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Abstract— We present a technique for the rapid and reliable
evaluation of linear-functional output of elliptic partial differ-
ential equations with affine parameter dependence. The essential
components are (i) rapidly uniformly convergent reduced-basis
approximations — Galerkin projection onto a spaceWN spanned
by solutions of the governing partial differential equation at N
(optimally) selected points in parameter space; (ii ) a posteriori
error estimation — relaxations of the residual equation that
provide inexpensive yet sharp and rigorous bounds for the error
in the outputs; and (iii ) offline/online computational procedures
— stratagems that exploit affine parameter dependence to de-
couple the generation and projection stages of the approximation
process. The operation count for the online stage — in which,
given a new parameter value, we calculate the output and
associated error bound — depends only onN (typically small)
and the parametric complexity of the problem. The method is
thus ideally suited to the many-query and real-time contexts.
In this paper, based on the technique we develop a robust inverse
computational method for very fast solution of inverse problems
characterized by parametrized partial differential equations. The
essential ideas are in three-fold: first, we apply the technique to
the forward problem for the rapid certified evaluation of PDE
input-output relations and associated rigorous error bounds;
second, we incorporate the reduced-basis approximation and
error bounds into the inverse problem formulation; and third,
rather than regularize the goodness-of-fit objective, we may
instead identify all (or almost all, in the probabilistic sense)
system configurations consistent with the available experimental
data — well-posedness is reflected in a bounded “possibility
region” that furthermore shrinks as the experimental error is
decreased.
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I. I NTRODUCTION

Engineering analysis requires the prediction of (say, a single)
selected “output”se relevant to ultimate component and sys-
tem performance1: typical outputs include energies and forces,
critical stresses or strains, flowrates or pressure drops, and var-
ious local and global measures of concentration, temperature,
and flux. These outputs are functions of system parameters,
or “inputs,” µ, that serve to identify a particular realization

1Here superscript “e” shall refer to “exact.” We shall later introduce a “truth
approximation” which will bear no superscript.

or configuration of the component or system: these inputs
typically reflect geometry, properties, and boundary conditions
and loads; we shall assume thatµ is aP -vector (orP -tuple) of
parameters in a prescribed closed input domainD ⊂ RP . The
input-output relationshipse(µ) : D → R thus encapsulates the
behavior relevant to the desired engineering context.
In many important cases, the input-output functionse(µ)
is best articulated as a (say) linear functional` of a field
variable ue(µ). The field variable, in turn, satisfies aµ-
parametrized partial differential equation (PDE) that describes
the underlying physics: for givenµ ∈ D, ue(µ) ∈ Xe is the
solution of

a(ue(µ), v;µ) = f(v), ∀ v ∈ Xe, (1)

wherea(·, ·;µ) andf are continuous bilinear and linear forms,
respectively; andXe is an appropriate Hilbert space defined
over the physical domainΩ ⊂ Rd. Relevant system behavior
is thus described by an implicit “input-output” relationship

se(µ) = `(ue(µ)). (2)

The problem of evaluating input-output relationship, which
requires solution of the underlying partial differential equation
(1), is calledforward problem. In contrast, theinverse problem
is concerned with deducing the inputs from the measured-
observable outputs.
Our particular interest — or certainly the best way to motivate
our approach — is in specific areas of inverse problems
that take real-time aspect as high priority. For example, in
nondestructive evaluation, we may be interested in assess-
ment, evolution, and accommodation of a crack in a critical
component of an in-service jet engine. Typical computational
tasks include robust parameter estimation (inverse problems)
and adaptive design (optimization problems): in the former —
for example, assessment of current crack length — we must
deduce inputsµ representing system characteristics based on
outputs se(µ) reflecting measured observables; in the latter
— for example, prescription of allowable load — we must
deduce inputsµ representing “control” variables based on
outputs se(µ) reflecting current process objectives. Both of
these demanding activities must support anaction in the
presence of continually evolving environmental and mission
parameters.



The computational requirements on the forward problem are
thus formidable: the evaluation must bereal-time, since the
action must beimmediate; and the evaluation must becertified
— endowed with a rigorous error bound — since the action
must besafeandfeasible. For example, in our aerospace crack
example, we must predictin the field — without recourse
to a lengthy computational investigation — the load that the
potentially damaged structure can unambiguouslysafelycarry.
Classical approaches such as the finite element method can
not typically satisfy these requirements. In the finite element
method, we first introduce a piecewise-polynomial “truth”
approximation subspaceX (⊂ Xe) of dimensionN . The
“truth” finite element approximation is then found by (say)
Galerkin projection: givenµ ∈ D,

s(µ) = `(u(µ)) (3)

whereu(µ) ∈ X satisfies

a(u(µ), v;µ) = f(v), ∀ v ∈ X. (4)

We assume — hence the appellation “truth” — thatX is
sufficiently rich thatu(µ) (respectively,s(µ)) is sufficiently
close toue(µ) (respectively,se(µ)) for all µ in the parameter
domainD. Unfortunately, for any reasonable error tolerance,
the dimensionN needed to satisfy this condition — even with
the application of appropriate (parameter-dependent) adaptive
mesh refinement strategies — is typically extremely large, and
in particular much too large to provide real-time response in
the “deployed” context.
We shall make two crucial hypotheses. The first hypothesis
is related to well-posedness, and is often verified onlya
posteriori. We assume thata satisfies a stability and continuity
condition

0 < β0 ≤ β(µ) ≡ inf
w∈X

sup
v∈X

a(w, v;µ)
‖w‖X‖v‖X

, ∀µ ∈ D; (5)

γ(µ) ≡ sup
w∈X

sup
v∈X

a(w, v;µ)
‖w‖X‖v‖X

< ∞, ∀µ ∈ D. (6)

Here β(µ) is the Babǔska “inf–sup” (stability) parameter —
the minimum (generalized) singular value associated with our
differential operator — andγ(µ) is the standard continuity
constant.
The second hypothesis is related primarily to numerical effi-
ciency, and is typically verifieda priori. We assume thata is
affine in the parameterµ in the sense that

a(w, v;µ) =
Q∑

q=1

Θq(µ)aq(w, v), (7)

for q = 1, . . . , Q parameter-dependentfunctions Θq(µ) :
D → R and parameter-independentcontinuous blinear forms
aq(w, v). The affine assumption may in fact be relaxed [3].

II. REDUCED-BASIS APPROXIMATION

The reduced-basis (RB) approximation was first introduced
in the late 1970s in the context of nonlinear structural anal-
ysis [1], [15] and subsequently abstracted and analyzed [4],
[17], [20] and extended [9], [10], [16] to a much larger
class of parametrized partial differential equations. We first
introduce nested samplesSN ≡ {µ1 ∈ D, . . . , µN ∈ D},
1 ≤ N ≤ Nmax, and associated nested “Lagrangian” RB
spacesWN ≡ span{ζn(µn) ≡ u(µn), 1 ≤ n ≤ N},
1 ≤ N ≤ Nmax.2 Our RB approximation is then: Given
µ ∈ D, we evaluate

sN (µ) = `(uN (µ)) , (8)

whereuN (µ) ∈ WN satisfies

a(uN (µ), v;µ) = f(v), ∀ v ∈ WN . (9)

We consider in this paper only Galerkin projection, though
Petrov-Galerkin approaches can be advantageous. We note that
the RB approximation is constructed not as an approximation
to the exact solution,ue(µ), but rather as an approximation
to the (finite element) truth approximation,u(µ). As already
discussed,N , the dimension ofX, will be very large; our RB
formulation and associated error estimation procedures must
be stableand (online)efficientasN →∞.
In essence,WN comprises “snapshots” on the parametrically
induced manifoldM ≡ {u(µ) |µ ∈ D} ⊂ X. It is clear that
M is very low-dimensional; furthermore, it can be shown —
we consider the equations for the sensitivity derivatives and
invoke stability and continuity — thatM is very smooth. We
thus anticipate thatuN (µ) → u(µ) very rapidly, and that we
may hence chooseN � N . Many numerical examples justify
this expectation [8]; and, in certain simple cases, exponential
convergence can be proven [12], [19]. We emphasize that the
deployed context requires global reduced-basis approximations
that areuniformly (rapidly) convergent over the entire param-
eter domainD; proper choice of the parameter samplesSN is
thus crucial.
We may now representuN (µ) as uN (µ) =

∑N
j=1 uN j .

Our RB output may then be expressed assN (µ) =∑N
j=1 uN j(µ)`(ζj), where — we now invoke our affine

assumption (7) — theuN j(µ), 1 ≤ j ≤ N, satisfy theN ×N
linear algebraic system

N∑
j=1

{ Q∑
q=1

Θq(µ)aq(ζj , ζi)
}

uN j(µ) = f(ζi), (10)

for i = 1, . . . , N . It is clear from (10) that we may pursue
an offline-online computational strategy [2], [10], [19] that is
ideally suited to the deployed real-time context.
In the offline stage — performedonce— we first solve for
the ζi, 1 ≤ i ≤ Nmax; we then formand store`(ζi), 1 ≤ i ≤
Nmax, andaq(ζj , ζi), 1 ≤ i, j ≤ Nmax, 1 ≤ q ≤ Q. In the

2In actual practice, the bases should be orthogonalized with respect to the
inner product associated with the Hilbert spaceX, (·, ·)X ; the algebraic
systems then inherit the “conditioning” properties of the underlying partial
differential equation.



online stage — performed many times, for each newµ “in the
field” — we first assemble and subsequently invert the (full)
N ×N “stiffness” matrix

∑Q
q=1 Θq(µ)aq(ζj , ζi) to obtain the

uN j , 1 ≤ j ≤ N — at costO(QN2) + O(N3); we then
evaluate the sum

∑N
j=1 uN j(µ)`(ζj) to obtain sN (µ) — at

costO(N). The online complexity isindependentof N , and
hence — given thatN � N — we shall realize extremely
rapid deployed response.

III. A P OSTERIORIERRORESTIMATION

We assume for now that we are giveñβ(µ), a (to-be-
constructed) positive lower bound for the inf-sup parameter,
β(µ): β(µ) ≥ β̃(µ) ≥ β̃0 > 0, ∀µ ∈ D. We then introduce the
dual norm of the residual:εN (µ) ≡ supv∈X [R(v;µ)/‖v‖X ],
whereR(v;µ) ≡ f(v) − a(uN (µ), v;µ) is the residual asso-
ciated with uN (µ). We may now define our “energy” error
estimator

∆N (µ) ≡ εN (µ)
β̃(µ)

, (11)

and associated effectivity as

ηN (µ) ≡ ∆N (µ)
‖u(µ)− uN (µ)‖X

. (12)

We can then readily demonstrate [19], [22] that for any
N, 1 ≤ N ≤ Nmax,

1 ≤ ηN (µ) ≤ γ(µ)/β̃(µ), ∀ µ ∈ D . (13)

The left inequality states that∆N (µ) is a rigorous upper bound
for ‖u(µ)− uN (µ)‖X ; the right inequality states that∆N (µ)
is a (reasonably) sharp upper bound for‖u(µ) − uN (µ)‖X .
We further define an error bound for the output

∆s
N (µ) ≡ sup

v∈X

`(v)
‖v‖X

∆N (µ) ; (14)

for which we clearly obtain

|s(µ)− sN (µ)| ≤ ∆s
N (µ), ∀ µ ∈ D . (15)

It remains to develop appropriate constructions and associated
offline-online computational procedures for the efficient calcu-
lation of εN (µ) and β̃(µ). We consider the former [14], [19].
To begin, we note from standard duality arguments that

εN (µ) ≡ sup
v∈X

R(v;µ)
‖v‖X

= ‖ê(µ)‖X , (16)

whereê(µ) ∈ X satisfies

(ê(µ), v)X = R(v;µ), ∀ v ∈ X . (17)

We next observe from our reduced-basis expansion and affine
assumption (7) thatR(v;µ) may be expressed as

R(v;µ) = f(v)−
Q∑

q=1

N∑
n=1

Θq(µ)uN n(µ) aq(ζn, v). (18)

It thus follows from (17), (18), and linear superposition that

ê(µ) = C +
Q∑

q=1

N∑
n=1

Θq(µ) uN n(µ) Lq
n , (19)

where C ∈ X and Lq
n ∈ X, 1 ≤ n ≤ N, 1 ≤ q ≤

Q satisfy theparameter-independentPoisson(-like) problems
(C, v) = f(v), ∀ v ∈ X and (Lq

n, v) = −aq(ζn, v), ∀ v ∈ X,
respectively. We then insert the expression (19) into (16) to
obtain

ε2
N (µ) = (C, C)X +

Q∑
q=1

N∑
n=1

Θq(µ) uN n(µ)
{

2(C,Lq
n)X

+
Q∑

q′=1

N∑
n′=1

Θq′
(µ) uN n′(µ) (Lq

n,Lq′

n′)X

}
.

An efficient offline-online decomposition may now be iden-
tified. In the offline stage — performed once — we first
solve for C and Lq

n, 1 ≤ n ≤ N , 1 ≤ q ≤ Q; we then
evaluate and save the relevant parameter-independent inner
products(C, C)X , (C,Lq

n)X , (Lq
n,Lq′

n′)X , 1 ≤ n, n′ ≤ N ,
1 ≤ q, q′ ≤ Q. Note that all quantities computed in the
offline stage are independent of the parameterµ. In the online
stage — performed many times, for each new value ofµ
“in the field” — we simply evaluateε2

N (µ) in terms of the
Θq(µ), uN n(µ) and the precalculated and stored (parameter-
independent)(·, ·)X inner products. The operation count for
the online stage is onlyO(Q2N2). Again, the online com-
plexity is independent ofN and — for Q not too large —
commensurate with the online cost to evaluatesN (µ).
Finally, we turn to the development of our lower boundβ̃(µ)
for the inf-sup “constant”β(µ). To begin, we note that

β(µ) ≡

√
inf
v∈X

(Tµv, Tµv)X

‖v‖2X
, (20)

whereTµ : X → X is defined as

(Tµw, v)X = a(w, v;µ), ∀ v ∈ X. (21)

Next givenµ ∈ D and t = (t(1) · · · t(P )) ∈ RP — note t(j)
is the value of thejth component oft — we introduce the
bilinear form

T (w, v; t;µ) = (Tµw, Tµv)X +
P∑

p=1
t(p)

{ Q∑
q=1

∂Θq

∂µ(p)
(µ)

[
aq(w, Tµv) + aq(v, Tµw)

] }
(22)

and associated Rayleigh quotient

F(t;µ) = min
v∈X

T (v, v; t;µ)
‖v‖2X

; (23)

it is readily demonstrated thatF(t; µ̄) is concave int [13], and
henceDµ̄ ≡ {µ ∈ RP | F(µ− µ̄; µ̄) ≥ 0} is perforce convex.
We next introduce semi-norms| · |q : X → R+,0 such that

|aq(w, v)| ≤ Γq |w|q |v|q , ∀ w, v ∈ X, 1 ≤ q ≤ Q ,

CX = sup
w∈X

Q∑
q=1

|w|2q

‖w‖X
, (24)

for positive parameter-independent constantsΓq, 1 ≤ q ≤ Q,
andCX . (Note thatCX is typically independent ofQ, since



the aq are often associated with non-overlapping subdomains
of Ω.) We may then define

Φ(µ;µ) ≡ CX max
q∈{1,...,Q}

{
Γq

∥∥∥Θq(µ)−Θq(µ)

−
P∑

p=1

(µ− µ)(p)
∂Θq

∂µ(p)
(µ)

∥∥∥}
(25)

for µ ≡ (µ(1) · · ·µ(P )) ∈ RP . We now introduce points̄µj

and associated polytopesP µ̄j ⊂ Dµ̄j , 1 ≤ j ≤ J , such that

D ⊂
J⋃

j=1

P µ̄j , (26)

min
ν∈Vµ̄j

√
F(ν − µ̄j ; µ̄j)− max

µ∈Pµ̄j
Φ(µ; µ̄j) ≥ εββ(µ̄j) (27)

for 1 ≤ j ≤ J . HereV µ̄j is the set of vertices associated
with the polytopeP µ̄j — for example,P µ̄j may be a simplex
with |V µ̄j | = P + 1 vertices; andεβ ∈ ]0, 1[ is a prescribed
accuracy constant. Finally, our lower bound is given by

β̃(µ) = max
j∈{1,...,J} |µ∈Pµ̄j

εββ(µ̄j) . (28)

It can be readily demonstrated thatβ̃(µ) has the requisite
theoretical and computational attributes:β(µ) ≥ β̃(µ) ≥
ε β0 > 0, ∀µ ∈ D, which thus ensures well-posed and rigorous
error bounds.
We now turn to the offline/online decomposition. Theoffline
stage comprises two parts: thegenerationof a set of points
and polytopes/vertices,̄µj and P µ̄j , V µ̄j , 1 ≤ j ≤ J ; and
the verification that (26) (trivial) and (27) (nontrivial) are
indeed satisfied. We focus on verification; generation — quite
involved — is described in detail in [13]. To verify (27), the
essential observation is that the expensive terms — “truth”
eigenproblems associated withβ, (20) andF , (23) — are
limited to a finite set ofvertices,

J +
J∑

j=1

|V µ̄j |

in total; only for the extremely inexpensive — and typically
algebraically very simple —Φ(µ; µ̄j) terms must we consider
minimization over thepolytopes. Theonlinestage (28) is very
simple: a search/look-up table, with complexity logarithmic in
J and polynomial inP .
In conclusion, we can calculate a rigorous and sharp upper
bound∆s

N (µ) = ε2
N (µ)/β̃(µ) for |s(µ)− sN (µ)| with online

complexityindependentof N . These inexpensive error bounds
serve most crucially in the online stage — to choose optimal
N , to confirm the desired accuracy, to establish strict feasibil-
ity, and to control sub-optimality. However, the bounds may
also be gainfully enlisted in the offline stage — to construct
optimal samplesSN : GivenSopt

1 = µ∗1 [ DO N = 2, ..., Nmax;
Sopt

N = Sopt
N−1 ∪ µ∗N ;µ∗N = arg maxµ∈ΞF ∆s

N−1(µ); END ];
our input sampleΞF can be very large since the marginal cost
to evaluate∆s

N (µ) is very small.3

3In contrast to standard POD economization procedures [21]we never form
the rejected snapshots: our inexpensive bound∆s

N (µ) serves as a (good)
surrogate for the actual error [14].

IV. A ROBUST INVERSECOMPUTATIONAL METHOD

As mentioned earlier, in inverse problems we are concerned
with predicting the unknown parameters from the measured
outputs. The inverse problem is of course typically ill-posed.
The latter is traditionally addressed by regularization [7];
unfortunately, though adaptive regularization techniques are
quite sophisticated, the ultimate prediction is nevertheless
affected by thea priori assumptions — in ways that are
difficult to quantify in a robust fashion.
Our approach promises significant improvements. Thanks to
the rapid convergence of the reduced-basis approximation and
the offline/online computational stratagem we can, in fact,
achieve real-time response in the “deployed” stage; and, thanks
to our a posteriorierror estimators, we can associate rigorous
certificates of fidelity to our (very fast) output predictions.
These advantages are further leveraged within the inverse-
problem context, rather than regularize the goodness-of-fit
objective, we may instead identify all (or almost all, in the
probabilistic sense) system configurations consistent with the
available experimental data. Well-posedness is now reflected
in a bounded “possibility region”R that furthermore shrinks
as the experimental error is decreased.
In the context of inverse problems, our input has two compo-
nents,µ = (ν, σ), whereν ∈ Dν are characteristic-system pa-
rameters andσ are experimental control variables. The inverse
problems involve determining the true but unknown parame-
ters ν∗ from noise-free measurements{s(ν∗, σk), 1 ≤ k ≤
K}. In actual practice, due to the presence of noise in mea-
surement our experimental data will be in the form of intervals
I(εexp, σk) ≡ [s(ν∗, σk)(1− εexp), s(ν∗, σk)(1 + εexp)] , k =
1, . . . ,K, where εexp is the error in measurement. The in-
verse problem is then: Given experimental measurements
I(εexp, σk), k = 1, . . . ,K, we wish to determine the region
P ∈ Dν in which the unknown parametersν∗ must reside.
Towards this end, we define

P ≡ {ν ∈ Dν |s(ν, σk) ∈ I(εexp, σk), 1 ≤ k ≤ K} (29)

where s(ν, σ) is determined by(3) and (4). Unfortunately,
the realization ofP requires manyqueriesof s(ν, σ), which
in turn demands repeated solutions of the underlying PDE.
Instead, we shall construct a bounded “possibility region”R
such thatP ⊂ R. We first apply the reduced-basis method to
obtains±N (µ) ≡ sN (µ)±∆s

N (µ), and recall that — thanks to
our rigorous bounds (15) —s(µ) ∈ [s−N (µ), s+

N (µ)]. We may
then define

R ≡
{

ν ∈ Dν |
[
s−N (ν, σk), s+

N (ν, σk)
]
∩

I(εexp, σk), 1 ≤ k ≤ K
}

(30)

clearly, we have accommodated both numerical and experi-
mental error and uncertainty (within our model assumptions),
and henceν∗ ∈ P ⊂ R. The important point is thatR can be
constructed very inexpensively sincesN (µ) and ∆s

N (µ) are
computed only inO(N3 + Q2N2) per online evaluation.



Central to our computational inverse method is a robust inverse
algorithm to constructR: we first find one point inR; we
then conduct a binary chop at different angles to map out the
boundary ofR. In a future paper, we provide further details
and apply the method to more realistic applications.

V. I NVERSESCATTERING ANALYSIS: A SIMPLE PROBLEM

To demonstrate the various aspects of the method and il-
lustrates the contexts in which we develop it, we apply our
method to a simple (acoustics) exterior inverse scattering
problem. Inverse scattering problems has of course attracted
enormous attention due to its practical importance in various
areas of engineering and science such as medical, geophysical,
defense science. The wide range of applications has stimulated
the development of different solution approaches for inverse
scattering problems [18], [5], [6]. Our view is that the de-
velopment of numerical methods in inverse scattering analysis
should remain close to the applications and in particular should
have the numerical solution in real-time as high priority.
However, in almost cases, the techniques are quite expensive
— do not accommodate either extensive optimization or real-
time response — and do not well quantify uncertainty.
We consider the scattering of a time harmonic acoustic in-
cident waveuinc(x) = eikxT d moving in directiond by an
infinite cylinder with bounded cross sectionDo, wherek is the
wave number of the incident plane waveuinc. Assuming that
the objectDo is “sound-hard”, the scattered waveu satisfies
an acoustics exterior Neumann problem

∆u + k2u = 0 in R2\Do
, (31a)

∂

∂ν
(u + uinc) = 0 on ∂Do, (31b)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, r = |x| (31c)

Mathematically, the Sommerfeld radiation condition (31c)
ensures the wellposedness of the problem (31); physically it
characterizes out-going waves. The scattered waveu has the
following asymptotic behavior

u(x) =
eikr

√
r

u∞(d̂, d) + O

(
1
r

)
, d̂ = x/|x|, x →∞ (32)

The function u∞ defined on the unit sphereS ⊂ R2 is
known as the scattering amplitude or the far-field pattern of
the scattered wave. The Green representation theorem and the
asymptotic behaviour of the fundamental solution ensures a
representation of the far-field pattern in the form [11]

u∞(d̂) = κ

∫
∂Do

{
u(x)

∂e−ikd̂T x

∂ν
− ∂u(x)

∂ν
e−ikd̂T x

}
(33)

whereκ = i
4

√
2

πk andν is the normal to the boundary∂Do.
Since the problem is posed over indefinite domain, before
attempting numerical solutions, it is required to replace the
indefinite domain with a artificial closed boundaryΓo enclos-
ing the object. A boundary condition is then introduced on
Γo in such a way that the resulting boundary-value problem

is well-posed and its solution approximates well the restric-
tion of u to the bounded domainΩo limited by ∂Do and
Γo. For the purpose of simplicity, we shall consider simple
first-order Sommerfeld radiation condition at large distances,
though higher-order approximation may be pursued. Our weak
formulation of the exterior Neumann problem is thus: given
µ ≡ (Do, k, d, d̂), evaluateu∞(µ) = `(u(µ);µ), where
u(µ) ∈ Z is the solution of

a(u, v;µ) = f(v;µ), ∀v ∈ Z; (34)

here the forms are given by

a(w, v;µ) =
∫

Ωo
∇w.∇v̄ − k2wv̄ − ik

∫
Γo

wv̄, (35)

f(v;µ) =
∫

∂Do
−ikdT νeikxT dv̄, (36)

`(v;µ) = κ

∫
∂Do

{
u(x)

∂e−ikd̂T x

∂ν
− ∂u(x)

∂ν
e−ikd̂T x

}
, (37)

whereZ is the complex function space

Z = {v = vR + ivI : vR ∈ H1(Ωo), vI ∈ H1(Ωo)}. (38)

Here superscripts R and I denote the real and imaginary part
respectively;v̄ shall denote the complex conjugate ofv, and
|v| the modulus of v.
As a simple demonstration we consider an two-dimensional
ellipse of unknown major and minor axes(a, b) and unknown
orientationα for Do. Hence, for given geometric parametriza-
tion (a, b, α) and the incident waveuinc, the forward problem
is to find the scattered waveu and in particular the far field
patternu∞. In contrast, the inverse problem is to predict the
true but unknown parameters(a∗, b∗, α∗) from the knowledge
of the far field patternu∞(k, d, d̂, εexp) measured at several
directions d̂ with experimental errorεexp for one or several
directions d and wave numbersk. In the language of our
notation, the inputµ ∈ D ⊂ R6 consists ofk, d, d̂, a, b, andα
in which (a, b, α) are characteristic-system parameters and
(k, d, d̂) are experimental control variables; and the output
s(µ) is the far-field patternu∞. Furthermore, we shall consider
the parameter domainD ≡ Dk,d,d̂ × Da,b,α, whereDk,d,d̂ ≡
[π/12, π/12] × [0, 2π] × [0, 2π] andDa,b,α ≡ ×[0.5, 1.5] ×
[0.5, 1.5]× [0, π] (note here thata ≥ b and wave numberk is
fixed).
We now mapΩo(a, b, α) via a continuous piecewise-affine
transformation to a fixed reference domainΩ.4 This new
problem can now be cast precisely in the desired abstract
form (34), in whichΩ andZ are independent of the parameter
µ. In particular, as required, all parameter dependence now
enters through the bilinear forma(·, ·;µ). Furthermore, it is
readily demonstrated that our affine assumption (7) applies for

4The original domain is bounded by an artificial boundaryΓo and the
ellipse, whereΓo is an oblique rectangle which has the same orientation as
the ellipse and is scaled with the minor and major axes of the ellipse. The
reference domain is bounded by a square of size[−5, 5] × [−5, 5] and the
boundary of a unit circular reference object.



Q = 5. Note however that the force and output functionalsf
and` are not affine inµ, which implies that our offline-online
decomposition may break down. Fortunately, this restriction
can be readily addressed by a new empirical interpolation
approach in which we replace the nonaffine form with the
necessarily affine approximation [3]. On the other side, in
general, oura posteriorierror bounds are no longer completely
rigorous, because the empirical interpolation induces a non-
rigorous component in the error bounds. We shall articulate
the rigorous/nonrigorous facets of the error bounds shortly.
We now present basic numerical results. For the inf-sup lower
bound construction, we chooseεβ = 0.5 and thus coverD such
that (26) and (27) are satisfied with onlyJ = 13 polytopes5

(we provide in detailΘq(µ), aq(w, v), our choice of| · |q, 1 ≤
q ≤ 10, and(·, ·)X in [13]); for our reduced-basis spaces we
pursue the optimal sampling strategy described in Section III
for Nmax = 62; we present in Table 1∆N,max, ηN,ave,
∆s

N,max, andηs
N,ave as a function ofN . Here∆N,max is the

maximum overΞTest of ∆N (µ), ηN,ave is the average over
ΞTest of ∆N (µ)/‖u(µ) − uN (µ)‖, ∆s

N,max is the maximum
over ΞTest of ∆s

N (µ), and ηs
N,ave is the average overΞTest

of ∆s
N (µ)/‖s(µ) − sN (µ)‖, where ΞTest ⊂ (D)343 is a

random parameter sample of size 256. We observe that the
reduced-basis approximation converges very rapidly, and that
our rigorous error bounds are in fact quite sharp. The output
effectivities are notO(1) primarily due to the relatively crude
bounds obtained with the dual norm of the output functional.
The adjoint technique can be effectively used to improve the
error bounds for the output [19], [14]. However, effectivities
O(10) are acceptable within the reduced-basis context: thanks
to the very rapid convergence rates, the “unnecessary” increase
in N — to achieve a given error tolerance — is proportionately
very small.

N ∆N,max ηN,ave ∆s
N,max ηs

N,ave

10 3.34×10−01 4.67 2.00×10−01 33.00
20 7.15×10−02 4.15 4.66×10−02 29.75
30 1.54×10−02 5.20 9.41×10−03 25.95
40 6.09×10−03 4.50 3.63×10−03 22.56
50 2.22×10−03 4.86 1.11×10−03 28.26
60 8.27×10−04 4.39 5.02×10−04 31.38

TABLE I: Numerical results for the direct scattering problem.

We next look at the various rigorous and non-rigorous parts
of the error bound∆N (µ). For this purpose, we introduce
∆N,ave is the average overΞTest of ∆N (µ); ∆r

N,ave is the
average overΞTest of the rigorous part;∆n

N,ave is the average
over ΞTest of the nonrigorous part which is induced by the
empirical interpolation (see [13] for a detailed definition of
these quantities). We present in Table II these quantities as a
function of N . We observe that∆r

N,ave is indeed no different
from ∆N (µ), which basically indicates rigor of our error
bounds.

5The number of polytopes is reasonably small because our bilinear form
a(·, ·; µ) in fact depends only ona, b andk, and wave numberk = π/12 is
in the low-frequency regime.

N ∆u
N,ave ∆r

N,ave ∆n
N,ave

10 1.80×10−01 1.80×10−01 5.63×10−07

20 3.19×10−02 3.19×10−02 5.63×10−07

30 7.20×10−03 7.20×10−03 5.63×10−07

40 2.38×10−03 2.38×10−03 5.63×10−07

50 1.06×10−03 1.06×10−03 5.63×10−07

60 3.47×10−04 3.46×10−04 5.63×10−07

TABLE II: Rigorous and non-rigorous parts of the error bound
as a function ofN .

Turning now to computational effort, for (say)N = 40 and
any givenµ (say, (π/12, 0, 0, π, 0.5, 0.5)) — for which the
error in the reduced-basis outputsN (µ) relative to the truth
approximations(µ) is certifiably less than∆s

N (µ) (= 4.97×
10−4) — the Online Time (marginal cost) to compute both
sN (µ) and∆s

N (µ) is less than 1/126 the Total Time to directly
calculate the truth results(µ) = `(u(µ)). Clearly, the savings
will be even larger for problems with more complex geometry
and solution structure in particular in three space dimensions.
Nevertheless, even for our current very modest example, the
computational economies are very significant.
Finally, we consider the characterization of the unknown
ellipse — more precisely, the construction of possibil-
ity region R — that illustrates the new capabilities en-
abled by rapid certified input-output evaluation. In particular,
given experimental data in the form of intervalsIexp ≡
[u∞(k, d, d̂, a∗, b∗, α∗)(1 − εexp), u∞(k, d, d̂, a∗, b∗, α∗)(1 +
εexp)] measured at several angleŝd with experimental error
εexp for several directionsd of the incident wave, we seek
to identify a regionR ∈ Da,b,α in which the true — but
unknown — obstacle parameters,a∗, b∗ andα∗, must reside.
In our numerical experiments, we keep the wave number fixed
k = π/12 and use positivex and positivey directions for the
incident wave. For each direction of the incident wave, there
areJ(= 4) directionsd̂j , j = 1, . . . , J , whose value are given
by d̂j = 2π(j − 1)/J, 1 ≤ j ≤ J , at which the outputs are
collected.
We show in Figures 1a, 1b, and 1c the possibility regions for
the major and minor axes and orientiation of our ellipse —
more precisely, (more convenient) 3-ellipsoids6 that contain
the possibility regions for the minor and major axes and
orientation — for experimental error of 5%, 2%, and 1%.
As expected, asεexp decreases,R shrinks toward the exact
(synthetic) value,a∗ = 1.25, b∗ = 0.75, α∗ = 5π/8. More
importantly, for any finiteεexp, R rigorously captures the
uncertainty in our assessment of the obstacle parameters
without a priori regularization hypotheses [7]. The crucial
new ingredient is reliable fast evaluations that permit us to
conduct a much more extensive search over parameter space;
for a given εexp, R may be generated online in less than
137 seconds on a Pentium 1.6 GHz thanks to a per forward
evaluation time of only 0.028 seconds. Moreover, these pos-

6The ellipsoid can be obtained from a set of points representing the
possibility region by formulating an appropriate minimization problem that
returns the smallest ellipsoid containing the set of points [13].



(a) (b) (c)

Fig. 1: Ellipsoids containing possibility regionsR for experimental error of (a)5%, (b) 2%, and (c)1%. Note the change in
scale in the axes:R shrinks as the experimental error decreases. The true parameters are(a∗, b∗) = (1.25, 0.75) andα∗ = 5π/8.

sibility regions quantify uncertainty in both the reduced-basis
approximation and the inverse-problem assessment; we can
thus undertake appropriate real-time actions in the field with
some confidence. Of course, our search over possible obstacle
parameters will never be truly exhaustive, and hence there
may be small undiscovered “pockets of possibility” inDa,b,α;
however, we have certainly reduced the uncertainty relative
to more conventional approaches. (Needless to say, the pro-
cedure can also onlycharacterizecracks within our selected
low-dimensional parametrization; however, more general null
hypotheses can be constructed todetectmodel deviation.)
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