a slightly more general statement, where an arbitrary
memory for the interference term is allowed, i.e., where∑n
i=1 hiXi stands for hX1. The strong conjecture then

claims that picking all Xi’s Gaussian gives a minimizer.
However, we will show that even for the memory one case,
the conjecture does not hold. The weak conjecture, also
referred to as the Shamai-Laroia conjecture, corresponds to
a specific choice of the hi’s, which arises when using an
MMSE decision feedback equalizer on a Gaussian noise ISI
channel, cf. [9]. This conjecture is investigated in a work in
progress.

There are many other examples in network information
theory where such competitive situations occur. Our goal in
this paper is to explore the degree of freedom provided by non-
Gaussian input distributions. We show that the neighborhood
of Gaussian distributions can be parametrized in a specific
way, as to simplify greatly the computations arising in com-
petitive situations. We will be able to precisely quantify how
much a certain amount of non-Gaussianness, which we will
characterize by means of the Hermite polynomials, affects or
helps us in maximizing the competitive entropic functional of
previously mentioned problems.

II. PROBLEM STATEMENT

A. Fading BC

For the fading BC problem problem described in I-A1,
we want to determine if/when the distribution of (U,X)
maximizing (4) is Gaussian or not.

B. IC

For the interference channel problem described in I-A2, we
know from [2], [8], [10] that treating interference as noise and
using iid Gaussian inputs is optimal when pa3 +a− 1/2 > 0.
We question when this coding scheme is no longer optimal.
More generally, we want to analyze the maximizers of (5).

We distinguish the implication of such a threshold in both
the synchronized and asynchronized users setting, as there will

be an interesting distinction between these two cases. We recall
how the synch and asynch settings are defined here. In the
synch setting, each user of the IC sends their code words of
a common block length n simultaneously, i.e., at time 1, they
both send the first component of their code word, at time 2 the
second component, etc. In the asynch setting, each user is still
using code words of the same block length n, however, there
might be a shift between the time at which the first and second
users start sending their code words. We denote this shift by
τ , and assume w.l.o.g. that 0 ≤ τ ≤ n. In the totally asynch
setting, we assume that τ is drawn uniformly at random within
{0, . . . , n}. We may also distinguish the cases where τ is not
known at the transmitter but at the receiver, and when τ is
not known at both. Note that if iid input distributions are used
to draw the code books, and interference is treated as noise,
whether the users are synch or asynch is not affecting the rate
achievability2. However, if the users want to time-share over
the channel uses, such as to fully avoid their interference, they
will need synchronization.

Definition 1: Time sharing over a block length n (assumed
to be even) with Gaussian inputs refers to using X1 Gaussian
with covariance 2P În/2 and X2 Gaussian with covariance
2P Îcn/2, where În/2 is a diagonal matrix with n/2 1’s and
0’s, and Îcn/2 flips the 1’s and 0’s on the diagonal.

C. ISI Channel and Strong Shamai-Laroia Conjecture

We want to determine whether conjecture 1 holds or not.

D. General Problem

Our more general goal is to understand better the problem
posed by any competitive situations. For this purpose, we
formulate the following mathematical problem.

We start by changing the notation and rewrite (1) and (3)
as

arg max
f :m2(f)=p

h(f ? gv) = gp (7)

arg min
f :m2(f)=p

h(f ? gv)− h(f) = gp (8)

where gp denotes the Gaussian density with zero mean and
variance p, and the functions f are density functions on R,
i.e., positive functions integrating to 1, and having a well-
defined entropy and second moment m2(f) =

∫
R x

2f(x)dx.

We consider the local geometry by looking at densities of
the form

fε(x) = gp(x)(1 + εL(x)), x ∈ R, (9)

where L : R→ R satisfies

inf
x∈R

L(x) > −∞ (10)∫
R
L(x)gp(x)dx = 0. (11)

2hence, (5) with an iid distribution for X1 and X2 can still be defined for
the totally asynch IC



With these two constraints on L, fε is a valid density for
ε sufficiently small. It is a perturbed Gaussian density, in a
“direction” L. Observe that,

m1(fε) = 0 iff M1(L) =

∫
R
xL(x)gp(x)dx = 0 (12)

m2(fε) = p iff M2(L) =

∫
R
x2L(x)gp(x)dx = 0. (13)

We are now interested in analyzing how these perturbations
affect the output distributions through an AWGN channel.
Note that, if the input distribution is a Gaussian gp perturbed
in the direction L, the output is a Gaussian gp+v perturbed in
the direction (gpL)?gv

gp+v
, since

fε ? gv = gp+v(1 + ε
(gpL) ? gv
gp+v

).

Convention: gpL?gv refers to (gpL)?gv , i.e., the multiplicative
operator precedes the convolution one.
For simplicity, let us assume in the following that the function
L is a polynomial satisfying (10), (11).

Lemma 1: We have

D(fε||gp) =
1

2
ε2‖L‖2gp + o(ε2)

D(fε ? gv||gp ? gv) =
1

2
ε2‖gpL ? gv

gp+v
‖2gp+v

+ o(ε2).

where
‖L‖2gp =

∫
R
L2(x)gp(x)dx.

Moreover, note that for any density f , if m1(f) = a and
m2(f) = p+ a2, we have

h(f) = h(ga,p)−D(f ||ga,p). (14)

Hence, the extremal entropic results of (7) and (8) are locally
expressed as

arg min
L:M2(L)=0

‖gpL ? gv
gp+v

‖2gp+v
= 0 (15)

arg max
L:M2(L)=0

‖gpL ? gv
gp+v

‖2gp+v
− ‖L‖2gp = 0, (16)

where 0 denotes here the zero function. If (15) is obvious,
(16) requires a proof which will be done in section V. Let us
define the following mapping,

Γ(+) : L ∈ L2(gp) 7→
gpL ? gv
gp+v

∈ L2(gp+v;R), (17)

where L2(gp) denotes the space of real functions having a
finite ‖ · ‖gp norm. This linear mapping gives, for a given
perturbed direction L of a Gaussian input gp, the resulting
perturbed direction of the output through additive Gaussian
noise gv . The norm of each direction in their respective spaces,
i.e., in L2(gp) and L2(gp+v), gives how far from the Gaussian
distribution these perturbations are (up to a scaling factor).
Note that if L satisfies (10)-(11), so does Γ(+)L for the
measure gp+v . The result in (16) (worst noise case) tells us

that this mapping is a contraction, but for our goal, what would
be helpful is a spectral analysis of this operator, to allow more
quantitative results than the extreme-case results of (15) and
(16).

In order to do so, one can express Γ(+) as an operator
defined and valued in the same space, namely L2 with the
Lebesgue measure λ, which is done by inserting the Gaussian
measure in the operator argument. We then proceed to a
singular function/value analysis. Formally, let K = L

√
gp,

which gives ‖K‖λ = ‖L‖gp , and let

Λ : K ∈ L2(λ) 7→
√
gpK ? gv
√
gp+v

∈ L2(λ) (18)

which gives ‖Γ(+)L‖gp+v
= ‖ΛK‖λ. Denoting by Λ∗ the

adjoint operator of Λ, we want to find the singular functions
of Λ, i.e., the eigenfunctions K of Λ∗Λ:

Λ∗ΛK = γK.

III. RESULTS

A. General Result: Local Geometry and Hermite Coordinates

The following theorem gives the singular functions and
values of the operator Λ defined in previous section.

Theorem 1:

Λ∗ΛK = γK, K 6= 0

holds for each pair

(K, γ) ∈ {(√gpH [p]
k ,

(
p

p+ v

)k
)}k≥0,

where
H

[p]
k (x) =

1√
k!
Hk(x/

√
p)

Hk(x) = (−1)kex
2/2 d

k

dxk
e−x

2/2, k ≥ 0, x ∈ R.

The polynomials H [p]
k are the normalized Hermite polynomials

(for a Gaussian distribution having variance p) and √gpH [p]
k

are called the Hermite functions. For any p > 0, {H [p]
k }k≥0

is an orthonormal basis of L2(gp), this can be found in [12].
One can check that H1, respectively H2 perturb a Gaussian
distribution into another Gaussian distribution, with a different
first moment, respectively second moment. For k ≥ 3, the Hk

perturbations are not modifying the first two moments and are
moving away from Gaussian distributions. Since H

[p]
0 = 1,

the orthogonality property implies that H [p]
k satisfies (11) for

any k > 0. However, it is formally only for even values of k
that (13) is verified (although we will see in section V that
essentially any k can be considered in our problems). The
following result contains the property of Hermite polynomials
mostly used in our problems, and expresses Theorem 1 with
the Gaussian measures.

The following result contains the property of Hermite
polynomials mostly used in our problems, and expresses
Proposition 1 with the Gaussian measures.



Theorem 2:

Γ(+)H
[p]
k =

gpH
[p]
k ? gv
gp+v

=

(
p

p+ v

)k/2
H

[p+v]
k , (19)

Γ(−)H
[p+v]
k = H

[p+v]
k ? gv =

(
p

p+ v

)k/2
H

[p]
k . (20)

Last Theorem implies Theorem 1, since

Γ(−)Γ(+)L = γL ⇐⇒ Λ∗ΛK = γK

for

K = L
√
gp.

Comment: the results that we have just derived are related
to properties of the Ornstein-Uhlenheck process.

Summary: In words, we just saw that Hk is an eigenfunction
of the input/output perturbation operator Γ(+), in the sense

that Γ(+)H
[p]
k =

(
p
p+v

)k/2
H

[p+v]
k . Hence, over an additive

Gaussian noise channel gv , if we perturb the input gp in the
direction H

[p]
k by an amount ε, we will perturb the output

gp+v in the direction H [p+v]
k by an amount

(
p
p+v

)k/2
ε. Such

a perturbation in Hk implies that the output entropy is reduced

(compared to not perturbing) by
(

p
p+v

)k
ε2

2 (if k ≥ 3).

B. Fading BC Result

The following result states that the capacity region of a
degraded fading BC with Gaussian noise is not achieved by a
Gaussian superposition code in general.

Theorem 3: Let

Y1 = HX + Z1,

Y2 = HX + Z2

with X such that EX2 ≤ p, Z1 ∼ N (0, v), 0 < v < 1, Z2 ∼
N (0, 1) and H,X,Z1, Z2 mutually independent. There exists
a fading distribution and a value of v for which the capacity
achieving input distribution is non-Gaussian. More precisely,
let U be any auxiliary random variable, with U−X−(Y1, Y2).
Then, there exists p, v, a distribution of H and µ such that

(U,X) 7→ I(X;Y1|U,H) + µI(U ;Y2|H) (21)

is maximized by a non jointly Gaussian distribution.

In the proof, we present a counter-example to Gaussian
being optimal for H binary. In order to defeat Gaussian dis-
tributions, we construct input distributions using the Hermite
coordinates. The proof also gives a condition on the fading
distribution and the noise variance v for which a non-Gaussian
distribution strictly improves on the Gaussian one.

C. IC Result

Definition 2: Let

Fk(a, p) = lim
δ↘0

lim
ε↘0

2

ε2
[
Sa,p(X1, X2)− Sa,p(XG

1 , X
G
2 )
]
,

where XG
1 , X

G
2

iid∼ gp, X1 ∼ gp(1 + εH̃k) and X2 ∼
gp(1 − εH̃k), with H̃k defined in (22) below (as explain in
section IV, H̃k is a formal modification of Hk to ensure the
positivity of the perturbed densities).
In other words, Fk(a, p) represents the gain (positive or
negative) of using X1 perturbed along Hk and X2 perturbed
along −Hk with respect to using Gaussian distributions. Note
that the distributions we chose for X1 and X2 are not the most
general ones, as we could have chosen arbitrary directions
spanned by the Hermite basis to perturb the Gaussian densities.
However, as explained in the proof of the theorem 4, this
choice is sufficient for our purpose.

Theorem 4: We have for k ≥ 2

Fk(a, p) =

[
a2

pa2 + 1

]k
− (ak − 1)2

(pa2 + p+ 1)k
.

For any fixed p, the function Fk(·, p) has a unique positive
root, below which it is negative and above which it is positive.

Theorem 5: Treating interference as noise with iid Gaussian
inputs does not achieve the sum-capacity of the symmetric IC
(synch or asynch) and is outperformed by X1 ∼ gp(1 + εH̃3)

and X2 ∼ gp(1− εH̃3), if F3(a, p) > 0.

This Theorem is a direct consequence of Theorem 4.
Proposition 1: For the symmetric synch IC, time sharing

improves on treating interference as noise with iid Gaussian
distribution if F2(a, p) > 0.

We now introduce the following definition.
Definition 3: Blind time sharing over a block length n

(assumed to be even) between two users, refers to sending
non-zero power symbols only at the instances marked with
a 1 in (1, 0, 1, 0, 1, 0, . . . 1, 0) for the first user, and zero
power symbols only at the instances marked with a 1 in
(1, 1, . . . , 1, 0, 0, . . . , 0) for the second user.

Proposition 2: For the symmetric totally asynch IC, if the
receivers (but not transmitters) know the asynchronization
delay, blind time sharing improves on treating interference as
noise with iid Gaussian distributions if B2(a, p) > 0, where
B2(a, p) = 1

4 (log(1+2p)+log(1+ 2p
1+2a2p ))−log(1+ p

1+a2p ).
If the receivers do not know the asynchronization delay, blind
time sharing cannot improve on treating interference as noise
with iid Gaussian distributions if B2(a, p) ≤ 0.

How to read these results: We have four thresholds to keep
track of:
• T1(p) is when pa3 + a− 1

2 = 0. If a ≤ T1(p), we know
from [2], [8], [10] that iid Gaussian inputs and treating
interference as noise is sum-capacity achieving.

• T2(p) is when F2(a, p) = 0. If a > T2(p), we know
from Prop. 1 that, if synchronization is permitted, time
sharing improves on treating interference as noise with iid



Gaussian inputs. This regime matches with the so-called
moderate regime defined in [5].

• T3(p) is when F3(a, p) = 0. If a > T3(p), we know from
Prop. 5 that treating interference as noise with iid non-
Gaussian distributions (opposites in H3) improves on the
iid Gaussian ones.

• T4(p) is when B2(a, p) = 0. If a > T4(p), we know from
Prop. 2 that, even if the users are totally asynchronized,
but if the receivers know the asynchronization delay, blind
time sharing improves on treating interference as noise
with iid Gaussian inputs. If the receivers do not know
the delay, the threshold can only appear for larger values
of a.

The question is now, how are these thresholds ranked. It turns
out that 0 < T1(p) < T2(p) < T3(p) < T4(p). And if p =
1, the above inequality reads as 0.424 < 0.605 < 0.680 <
1.031. This implies the following for a decoder that treats
interference as noise. Since T2(p) < T3(p), it is first better
to time share than using non-Gaussian distributions along H3.
But this is useful only if time-sharing is permitted, i.e., for the
synch IC. However, for the asynchronized IC, since T3(p) <
T4(p), we are better off using the non-Gaussian distributions
along H3 before a Gaussian input scheme, even with blind
time-sharing, and even if the receiver could know the delay.
We notice that there is still a gap between T1(p) and T2(p),
and we cannot say if, in this range, iid Gaussian inputs are
still optimal, or if another class of non-Gaussian inputs (far
away from Gaussians) can outperform them. In [4], another
technique (which is related to ours but not equivalent) is used
to find regimes where non-Gaussian inputs can improve on
Gaussian ones on the same problem that we consider here.
The threshold found in [4] is equal to 0.925 for p = 1, which
is looser than the value of 0.680 found here.

Finally, the following interesting and curious fact has also
been noticed. In theorem 4, we require k ≥ 2. Nevertheless,
if we plug k = 1 in the right hand side of theorem 4
and ask for this expressions to be positive, we precisely get
pa3 + a − 1

2 > 0, i.e., the complement range delimited by
T1(p). However, the right hand side of theorem 4 for k = 1
is not equal to F1(a, p) (this is explained in more details in
the proof of theorem 4). Indeed, it would not make sense
that moving along H1, which changes the mean with a fixed
second moment within Gaussians, would allow us to improve
on the iid Gaussian scheme. Yet, getting to the exact same
condition, when working on the problem of improving on the
iid Gaussian scheme, seems to be a strange coincidence.

D. Strong Shamai-Laroia Conjecture

We show in Section V that conjecture 1 does not hold. We
provide counter-examples to the conjecture, pointing out that
the range of h for which the conjecture does not hold increases
with SNR.

IV. HERMITE CODING: FORMALITIES

The Hermite polynomial corresponding to k = 0 is H [p]
0 =

1 and is clearly not a valid direction as it violates (11). Using

the orthogonality property of the Hermite basis and since
H

[p]
0 = 1, we conclude that H [p]

k satisfies (11) for any k > 0.
However, it is only for k even that H [p]

k satisfies (10). On the
other hand, for any δ > 0, we have that H [p]

k + δH
[p]
4k satisfies

(10), whether k is even or not (we chose 4k instead of 2k for
reasons that will become clear later). Now, if we consider the
direction −H [p]

k , (10) is not satisfied for both k even and odd.
But again, for any δ > 0, we have that −H [p]

k +δH
[p]
4k satisfies

(10). Hence, in order to ensure (10), we will often work in the
proofs with ±H [p]

k +δH
[p]
4k , although it will essentially allow us

to reach the performance achieved by any ±H [p]
k (odd or even),

since we will then take δ arbitrarily small and use continuity
arguments.

Convention: We drop the variance upper script in the
Hermite terms whenever a Gaussian density with specified
variance is perturbed, i.e., the density gp(1 + εHk) always
denotes gp(1 + εH

[p]
k ), and gpHk always denotes gpH

[p]
k , no

matter what p is. Same treatment is done for ‖ · ‖gp and ‖ · ‖.
Now, in order to evaluate the entropy of a perturbation,

i.e., h(gp(1 + εL)), we can express it as the entropy of h(gp)
minus the divergence gap, as in (14), and then use Lemma 1
for the approximation. But this is correct if gp(1 + εL) has
the same first two moments as gp. Hence, if L contains only
Hk’s with k ≥ 3, the previous argument can be used. But if
L contains H1 and/or H2 terms, the situation can be different.
Next Lemma describes this.

Lemma 2: Let δ, p > 0 and

bH̃
[p]
k =

{
b(H

[p]
k + δH

[p]
4k ), if b ≥ 0,

b(H
[p]
k − δH

[p]
4k ), if b < 0.

(22)

We have for any αk ∈ R, k ≥ 1, ε > 0

h(gp(1 + ε
∑
k≥1

αkH̃k)) =

h(gp)−D(gp(1 + ε
∑
k≥1

αkH̃k)||gp) +
εα2√

2
.

Finally, when we convolve two perturbed Gaussian distribu-
tions, we get ga(1 + εHj) ? gb(1 + εHk) = ga+b + ε[gaHj ?
gb + ga ? gbHk] + ε2gaHj ? gbHk. We already know from
Theorem 2 how to describe the terms in ε, what we still need
is to describe the term in ε2. We have the following.

Lemma 3: We have

gaH
[a]
k ? gbH

[b]
l = Cga+bH

[a+b]
k+l ,

where C is a constant depending only on a, b, k and l. In
particular if k = l = 1, we have C =

√
2ab
a+b .

V. PROOFS

We start by reviewing the proof of (16), as it brings
interesting facts. We then prove the main result.

Proof of (16):
We first assume that fε has zero mean and variance p. Using
the Hermite basis, we express L as L =

∑
k≥3 αkH

[p]
k (L must

have such an expansion, since it must have a finite L2(gp)



norm, to make sense of the original expressions). Using (19),
we can then express (16) as∑

k≥3

α2
k

(
p

p+ v

)k
−
∑
k≥3

α2
k (23)

which is clearly negative. Hence, we have proved that

‖gpL ? gv
gp+v

‖2gp+v
≤ ‖L‖2gp (24)

and (16) is maximized by taking L = 0. Note that we can get
tighter bounds than the one in previous inequality, indeed the
tightest, holding for H3, is given by

‖gpL ? gv
gp+v

‖2gp+v
≤
(

p

p+ v

)3

‖L‖2gp (25)

(this clearly holds if written as a series like in (23)). Hence,
locally the contraction property can be tightened, and locally,
we have stronger EPI’s, or worst noise case. Namely, if ν ≥(

p
p+v

)3
, we have

arg min
f :m1(f)=0,m2(f)=p

h(f ? gv)− νh(f) = gp (26)

and if ν <
(

p
p+v

)3
, gp is outperformed by non-Gaussian

distributions. Now, if we consider the constraint m2(f) ≤ p,
which, in particular, allows to consider m1(f) > 0 and
m2(f) = p, we get that if ν ≥ p

p+v ,

arg min
f :m2(f)≤p

h(f ? gv)− νh(f) = gp (27)

and if ν < p
p+v , gp is outperformed by gp−δ for some δ > 0.

It would then be interesting to study if these tighter results
hold in a greater generality than for the local setting.

Proof of Theorem 2:
We want to show

H
[p+v]
k ? gv = (

p

p+ v
)k/2H

[p]
k ,

gpH
[p]
k ? gv = (

p

p+ v
)k/2gp+vH

[p+v]
k ,

which is proved by an induction on k, using the following
properties (Appell sequence and recurrence relation) of Her-
mite polynomials:

∂

∂x
H

[p]
k+1(x) =

√
k + 1

p
H

[p]
k (x)

∂

∂x

(
gp(x)H

[p]
k (x)

)
= −

√
k + 1

p
gp(x)H

[p]
k+1(x).

Proof of Theorem 3:
We refer to (21) as the mu-rate. Let us first consider Gaussian
codes, i.e., when (U,X) is jointly Gaussian, and see what
mu-rate they can achieve. Without loss of generality, we can
assume that X = U + V , with U and V independent and

Gaussian, with respective variance Q and R satisfying P =
Q+R. Then, (21) becomes

1

2
E log(1 +

RH2

v
) + µ

1

2
E log

1 + PH2

1 +RH2
. (28)

Now, we pick a µ and look for the optimal power R that must
be allocated to V in order to maximize the above expression.
We are interested in cases for which the optimal R is not at
the boundary but at an extremum of (28), and if the maxima
is unique, the optimal R is found by the first derivative check,
which gives E H2

v+RH2 = µE H2

1+RH2 . Since we will look for µ,
v, with R > 0, previous condition can be written as

E
RH2

v +RH2
= µE

RH2

1 +RH2
. (29)

We now check if we can improve on (28) by moving away
from the optimal jointly Gaussian (U,X). There are several
ways to perturb (U,X), we consider first the following case.
We keep U and V independent, but perturb them away from
Gaussian’s in the following way:

pUε
(u) = gQ(u)(1 + ε(H

[Q]
3 (u) + δH4)) (30)

pVε
(v) = gR(v)(1− ε(H [R]

3 (v)− δH4)) (31)

with ε, δ > 0 small enough. Note that these are valid density
functions and that they preserve the first two moments of
U and V . The reason why we add δH4, is to ensure that
(13) is satisfied, but we will see that for our purpose, this
can essentially be neglected. Then, using Lemma 2, the new
distribution of X is given by

pX(x) = gP (x)(1 + ε

(
Q

P

) 3
2

H
[P ]
3 − ε

(
R

P

) 3
2

H
[P ]
3 ) + f(δ)

where f(δ) = δgP (x)ε(
(
Q
P

) 4
2

H
[P ]
4 +

(
R
P

) 4
2 H

[P ]
4 ), which

tends to zero when δ tends to zero. Now, by picking P = 2R,
we have

pX(x) = gP (x) + f(δ). (32)

Hence, by taking δ arbitrarily small, the distribution of X is
arbitrarily close to the Gaussian distribution with variance P .
We now want to evaluate how these Hermite perturbations
perform, given that we want to maximize (21), i.e.,

h(Y1|U,H)− h(Z1) + µh(Y2|H)− µh(Y2|U,H). (33)

We wonder if, by moving away from Gaussian distributions,
the gain achieved for the term −h(Y2|U,H) is higher than the
loss suffered from the other terms. Using Theorem 2, Lemma
1 and Lemma 2, we are able to precisely measure this and we
get

h(Y1|U = u,H = h)

= h(ghu,v+Rh2(1− ε
(

Rh2

v +Rh2

) 3
2

H
[hu,v+Rh2]
3 ))

=
1

2
log 2πe(v +Rh2)− ε2

2

(
Rh2

v +Rh2

)3

+ o(ε2) + o(δ)



h(Y2|U = u,H = h)

=
1

2
log 2πe(1 +Rh2)− ε2

2

(
Rh2

1 +Rh2

)3

+ o(ε2) + o(δ)

and because of (32)

h(Y2|H = h) =
1

2
log 2πe(1 + Ph2) + o(ε2) + o(δ).

Therefore, collecting all terms, we find that for Uε and Vε
defined in (30) and (31), expression (41) reduces to

IG −
ε2

2
E
(

RH2

v +RH2

)3

+ µ
ε2

2
E
(

RH2

1 +RH2

)3

+ o(ε2) + o(δ) (34)

where IG is equal to (28) (and is the mu-rate obtained with
Gaussian inputs). Hence, if for some distribution of H and
some v, we have that

µE
(

RH2

1 +RH2

)k
− E

(
RH2

v +RH2

)k
> 0, (35)

when k = 3 and R is optimal for µ, we can take ε and
δ small enough in order to make (34) strictly larger than
IG. We have shown how, if verified, inequality (35) leads
to counter-examples of the Gaussian optimality, but with
similar expansions, we would also get counter-examples if the
following inequality holds for any power k instead of 3, as
long as k ≥ 3. Let us summarize what we obtained: Let R be
optimal for µ, which means that (29) holds if there is only one
maxima (not at the boarder). Then, non-Gaussian codes along
Hermite’s strictly outperforms Gaussian codes, if, for some
k ≥ 3, (35) holds. If the maxima is unique, this becomes

ET (v)k

ET (1)k
<

ET (v)

ET (1)

where

T (v) =
RH2

v +RH2
.

So we want the Jensen gap of T (v) for the power k to be
small enough compared to the Jensen gap of T (1).

We now give an example of a fading distribution for which
the above conditions can be verified. Let H be binary, taking
values 1 and 10 with probability half and let v = 1/4. Let
µ = 5/4, then for any values of P , the maximizer of (28) is
at R = 0.62043154, cf. Figure 1, which corresponds in this
case to the unique value of R for which (29) is satisfied. Hence
if P is larger than this value of R, there is a corresponding
fading BC for which the best Gaussian code splits the power
on U and V with R = 0.62043154 to achieve the best mu-
rate with µ = 5/4. To fit the counter-examples with the choice
of Hermite perturbations made previously, we pick P = 2R.
Finally, for these values of µ and R, (35) can be verified
for k = 8, cf. Figure 2, and the corresponding Hermite code
(along H8) strictly outperforms any Gaussian codes.

Note that we can consider other non-Gaussian encoders,
such as when U and V are independent with U Gaussian and

Fig. 1. Gaussian mu-rate, i.e., expression (28), plotted as a function of R
for µ = 5/4, v = 1/4, P = 1.24086308 and H binary {1; 10}. Maxima at
R = 0.62043154.

Fig. 2. LHS of (35) as a function of R, for µ = 5/4, v = 1/4, k = 8 and
H binary {1; 10}, positive at R = 0.62043154.

V non-Gaussian along Hermite’s. Then, we get the following
condition. If for k ≥ 3 and R optimal for µ, we have

E
(

RH2

v +RH2

)k
(36)

< µ

[
E
(

RH2

1 +RH2

)k
−
(
R

P

)k
E
(

PH2

1 + PH2

)k]
, (37)

then Gaussian encoders are not optimal. Notice that previous
inequality is stronger than the one in (35) for fixed values of
the parameters. Yet, it can still be verified for valid values of
the parameters and there are also codes with U Gaussian and
V non-Gaussian that outperform Gaussian codes for some
degraded fading BCs.



Proof of Theorem 4:
Let ε, δ > 0 and let X1 and X2 be respectively distributed
as gp(1 + ε[Hk + δH4k]) and gp(1 − ε[Hk − δH4k]), where
k 6= 1, 2. We have

I(X1, X1 + aX2 + Z1) = h(X1 + aX2 + Z1)− h(aX2 + Z1)

where XG
k are independent Gaussian 0-mean and p-variance

random variables. Hence, we need to evaluate the contribution
of each divergence appearing in previous expression, in order
to know if the perturbations are improving on the Gaussian
distributions. Let us first analyze h(X1 + aX2 + Z1). The
density of X1 + aX2 + Z1 is given by

gp(1 + ε[Hk + δH4k]) ? ga2p(1− ε[Hk − δH4k]) ? g1, (38)

which, from Theorem 2, is equal to

gp+a2p+1(1+

ε{

[(
p

p+ a2p+ 1

) k
2

Hk + δ

(
p

p+ a2p+ 1

)2k

H4k

]

−

[(
a2p

p+ a2p+ 1

) k
2

Hk − δ
(

a2p

p+ a2p+ 1

)2k

H4k

]
− εL})

where

L =
gp[Hk + δH4k] ? ga2p[Hk − δH4k] ? g1

gp+a2p+1
.

Note that each direction in each line of the bracket {·} above,
including L, satisfy (10) and (11). Using Lemma 3, we have

L =
gp[Hk + δH4k] ? ga2p+1[

(
a2p
a2p+1

) k
2

Hk −
(

a2p
a2p+1

)2k
δH4k]

gp+a2p+1

= C1H
[p+a2p+1]
2k + C2H

[p+a2p+1]
5k + C3H

[p+a2p+1]
8k , (39)

where C1, C2, C3 are constants. Therefore, the density of X1+
aX2+Z1 is a Gaussian gp+a2p+1 perturbed along the direction
Hk in the order ε and several Hl with l ≥ 2k in the order ε2

(and other directions but that have a δ order). So we can use
Lemma 2 and write

h(X1 + aX2 + Z1) = h(XG
1 + aXG

2 + Z1)

−D(X1 + aX2 + Z1||XG
1 + aXG

2 + Z1)

Using Lemma 1, we have

D(X1 + aX2 + Z1||XG
1 + aXG

2 + Z1)

·
=
ε2

2
‖

[(
p

p+ a2p+ 1

) k
2

Hk + δ

(
p

p+ a2p+ 1

)2k

H4k

]

−

[(
a2p

p+ a2p+ 1

) k
2

Hk − δ
(

a2p

p+ a2p+ 1

)2k

H4k

]
‖2

=
ε2

2
(1− ak)2

(
p

p+ a2p+ 1

)k
+
ε2

2
o(δ).

Hence

h(X1 + aX2 + Z1) = h(XG
1 + aXG

2 + Z1)

− ε2

2
(1− ak)2

(
p

p+ a2p+ 1

)k
+
ε2

2
o(δ).

Similarly, we get

D(aX2 + Z1||aXG
2 + Z1)

·
=
ε2

2

(
a2p

a2p+ 1

)k
+
ε2

2
o(δ)

and

I(X1, X1 + aX2 + Z1)
·
= I(XG

1 , X
G
1 + aXG

2 + Z1)

+
ε2

2

[(
a2p

a2p+ 1

)k
− (1− ak)2

(
p

p+ a2p+ 1

)k]
+
ε2

2
o(δ).

Finally, we have

I(X2, X2 + aX1 + Z2) = I(X1, X1 + aX2 + Z1)

and

I(X1, X1 + aX2 + Z1) + I(X2, X2 + aX1 + Z2)
·
= I(XG

1 , X
G
1 + aXG

2 + Z1) + I(XG
2 , X

G
2 + aXG

1 + Z2)

+ ε2

[(
a2p

a2p+ 1

)k
− (1− ak)2

(
p

p+ a2p+ 1

)k]
+ ε2o(δ).

Hence, if for some k 6= 3 we have(
a2

a2p+ 1

)k
− (ak − 1)2

(p+ a2p+ 1)k
> 0 (40)

we can improve on the iid Gaussian distributions gp by using
the respective Hermite perturbations.

Now, we could have started with X1 and X2 distributed as
gp(1 + εbkH̃k) and gp(1 + εckH̃k), where H̃k is defined in
(22). With similar expansions, we would then get that we can
improve on the Gaussian distributions if for some some bk, ck
and k 6= 1, 2 we have[(

a2p

a2p+ 1

)k
− (a2p)k + pk

(p+ a2p+ 1)k

]
(b2k + c2k)

− 4

(
ap

p+ a2p+ 1

)k
bkck > 0.

But the quadratic function

(b, c) ∈ R2 7→ γ(b2 + c2)− 2δbc,

with δ > 0, can be made positive if and only if γ+δ > 0, and
is made so by taking bk = −ck. Hence, the initial choice we
made about X1 and X2 is optimal. Moreover, note that for
this distribution of X1 and X2, we could have actually chosen
k = 2 as well. Because, even if Lemma 2 tells us that we
must use correction terms, these correction terms will cancel
out when we consider the sum-rate, since bk = −ck and since
the correction is in ε. There is however another problem when
using k = 2, which is that gp(1 + εH2) has a larger second
moment than p. However, if we use a scheme of block length



2, we can compensate this excess on the first channel use
with the second channel use, and because of the symmetry,
we can achieve the desired rate. But this is allowed only
with synchronization. We could also have used perturbations
that are mixtures of Hermite’s, such as gp(1 + ε

∑
k bkHk).

We would then get mixtures of previous equations as our
condition. But in the current problem this will not be helpful.
Finally, perturbing iid Gaussian inputs in a independent but
non i.d. way, i.e., to perturb different components in different
Hermite directions, cannot improve on our scheme, from
previous arguments. The only option which is not investigated
here (but in a work in progress), is to perturb iid Gaussian
inputs in a non independent manner. Finally, if we work with
k = 1, the proof sees the following modification. In (39), we
now have a term in H2. However, even if this term is in the
order ε2, we can no longer neglect it, since from Lemma
2, a ε2H2 term in the direction comes out as a ε2√

2
term in

the entropy. Hence, we do not get the above condition for
k = 1, but the one obtained by replacing (ak − 1)2 with
(a2+1), and the condition for positivity can never be fulfilled.

Proof of Proposition 1:
From Theorem 4, we know that when treating interference
as noise and when F2(a, p) > 0, it is better to use encoders
drawn from the 2 dimensional distributions X2

1 and X2
2 ,

where (X1)1 ∼ gp(1 + εH̃2), (X2)1 ∼ gp(1 − εH̃2),
(X1)2 ∼ gp(1− εH̃2) and (X2)2 ∼ gp(1 + εH̃2), as opposed
to using Gaussian distributions. But perturbations in H2

are changing the second moment of the input distribution.
Hence, this scheme is mimicing a time-sharing in our
local setting. Moreover, a direct computation also allows to
show that, constraining each user to use Gaussian inputs of
arbitrarily block length n, with arbitrary covariances having
a trace bounded by nP , the optimal covariances are pIn if
F2(a, p) ≤ 0, and otherwise, are given by a time-sharing
scheme (cf. Definition 1 for the definition of a Gaussian
time-sharing scheme and covariance matrices).

Proof of Proposition 2:
Note that when using blind time-sharing, no matter what the
delay in the asynchronization of each user is, the users are
interfering in n/4 channel uses and have each a non-intefering
channel in n/4 channel uses (the rest of the n/4 channel
uses are not used by any users). Hence, if the receiver have
the knowledge of the asynchronization delay, the following
sum-rate can be achieved: 1

4 (log(1 + 2p) + log(1 + 2p
1+2a2p )).

And if the delay is unknown to the receivers, the previous
sum-rate can surely not be improved on.

Disproof of Conjecture 1:
This proof uses similar steps as previous proofs. Using Lemma
(14), we express

I(X;X + hXG
1 + Z) ≤ I(X;X + hX1 + Z).

as

−D(X + hXG
1 + Z||XG + hXG

1 + Z)

≤ −D(X + hX1 + Z||XG + hXG
1 + Z)

+D(hX1 + Z||hXG
1 + Z). (41)

We then pick X,X1 ∼ gp(1+εH̃k) and assume that k is even
for now. We then have

X + hXG
1 + Z

∼ gp(1 + εHk) ? gph2+v

= gp+ph2+v(1 + ε(
p

p+ ph2 + v
)k/2Hk)

and

D(X + hXG
1 + Z||XG + hXG

1 + Z)

·
=
ε2

2
(

p

p+ ph2 + v
)k.

Similarly,

X + hX1 + Z

∼ gp(1 + εHk) ? gph2(1 +Hk) ? gv

= gp(1 + εHk) ? gph2+v(1 + (
ph2

ph2 + v
)k/2Hk)

gp+ph2+v(1 + ε(
p

p+ ph2 + v
)k/2Hk

+ ε(
ph2

p+ ph2 + v
)k/2Hk)

and

D(X + hX1 + Z||XG + hXG
1 + Z)

·
=
ε2

2
(

p

p+ ph2 + v
)k(1 + hk)2.

Finally,

hX1 + Z ∼ gph2(1 + εHk) ? gv

= gh2p+v(1 + ε(
ph2

ph2 + v
)k/2Hk)

and

D(hX1 + Z||hXG
1 + Z)

·
=
ε2

2
(

ph2

ph2 + v
)k,

Therefore, (41) is given by

−
(

p

p+ ph2 + v

)k
≤ −

(
p

p+ ph2 + v

)k
(1 + hk)2 +

(
ph2

ph2 + v

)k
+ o(1)

and if (
p

p+ ph2 + v

)k
(1 + hk)2 −

(
p

p+ ph2 + v

)k
−
(

ph2

ph2 + v

)k
> 0 (42)



Fig. 3.

for some k even and greater than 4, we have a counter example
to the strong conjecture. Note that, using the same trick as in
previous proofs, that is, perturbing along H̃k instead of Hk, we
get that if (42) holds for any k ≥ 3, we have a counter example
to the strong conjecture. Defining u := v/p = 1/SNR, (42) is
equivalent to

G(h, u, k) :=

(1 + hk)2

(1 + h2 + u)k
−
(

1

1 + h2 + u

)k
−
(

h2

h2 + u

)k
> 0. (43)

As shown in Figure 3, this can indeed happen. An interesting
observation is that the range where (43) holds is broader when
u is larger, i.e., when SNR is smaller. Indeed, when u = v = 0,
which corresponds to dropping the additive noise Z, we do not
get a counter-example to the conjecture. But in the presence
of Gaussian noise, the conjecture does not hold for some
distributions of X,X1. The conjecture had been numerically
checked with binary inputs at low SNR, and in this regime,
it could not be disproved. With the hint described above, we
checked numerically the conjecture with binary inputs at high
SNR, and there we found counter-examples.

VI. DISCUSSION

We have developed a technique to analyze codes drawn
from non-Gaussian ensembles using the Hermite polynomials.
If the performance of non-Gaussian inputs is usually hard
to analyze, we showed how with this tool, it reduces to
the analysis of analytic power series. This allowed us to
show that Gaussian inputs are in general not optimal for
degraded fading Gaussian BC, although they might still be
optimal for many fading distributions. For the IC problem,
we found that in the asynchronous setting and when treating
interference as noise, using non-Gaussian code ensembles (H3

perturbations) can strictly improve on using Gaussian ones,

when the interference coefficient is above a given threshold,
which significantly improves on the existing threshold (cf. [4]).
We have also recovered the threshold of the moderate regime
by using H2 perturbations in the synch setting, showing that
this global threshold is reflected in our local setting. We also
met mysteriously in our local setting the other global threshold
found in [2], [8], [10], below which treating interference as
noise with iid Gaussian inputs is optimal. It is worth noting
that this two global thresholds (moderate regime and noisy
interference) are recovered with our tool from a common
analytic function. We hope to understand this better with a
work in progress.

The Hermite technique provides not only counter-examples
to the optimality of Gaussian inputs but it also gives insight on
the competitive situations in Gaussian network problems. For
example, in the fading BC problem, the Hermite technique
gives a condition on what kind of fading distributions and
degradedness (values of v) non-Gaussian inputs must be used.
It also points out that the perturbation in H3 are most effective
when carried in an opposite manner for the two users, so as
to make the distribution of X close to Gaussian.

Finally, in a different context, local results could be “lifted”
to corresponding global results in [1]. There, the localization
is made with respect to the channels and not the input distri-
bution, yet, it would be interesting to compare the local with
the global behavior for the current problem too. The fact that
we have observed some global results locally, as mentioned
previously, gives hope for possible local to global extensions.
A work in progress aims to use our tool beyond the local set-
ting, in particular, by analyzing all sub-Gaussian distributions.
Moreover, there are interesting connections between the results
developed in this paper and the properties of the Ornstein-
Uhlenbeck process. Indeed, some of these properties have
already been used in [3] to solve the long standing entropy
monotonicity conjecture, and we are currently investigating
these relations from closer.
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