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Abstract. Extensive imaging is routinely used in brain tumor patients
to monitor the state of the disease and to evaluate therapeutic options.
A large number of multi-modal and multi-temporal image volumes is
acquired in standard clinical cases, requiring new approaches for com-
prehensive integration of information from different image sources and
different time points. In this work we propose a joint generative model
of tumor growth and of image observation that naturally handles multi-
modal and longitudinal data. We use the model for analyzing imaging
data in patients with glioma. The tumor growth model is based on a
reaction-diffusion framework. Model personalization relies only on a for-
ward model for the growth process and on image likelihood. We take
advantage of an adaptive sparse grid approximation for efficient infer-
ence via Markov Chain Monte Carlo sampling. The approach can be used
for integrating information from different multi-modal imaging protocols
and can easily be adapted to other tumor growth models.

1 Introduction

Processes related to tumor growth can be modeled at different scales rang-
ing from signaling at sub-cellular level, via multi-cellular processes determin-
ing metabolic properties of the tumor, to the gross bio-mechanical behavior of
tumor-affected tissue at a macroscopic scale. Tumor models in medical image
analysis rely almost exclusively on information from morphologic images and
consequently focus on the macroscopic phenomena of tumor evolution. An im-
portant class of macroscopic tumor models is based on the reaction-diffusion
equations [1–8]. In this paper, we propose an efficient Bayesian framework for
image-based inference in this type of tumor growth models.

Tumor models are used to describe effects a lesion has on surrounding healthy
tissue. Modeling this effect helps to improve inter-subject image and atlas reg-
istration [8–10] and to improve tissue segmentation in the presence of the le-
sion [11, 12]. As the tumor location it is not consistent across patients, tumor



shape is often employed for constructing spatial priors. For example, a large
number of simulated tumors can be used to learn characteristic tumor-induced
deformations [13]. For data of individual patients growth models also help to
estimate deformation fields and tissue perturbations [8, 10]. Most of these meth-
ods take a static approach to modeling tumors for removing the tumor-induced
effects from the analysis of the subject’s brain itself.

Other biophysical tumor models describe explicitly the evolution of the le-
sion. For glioma most such models follow a reaction-diffusion framework [1].
They assume an infiltrative growth of the tumor cells, may consider differences
in cell diffusion in white and gray matter [2], and model locally anisotropic migra-
tion patterns by integrating information from diffusion tensor images (DTI) [3].
Some models also include the mechanical effect of the lesion on surrounding
structures by modeling the interaction between the tumor mass and the invaded
tissue [3, 5], or couple the growth dynamics with phenomenological image models
for Gadolinium uptake and changes in DTI [6]. The primary application for these
image-based dynamical tumor models is in simulating tumor growth, either to
analyze macroscopic patterns of disease progression [4], or to generate realisti-
cally appearing tumor images to be used for validation of tumor segmentation
methods [6].

Many dynamical tumor models could serve as a framework for integrating
complex information from different image modalities and longitudinal data sets.
But unlike the static whole brain models, the image-based personalization re-
mains challenging for most forward simulators. As a consequence, some studies
only provide qualitative measures for analyzing lesions and their progression [14],
employ strict assumptions on the relationship between the tumor cell density
and image observation [2], or focus on a theoretical treatment of the inverse
problem under the assumption of having appropriate observables available at a
later stage [5]. The PDE-constrained optimization approach in [5] relates the
tumor growth model to landmark-based registration using a reaction-diffusion-
advection model. This approach is similar to the whole brain modeling [8, 10,
13], but depends critically on the tumor-tissue interaction model. Alternatively,
a traveling wave approximation of the reaction-diffusion model can be used to
estimate model parameters from the temporal evolution of the tumor front [7].
Unfortunately, this approach only provides the speed of growth. Furthermore, all
of the previous methods focus on point-estimates of the process. This presents
significant challenges in presence of noisy observations and uncertainty in evo-
lution models.

In this paper, we develop a novel approach for personalizing tumor models,
for integrating multi-modal data, and for quantifying uncertainty. We formulate
a generative model that includes a biophysical tumor growth model and sta-
tistical observation models for different image modalities. We devise an efficient
inference scheme based on the forward model and applicable in high-dimensional
observation settings. We demonstrate the resulting method in experiments with
both synthetic and clinical patient data. We envision that a joint tumor and



Fig. 1. Joint process and observation model.

The physical model defines the state vari-

able u as a function of model parameters θp

and initial conditions θx and θt. The imaging

models relate u to the image observations ym

and ys, representing functional maps and tu-

mor segmentations, respectively. Variables are

represented by circles, parameters are shown

as squares. We estimate the model parame-

ters θp to characterize the state of disease vis-

ible from images y.

image modeling will close the gap between functional image interpretation and
disease modeling, and will provide new directions for therapy optimization.

2 Tumor growth model

Our approach includes a physical process model that describes the progression
of the disease through the evolution of the tumor cell concentration u and a
probabilistic imaging model that captures the relationship between the latent
state u and the image observations y. Figure 1 presents the full graphical model
described in this section.

2.1 Physical process model

We let u = (u1, . . . , uI)T be the latent state variables where ui ∈ [0, 1] is the
tumor cell concentration in voxel i (1 ≤ i ≤ I). We model the temporal evolution
of the tumor as an inhomogeneous anisotropic diffusion governed by the Fisher-
Kolmogorov equation [1]:

∂u
∂t

= ∇x(D∇xu) + ρ · u(1− u), (1)

where ∇x represents the spatial derivative operator. The equation describes the
growth of a glioma as an infiltrative process with diffusivity tensor D and self-
limiting growth with proliferation rate ρ. We further assume that D = D · D̂,
where D̂ is an patient-specific diffusion tensor, observed via DTI, and D is a
global diffusivity parameter [3]. We apply Neumann border conditions, and as-
sume that tumor cells migrate in the white and gray matter only, with higher
diffusivity in the white matter (Dw � Dg). To personalize the model, we con-
struct estimates of the model parameters θp = {D, ρ} individually for every
patient.

By integrating Eq. (1) over time – starting from the initial state u(t = 0)
when the first image of the tumor was acquired – we obtain a 4D functional
model U(x, y, z, t) that describes the evolution u(t) at any time point t. We
choose a parametric representation for the initial state by placing a seed uinit in
a voxel located at θx = {x, y, z} and by growing the tumor for the time interval
θt. We form the deterministic tumor evolution model:

p(u(t)|θx, θt, θp) = δ
(
U(x, y, z, t; θx, θt, θp)− u(x, y, z, t)

)
, (2)



Fig. 2. Example relationships between image information y (top) and tumor cell den-

sity u (bottom). A: actual T1gad image and the schematic tumor cell distributions

along the line indicated by the arrow in the top row. B, C: exemplary modalities where

only the visible tumor segmentation ys can be correlated with specific values uc of the

state variable u. D: exemplary modality where all entries of the functional map ym

can be correlated with the latent state variable u.

where δ is Dirac’s delta indicating that u is an exact solution of the func-
tional U(x, y, z, t). We choose to use a deterministic model without a stochastic
component in Eq. (1) or noise term in Eq. (2) as it represents a stronger con-
straint on the growth process. We incorporate non-deterministic behavior into
our framework via a probabilistic model of the imaging process, as described
below.

2.2 Imaging models

Observations y = (y1, . . . , yI)T are acquired at each voxel i at specific times t,
representing partial observations of the process. We evaluate every image volume
y(t) with the corresponding state vector u(t). For notational simplicity we drop
the time index in the imaging models below. As illustrated in Fig. 2, we assume
that there are two different types of observations that can be related to u:
continuous functional maps and binary tumor segmentations which are the most
common observation.

Functional maps Functional maps ym contain continuous values ymi ∈ R. They
represent imaging modalities with functional parameters that can be directly
correlated with the latent physiological variable u using a (possibly non-linear)
forward observational operator F . Formally,

p(ym|u, θmy ) =
∏
i

p(ymi |u, θmy ) =
∏
i

N (ymi ;µi, σ2
m), (3)

where N (·;µ, σ2) denotes a normal distribution with mean µ and variance σ2.
Eq. 3 represents a noisy observation of

µi = F (bc · u)i. (4)



Fig. 3. Parameter space of the tumor model with tumor cell diffusivity D and prolif-

eration rate ρ. Left: Parameterization for high- and low-grade glioma [4, 16]. The speed

of growth v can be obtained from times series of images [7]. It provides complemen-

tary information to tumor shape. Right: Shapes of equally large tumors for different

parameterizations. Isolines of u = .05 and u = .6 are shown in yellow. We use the

information from both time series and tumor shape jointly to characterize infiltrative

and proliferative behavior of the tumor.

We let θmy = {bc, σ2
m} be the parameters of this model, where bc is the coefficient

in a linear model relating u and ym in a first order approximation, relevant
for example for magnetic resonance spectroscopic images (MRSI). A function
F (·) could be, for example, a known nonlinear smoothing and subsampling op-
erator, modeling the point spread function of the imaging process and different
spatial resolution of ym and u. Examples for ym include metabolic maps from
MRSI [15], or apparent diffusion coefficient maps from DTI.

Binary segmentations Tumor segmentations contain discrete labels ys, ysi ∈
{0, 1}. Since tumor outlines are commonly associated with constant tumor in-
filtration, we model observation ys for a given tumor cell concentration u as a
Bernoulli random variable:

p(ys|u, θsy) =
∏
i

p(ysi |u, θsy) =
∏
i

α
ysi
i · (1− αi)

1−ysi , (5)

where αi is the probability of observing characteristic tumor-induced changes:

αi = .5 + .5 · sign
(
ui − uc

)(
1− e−

(ui−u
c)2

σ2
s

)
, (6)

which is a double logistic sigmoid function with parameters θsy = {uc, σ2
s}. We

essentially assume that the tumor cell infiltration is invisible below the thresh-
old uc but modifies the image signal in a predictable way after surpassing uc [2].
Parameter σ2

s transforms the hard threshold into a smoother decision, also re-
flecting the uncertainty in the threshold uc.

2.3 Joint model

Combining the deterministic tumor growth model in Eq. (2) with the image
observation models in Eqs. (3)–(5) and letting Y = [y1, . . .yk] denote the col-



lection of all k image observations acquired at N time points tn, we obtain

p(Y|θx, θt, θp, θy) =
∏
tn

p(y(tn)|θx, θt, θp, θy)

=
∏
tn

∫
u(tn)

p(y(tn)|u(tn), θy)p(u(tn)|θx, θt, θp)du(tn)

=
∏
tn

∫
u(tn)

∏
k

p(yk(tn)|u(tn), θy)p(u(tn)|θx, θt, θp)du(tn),(7)

assuming that all observations are conditionally independent given the latent
state u. We adapt a factored prior p(θx, θt, θp, θy) = p(θx)p(θt)p(θp)p(θy) and
choose uniform distributions for all parameters. Similar to [4], we choose the
range for the evolution parameters θp as illustrated in Fig. 3. We use experimen-
tal evidence [2, 15] to set the range of the imaging parameters θy and use the
life expectancy of a healthy person to set the range for the temporal parameter
θt. We assume that the tumor started growing from a location within the hyper-
intense areas in T2 MRI at t = 0 to set a prior on the spatial parameter θx. We
obtain the joint posterior distribution of the parameters using Bayes’ rule:

p(θx, θt, θp, θy|Y) ∝ p(Y|θx, θt, θp, θy)p(θx, θt, θp, θy), (8)

from which we compute the posterior distribution of θp via marginalization

p(θp|Y) =
∫
θx

∫
θt

∫
θy

p(θx, θt, θp, θy|Y)dθxdθtdθy. (9)

p(θp|Y) = p(D, ρ|Y) is the desired quantity of diagnostic interest in our appli-
cation.

3 Inference

The posterior distribution of θp = {ρ,D} allows us to summarize a large set of
image observations y through diffusivity D and cell doubling rate ρ (Fig. 3).
We aim at visualizing p(θp|Y) by drawing samples from it using an efficient
Markov Chain Monte Carlo (MCMC) sampling strategy. MCMC constructs a
random walk through the parameter space which converges towards the solution.
The method avoids intractable integrals in Eq. (7). Unfortunately, the repeated
evaluation of Eq. (9) for this walk requires the costly forward integration of the
physical model in Eq. (1) for any sample from θp. To overcome this challenge, we
separate the integration over the model parameters in Eq. (9): we integrate over
parameters θt and θy which can be calculated sequentially at any step when
propagating the forward model, and rely on MCMC only to sample from θx
and θp.



Sequential integration of θt and θy Given the parameters of the tumor
growth model θp and a starting point θx, we propagate the physical model in
Eq. (1) based the deterministic model U in Eq. (2). During the forward integra-
tion of Eq. (1), the integral

p(θp, θx|Y) =
∫
θy

∫
θt

p(θx, θt, θp, θy|Y)dθtdθy (10)

can be calculated efficiently in a single sweep, by evaluating the image likeli-
hood p(y|u, θy) at any step forward in time, and subsequently integrating over
all steps. This procedure represents an integration over θt on a regularly spaced
grid. Similarly, we integrate over the parameters θmy and θsy on a regularly spaced
grid. This step can be performed very quickly once u(tn) has been calculated
for the different observations y(tn). This procedure approximates Eq. (10) by a
sum:

p(θp, θx|Y) ≈
∑
θ
(g)
t

∑
θ
(g)
y

p(θx, θ
(g)
t , θp, θ

(g)
y |Y). (11)

Efficient sampling of θx and θp Even with the proposed sequential integra-
tion scheme, evaluating p(θp, θx|Y) repeatedly for different values {θp, θx} during
MCMC sampling remains prohibitively time consuming. We therefore rely on a
representation of p(θp, θx|Y) that can be sampled more efficiently. In particular,
we approximate p(θp, θx|Y) through p̃(θp, θx|Y) using a so-called sparse grid ba-
sis [17, 18] in the first step. This approximation allows us to sample the space of
p(θp, θx|Y) in a structured way, with less redundant computations, and system-
atically increasing the accuracy of the approximation with every sample. More
specifically, we interpolate between G pre-computed sampling points:

p̃(θp, θx|Y) =
G∑
g=1

p(θ(g)p , θ(g)x |Y) · Φs(θp, θx), (12)

relying on a hierarchical linear basis function ΦG that spans the space of θp
and θx. This approximation is constructed from a small number of evaluations
of p(θp, θx|Y), sampled at specific grid locations {θ(g)p , θ

(g)
x } within the range of

p(θx) and p(θp). The interpolated posterior distribution can be evaluated at little
computational cost. In the second step, we use the pre-computed approximation
p̃(θp, θx|Y) when evaluating a large number of samples from p(θp, θx|Y) via
MCMC. Efficiently sampling from p̃(θp, θx|Y) also allows us to tune the sampling
algorithm more easily in the presence of local minima. In the final step, we
construct

p̃(θp|Y) =
∫
θx

p̃(θp, θx|Y)dθx (13)

by aggregating values of θp from our samples θx, θp. In order to minimize the
number of necessary samples from p(θp, θx|Y), i.e., the number of forward inte-
grations of the physical model, we choose the sparse grid collocation from [19,



20], but with a depth first search strategy for local refinement. To sample effi-
ciently from Eq. (12) we use the Delayed Rejection Adaptive Metropolis (DRAM)
variant of the Metropolis-Hastings MCMC sampler [21].

4 Experiments

We evaluate our method on a series of images acquired for monitoring patients
with low-grade glioma. The low-grade glioma is typically only visible as hyper-
intense lesion in T2/FLAIR images. Patients are monitored for the occurrence
of T1gad enhancements indicating the transition to high-grade disease and to be
treated immediately. However, clinical evidence suggests that the dynamics of
the tumor growth can predict this transition at a much earlier stage [16] (Fig. 3,
left). We hypothesize that model parameters θp may provide more accurate in-
formation about the state of disease. Here we evaluate our approach under this
clinical objective on synthetic ground truth and real clinical data. We also com-
pare standard MCMC sampling with the proposed adaptive sparse grid MCMC
sampling.

Implementation We implement the tumor growth model in Eq. (1) by em-
ploying the preconditioned conjugate gradient descent to solve the state equa-
tions [22]. We sequentially evaluate Eq. (10) while integrating Eq. (1). In ev-
ery forward step we evaluate the image likelihood, integrating on a grid over
uc(T2) = .01 . . . .2 and uc(T1gad) = .6 . . . .8 with σs2 = .05 . . . 100 and for
metabolic maps for bc(Choline) = 1 . . . 8 and bc(NAA) = −8 . . . 1 with σ2

m =
.5 . . . 2. We impose general physiological constraints such as a maximum time of
growth of 50 years and a maximal sustainable tumor volume of 150 cm3.

We perform integration by sampling in a five dimensional space with {D, ρ} =
θp and {x, y, z} = θx and always initialize the sampling in the center of the valid
parameter space. We evaluate the samples via MCMC both with and without
sparse grid representation. In the first case (direct MCMC) we perform a ran-
dom walk with 2000 samples. We use the last 1500 samples for evaluating the
statistic of the parameters. Similar to [21], we use 100 samples to adapt the pro-
posal distribution, and propagate up to two steps into suboptimal directions of
the sampling space. We obtain rejection rates of 40%-60% with approximately
3000-5000 integrations of Eq. (10). In the second case (sparse grid MCMC) we
evaluate Eq. (10) about the same number of times, i.e., for 3000 basis vectors,
but at positions in the parameter space defined by an adaptive sparse grid with
“maximum norm” basis [18]. We then perform MCMC sampling under the same
settings as for the direct MCMC, but use the approximated posterior, interpo-
lated from the sparse grid basis, as the function to be evaluated for each sample.
The direct sampling takes about 6-12 hours for each test case on a standard per-
sonal computer. The sparse grid sampling takes a similar amount of computing,
but can be easily parallelized, resulting in an algorithm that is 8-10 times faster.
Subsequent MCMC sampling using the sparse grid interpolation is accomplished
within minutes.



Data In the first experiment, we model a synthetic low-grade glioma. We use
DTI and tissue segmentations from a healthy segment of a patient data set
to evolve a synthetic tumor with D = 10−2 and ρ = 10−2.3 for θt = 2000
days, starting from a tumor seed point uinit with 10% infiltration in a 1 mm3

volume. We assume D = Dw = 103Dg [4, 7]. We model a second observation by
propagating the model for another 180 days. For both observations we model
the segmentations from T2/FLAIR images using a threshold of uc(T2) = .095.
We set uc(T1gad) = .695. This is higher than the maximum value of u at both
time points and our synthetic T1gad images do not show contrast agent-enhanced
regions. We model metabolic maps from MRSI by smoothing u with a 1 cm wide
Gaussian kernel and subsampling the volume on a grid with 1 cm voxels and
model two metabolite maps with coefficients bc(Cho) = 1.8 and bc(NAA) = −4.6.
In the second experiment, we model a developing high-grade tumor. We use the
same setting as above, but with D = 10−0.2 and ρ = 10−1.3. The tumor is evolved
for 250 days for the first observation, and another 90 days for the second. Figure 4
(left) shows the second time point. All observations are modeled as above; T1gad
images do not show enhancements in this experiment either, and the tumor still
appears as a low-grade glioma.

In addition to the two test cases with ground truth for D and ρ, we evaluate
our model on two clinical data sets. The first data set comprises six sets of
images acquired approximately every 3 months over 1.5 years. The second data
set comprises four sets of images, acquired every 3-6 months in a similar time
span. Available are in both cases DTI, T2/FLAIR and T1gad images. T2/FLAIR
images show a visible progression of the tumor front, while T1gad is free of
Gadolinium enhancements. The lesion is segmented manually in three 2D slices
intersecting with the tumor center in the first case; it is manually segmented
in all slices for the second case. To ensure the diffusion tensor to be free of
tumor-induced effects, we use the mirrored DTI of the contra-lateral, disease-
free hemisphere to evolve the tumor. The second data set was provided by the
authors of [7], who reported the speed of tumor growth in the white matter of
vw = 2

√
Dwρ = 2

√
.2 · .008 mm/d for this patient.

Results Fig. 4 shows the adaptive sparse grid for the parameters of the growth
model θp (left) and the tumor seed point θx (right). Green dots represent sam-
pling points used to construct the approximation of the posterior in Eq. (12).
The right image shows the central slice of the synthetic high grade data set.
Indicated by dots are {x, y} positions of the location parameters θx. Dot size
indicates the number of model evaluations with varying {z,D, ρ} for the given
{x, y}. We find most of the adaptively chosen locations to be close to the real
location of the tumor (pink cross). This also holds true for the parameter space
spanned by diffusivity D and proliferation ρ in the left image. Here the location
close to the actual parameter (pink cross) is the one evaluated for the highest
number of different seed points. The contour map shows the likelihood evaluated
on a regular grid with the true seed point θx and is in good agreement with the
adaptively sampled locations on the sparse grid. The most likely region is a di-
agonal line in D-ρ space, similar to areas of constant shape in Fig. 3 (right) and



Fig. 4. Adaptive sampling of the parameter space for the synthetic high-grade data

set. Left: Sampling points (green) for the model parameters θp = {D, ρ}. The contour

map shows the posterior distribution p(θp|Y) evaluated on a regular grid (cyan–low,

pink–high). Right: Sampling points (green) for the {x, y} coordinates of the tumor seed

θx. The Fig. also shows isolines of tumor cell density (red), the predicted extensions

of the T2 hyper-intense area (yellow) and tissue boundaries (black). In both figures

the size of the green sampling points indicates how often the indicated parameter was

evaluated under different combinations. The ground truth is indicated by the pink

cross. Most adaptively chosen sampling points are close to the ground truth.

orthogonal to regions of constant speed of growth in Fig. 3 (left). This indicates
that information about the shape of the tumor is effectively used to infer model
parameters in our proposed approach.

Fig. 5 reports estimates of the model parameters D and ρ for all four test
cases and both the direct sampling (blue) and the sparse grid sampling (green).
For the first two data sets (A, B), the sparse grid sampling is in good agree-
ment with the ground truth (pink cross). The mean value of the direct sampling
(blue/black circle) is relatively close to ground truth and the mean of the sparse
grid sampling (green/black circle). We find the sparse grid results to be much
more compact with noticeably less variation. This observation is also true for
the patient data (C, D). We used the current number of 3000 samples for sparse
grid MCMC only to allow for a direct comparison of both approaches. Already
an interpolation with a few hundred samples led to results similar to those in
Fig. 3, demonstrating the benefits of the sparse sampling approach for estimating
parameters of the tumor model.

Results in Fig. 5 can also be interpreted in terms of the diagnostic task. In
subfigure C, results suggest a “classical” low-grade tumor, well in agreement with
the expected parameters for low-grade patients (Fig. 3, left). In subfigure D, we
observe a more infiltrative and rapidly growing tumor. This is in good agreement
with the clinical observation of the tumor expanding several centimeters per year
and showing a star-shaped pattern, often associated with poor prognosis. The
data in D had already been evaluated in [7] and the authors had estimated
the speed of the tumor front shown as the red pink diagonal line in D. We
observe a good agreement of our results with this earlier estimate, but obtain
the additional information that the expansion of the tumor is not due to a fast



Fig. 5. MCMC sampling results in the space spanned by model parameters D and ρ,

for the four experiments. Green samples are obtained from the sparse grid interpolation

Eq. (12), blue-purple samples come from the direct sampling in Eq. (10). Black circles

indicate means of the two distributions. Ground truth for A and B are indicated by

the pink cross. In D the previously estimated speed of growth [7] is shown by the pink

line. The sparse grid sampling approximation performs better than the direct MCMC

(A-B). Estimates correlate well with results from [7], but provide a more accurate

characterization of the state of disease (D).

infiltration, but a rapid doubling of tumor cells with a direr prognosis for this
particular patient.

5 Conclusions

The proposed tumor modeling approach links the physical process model with
the statistical image observation model and enables efficient estimation of model
parameters in a Bayesian framework, potentially also to be used with model com-
ponents at different scales and with different sources of information. Preliminary
results are promising. The approach can readily be adapted to incorporate in-
formation from other functional imaging modalities, and to model mass effect
and tissue translations, or tissue alterations resulting from therapy.
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