
A CONSERVATIVE FRONT TRACKING ALGORITHM

Vinh Tan Nguyen∗, Khoo Boo Cheong∗† and Jaime Peraire∗‡
∗Singapore-MIT Alliance

†Department of Mechanical Engineering, National University of Singapore
‡Department of Aeronautics and Astronautics, Massachusetts Institute of Technology

Abstract— The discontinuities in the solutions of systems of
conservation laws are widely considered as one of the difficulties
in numerical simulation. A numerical method is proposed for
solving these partial differential equations with discontinuities in
the solution. The method is able to track these sharp disconti-
nuities or interfaces while still fully maintain the conservation
property. The motion of the front is obtained by solving a
Riemann problem based on the state values at its both sides which
are reconstructed by using weighted essentially non oscillatory
(WENO) scheme. The propagation of the front is coupled with
the evaluation of ”dynamic” numerical fluxes. Some numerical
tests in 1D and preliminary results in 2D are presented.

I. I NTRODUCTION

It is well known that solutions to problems of conservation
laws can develop discontinuities and the presence of these
discontinuities have important implications for various appli-
cations. To solve these problems, the front tracking methods
have been developed which treat the discontinuities as interior
boundaries coupled to finite volume computation for the
separated regions.

The front tracking methods use lower dimensional grids
called front, to represent the discontinuities in the numerical
solutions. The propagation of the fronts is obtained by require-
ment the jump condition to be satisfied across the boundary.
Thus the propagation speed is computed to advance the front
in every time step. This can essentially be done by solving
the Riemann problem between the states on both sides of
the fronts. To ensure the conservative property of the scheme,
the propagation of the front is coupled with the ”dynamics”
numerical flux.

In the last few years, a number of conservative front tracking
methods has been developed as found in [1], [2], [3], [5],
[4] and the references cited therein. In [1] James Glimm
et al. presented a scheme which tracks the discontinuities
sharply while preserving the conserved quantities at a discrete
level. At the discontinuities they utilized the extrapolated state
values at the front. The scheme has high order of numerical
accuracy in compared to many algorithms in the literature.
It was further developed and modified in [2] with improved
accuracy and conservation. A general problem of all the front
tracking schemes is the topological handling of the front. In
[2], the front is handled in a way which looks simple in one
dimensional space but it becomes much more complicated in
higher dimensional space. Another attempt to handle the front
is presented in [4] where it is extended to unstructured mesh
in the frame of finite volume method. The location, geometry
and propagation of the fronts are described by the level set.

In this paper a conservative front tracking method is pro-
posed for solving the partial differential equations with dis-
continuities in the solution. It will track these discontinuities
or interfaces in some problems sharply and fully maintain the
conservation property. The motion of the front is obtained by
solving a Riemann problem. The propagation of the front is
coupled with the evaluation of ”dynamic” numerical fluxes.
The grid moves with interface and therefore it has to be
remeshed to align with the propagation of the front. Mesh
regeneration is rather simple in one dimensional problem, and
it is done by using a moving mesh generator available in higher
dimensional space. The Riemann problem at the interface is
solved exactly based on the state values at its both sides which
are reconstructed by using weighted essentially non oscillatory
(WENO) scheme. The present paper is organized as follows.
In section 2, a conservative tracking scheme is introduced, the
concept of dynamic numerical fluxes, propagation of the front
and Riemann problem in one dimensional space are discussed.
The scheme in higher dimensional space is presented in sec-
tion 3 including mesh regenerator and interface propagation.
Finally the conservative front tracking is illustrated in Section
4 by a number of numerical applications including shock tube
problems, multi-fluid flow examples in one dimension and
some preliminary results for problem in two dimensions.

II. T HE CONSERVATIVE FRONT TRACKING

Consider a conservation law equations as follows

∂w

∂t
+∇ · f(w) = 0 (1)

The space integral form of the above conservation law for a
cell with moving boundary is written as

∂

∂t

∫

V

wdV +
∮

S

(fn(w)− wvn)dS = 0 (2)

where S is the boundary of the cell V,fn(w) andvn are the
component off(w) and velocityv in the direction of outward
normal to S, respectively.(fn(w) − wvn) is called dynamic
numerical flux to separate from the normal flux which is not
related to the moving velocity of the boundary. The Rankine-
Hugoniot condition

[fn(w)− vnw]RL = 0 (3)

is applied across the cell boundary.
For simplicity we will discuss the algorithm based in one

dimensional space. The conservative front tracking propa-
gates the interface by solving the Riemann problem at the

interface. Using the reconstructed states from the left and
right of the front which are obtained by weighted essentially
non-oscillatory (WENO) reconstruction [7][8], the Riemann
solution will give the propagation speed of the interface. In
one dimensional space, the position of interface is described
by α(t) at time t. Given a uniformly underlying grid, we mesh
the computational domain in a grid that take the front as a
grid point. For example, the frontα(t) is between the cell
centers of element(i) and (i + 1) in the underlying grid, the
computational grid is formed exactly as the underlying grid
except for cell(i) and (i + 1) where the interface position
becomes a grid point. We denote

Wi =
1

|∆xi|
∫

∆xi

w(x)dx (4)

and

Fn+1/2 =
1

∆t

∫ tn+1

tn

(fn(u)− vnu)dx (5)

as the cell average value of celli and the flux passing through
a cell interface respectively. The finite difference equation for
cells connected to the front is written as

∆xn+1
i W

n+1

i = ∆xn
i W

n

i −∆t[Fi+1/2 − Fi−1/2] (6)

∆xn+1
i+1 W

n+1

j+1 = ∆xn
i+1W

n

i+1 −∆t[Fi+3/2 − Fi+1/2](7)

whereWi is the numerical approximation toWi. To update
the states, we have to solve the Riemann problem at the cell
interface to get the flux as well as the interface velocity.

At the cell interfaces, the Riemann problem is as follows:

W =
{

WL if x < α
WR if x > α

(8)

whereWL andWR are reconstructed by using WENO recon-
struction. The Riemann problem can be solved approximately
as in [10]. Other Riemann solvers can be found in Toro[11].
The solutions to Riemann problem consist of the speed v, the
constant states on both sides of the interface and the flux going
through the cell interface. Only two cells that are adjacent to
the front have the moving boundary; the rest of the cells are
fixed and therefore the interface velocity is equal to zero. The
front speedvα has to satisfy the Rankine-Hugoniot condition
(3). Then the interface is propagated by solving the ODE

dα

dt
= vα. (9)

Therefore, the interface is advanced by just simply

αn+1 = αn + vα∆t (10)

or this can be formulated with a higher order stencil like
Runge-Kutta for example. After the propagation of the in-
terface, there are two case scenarios. Within the time interval
[tn, tn+1] the interface could pass through the cell center or it
may not. In the case of the interface not passing through cell
center we still keep the mesh and proceed to the next time
step. However mesh regeneration must be done for the case
of the interface passing through cell center. If a cell is too

small then we merge it with its neighbor, and we will split a
large cell into two different cells if necessary. The interface
is assumed to move toward its right from cell i to cell (i+1)
passing through the cell centerxi+1/2 then

V̈ n+1
i+2 = V n+1

i+2 + V n+1
i+1 (11)

V n+1
i = V̈ n+1

i + V̈ n+1
i+1 (12)

whereV m
i = ∆xiW

m
i , m = n, n + 1. In this case, cell (i+1)

and (i+2) are merged to form cell i+2 and cell i is split into
cell i and (i+1) correspondingly. In splitting cell i to cell i
and (i+1), a constant interpolation is employed in this current
work,

ün+1
i = ün+1

i+1 = V n+1
i /∆n+1

i x (13)

Basically the front tracking algorithm is proceeded as fol-
lows:

• Reconstructing the states at the cell interfacesWi+1/2 by
using WENO reconstruction on irregular grid formed in
the corresponding interface position.

• Solving the Riemann problems at the cell interfaces
in which an approximate Riemann solver, e.g. Roe’s
solver, can be used at the normal cells and an exact
Riemann solver has been used at the interface. Solutions
to Riemann problem consist of the speed s, the constant
states on both sides of the interface and the flux going
through the cell interface.

• Advancing in time for both interface position and states.

III. C ONSERVATIVE TRACKING IN 2D

Consider the system of conservation laws (1) in two dimen-
sional space

∂W

∂t
+∇ · F (W) = 0 (14)

defined by triangulationΩ. The interface is a curve described
by a set of grid points. For a triangle∆i in Ω, the conservation
law is written as

|∆̃i|W̃i = |∆i|Wi −
∫

∂∆i

(Fn(W)−Wvn)dS (15)

whereWi is the cell average value ofW (x, y) over triangle
∆i, ∆̃i is the triangle i after a time step∆t and its associated
cell average valuẽWi.

The line integral in (15) is the dynamic numerical flux in 2D
and it can be obtained by using q-point Gaussian quadrature
formula
∫

∂∆i

(Fn(W)−Wvn)dS = |∂∆i|
q∑

j=1

ωj(Fn(W (Gj))−W (Gj)vn(Gj))

(16)
in which the valuesW (Gj) can be reconstructed fromWi us-
ing WENO reconstruction, in this case a WENO reconstruction
for irregular mesh is used [9].

A. Numerical fluxes

The flux F (W (Gj)) is approximated by a numerical flux,
either Lax-Friedrichs or Roe or any monotone flux [14] in
the normal direction to the boundary. In this work, Lax-
Friedrichs and Roe’s flux are used. One disadvantage of
Roe’s linearization is that the resulting approximate Riemann
solution consists of only discontinuities, with no rarefaction
waves which can lead to a violation of the entropy condition.
Therefore an entropy fix is needed to be applied to ensure an
entropy satisfied solution [14]. Similarly as in one dimensional
case, only the elements adjacent to the front have the moving
boundary, the rest is considered as fixed boundary elements.

B. Interface velocity

The velocity at interface nodal points has to be specified
so that the interface could be updated step by step. Given an
unstructured mesh, on each edge, the values of velocity can
be interpolated by using WENO scheme. In general, a WENO
reconstruction is used to interpolate the velocity from the left
and right side of G,uG

L and uG
R respectively. The moving

velocity can be obtained by applying the Rankine-Hugoniot
condition as the jump condition between the left (L) and right
(R) states at G:

[−→F (U)−−→v U]RL .−→n = 0 (17)

where−→v and−→n are the vectors of interface velocity at G and
normal vector respectively. The above equation (17) can be
rewritten in the following form:

[Fn(U)− vnU]RL = 0 (18)

Therefore the normal velocity of the interface at G,vn can be
specified as:

vn =
Fn(UR)− Fn(UL)

UR − UL
(19)

While the interface velocity at nodal points is explicitly known
in the linear problems, it has to be specified by interpolated
from the velocity of other points on the interface in the
nonlinear case. In the case of a nodal point is an intersection
of edges in the mesh as shown in the Figure (1), the value of
velocity at node i−→v i is constructed from the left and right
(vn1 andvn2) so that:

−→v i.−→n 1 = vn1 (20)
−→v i.−→n 2 = vn2 (21)

Fig. 1. Velocity at nodal points on the interface

C. Moving mesh generation

A mesh is generated using the iterative mesh generation
technique in which all the nodes of the interface is marked and
stored in the set INTERFACE. Now, the interface is moved
by a distanceδ(x, y) and we have to re-mesh the domain
correspondingly. In [12][13], a mesh generator is introduced
to create a mesh in which the geometry is described implicitly
by its distance function. The node positions are obtained
by solving for equilibrium in a truss structure and using
Delaunay triangulation to reset the topology in every step. All
the interface nodes are considered as fixed nodes at the new
locations and we use the mesh generator to regenerate the grid.
To improve the mesh after the interface moving, we assign
forces in the mesh edges and solve for force equilibrium at the
nodes. The force in an edge is proportional to the difference
between the actual lengthl of the edge and its desired length
l0 which is set by the mesh sizeh(x, y) evaluated at the mid
point of the edge. There are some alternatives for the force
function f(l, l0) in each edge and a model of linear spring
is used to describe the force function as the repulsive forces
[16]. To solve for the force equilibrium, we sum the forces
for all the nodesp(x, y) to get F (p) and obtain a nonlinear
system of equations asF (p) = 0. We can find the equilibrium
positions by solving for the stationary solution of the system
of ODEs

dp

dt
= F (p), t ≥ 0 (22)

using forward Euler. After each Euler step if there is any point
which moves outside the geometry, it is projected back to the
boundary by applying a reaction force normal to the boundary.

During the iterations, we always want to maintain a good
connectivity by updating the triangulation. In the original mesh
generator this is done by Delaunay triangulation, but it could
be complicated and inefficient. A more robust and efficient
triangulation based on the topology changes is implemented.
The iteration is terminated when the mesh of sufficiently high
quality is obtained.

1) Edge Flips: Instead of using Delaunay triangulation,
we use the edge flipping technique [17] to ensure the good
connectivity in the mesh that a circumcircle of any triangle
should not contain any other triangles in the mesh. As in
the Figure (2), triangle (b) is in circumcircle of triangle (a),
thus we do the edge flip between two triangles and update
the values of velocity accordingly. For simplicity, we apply a
constant interpolation to updateu, average values of velocity
at the corresponding triangles.

Fig. 2. Edge flip: (a) Initial triangles a and b with average valuesua
0 andub

0,
(b) After flipping and updating ofua

0 and ub
0, (c) Final mesh with updated

ua
n andub

n

While the grid is regenerated, there are some circumstances
in which we need to add or remove mesh points. Based on
the qualitative measures for triangles [15], all the bad or
degenerate triangles must be removed from the mesh one or
another way. For example, if an edge is too long compared to
the desired value then we need to split it into two edges by
adding one point or we merge it with a neighboring edge if it
is too short.

2) Splitting: It is sometimes necessary to add points to the
mesh if there is an edge which is too long. We check for all
the meshes. If there is any edge which is too long compared
to the desired value based on value ofh(x, y) at its midpoint
then the midpoint becomes a mesh point and the element is
split into two elements with the same average values ofu as
the initial element.

Fig. 3. Splitting

3) Merging: If an edge is too short in comparison to the
expected value, we will merge it with a neighboring edge as
in Figure (4). Considering all the edges connected to the short
one, we merge it with the one that make the largest angle (the
most obtuse) to it. We have to delete the merged node and
move all the edges connected to that node to its neighboring
node. The collapsing elements which take the merged node
and its neighbor as two vertices are removed as well. It is
more complicated to update the average values of velocity in
this case than the others. A constant interpolation may be an
option but it may not work well under all circumstances.

Fig. 4. Merging: (a) Initial mesh; (b) After merging

There also the case whereby a node in the interior domain
approaches the boundary and makes the element to be ’flat’.
To prevent a node from moving to the boundary we will add a
linear string to the nodes that are closed to the boundary. The
repulsive forces are produced to keep them separated from
the boundary. During the meshing iterations, if the distance
of a node from the boundary as measured by the distance
function is small, for example0.65hi in our present algorithm,
a repulsive force is added at that node in the normal direction

to the boundary, i.e.

fB = (d(x, y)− 0.65hi), (23)

wherehi = h0.h(x, y). The the gradient of distance function
at a point∇d(x, y) give the negative direction to the closest
boundary and it could be computed numerically as

∇d(x, y) = (
d(x + dε, y)− d(x, y)

dε
,
d(x, y + dε)− d(x, y)

dε
)

(24)
wheredε = 1.0e−12. Alternatively, the quality of the triangle
can be specified by using other criteria such as aspect ratio,
smallest angle and others in [17].

D. Conservative solution-updating

After the remeshing, it can be considered that there is only
node movement in the whole region and we have to update
the values conservatively. In [6], a conservative interpolation
is proposed to update the state values in the new grid from
the original one.

Assume thatui is the cell average ofu(x, y) over the
triangle∆i in the gridΩ

ui =
1
|∆i|

∫

∆i

u(x, y)dxdy. (25)

In the new gridΩ̃, all the points (x,y) in triangle∆i move to
(x̃, ỹ) in triangle∆̃i andũi is the cell average ofu(x̃, ỹ) over
∆̃i,

ũi =
1
|∆̃i|

∫

∆̃i

u(x̃, ỹ)dx̃dỹ. (26)

With small disturbances(cx(x, y), cy(x, y),

(x̃, ỹ) = =(x, y) = (x− cx(x, y), y − cy(x, y)) (27)

The conservative interpolation is given as

|∆̃i|ũi = |∆i|ui − |∂∆i|
q∑

j=1

ωjc
j
nu(Gj) (28)

where cn = cxnx + cyny with (nx, ny) as the unit normal
vector. The above interpolation is conservative in the sense
that ∑

j

|∆̃j |ũj =
∑

j

|∆j |uj . (29)

IV. N UMERICAL APPLICATIONS

The front tracking method has been developed without any
preference of specific kind of discontinuities, in this section a
number of examples are shown to demonstrate the scheme
including shock wave, material interface and others. Some
preliminary results of convection problems in 2D are also
shown.

Fig. 5. Sod’s problem, density profile at t=0.15s, using3rd order WENO
reconstruction and2nd order Runge-Kutta, 200 grid points

A. Euler equations in one dimensional space

The compressible flow is described by the Euler equations

∂W/∂t + F (U)x = 0 (30)

where W=




ρ
ρu
E


 , F(W) =




ρu
ρu2 + p
u(E + p)


 expressing the

conservation of mass, momentum and energy of the fluid. The
thermodynamics properties are given by the equation of state
(EOS). For ideal gas the equation of state is simply written as
follows

ρe =
p

γ − 1
(31)

In solving a problem with the presence of water, a more
general EOS for stiff fluids has been used:

ρe =
p + γp∞

γ − 1
(32)

wherep∞ is the stiffness parameter. The above stiff EOS could
be considered as simplification of the more complexMie −
Grüneisen EOS:

p = p∞(ρ) + γ(ρe− e∞(ρ)) (33)

wherep∞ = 0 for ideal gas.
1) Contact discontinuity tracking:In these examples a con-

tact discontinuity is tracked by using the above conservative
front tracking algorithm. Let’s consider the two well-known
shock-tube problems normally called Sod’problem and Lax’s
problem. In the computational domain [0,1] the discontinuity
is initially at 0.5, p∞ = 0.0 and γL = γR = 1.4. The left
and right states are given asρL = 1.0, pL = 1.0, uL =
0.0; ρR = 0.125, pR = 0.1, uR = 0.0 for Sod’s problem
and ρL = 0.445, pL = 3.528, uL = 0.698; ρR = 0.5, pR =
0.571, uR = 0.0 for Lax’s problem. The results of density at
time t = 0.15 are shown in Fig 5 and Fig. 6 with the exact
solution as the solid line. The 3th order WENO reconstruction
and 2nd order Runge-Kutta have been used.

Fig. 6. Lax’s problem, density profile at t=0.15s, using3rd order WENO
reconstruction and2nd order Runge-Kutta, 200 grid points

2) Material interface tracking:The front tracking method
is now used to track the material interface between two fluids.
This problem is taken from [18]. Consider a gas-gas problem
with different γ and p∞ = 0 as a pure shock initially at
0.05 passing through the interface located at 0.5. The left,
middle and right states are described asγL = 1.4, γM =
1.4, γR = 1.67;ρL = 1.3333, ρM = 1.0, ρR = 0.139;pL =
1.5 × 105, pM = pR = 1.0 × 105;uL = 0.3535

√
105 and

uM = uR = 0.0. The result of density profile at t=0.0012 is
plotted in Figure 7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 7. Gas-gas problem, density profile at t=0.0012s, using3rd order WENO
reconstruction and2nd order Runge-Kutta, 200 grid points

Considering a problem of shock impacting a water interface.
The strength of the gas shock ispL/pM = 100.0. The shock is
initially at 0.96 where the state behind the shock ispL = 107,
ρL = 8.266055, uL = 2494.97 and ahead of the shockpL =
105, ρL = 1.0, uM = 0.0, γ = 1.25, p∞ = 0.0. The interface
is initially located at 5.0 with the water on its right where
pR = 105, ρR = 103, uM = 0.0, γ = 7.15, p∞ = 3.309108.
The density profile is shown in Fig. 8 at time t=0.003, in
which the 3rd order WENO reconstruction has been used. It
can be seen from the result that there is no oscillation near
the interface which is captured very well and sharply.

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

900

1000

x

D
en

si
ty

Fig. 8. Gas-water problem, density profile at t=0.003, conservative front
tracking using 3rd order WENO and 2nd order RK

B. Convection problems in 2D

Consider a convection problem

∂Φ
∂t

+ U∇Φ = 0 (34)

whereU = (−y,−x) and(x, y) ∈ [−1; 1]×[−1; 1] with initial
condition as follows

Φ0(x, y) =
{

1.0 if x2 + y2 ≤ 0.4
0.0 otherwise

(35)

Initial condition and result at t=0.6 are shown in Figure (9)
where the initial circle is deformed to become an ellipse. It can
be seen that the mesh generator can maintain the quality of
the grid in this case and the conservation property is preserved
very well.

Consider another convection problem whereU = (y,−x)
and(x, y) ∈ [−1; 1]× [−1; 1] with initial condition as follows

Φ0(x, y) =
{

1.0 if (x− 0.3)2 + (y − 0.3)2 ≤ 0.4
0.0 otherwise

(36)
This problem is similar to the rotation of a circle about the
origin. The result at t=2.0 is plotted in the Fig. 10 together
with the initial condition. While the circle is moving, the mesh
is regenerated with preserved good quality and the velocity is
updated conservatively.

V. CONCLUSION

In this paper, a fully conservative front tracking algorithm
is presented for solving the equations of conservation laws
with discontinuities. The scheme has been tested with several
numerical examples in one dimension where the contact be-
tween gas-gas and gas-water evolves in the presence of shock
waves. We have applied the scheme to two dimensions and
some computed results were presented. It has been shown that
the method works well and is able to capture the front very
sharply. More importantly the scheme is conservative. The
work is currently extended to handle the nonlinear, Euler’s
equations in two dimensions. Developing the scheme to three
dimensions is the future extension.

REFERENCES

[1] James Glimm et al.,Conservative front tracking and level set algorithms,
2001. Proceedings of the National Academy of Sciences (PNAS), Vol.
98, pp. 14198-14201.

[2] James Glimm et al.,Conservative front tracking with improved accuracy,
2003. SIAM J. Numer. Anal, Vol. 41, No. 5, pp. 1926-1947.

[3] James Glimm et al.,Simple front tracking, 1999. Comtemporary
Mathematics, Vol. 238, pp. 133-149.

[4] O. Gloth,D. Hanel,L. Tran,R. Vilsmeier,A front tracking method on
unstructured grids, 2003. Computers and Fluids, Vol. 32, pp. 547-570.

[5] Mao De-Kang,Toward front tracking based on conservation in two
dimensional space, 2000. SIAM J. Sci. Comput., Vol. 22, No. 1, pp.
113-151.

[6] Huazhong Tang and Tao Tang,Adaptive mesh methods for one- and two-
dimensional hyperbolic conservation laws, 2003. SIAM J. Numer. Anal,
Vol. 41, No. 2, pp. 487-515.

[7] C.W. Shu, Essentially non-oscilatory and weighted essentially non-
oscilatory schemes for hyperbolic conservation laws. in Adavnced
Numerical Approximation of Nonlinear Hyperbolic Equations, editted
by A.Quateroni,Editor,Lecture Notes in Mathematics, CIME subseries
(Springer-Verlag, Berlin/New York); ICASE Report 97-65.

[8] C.W. Shu and S. Osher,Efficient implimentation of essentially non-
oscilatory shock capturing schemes, 1989. J. Comput. Phys., Vol. 83,
pp. 32-58.

[9] Changqing Hu and Chi-Wang Shu,Weighted essentially non-oscilatory
schemes on triangle meshes, 1999. J. Comput. Phys., Vol. 150, pp.
97-127.

[10] Roe PL,Approximate Riemann solvers, parametter vectors and differ-
ence schemes, 1981. J. Comput. Phys., Vol. 43, pp. 357-372.

[11] Toro E.F., Riemann Solvers and Numerical Methods for Fluid Dynam-
ics, 1999. Springer-Verlag. Second Edition, 624 pages.

[12] P.-O. Persson, G. Strang,A Simple Mesh Generator in Matlab, 2004.
SIAM Review, Vol. 46 (2), pp. 329-345.

[13] P.-O. Persson, G. Strang,Circuit Simulation and Moving Mesh Gener-
ation, 2004. Proc. of Int. Symp. on Comm. and Inform. Tech. 2004
(ISCIT 2004).

[14] Randall J. Leveque,Numerical Methods for Conservation Laws, 1992.
Lectures in Mathematics, Birkhauser.

[15] David A. Field,Qualitative measures for initial meshes, 2000. Int. J.
Numer. Meth. Engng., Vol. 47, pp. 887-906.

[16] C. Wang et al. ,Elastic mesh technique for 3D BIM simulation with an
application to underwater explosion bubble dynamics, 2003. Computers
& Fluids, Vol. 32, pp. 1195-1212.

[17] Herbert Edelsbrunner,Geometry and Topology for Mesh Generation,
2001. Cambridge University Press.

[18] Ronald P. Fedkiw, Tariq Aslam, Barry Merriman, Stanley Osher,A non-
oscillatory Eulerian Approach to interfaces in multimaterials flows (the
ghost fluid method), 1999. J. Comput. Phys, Vol. 152, pp. 457-492.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9. Mesh on the left with the interface as dotted points and velocity on the right. From top to bottom, result at t=0.0,0.6

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 10. Rotation problem: mesh on the left with the interface as dotted points and velocity on the right. From top to bottom, result at t=0.0,2.0

