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We present an improved quantum defect theory model for the “s,” “p,” “d,” and “f” Rydberg series
of CaF. The model, which is the result of an exhaustive fit of high-resolution spectroscopic data,
parameterizes the electronic structure of the ten (“s”�, “p”�, “p”�, “d”�, “d”�, “d”�, “f”�, “f”�,
“f”�, and “f”�) Rydberg series of CaF in terms of a set of twenty μ

(Λ)
��′ quantum defect matrix

elements and their dependence on both internuclear separation and on the binding energy of the
outer electron. Over 1000 rovibronic Rydberg levels belonging to 131 observed electronic states of
CaF with n* ≥ 5 are included in the fit. The correctness and physical validity of the fit model are
assured both by our intuition-guided combinatorial fit strategy and by comparison with R-matrix
calculations based on a one-electron effective potential. The power of this quantum defect model lies
in its ability to account for the rovibronic energy level structure and nearly all dynamical processes,
including structure and dynamics outside of the range of the current observations. Its completeness
places CaF at a level of spectroscopic characterization similar to NO and H2. © 2011 American
Institute of Physics. [doi:10.1063/1.3565967]

I. INTRODUCTION

Understanding the mechanisms of energy flow within
molecules is central to a fundamental understanding of
chemical phenomena.1 However, characterizing the pathways
along which energy is transferred is difficult, especially for
large and highly excited molecules. The number of path-
ways that energy follows in the redistribution process grows
rapidly with the number of available modes of excitation,
and new energy transfer pathways become available as the
total internal energy of the molecule increases. Even for di-
atomic molecules, a complete and mechanistic understand-
ing of—or even a complete phenomenological numerical
model for—energy flow at the quantum state level does not
exist.2

Before we can understand where, why, and how en-
ergy flows in a molecule, we must first develop a model
that is capable of describing what actually happens. Energy
flow in molecules is usually described in the framework of
the Born–Oppenheimer (BO) approximation.3 In the Born–
Oppenheimer approximation, the molecular Hamiltonian is
divided into electronic and nuclear terms, with molecular
wavefunctions expressed as Born–Oppenheimer products of
electronic and nuclear wavefunctions. Eigenstate energies ob-
tained by solving the electronic Schrödinger equation are
used to construct a set of adiabatic potential energy sur-
faces, which govern the motion of the nuclei. Solution of
the nuclear Schrödinger equation gives the vibrational and

a)Author to whom correspondence should be addressed. Electronic mail:
rwfield@mit.edu.

rotational energies, and the total energy of the molecule is
expressed as

Etot = Eel + Evib + Erot, (1)

which reflects the partitioning of the Hamiltonian into
electronic, vibrational, and rotational parts. The Born–
Oppenheimer approximation works well at low energy, where
the mismatch in timescales of electronic and nuclear motions
prevents interconversion of energy, and the intramolecular dy-
namics is simple and usually restricted to one potential en-
ergy surface. Inevitably, as a molecule acquires more elec-
tronic energy, the Born–Oppenheimer approximation fails:
potential energy curves become closely spaced and diabatic
curves of states belonging to different electronic configu-
rations cross. For very highly excited states, these Born–
Oppenheimer-breakdown effects become the rule, rather than
its exception.

Molecular Rydberg states typify this type of atypical
behavior. As the energy increases along a Rydberg series, the
classical frequency of electronic motion becomes progres-
sively slower, eventually becoming so slow that electronic
motion occurs on the same time scale as vibration, rota-
tion, and even electron or nuclear spin processes.4–8 When
electronic motion tunes into resonance with another motion,
energy exchange between the Rydberg electron and the
molecular ion-core becomes rapid and efficient, resulting
in extensively fragmented energy level patterns and a near-
complete loss of regularity.9 Intersections between Rydberg
and (typically multiple) valence potential energy curves
result, even in the simplest molecules, in a hopelessly tangled
web of interacting states. These effects simply cannot be
described within the framework of the Born–Oppenheimer
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approximation. In fact, for the vast majority of chemically
relevant state space, the Born–Oppenheimer picture is the
wrong picture entirely. Fortunately, an appropriate picture
does exist.

Often, when one representation fails catastrophically, an-
other representation comes to the rescue. Multichannel quan-
tum defect theory (MQDT) (Refs. 10–20) is designed to
go beyond the Born–Oppenheimer approximation. It accom-
plishes this by applying the Born–Oppenheimer approxi-
mation only in the region of coordinate space where it is
appropriate—that is, where all electrons are near the nuclei
and moving quickly with respect to vibration and rotation.
Scattering theory is then used to ensure that the wavefunc-
tion of the system is described properly outside of this re-
gion. Quantum defect theory (QDT) can be used to com-
pute all of the energy levels of a molecule, including the
non-Born–Oppenheimer interactions among the zero-order
states contained in each eigenstate, as well as interactions
of the nominally bound Rydberg states with ionization and
dissociation continua. The only shortcoming of quantum de-
fect theory is that the key parameters that describe these in-
teractions, the quantum defects, cannot be estimated a priori
based on physical intuition or analogy to another molecule;
the quantum defects must either be calculated (using ab ini-
tio or semiempirical methods) or determined directly from a
fit to experimental data. Quantum defect theory provides the
framework, but the model itself must be constructed on a case-
by-case basis, individually for each molecule.

Here, we extend our quantum defect model for our pro-
totypical Rydberg molecule, CaF, to include almost all pos-
sible dynamical effects sampled by the vast quantity of ex-
perimental data presently available. CaF has been studied for
decades21–31 and the energies of all of its “s,” “p,” “d,” and
“f” Rydberg states, from the ground state of the molecule
to the vibrationally excited Rydberg states that lie above the
v = 0 ionization limit, are now known to spectroscopic ac-
curacy (to within ∼0.01–0.10 cm−1). CaF is an unusually
simple molecule: nearly all of its electronic states, including
even the electronic ground state, are Rydberg states, due to the
closed-shell nature (Ca2+F−) of the ion-core. Although non-
Rydberg covalent (Ca◦F0) states do exist (and even these can
be thought of as lowest members of a Rydberg series built on
an electronically excited Ca+F0 ion-core), none are strongly
bound, due to the lack of strong ionic or covalent interactions
between the constituent atoms in the electronically excited
Ca+F0 core upon which these covalent states are built. The
interactions between the Rydberg states and the (repulsive)
covalent states are weak and mainly result in predissociation
of the Rydberg levels. CaF is thus one of the simplest possible
molecules, combining the electronic simplicity of an alkali
atom with the structural simplicity of a diatomic molecule.

In this work, we subject all Rydberg states with effective
principal quantum number n* ≥ 5.0 to an extensive fit process
in order to determine the diagonal and off-diagonal elements
of the molecular quantum defect matrix and the dependences
of these elements on the internuclear distance and the colli-
sion energy of the outer electron. The input data span a wide
range of electronic, vibrational, and rotational quantum num-
bers, and the states included in the data set participate in a

wide range of classes of nonadiabatic interactions. The result-
ing quantum defect model not only reproduces nearly all pre-
vious experimental observations, but also allows us to forecast
spectra and dynamics in as-yet unobserved spectral regions.

II. EXPERIMENT

The energy levels included in this fit were drawn
from double-resonance spectra that span the range n* = 5,
v = 0 (total energy ∼42500 cm−1) to n* = 20, v = 1
(total energy ∼47500 cm−1). All spectra were analyzed
using the techniques described in Ref. 29 and references
therein. Although many of these levels have been reported
previously,22, 23, 25, 29, 31 and the positions of some levels in
the fit have been reconstructed using previously reported
constants,22 most levels included in the fit were observed
again in the present work at higher resolution and precision.
A detailed list of all energy levels included in the fit appears
in the online supplementary material.32

In our experiments, Rydberg spectra of CaF are recorded
using a two-chamber vacuum system, consisting of a laser ab-
lation/molecular beam source (housed in the “source” cham-
ber) and a time-of-flight mass spectrometer (housed in the
“detection” chamber). A molecular beam of calcium monoflu-
oride is produced in the source chamber by direct reaction
of calcium plasma with fluoroform. A pulsed valve (General
Valve, 0.5 mm diameter nozzle) emits a 350 μs pulse of 5%
CHF3 in He (30 psi stagnation pressure), which is synchro-
nized with the pulsed production of a calcium plasma created
by laser ablation of a rotating 1/4′′ diameter calcium rod by
the third harmonic of a pulsed Nd:YAG laser (Spectra Physics
GCR-130, 5–7 mJ per pulse at 355 nm). This produces a CaF
molecular beam with a rotational temperature of ∼30 K. The
molecular beam is collimated by a 0.5 mm diameter conical
skimmer placed between the source and detection chambers,
and again by a 3.0 mm diameter skimmer prior to entering
the laser excitation region of the detection chamber. Rydberg
states are populated and ionized in the detection chamber by
two colinear, pulsed laser beams that intersect the molecular
beam at 90

◦
. The CaF+ ions that result are accelerated down

the 75 cm flight tube of the mass spectrometer by a 250 V
electric field pulse that arrives 200 ns after the pair of laser ex-
citation pulses. Ions are detected by two microchannel plates
arranged in a chevron configuration. The ion signals are am-
plified by a low-noise voltage amplifier and averaged over 40
shots (per dye laser frequency step) by a digital oscilloscope.
The ion extraction assembly is contained within a Ni-plated
shroud to isolate the excitation region from stray electric
fields. Further details of the apparatus can be found in Ref. 31.

CaF Rydberg states lying between n* = 5, v = 0
(∼42500 cm−1) and the v+ = 0 ionization limit (46998
cm−1) are accessed by two-step excitation through the
D2�+ intermediate state. Pump and probe laser pulses
are produced by two pulsed dye lasers (Lambda Physik
Scanmate 2E, pulse length < 10 ns, 0.1 cm−1 FWHM)
both simultaneously pumped by the second harmonic
of a single Nd:YAG laser (Spectra Physics GCR-290,
injection-seeded, 400 mJ/pulse at 532 nm). The first
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dye laser, operating with 4-dicyanomethylene-2-methyl-6-
(p-dimethylaminostyryl)-4H-pyran (DCM) dye and equipped
with a β−BBO frequency-doubling crystal, is tuned to a sin-
gle rotational line of the D2�+ ← X2�+ transition. Due
to unresolved spin structure, this apparently single rota-
tional line terminates on two same-parity J = N + 1/2 and
J = N − 1/2 levels. The second dye laser, typically operating
with either pyridine 1 or DCM (output power ∼2–5 mJ/pulse),
is swept in frequency across the appropriate energy region
and populates and photoionizes Rydberg states in a (1+1)
REMPI scheme. The two laser pulses are partially overlapped
in time to overcome an apparent rapid dissociation of the
CaF Rydberg states into neutral atoms (D0

0 = 43500 cm−1).
The frequencies of the pump and probe laser pulses are each
calibrated using simultaneously recorded high-temperature
(500 K) absorption spectra of molecular iodine.33

CaF Rydberg states that lie above the v+ = 0 ionization
energy (total energy > 46998 cm−1) are also accessed by two-
step excitation through either the D2�+ or F′2�+ intermedi-
ate states, with the apparatus configured exactly as above, but
since all states spontaneously ionize in this energy region (a
process which may be enhanced, or “forced”, by the 250 V ex-
traction pulse in the mass spectrometer), spectra are recorded
with the probe laser operating at a much lower output power
(<200 μJ/pulse) than the spectra at energies below the
v+ = 0 ionization threshold.

III. THEORY

Quantum defect theory goes beyond the Born–
Oppenheimer approximation by invoking the BO ap-
proximation in the region of coordinate space in which the
BO approximation is valid and applying a more appropriate
physical picture elsewhere. Coordinate space is divided into
three regions, according to the radial distance r between the
Rydberg electron and the ion core center of charge: a “core”
region, a “Born–Oppenheimer” region, and an “asymptotic”
region. The core region is the innermost volume, bounded by
a hypothetical radius rc, inside which the Rydberg electron
experiences strong short-range electrostatic interactions with
the core particles. The Born–Oppenheimer region includes
and extends beyond the core region and is bounded by
another hypothetical radius rBO > rc. In the BO region, the
motion of the Rydberg electron is faster than the motion of
the nuclei, and the BO approximation is approximately valid.
Rydberg states approximately conform to the BO approxima-
tion if the bulk of the Rydberg electron probability density
lies within the BO region. Finally, the asymptotic region
extends from the core boundary out to infinite electron-ion
separation (rc < r). Importantly, the BO region overlaps the
innermost portion of the asymptotic region. In the asymptotic
region, the interactions between the Rydberg electron and
core particles are weak and dominated by the long-range
Coulomb interaction. Although the Rydberg electron prob-
ability density lies almost entirely in the asymptotic region
for all Rydberg states, non-Born–Oppenheimer effects only
become important for states in which the electron probability
density lies significantly outside the BO region. In QDT,

the only explicit knowledge required about the behavior
of the electron wavefunction within the core region is that
the collision with the core results in a phase shift of the
Rydberg electron wavefunctions outside the core region.
The molecular wave functions are only explicitly considered
outside the core and are expressed differently in the BO and
asymptotic regions.

In the asymptotic region, the Rydberg electron only in-
teracts with the ion-core at long range, and consequently, the
motions of the Rydberg electron and ion-core are approxi-
mately separable. In this region, the molecular Hamiltonian
is divided into ion-core, Rydberg electron, and interaction
terms:

Ĥ = Ĥ 0 + Ĥ 1,

Ĥ 0 = Ĥion + ĤCoulomb, (2)

Ĥ 1 = Ĥresidual.

Here, Ĥion represents the full Hamiltonian of the CaF+

ion-core, ĤCoulomb describes the motion of the excited electron
in the Coulomb field of the ion-core, and Ĥresidual represents
all of the interactions between the electron and the ion-core
beyond the simple Coulomb attraction. If the only interaction
between the electron and the ion core were the long-range
Coulomb interaction (i.e., if Ĥ 1 = Ĥresidual = 0), the eigen-
functions of the system would be the eigenfunctions of the
zero-order Hamiltonian Ĥ 0. In a real diatomic molecule, there
are always short- and long-range nonspherically symmetric
interactions between the electron and the ion, and thus Ĥ 1 is
always nonvanishing in a real system. The nonsphericity of
the interactions contained in Ĥ 1 causes interactions between
the angular motion of the Rydberg electron and the rotational
motion of the core (mixing of the � and N+ quantum num-
bers), and the internuclear distance dependence of Ĥ 1 couples
the Rydberg electron with the vibrational motion of the core
(mixing of n and v+).

In the asymptotic region, the zero-order Hamiltonian Ĥ 0

is used as a starting point to define a set of “channel func-
tions” (which play a role similar to the basis set of an effective
Hamiltonian), and the interaction term Ĥ 1 causes interactions
between the channels and mixing of the channel functions. A
channel wavefunction of the electron-ion system is specified
by the vibration-rotation v+, N+ state of the ion-core, the or-
bital angular momentum of the Rydberg electron, �, the total
angular momentum of the molecule exclusive of spin, N, and
parity index p (p = 0 for positive parity; p = 1 for negative
parity) as

ψ
(N,p)
�v+N+ (E, r, R,Ω) =

∑
�′′v+′N+′

{f�(εv+N+ , r)δ�v+N+,�′v+′N+′

−K
(rv)
�v+N+,�′v+′N+′ (E)g�′(εv+′N+′ , r)}

×χ
(N+′)
v+′ (R)Φ(N,p)

�′N+′ (Ω). (3)

Each possible combination of the quantum numbers �,
N+, N, and v+ constitutes a separate channel. The term in
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brackets is the radial part of the wavefunction of the Rydberg
electron (radial coordinate r and binding energy εv+N+ = E

− Ev+N+,∞, where Ev+N+,∞ are the rovibrational energy
levels of the CaF+ ion core; εv+N+ < 0 for closed
channels),Φ(N,p)

�N+ represents the angular part of the Ry-
dberg electron and core rotational wavefunctions (angu-
lar coordinates Ω) coupled to form eigenfunctions of
N2, and χ

(N+)
v+ (R) is the vibrational wavefunction of the

ion-core. The product form of these functions reflects
the division of the Hamiltonian of Eq. (2) into elec-
tron, ion, and interaction parts. The “rovibronic” (super-
script “rv”) reaction matrix, K(rv) [elements of which ap-
pear as coefficients of the irregular Coulomb function, g, in
Eq. (3)], describes the mixing of the channels due to the inter-
actions contained in Ĥ 1. (The reaction matrix and associated
quantities are described in Appendix A 0 1.) Because the out-
come of any electron-ion scattering event depends on the ki-
netic energy of the incoming electron, the rovibronic reaction
matrix K(rv) is energy-dependent. Here we evaluate the matrix
elements K

(rv)
�v+N+,�′v+′N+′ (E) in an energy-modified adiabatic

approximation of the type introduced by Nesbet34 by set-
ting E − Ev+N+,∞ = ε̄v+N+,v+′N+′ = (εv+N+ + εv+′N+′ )/2. The
total wavefunction of the molecule is expressed as a superpo-
sition of channel functions,

Ψ (N,p)
r>rc

(E) =
∑

�v+N+
B

(N,p)
�v+N+ (E)ψ (N,p)

�v+N+ (E), (4)

where the coefficients, B�N+v+ , called channel mixing ampli-
tudes describe the contributions of each channel to the molec-
ular wavefunctions, i.e., the amplitude of the system in each
channel for a given total energy E.

If all of its indices are treated independently, the dimen-
sion of the rovibronic reaction matrix, K(rv), is quite large. In a
typical calculation for a single value of total angular momen-
tum, N, that includes channels with � ≤ 3, v+ ≤ 5, and all
accessible rotational channels (N+ = |N − �| · · · (N + �)),
K(rv)will have up to 60 rows and columns, resulting in a to-
tal of up to n(n + 1)/2 = 1830 independent elements. Such
a large number of independently adjustable fit parameters
would make a direct fit to the spectrum based on the K(rv)

matrix impossible.
The central simplification10, 11 of QDT that makes this

problem tractable is the fact that, in the Born–Oppenheimer
region, the motions of all electrons are instantaneous with re-
spect to the nuclei. In the BO region, it is therefore physically
appropriate to define a set of channel functions which are ex-
pressed as BO products:

ψ
BO, (N,p)
vΛ = φΛχ (N)

v ΦNM, (5)

where here φΛ, χ (N)
v , and ΦN are the electronic, vibrational,

and rotational wavefunctions of the neutral molecule, re-
spectively. Since the BO region extends beyond the core re-
gion, (r > rc) the electronic wavefunction of the molecule

is further separable into Rydberg electron and ion-core
factors:

ψ
BO, (N,p)
vΛ (E) =

{ ∑
�

b�Λ(R, ε)
[
f (ε, r) cos πμ(Λ)

α (R, ε)

−g(ε, r) sin πμ(Λ)
α (R, ε)

]
Y�λ(θ, φ)

}
× φΛ+(η)χ (N)

v (R)ΦNM (Θ,Φ) (6)

Here, the term in braces is the wavefunction of the
Rydberg electron, φΛ+(η) is the electronic wavefunction of
the ion-core (electronic coordinates η), and χ (N)

v (R) and
ΦNM (Θ,Φ) are the vibrational and rotational wave functions
of the neutral molecule. The coefficients b�Λ(R, ε) describe
the orbital angular momentum character of the electronic
wavefunction of the Rydberg electron, and the μ(Λ)

α (R, ε)
are the “eigenquantum defects”. The eigenquantum defects
(discussed in Appendix A) are the quantum defects of the
nonrotating molecule and can be determined approximately
from the BO potential energy curves of the lowest electronic
states by inversion of the Rydberg formula. A general wave
function of the molecule can be expressed as a sum of BO
products:

Ψ BO,(N)
r>rc

(E) =
∑
vΛ

A
(N)
vΛ (E)ψBO, (N)

vΛ (E) . (7)

Since the asymptotic region contains the outer BO re-
gion, the two forms of the full molecular wave function
[Eqs. (4) and (7)] must be equal in the outer part of the
BO region. By equating them, it is possible to derive a re-
lationship called the “frame transformation”10–12, 14, 15 that ex-
presses each element of the large K(rv) matrix in terms of a
much smaller number of purely electronic quantum defect
matrix elements:

K
(rv)
�,v+,N+;�′,v+′,N+′ (E)

=
∑
Λ

〈Λ|N+〉(N,�,p)〈N+′ |Λ〉(N,�′,p)

×
[∫

χ
(N+)
v+ (R)K (el)(Λ)

�,�′ (R, ε̄v+N+,v+′N+′ )χ (N+′)
v+′ (R)dR

]
.

(8)

Matrix elements of the rovibronic reaction matrix K(rv)

are thus expressed in terms of the known ion-core vibra-

tional wave functions, χ
(N+)
v+ (R), known angular momentum

coupling coefficients, 〈Λ |N+〉(N,�,p),35

〈Λ|N+〉(N,�,p) = (−1)N−Λ

[
1 + (−1)p−N++�

2

]

×
[

2

(1 + δΛ0)

]1/2

(2N+ + 1)1/2

×
(

N+ � N

0 Λ −Λ

)
, (9)
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and a relatively small number of purely electronic (superscript
“el”) reaction matrix elements, K

(el)(Λ)
��′ (R, ε). The superscript

p in the 〈Λ|N+〉(N,�,p) coefficients indexes the total parity P

= (−1)�+N+
of the given channel (p = 0 for positive total par-

ity and p = 1 for negative total parity.)
The electronic reaction matrix, K(el), forms the heart

of the quantum defect model. It expresses the effect of all
non-Coulomb interactions on the electronic wavefunctions of
the neutral molecule for small radial distances r, where the
motions of all electrons are fast relative to the nuclei and
the Born–Oppenheimer approximation is valid. The frame
transformation of Eq. (8) transforms this Born–Oppenheimer
picture to the separated electron/ion picture embodied in
Eqs. (2)–(4), which is more appropriate at large r (i.e., for
the electron at long range). Thus, this frame transformation
describes all possible departures from Born–Oppenheimer
behavior. The matrix elements of K(el) can be equivalently ex-
pressed in terms of the quantum defect matrices μ or μ̄ (see
Appendix A). The matrix elements K

(el)(Λ)
��′ (R, ε) are given in

terms of μ by

K
(el)(Λ)
��′ (R, ε) = tan πμ

(Λ)
��′ (R, ε) . (10)

Since the electronic reaction matrix, K(el), that appears in
Eqs. (5) and (10) describes the scattering of the electron from
the ion-core at short range (in the region of space where the
electron moves fast enough that the nuclei are effectively fixed
in space and the Born–Oppenheimer approximation is valid),
K(el) is parametrically dependent on R and ε and is diagonal
in Λ. Since the interaction between the Rydberg electron and
the polar ion-core is strongly anisotropic, K(el) is nondiago-
nal in the orbital angular momentum quantum number, �. The
frame transformation of Eq. (8) reduces the number of param-
eters required to represent the system from greater than 1000
to a few tens of quantum defect parameters, μ

(Λ)
��′ (R, ε), or

μ̄
(Λ)
��′ (R, ε).

As discussed in Ref. 36, the frame transformation ex-
pression [Eq. (8)] is only valid when the interaction between
the electron and the ion core is “sudden”; the nuclei must
not have time to rotate or vibrate while the electron is in-
side the core. The Born–Oppenheimer approximation must
be valid across the entire core region. The core boundary
lies at a radius, rc, beyond which all non-Coulomb electro-
static interactions are much weaker than the Coulomb in-
teraction and can be neglected. In a polar molecule such as
CaF, the longest-range non-Coulomb interaction is due to
the dipole field of the core. Thus, at the core boundary we
must have

2Z �
rc

= x
2Q1 �

r2
c

, (11)

where Z is the charge of the ion-core, Q1 is the electric
dipole moment of the core, and x � 1. Both sides of (11)
are expressed in cm−1. Equation (11) defines the core radius
rc = xQ1/Z. In order for the collision to be impulsive, the
Coulomb energy at rc must be far greater than the ion-core

internal energy level spacings. For rotation, this implies that

2Z �
rc

= y 2B(N+ + 1), (12)

and for vibration,

2Z �
rc

= zω. (13)

For the collision to be impulsive, both y � 1 and z � 1.
Setting x = 10 (i.e., defining rc as the radius at which the
Coulomb field is ten times stronger than the dipole field), with
Q1 = 3.5 e a0, B = 0.37 cm−1, and ω = 694 cm−1 for CaF+,
and setting N+ = 15 (the highest rotational channel consid-
ered in this analysis), gives rc = 35 a0, y = 565, and z = 9.
We thus see that the collision is impulsive with respect to ro-
tation, and still fast with respect to vibration.

For comparison, we can derive similar suddenness
parameters for H2, where the frame transformation has
been successfully used to describe the rotational10, 37 and
vibrational37, 38 structure of Rydberg states. Since H2 has no
electric dipole moment, the longest-range non-Coulomb in-
teraction is due to the quadrupole field of the ion core. Thus,
at the core boundary,

2�Z

rc
= x

2�Q2

r3
c

, (14)

where Q2 is the electric quadrupole moment of the core
and x � 1, giving a core radius rc = √

xQ/Z. In H2
+, Q2

= 1.53 e a0
2, B = 30.2 cm−1, and ω = 2322 cm−1.36, 39 Setting

x = 10 and N+ = 6 (the highest rotational channel considered
in37) gives rc = 3.9 a0, y = 155, and z = 24. The collision is
again clearly impulsive with respect to rotation, but somewhat
faster with respect to vibration in H2 than for CaF. The frame
transformation should be valid for both molecules; however,
the Born–Oppenheimer region will extend further beyond the
core region for H2 than for CaF.

It is important to emphasize that the electronic reac-
tion matrix, K(el), or equivalently the quantum defect matri-
ces, μ and μ̄, may be viewed as a “clamped nuclei” repre-
sentation of the global rovibronic structure of the molecule,
which is more powerful and inclusive than the “clamped nu-
clei” approximation by which each local adiabatic poten-
tial energy curve is defined. It is a near-universal miscon-
ception to view Rydberg states as incompatible with the
Born–Oppenheimer approximation. In fact, quantum defect
theory is built on a Born–Oppenheimer picture, but for all
electronic states at once rather than one electronic state at
a time.

Energy levels of the molecule are located by demanding
that the bound state wavefunctions [Eq. (4)] vanish at infinite
electron-ion separation. This requirement results in a homo-
geneous linear system of equations that involves the symmet-
ric rovibronic reaction matrix, K(rv), and the channel mixing
amplitudes, B,

K(rv)B = −P(E)B, i.e.,

[P(E) + K(rv)]B = 0.
(15)
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P(E) is the diagonal “phase matrix”:30

P (E) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tan πνv+N+ 0 0 0 0 0 0 0

0 tan πνv+N++1 0 0 0 0 0 0

0 0 tan πνv+N++2 0 0 0 0 0

0 0 0 ... 0 0 0 0

0 0 0 0 tan πνv++1,N+ 0 0 0

0 0 0 0 0 tan πνv++1,N++1 0 0

0 0 0 0 0 0 tan πνv++1,N++2 0

0 0 0 0 0 0 0 ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)

where πνv+N+ = π
√−�/ε = π

√�/(Ev+N+,∞ − E), with ε

and E in cm−1. Energy levels exist at the values of E where
the determinant of the coefficient matrix vanishes:

det |P(E) + K(rv) (E)| = 0, (17)

and a set of channel mixing amplitudes can be found for each
value of E that satisfies Eq. (17).

Within the scope of the experimental observations to
date, only one important effect is missing from this quantum
defect model: dissociation to neutral atoms. As discussed in
Sec. I, there are two dissociative covalent states [configura-
tion Ca0(4s2)F0(2p5), giving rise to one 2�+ state and one
2� state], the potential energy curves of which intersect the
Rydberg states converging to the X1�+ ground state of the
CaF+ ion-core (configuration Ca2+F−; doubly closed-shell).
These intersections give rise to normal predissociation of the
Rydberg states and also cause intensity anomalies in the pho-
toionization spectra and are expected to affect photoioniza-
tion pathways and branching ratios.40 However, the omission
of interactions with these repulsive states does not diminish
the utility of this quantum defect model, either as a compact
representation of the rich energy level structure or as a tool
for understanding level patterns, dynamics, and mechanism.
None of these effects significantly alters the positions of the
energy levels observed here, and while the presence of the
dissociation continua may give rise to additional effects be-
yond the predictions of our model, this model remains a useful
tool with great capacity for understanding molecular Rydberg
states. It should be noted that the theoretical apparatus for in-
cluding the effects of one or more dissociation continua does
exist,41, 42 and represents a logical next step for our analysis
of CaF.

IV. RESULTS AND DISCUSSION

A. Application to CaF

In the fit, we include nearly all observed electronic states
of CaF in each of the ten “s” [�], “p” [�,�], “d” [�,�,�],

and “f” [�,�,�,Φ] Rydberg series43 with 5 ≤ n∗ ≤ 20.
The input data set spans approximately 5000 cm−1, includes
levels with 0 ≤ v ≤ 3 and 0 ≤ N ≤ 12, and encompasses
a wide range of dynamical phenomena. At the low-energy
end of the spectral range, the Born–Oppenheimer approxi-
mation is almost valid, and rotation-vibration energy levels
are organized as separate electronic states with regular rota-
tional structure. The levels then pass through an energy re-
gion in which numerous vibronic interactions occur, where
the rotational structure is mostly regular but levels are dis-
placed from their expected positions by electronic-vibrational
perturbations. Finally, at the high-energy end of the spec-
tral range, the n → n + 1 electronic spacing becomes suf-
ficiently narrow that �v �= 0 interactions remain localized,
but electronic-rotational interactions become so strong that
the regular rotational structure becomes hopelessly shattered
and separate “electronic states” cease to exist. Even though
all of the input data are affected by nonadiabatic interactions,
our quantum defect model represents all spectroscopic data
very well.

In the quantum defect fit model we include channels with
0 ≤ � ≤ 3, 0 ≤ v+ ≤ 3, and 0 ≤ N ≤ 12. For this range of
quantum numbers and the restrictions imposed by the addi-
tion of angular momentum, N = � + N+, and total parity, p

= (−1)�+N+
, each vibrational channel consists of ten ro-

tational channels with positive rotationless (N-independent)
parity p′ = (−1)N+�+N+

and six with negative rotationless
parity for each value of N ≥ 3. (Note that because of the
restriction imposed by the angular momentum addition N
= � + N+, some rotational channels do not exist for N < 3.)
In all, our model includes a total of 60 channels of positive ro-
tationless parity and 36 channels of negative rotationless par-
ity for N ≥ 3.

To facilitate the fitting procedure, we have employed the
μ̄ defects,30, 38 as the primary fitted parameters rather than the
more standard μ defects. As discussed in Refs. 38 and 30,
use of the μ̄ quantum defects results in a smoother depen-
dence of the electronic reaction matrix K(el) on the internu-
clear distance R. The relationship between the μ and μ̄ defects
is discussed in Appendix A.
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In the fit, we allow the fitted quantum defect parame-
ters to vary linearly and quadratically with both R and ε. The
quantum defects are expanded about the equilibrium internu-

clear distance R+
e and the ionization threshold, ε = 0, accord-

ing to

μ̄
(Λ)
��′ (R, ε) ≡ μ̄

(Λ)
��′

∣∣∣
R=R+

e ;ε=0
+ ∂μ̄

(Λ)
��′

∂R

∣∣∣∣∣
R=R+

e ;ε=0

(
R − R+

e

) + 1

2

∂2μ̄
(Λ)
��′

∂R2

∣∣∣∣∣
R=R+

e ;ε=0

(
R − R+

e

)2

+ ∂μ̄
(Λ)
��′

∂ε

∣∣∣∣∣
R=R+

e ;ε=0

· ε + 1

2

∂μ̄
(Λ)
��′

∂ε2

∣∣∣∣∣
R=R+

e ;ε=0

· ε2

+ ∂2μ̄
(Λ)
��′

∂ε∂R

∣∣∣∣∣
R=R+

e ;ε=0

(
R − R+

e

) · ε (18)

The quantum defect matrix elements and their derivatives
with respect to R and ε are taken as adjustable parameters and
are allowed to vary in a carefully controlled way during the fit
process.

B. Fit procedure

Although the fitting process makes use of standard fitting
techniques, the complexity of the model and the nonlinear and
correlated influences of parameters on the energy levels de-
mand a careful, iterative approach. A full set of ab initio quan-
tum defect derivatives was not available at the commencement
of the fit, so it was not possible to initialize the fit using
plausible estimates of many of the quantum defect deriva-
tives. We therefore developed a strategy whereby we could
incrementally add a small number of necessary adjustable
parameters to the model, while at the same time maintaining
confidence that the fitted parameters remain physically
reasonable.

Our overall strategy is to begin fitting the model starting
with the μ̄

(Λ)
��′ |R+

e
and ∂μ̄

(Λ)
��′ /∂R quantum defect parameters

and ion-core spectroscopic constants (T∞(v+ = 0, N+ = 0),
ω+

e , ωex
+
e , B+

e , D+
e , α+

e ) determined from a previous fit30

to spectral data that spanned a much narrower range of en-
ergy (47000–47300 cm−1 in Ref. 30, compared with 42600–
47400 cm−1 here), and gradually increase the number of
adjustable quantum defect derivatives. Our procedure con-
sisted of four main steps: (i) initialization and conver-
gence using μ̄

(Λ)
��′ |R+

e
and ∂μ̄

(Λ)
��′ /∂R parameters determined in

Ref. 30, (ii) division of the fit into two parts which are fitted
separately, to obtain estimates for ∂μ̄

(Λ)
��′ /∂ε, (iii) convergence

of fit using μ̄
(Λ)
��′ |R+

e
and ∂μ̄

(Λ)
��′ /∂R, and ∂μ̄

(Λ)
��′ /∂ε parameters,

and (iv) addition of any necessary quadratic derivatives, i.e.,
∂2μ̄

(Λ)
��′ /∂R2, ∂2μ̄

(Λ)
��′ /∂ε2, and ∂2μ̄

(Λ)
��′ /∂ε∂R. Although we at-

tempted to allow the spectroscopic constants of the ion core
to vary during each of the four main steps, no substantial im-
provement in fit quality ever resulted, and the ion-core con-
stants were therefore taken as constant and remained at the

values given in Ref. 30 throughout the duration of the fit pro-
cess.

All four steps of the fit are conducted using the “ro-
bust” linear least-squares fit method.44 This is a weighted
fit method in which weight factors are assigned to the ob-
served energy levels in proportion to their agreement with
the calculated levels: weight factors are largest for lev-
els with the smallest residuals and decrease rapidly as the
residuals exceed the standard deviation of the fit. The ro-
bust method is absolutely essential to the work we describe
here, since it allows us to continuously expand the fit by
adding both new observed energy levels and new adjustable
fit parameters, while assuring that the well-fit levels and
well-determined fit parameters already included are never
compromised.

The fit process is also, at nearly every step, partially
combinatorial. Our goal is to achieve an optimal fit by in-
crementally adding the smallest number of new adjustable
parameters possible. Although we guide this process at ev-
ery step using physical intuition to the maximum extent
possible, it is difficult to gauge the effect of adjusting any
given quantum defect parameter (or set of parameters) be-
cause their effects on the energy level structure are not
perfectly separable from one another across the entire en-
ergy range. This is partially due to the large number of
off-diagonal (�v �= 0, �Λ �= 0, �� �= 0, etc.) interactions
sampled in the fit. For example, while the μ̄

(�)
��′ |R+

e
parame-

ters are nearly decoupled from the μ̄
(�)
��′ |R+

e
parameters at low

n*, the two sets of parameters do become somewhat corre-
lated at high n* as Rydberg states of � and � symmetry be-
come mixed by �-uncoupling interactions. Other sets of fit
parameters are strongly correlated by definition: any given
∂μ̄

(Λ)
��′ /∂ε derivative and its associated ∂2μ̄

(Λ)
��′ /∂ε2 deriva-

tive, for example, will have some similar effects on the en-
ergy level structure far from the ionization threshold. We
sidestep these issues by simply adjusting (at every iteration
of the fit) many different combinations of parameters, deter-
mining which combinations result in significant improvement
in the fit, and feeding the output to the next iteration. Al-
though each iteration of the fit takes several hours to com-
plete, multiprocessor computation makes this process feasible
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and allows us to extend the fit in several different directions
simultaneously.

1. Initialization and convergence using μ̄
(Λ)
��′ |R+

e
and

∂μ̄
(Λ)
��′ /∂R

The first step of our procedure is to fit all observed en-
ergy levels starting with the μ̄

(Λ)
��′ |R+

e
and ∂μ̄

(Λ)
��′ /∂R param-

eters determined in Ref. 30. While it was apparent that this
limited set of fit parameters (20 μ̄

(Λ)
��′ |R+

e
and 20 ∂μ̄

(Λ)
��′ /∂R)

could never yield perfect correspondence between the quan-
tum defect model and the experimental data, some refinement
of the parameters (from their values in Ref. 30) was to be ex-
pected, especially for the ∂μ̄

(Λ)
��′ /∂R derivatives. The levels in

the expanded data set cover a wider range of vibrational quan-
tum numbers and participate in a greater number of �v �= 0
perturbations, both of which should afford greater sensitivity
to the dependence of the quantum defects on R.

We initially varied each μ̄
(Λ)
��′ |R+

e
and ∂μ̄

(Λ)
��′ /∂R parame-

ter, one at a time, in a combinatorial manner to identify those
parameters in particular need of refinement. When a poorly fit
parameter was identified and when subsequent adjustment of
this parameter significantly improved the fit quality, it was al-
lowed to vary and its optimum value was taken for use in the
next fit iteration. Generally, adjustment of μ̄ matrix elements
that are diagonal in � had the largest impact on the fit qual-
ity. This process was repeated until it was no longer possible
to improve the quality of the fit by adjusting the value of one
parameter at a time. The procedure was then repeated using
combinations of parameters, typically as the following:

(a) One μ̄
(Λ)
��′ |R+

e
parameter and its associated ∂μ̄

(Λ)
��′ /∂R

derivative.
(b) Two different diagonal μ̄

(Λ)
��′ |R+

e
parameters with the

same value of Λ.
(c) Two different diagonal μ̄

(Λ)
��′ |R+

e
parameters with the

same value of Λ as well as the off-diagonal matrix ele-
ment between them, i.e., μ̄(�)

ss |R+
e

, μ̄(�)
pp |R+

e
, and μ̄(�)

sp |R+
e

.
(d) Combinations of parameters as in c), plus their

∂μ̄
(Λ)
��′ /∂R derivatives.

(e) All μ̄
(Λ)
��′ |R+

e
matrix elements for a given Λ.

(f) All μ̄
(Λ)
��′ |R+

e
and ∂μ̄

(Λ)
��′ /∂R matrix elements for a given

value of Λ.

Strong attempts were made to ensure that the small-
est possible number of parameters was varied at each step
and that this condition was met. We typically attempted
to vary 5–20 combinations of parameters at each of the
above steps.

2. Generation of estimates of ∂μ̄
(Λ)
��′ /∂ε

After the initial refinement of the fit parameters, accord-
ing to the procedure described in Sec. IV B 1, it became
apparent that the energy dependence of the quantum defects
would need to be considered as well. To generate estimates of
the derivatives of the quantum defects with respect to energy,
∂μ̄

(Λ)
��′ /∂ε, we divided the fit into two halves: states with n*

= 5–10 in the “low energy” half, and states with n*

= 10–20 in the “high energy” half. Each half was then sub-
ject to the procedure described in Sec. IV B 1. This gen-
erated two sets of converged fit constants, from which ini-
tial estimates of each ∂μ̄

(Λ)
��′ /∂ε could be obtained by as-

suming a linear dependence on energy, i.e., ∂μ̄
(Λ)
��′ /∂ε|est.

= (μ̄(Λ)
��′ |high − μ̄

(Λ)
��′ |low)/�ε̄.

3. Convergence using μ̄
(Λ)
��′ |R+

e
, ∂μ̄

(Λ)
��′ /∂R, and ∂μ̄

(Λ)
��′ /∂ε

After initial estimates were obtained for the energy
derivatives, ∂μ̄

(Λ)
��′ /∂ε, according to Sec. IV B 2, the data were

again subject to an iterative fit procedure similar to steps (a)–
(f) in Sec. IV B 1. In this stage of the fit procedure, the energy
derivatives were varied as well as the ∂μ̄

(Λ)
��′ /∂R derivatives,

and as before, new values for the fit parameters were selected
by adjusting the most effective combinations of the smallest
number of fit parameters, until all parameters were fully con-
verged.

4. Refinement by addition of second derivatives:
∂2μ̄

(Λ)
��′ /∂R2, ∂2μ̄

(Λ)
��′ /∂ε2, and ∂2μ̄

(Λ)
��′ /∂ε∂R

Following the convergence of the fit in Sec. IV B 3, a
carefully selected subset of the ∂2μ̄

(Λ)
��′ /∂R2, ∂2μ̄

(Λ)
��′ /∂ε2, and

∂2μ̄
(Λ)
��′ /∂ε∂R derivatives was added to improve the fit qual-

ity for the very lowest (n∗ ≈ 5) Rydberg states. These sec-
ond derivatives were adjusted, one at a time, to identify those
few parameters that would be most effective in improving the
quality of the fit. As it was not possible to generate empiri-
cal estimates of the values of the second derivatives by any
method, each parameter was adjusted with its initial value
taken to be zero. Following the identification of the most im-
portant second derivatives, combinations of these parameters
were adjusted in a scheme similar to that outlined in steps
(a)–(f) of Sec. IV B 1. Only a few second derivatives were
introduced, primarily in diagonal elements for � and � sym-
metries.

After these second derivatives had been added, all param-
eters were varied together for several iterations until recon-
vergence. Once all parameters had converged, the fit was con-
sidered complete, as the addition of more parameters would
impart undue flexibility to the fit model and possibly result in
physically unrealistic values.

The amount of computational time required to achieve an
optimal fit is noteworthy. Because of the large number of en-
ergy levels included in the fit, each iteration (i.e., each trial
combination of fit parameters) required between 30 min and
10 h of computation time, depending on the number of pa-
rameters varied. Even using computers with eight or more
processors, the entire fitting process took more than a year
of continuous computation to complete.

C. Quantum defect matrices and quality of fit

The μ̄(Λ) quantum defect parameters obtained from the
fit are shown in Table I. Uncertainties (1�) are indicated in
parentheses. From our fit, it was possible to reliably determine
the values of nearly all of the μ̄

(Λ)
��′ |R+

e
matrix elements, nearly
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TABLE I. μ̄ quantum defect matrix element values and derivatives obtained from fits to CaF �, �, �, and � states. Uncertainties are indicated in parentheses.
If no numerical value is given, the parameter has been held fixed at zero.

μ(R+
e , ε = 0) ∂μ/∂R[a−1

0 ] ∂μ/∂E [Ry−1] ∂2μ/∂R2[a−2
0 ] ∂2μ/∂E2[Ry−2] ∂2μ/∂E∂R [Ry−1a−1

0 ]

ss � 0.350253(759) –0.07202(728) 1.8841(1) 1.1470(251) –54.2736(2388) –4.3141(3000)
pp � 0.222384(1041) 0.38603(105) –0.7931(699) –1.1323(330) 54.7465(1.9753) –5.6023(1058)
dd � –0.135006(189) 0.10945(454) –0.0835(296) 0.7342(33) 33.5579(1523)
ff � –0.110015(844) 0.09303(1050) 0.5081(364) –29.3589(2.2287) 7.1164(4287)
sp � 0.155259(86) 0.02172(172) –0.1981(225) –0.5787(99)
pd � 0.040476(1409) –0.9768(714) 0.1780(441)
Df � –0.058289(714) 0.1169(618) 0.2016(89) 6.1484(2.4490) 3.7243(955)
sd � –0.036860(1889) –0.10847(190) –3.2394(1)
pf � 0.11205(590) –0.1381(1144)
sf � –0.046563(3111) –0.07956(381)
pp � –0.175842(572) 0.33476(162) 3.4038(151) –0.6293(108) 6.1104(7858)
dd � –0.142924(444) 0.35589(264) –2.9753(137) 0.5026(125) –4.1589(4349) 11.1237(1)
ff � –0.039994(363) 0.05388(574) –0.3467(212)
pd � 0.171757(192) –0.13954(166) 0.0911(169) 0.4246(88) –62.8917(6833)
df � –0.014777(571) 7.6894(1134)
pf � 0.040180(726) 0.03197(239) –0.9735(328)
dd � –0.133587(292) 0.26062(97) –0.0468(37)
ff � 0.023472(290) 0.08906(191)
df � –0.031733(648) –0.03388(119)
ff � 0.095868(78) 0.22796(187)

all of the ∂μ̄
(Λ)
��′ /∂R derivatives, nearly all of the ∂μ̄

(Λ)
��′ /∂ε

derivatives for � and � symmetry, and second derivatives
(∂2μ̄

(Λ)
��′ /∂R2, ∂2μ̄

(Λ)
��′ /∂ε2, and ∂2μ̄

(Λ)
��′ /∂ε∂R) of the diagonal

(ss, pp, dd, and ff) and many off-diagonal (sp, pd, df) quantum
defects for � and � symmetries. Some parameters could
not be reliably determined (their values are not reported in
Table I), and their values have been fixed at zero. Some
of these parameters are very small and some are simply
under-sampled by our input data. For example, a small
number of ∂μ̄

(Λ)
��′ /∂R matrix elements, the values of which

are known from previous work30 to be quite small, could not
be determined here and were held fixed at zero. The μ̄

(�)
ff

defect, which has a strong quadratic energy dependence,
appears to have no linear dependence on energy over our
fitted range, and ∂μ̄

(�)
ff /∂ε was therefore also held fixed

at zero. Many derivatives of μ̄ matrix elements of � and
Φ symmetry are under-sampled: for example, sensitivity
to the energy dependence of the quantum defects derives
entirely from the coexistence of levels across a wide range
of n* in the same data set, and while all four symmetries

FIG. 1. Comparison of selected observed and calculated energy levels near n* = 5.0, where vibronic states tend to be well-separated. For visual clarity, the
reduced energy E − B+N (N + 1) is plotted against N (N + 1) for each energy level. Filled circles indicate calculated energy levels and connected open circles
indicate observed energy levels. Many levels with n* < 6.0 are fitted to within 1 cm−1, and most to within 5 cm−1.
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FIG. 2. Comparison of selected observed and calculated energy levels for vibrationally excited levels with low n*. For visual clarity, the reduced energy
E − B+N (N + 1) is plotted against N (N + 1) for each energy level. Many levels with n* < 6.0 are fitted to within 1 cm−1, and most to within 5 cm−1.

are represented at high n*, most of the low n* states
included in the fit are of � and � symmetry. (The lone
core-penetrating Rydberg series of � symmetry, the 0.14
“d” � series,43 is well-represented across the entire range
and is responsible for our ability to determine the ∂μ̄

(�)
dd /∂ε

derivative.)
The magnitudes of all of the fit parameters appear

reasonable. Thresholds for measurability of a fit parameter
may be estimated based on a requirement that any parameter
must cause a change in quantum defect of 0.02 over the
range of ε (∼5000 cm−1) and R (1.87 ± 0.13 Å, or 3.54

± 0.24 a0) sampled in our fit in order to be measurable. We
crudely estimate that the ∂μ̄

(Λ)
��′ /∂R, ∂2μ̄

(Λ)
��′ /∂R2, ∂μ̄

(Λ)
��′ /∂ε,

∂2μ̄
(Λ)
��′ /∂ε2, and ∂2μ̄

(Λ)
��′ /∂ε∂R derivatives must have values

of at least 0.04 a0
−1, 0.08 a0

−2, 0.50 Ry−1, 12.50 Ry−2,
and 1.00 a0

−1 Ry−1, respectively, to be reliably determined.
To cause a large change in quantum defect of 0.2 over this
range of ε and R, the parameters must have magnitudes
ten times these values. The fitted derivatives fall in the
ranges 0.0217 a−1

0 ≤ |∂μ̄
(Λ)
��′ /∂R| ≤ 0.3860 a−1

0 , 0.178 a−2
0

≤ |∂2μ̄
(Λ)
��′ /∂R2| ≤ 1.147 a−2

0 , 0.047 Ry−1 ≤ |∂μ̄
(Λ)
��′ /∂ε|

≤ 3.404 Ry−1, 4.16 Ry−2 ≤ |∂2μ̄
(Λ)
��′ /∂ε2| ≤ 62.89 Ry−2,

FIG. 3. Comparison of selected observed and calculated energy levels in the vicinity of n* = 7.0. For visual clarity, the reduced energy E − B+N (N + 1) is
plotted against N (N + 1) for each energy level. Vibronic states at this energy are interleaved. Here, the classical period of electronic motion [proportional to
(n*)3] is approximately equal to the classical period of vibrational motion. Vibronic perturbations are frequent.
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FIG. 4. Example of a strong vibronic (homogeneous) perturbation. In the absence of the perturbation, the 7.36 “p” � v = 0 and 6.36 “p” � v = 1 levels are
nearly degenerate. The perturbation causes a ∼45 cm−1 splitting of the levels and complete mixing of the two zero-order wavefunctions.

and 3.72 Ry−1a−1
0 ≤|∂2μ̄

(Λ)
��′ /∂ε∂R|≤ 11.12 Ry−1a−1

0 . Thus,
the smallest parameters determined in our fit have magnitudes
which lie close to our crude sensitivity threshold estimates,
and the largest parameters are capable of effecting changes
of ∼0.1–0.2 in the quantum defects over the range of ε and R
sampled in our input data.

The quality of the fit is illustrated in Figs. 1–7, which
show calculated and observed energy levels in seven portions
of the fitted range. These seven portions are selected to
illustrate varying degrees of spectroscopic complexity and

exhibit various dynamical features. In the figures, connected
red circles represent observed energy levels and black dots
represent energy levels calculated using the final values of the
fit parameters shown in Table I. For visual clarity, for each vi-
bronic level, we plot the “reduced energy” E − B+N (N + 1)
against N (N + 1) (where B+ is the rotational constant of
the ion core) which tends to vertically magnify the rotational
fine structure by removing the largest contribution to the total
rotational energy. Rotational levels of vibronic states which
conform to Hund’s case (b) coupling (for which N is the

FIG. 5. Comparison of selected observed and calculated energy levels in the vicinity of n* = 14.0. At this energy, the electronic energy level spacing is much
smaller than the vibrational spacing, but still larger than the rotational spacing of the ion-core energy levels. Vibronic perturbations are uncommon, but rotational
(inhomogeneous) perturbations become increasingly frequent.
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FIG. 6. Quality of fit in the 14f complex. A rotational perturbation between the 14f �− and 14.14 “d” �− states gives rise to the avoided crossing at the top of
the figure.

pattern-forming rotational quantum number) tend to lie along
a horizontal line. This behavior is typical of core-penetrating
Rydberg states with n* < 10. Rotational levels of states
which conform to Hund’s case (d) coupling (for which the
pattern-forming quantum number is N+), or are intermediate
between cases (b) and (d), will typically lie along a sloped
line with some curvature, especially at low N. This behavior
is typically exhibited by core-penetrating states with n* >

10, and by core-nonpenetrating states at any energy.
The quality of the fit is uniformly excellent throughout

the entire fitted range. At low energy (n* = 5 – 7; Figs. 1–3),

where the fit quality is most sensitive to small variations in the
fitted parameters, most levels tend to fit within 1 cm−1 and al-
most all fit to within 5 cm−1. At higher energies (n* ≈ 7 and
above; Figs. 4–7) the levels typically fit to within a few tenths
of a cm−1. The standard deviation of the residuals, includ-
ing all observed levels (172 vibronic levels of 131 separate
electronic states; 1017 individual rotational levels in all) is
1.57 cm−1, but the bulk of the large residuals are concentrated
in a small number of low-lying states. If we exclude the ten
most poorly fit vibronic levels (5.14 “d” �+ v = 0, average
residuals –4.97 cm−1; 5.55 “s” �+ v = 0, +7.89 cm−1, 5f �+

FIG. 7. Quality of fit in the n* = 16.5 – 17.5 region. Above n* ∼ 16, rotational interactions are ubiquitous and quite strong, causing the disappearance of
regular patterns which is evident here.
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FIG. 8. R-dependence of MQDT-fitted and R-matrix calculated eigenquan-
tum defects for (a) � and (b) � series with E = -0.020 Ry (n* ≈ 7.0) and E
=−0.012 Ry (n* ≈ 9.0), respectively. R = 3.54 a0, is the equilibrium inter-
nuclear separation of the ion core.

v = 0, –9.13 cm−1; 5.19 “d” �+ v = 2, –12.96 cm−1; 4.98
“d” �+ v = 3, –3.15 cm−1; 5.98 “d” �+ v = 1, –4.64 cm−1;
6f �+ v = 1, –1.95 cm−1; 5.98 “d” �− v = 0, –4.79 cm−1;
5.98 “d” �− v = 1, –4.64 cm−1; 37 rovibronic levels in all),
which account for only 3.6% of the input data, the standard
deviation of the fit decreases by 64% to 0.57 cm−1.

Since the residuals arise from systematic model-based er-
rors (as we discuss below) and clearly do not follow a normal
distribution, a better statistical measure of the overall fit qual-
ity is therefore the mean absolute error, or the average of the
absolute values of the residuals. The mean absolute error is
0.53 cm−1 with all observed levels included, but if we omit
the ten most poorly fit vibronic levels listed above, the mean
absolute error decreases to 0.27 cm−1. As the mean absolute
error indicates, the majority of observed levels do indeed fit to
within a few tenths of one cm−1. (A list of all observed levels,
including fit residuals, can be found in the online supplemen-
tary material.32)

Some systematic discrepancies do exist between the
observed and fitted levels. The most notable disagreements
involve the ten low-lying vibronic levels mentioned above,
which have residuals of approximately 2–13 cm−1. These
are among the energetically lowest levels (5.0 ≤ n∗ ≤ 6.0)
included in the fit, and our inability to fit them perfectly
implies that, at least for some of the quantum defects, our
allowance of quadratic dependence on ε and/or R is not quite

adequate and that higher derivatives may be necessary to
properly capture their dependences on ε and/or R. At the same
time, this is clearly not the case for all quantum defects, as
the great majority of rovibronic levels in the 5.0 ≤ n∗ ≤ 6.0
range fit quite well. In fact, if we omit the rest of the levels
with n∗ < 6.0 (30 vibronic levels, 228 rovibronic levels
total, accounting for 22.4% of the input data set) from
the calculation, the standard deviation and mean absolute
error both increase slightly, to 0.59 cm−1 and 0.28 cm−1,
respectively.

The only other systematic discrepancies involve the nf
Rydberg states: the energetically lowest nf �+ states (5f �+,
6f �+) are systematically predicted to be too high in energy,
as are the lowest rotational levels of the energetically high-
est nf �+ states. This discrepancy is likely due to the omis-
sion of g (� = 4) channels from the fit model. From previous
work,31 it is evident that the nf states possess significant ng
character, indicating that g channels do play a significant role
in the dynamics. This possibility was not allowed here, since
it would approximately double the number of adjustable pa-
rameters (35 μ̄

(Λ)
��′ (R, ε) functions for s, p, d, f, and g, vs 20

μ̄
(Λ)
��′ (R, ε) functions for s, p, d, and f) and could impart exces-

sive flexibility to the fit. Overall, the discrepancies between
the observed and fitted levels are minimal and tend to be lo-
calized and rather small—at most a few cm−1, even at the
lowest energies.

The figures illustrate the wide range of dynamical
timescales and phenomena captured by our fit model.
Figure 1 shows a region (n* ≈ 5) in which vibronic states tend
to be well separated: here, the classical frequency (∝ n−3)of
electronic motion is greater than the classical frequencies of
vibration and rotation. Figure 2 shows the typical quality of
the fit for vibrationally excited low-n* levels. Figure 3 shows
a region (n* ≈ 7) where the electronic motion has slowed and
occurs on the timescale of vibration. Here, vibronic states are
interleaved and �v �= 0 vibronic (electronic-vibrational) per-
turbations are quite common.

An example of a strong vibronic perturbation is shown
in Fig. 4. Here, the 6.36 “p” � v = 1 and 7.36 “p” � v = 0
levels, which would be nearly degenerate in the absence of the
perturbation, undergo a strong vibronic interaction, resulting
in a ∼45 cm−1 splitting of the levels and complete mixing of
their wavefunctions.

Moving to higher energy, Fig. 5 shows a region (n* ≈
14) where electronic motion is much slower than vibration
and is approaching the timescale of rotation. In this region,
�v �= 0 vibronic perturbations are uncommon, but �Λ �= 0
electronic-rotational perturbations become frequent.

An example of an electronic-rotational interaction is
shown in Fig. 6, where the 14f �− and 14.14 “d” �− states
interact by �-uncoupling (−B�±N∓). At the very highest en-
ergies included in the fit, the frequency of electronic motion
becomes nearly equal to the frequency of rotational motion of
the ion-core (at high N), and electronic-rotational interactions
become so frequent that regular patterns become difficult to
identify. This vanishing of recognizable patterns is readily ap-
parent in Fig. 7.

The fact that such a large and diverse collection of rovi-
bronic levels are simultaneously fit, and the fact that most of
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FIG. 9. Energy dependence of MQDT-fitted and R-matrix calculated � and � series eigenquantum defects at the equilibrium internuclear separation, R = 3.54
a0. Energy is in Rydberg units.

these levels are affected in some way by electronic-vibrational
or electronic-rotational interactions, ensures the accuracy and
completeness of our quantum defect model. With the ex-
ception of the effects of dissociation to neutral atoms, the
quantum defect model we present here is as complete as it
possibly can be given the available theoretical methods and
experimental observations to date. Every observed energy
level that can be fit has been included in the input data set.
Unfortunately, the μ defects do not allow us to include the
very lowest Rydberg states (n* < 5) in the fit. As discussed
in Refs. 13, 14, and 38, the μ and μ̄ defects allow the ap-
pearance of unphysical states with n < �max (e.g., 3f). This
restricts our model to Rydberg states for which n > �max, and
therefore we cannot consider Rydberg states with n∗ < 4.0.
Since these unphysical states with n < �max also give rise to
unphysical perturbations with real Rydberg states, we have
further omitted all Rydberg states with 4.0 > n∗ > 5.0.

It is worth comparing our results here with the results
of the previous CaF QDT fit,30 which formed the starting
point of the fit process, as discussed in Sec. IV B 1. Although
our fit covers an energy range over an order of magnitude
wider (5070 cm−1 here vs 401 cm−1 in Ref. 30), incorpo-
rates three times as many electronic states (131 electronic
states here vs 43 in Ref. 30), extends across a much wider
range of n* (5.0 < n∗ < 20.0 here, vs 12.5 < n∗ < 14.5 and
16.5 < n∗ < 18.5 in Ref. 30), includes many more rovibronic
levels (1017 levels here vs 612 in Ref. 30), and allows for two
times as many adjustable quantum defect parameters (74 here
vs 38 in Ref. 30), the overall fit quality is largely identical to
the previous results. As in Ref. 30, the vast majority of lev-
els here fit to within 0.1–0.2 cm−1, nearly to the accuracy of
the experimental data. Since the present results cover a much
wider range of n*, the near-spectroscopic accuracy of our re-
sults (especially at low n*, where small deviations in quantum
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FIG. 10. Comparison of energy dependence of � series MQDT-fitted and R-matrix calculated μ̄ matrix elements, at the equilibrium internuclear separation, R
= 3.54 a0. Energy is in Rydberg units. The calculated μ̄ matrix elements have been adjusted as discussed in Appendix C to allow direct comparison with the
fitted matrix elements.
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FIG. 11. R-dependence of MQDT-fitted and R-matrix calculated μ̄ matrix elements for � series, E = –0.02 Ry (n* ≈ 7.0). Trends with R show some differences
from the experimental result away from the equilibrium R. (Also see Appendix C.) The calculated μ̄ matrix elements have been adjusted as discussed in
Appendix C to allow direct comparison with the fitted matrix elements.
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FIG. 12. Comparison of R-dependence of MQDT-fitted and R-matrix calculated μ̄ matrix elements for � series, E = –0.012 Ry (n* ≈ 7.0). Trends with R
show some differences from the experimental values away from Re. (Also see Appendix C.) The calculated μ̄ matrix elements have been adjusted as discussed
in Appendix C to allow direct comparison with the fitted matrix elements.

defect result in large deviations in energy) implies that the
present fit determines the quantum defects to a very high level
of accuracy. These results also sample a wider range of nona-
diabatic interactions. The previous fit incorporated primarily
v = 1 levels at high n* affected by strong rotational-electronic
(�-uncoupling) interactions and occasional vibronic perturba-
tions. As a result, the data were primarily sensitive to the �-
and Λ-dependences (and to some extent, the R-dependences)
of the quantum defects and afford no sensitivity to their en-
ergy dependences. In contrast, the input data to our fit spans
a much wider range of n* and consequently samples numer-
ous rotational-electronic interactions, numerous vibronic in-
teractions, and a much wider range of collision energies. As
a result, our data are highly sensitive not only to the �- and
Λ-dependence of the quantum defects, but are also highly
sensitive to their energy- and R-dependences. Comparing our
Table I to Table CI of Ref. 30, we note that our μ̄

(Λ)
��′ |R+

e
ma-

trix elements differ from the values reported in Ref. 30 typ-
ically in the second decimal place, implying differences of
a few percent. Our ∂μ̄

(Λ)
��′ /∂R matrix elements differ from

those reported in Ref. 30 in the first decimal place, imply-
ing differences of tens of percent. These differences loosely
indicate that the equilibrium matrix elements determined in
Ref. 30 were well determined and likely indicates improve-
ment in the R-dependence of the matrix elements as a result of
the larger data set in the present work. However, we stress that
it is not strictly appropriate to compare quantum defect deriva-
tives from the two fits: in Ref. 30, the quantum defects were
allowed only a linear dependence on internuclear distance.
Here, we allow overall quadratic dependence on both inter-
nuclear distance and binding energy. A difference in a linear
derivative between the two fits therefore does not necessarily

imply that the earlier result is less accurate: some of the differ-
ence could have been absorbed into the quadratic parameters,
making a direct comparison of fitted parameters difficult.

D. R-matrix estimates of quantum defect matrix
elements

To validate our fit model, we have performed R-matrix
MQDT calculations across the experimentally accessed range
of energy and internuclear separation using the CaF one-
electron effective potential developed by Arif, Jungen, and
Roche.26, 45, 46 The R-matrix approach47 partitions the com-
putational solution of the Schrödinger equation for the elec-
tron/ion system into a dynamically complex region near the
ion-core and a long-range region of simpler dynamics. The
R-matrix (wavefunction log derivative) expresses the wave-
function boundary conditions at the core boundary, and the
vanishing of the wavefunction at infinite separation from the
ion-core leads to the quantization condition of Eq. (8). We
employ the dipole-reduced R-matrix/Green function propaga-
tor approach described in Refs. 45 and 46. This method pro-
vides a short-range R matrix that varies smoothly with ε and
R by applying a monopole–dipole reduction as described in
Refs. 45 and 46 and summarized in Appendix B. The semiem-
pirical analytic potential described by Arif et al.26 and used
here, treats the ion-core as two polarizable atomic ions, with
corrections for reduction of polarizability when the Rydberg
electron penetrates into the core and for calcium atom core-
deshielding due to penetration [Zl

eff(r)] of the Rydberg elec-
tron inside the closed shell ion-core. Arif et al.26 showed that
results from this effective potential compare well with exper-
imental data at the equilibrium internuclear separation, Re

+.
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We have done a more extensive calculation of the K(el) and
μ̄(Λ)matrices, eigenquantum defects, and wavefunction eigen-
channel decompositions across the experimentally sampled
ranges of energy and internuclear separation. Our computa-
tional method is summarized in Appendix B, and Appendix C
describes some adjustments that are made to the R-matrix
results to allow a direct comparison with the MQDT fitted
parameters. The results of these calculations compare quite
favorably with the parameters determined from the fit.

Figure 8 compares R-matrix calculated and MQDT-fitted
eigenquantum defects for � and � series, as a function of
internuclear separation (at representative energies), and Fig. 9
displays the eigenquantum defects as a function of energy
at the equilibrium internuclear separation. The agreement in
energy dependence at R = Re

+ = 3.54 a0 is generally good.
The agreement in the internuclear distance dependence is
good near Re

+, but degrades at larger and smaller values of R.
Figures 10–12 compare individual elements of the μ̄ matrices
determined in the fit with those predicted by the calculations.
Figure 10 compares individual matrix elements as a function
of energy, and Figs. 11 and 12 compare matrix elements as
a function of R. The matrix elements agree very well as a
function of energy and agree more loosely as a function of R.
The departures between the calculated and fitted matrix ele-
ments at small and large R are more likely due to the neglect
of some R-dependent effects in the effective one-electron
potential used in these calculations, rather than a systematic
inadequacy of the fit. A. J. Stone48 has discussed at length
the limitations and inaccuracies of this type of potential rep-
resentation for electronic structure calculations. In addition,
our new all-electron coupled-cluster single double (triple)
calculations show that the R dependences of the dipole,
quadrupole, and octupole moments of the CaF+ ion-core are
overestimated by the current effective potential.49, 50 Never-
theless, this level of agreement between theory (which cannot
be expected to reach spectroscopic accuracy) and experiment
is excellent and validates the correctness of our fit model.

V. CONCLUSIONS

We have completed a global fit of nearly the entire ob-
served electronic spectrum of CaF. This was made possible
through the use of a fit strategy that employs physical in-
tuition along with a combinatorial computational approach.
The global fit model constructed in this process parameterizes
the electronic spectrum and nearly all underlying dynamical
processes in terms of a small number of quantum defect pa-
rameters. Nearly all observed energy levels (5 < n* < 20, 0
< v < 3, 0 < � < 3, 0 < N < 12) fit to within a fraction

of one cm−1. Comparison with R-matrix calculations further
confirms the validity of the fitted parameters. This global fit
model for CaF elevates the Rydberg states of CaF to an ex-
tremely high level of spectroscopic characterization, compa-
rable to what has been achieved only for H2 and NO.

Although the fit model we have presented here provides
a numerical description of the spectrum and dynamics
of the Rydberg states of CaF, the model alone does not
provide insight into the underlying physical mechanisms for
the exchange of energy and angular momentum between
the Rydberg electron and the ion-core. It should be possible,
however, to use ligand field theory, or theories based on a
ligand-field picture,24, 26–28 to explain the variations of the
quantum defect matrix elements with �, R, and ε, and to
deduce the physical meanings of the quantum defects that
form the heart of this model. This will provide greater insight,
reduce the number of independently adjustable fit parameters,
and enable the design of more mechanistically based models
to describe electron-nuclear energy exchange and dynamics.
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APPENDIX A: THE μ AND μ̄ QUANTUM DEFECTS

1. μ Defects

In the μ defect formulation,51 the matrix elements of the
electronic reaction matrix K(el) (R, ε) are given by

K
(el)
��′ (R, ε) = tan

(
πμ

(Λ)
��′ (R, ε)

)
. (A1)

Diagonalization of K(el) (R, ε) gives the eigenquantum
defect matrix μ(Λ)

α (R, ε),

VTK(el) (R, ε) V = tan
(
πμ(Λ)

α (R, ε)
)
, (A2)

or equivalently,

K(el) (R, ε) = V tan
(
πμ(Λ)

α (R, ε)
)

VT. (A3)

Note that the tan functions in Eqs. (A1) – (A3) are evalu-
ated element-by-element. The matrix μ(Λ)

α (R, ε) is diagonal,
with elements μ(Λ)

α (R, ε). The unitary matrix V (which is also
a function of both R and ε) diagonalizes K(el) (R, ε), and its
columns give the orbital angular momentum decomposition
of the eigenchannels. The full rovibronic reaction matrix K is
given by

K
(rv)
�v+N+,�′v+′N+′ =

∑
Λ

〈Λ | N+〉(N,�,p)

[∫
χ

(N+)
v+ (R) tan

(
πμ

(Λ)
��′ (R, ε̄N+v+,N+′v+′ )

)
χ

(N+′)
v+′ (R)dR

]
〈N+′ | Λ〉(N,�′,p),

=
∑
Λ

〈Λ | N+〉(N,�,p)

[∫
χ

(N+)
v+ (R)K (el)

��′
(
R, ε̄N+v+,N+′v+′

)
χ

(N+′)
v+′ (R)dR

]
〈N+′ | Λ〉(N,�′,p). (A4)
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The electronic reaction matrix elements K
(el)
��′ (R, ε)

= tan(πμ
(Λ)
��′ (R, ε)) in the integrand of Eq. (A4) are singular

at the point μ
(Λ)
�,�′ (R, ε) = 1/2.

2. μ̄ Defects

A smoother parameterization may be devised38 by simply
removing the tangent function of Eq. (A3), defining the matrix

μ̄(Λ) (R, ε) (matrix elements μ̄
(Λ)
��′ (R, ε)):

μ̄(Λ) (R, ε) ≡ Vμ(Λ)
α (R, ε) VT, (A5)

where V is the matrix that diagonalizes K(el) (R, ε),
and μ(Λ)

α (R, ε) is the matrix of eigenquantum defects.
The potentially singular matrix elements K

(Λ)
��′ (R, ε)

= tan(πμ
(Λ)
��′ (R, ε)) in the integrand of Eq. (A4) are replaced

with smoothly varying matrix elements, μ̄
(Λ)
��′ (R, ε):

M�v+N+,�′v+′N+′ =
∑
Λ

〈Λ | N+〉(N,�,p)

[∫
χ

(N+)
v+ (R)μ̄(Λ)

��′
(
R, ε̄N+v+,N+′v+′

)
χ

(N+′)
v+′ (R)dR

]
〈N+′ | Λ〉(N,�,p), (A.6)

and μ̄(Λ) (R, ε) plays the same role as the matrix K(el) (R, ε) in
Eq. (A4). To calculate the energy levels, we then recover the
original rovibronic reaction matrix K(rv) of Eq. (A4) using the
relationship

K(rv) = U tan(πUT M U)UT. (A7)

Here, U is the matrix that diagonalizes the matrix M
of Eq. (A.6).

The smoothness of μ̄(Λ)(R, ε), which is responsible for
the success of this formulation, is a result of the fact that
μ̄(Λ) (R, ε) is explicitly defined in terms of the eigenquan-
tum defects, μ(Λ)

α (R, ε), and the matrix V. The eigenquantum
defects μ(Λ)

α (R, ε) (which give the electronic energy levels
of the nonrotating molecule) and the matrix V (which gives
the orbital angular momentum decomposition of the elec-
tronic reaction matrix, K(el) (R, ε), i.e., the s∼p∼d∼f mixed
characters of the electronic wavefunctions), must themselves
be smooth, since they can be derived, respectively, from
the Born–Oppenheimer potential energy curves and Born–
Oppenheimer molecular wavefunctions.

1. Transformation between μ and μ̄ defects

To derive the transformation between the two formula-
tions, we rewrite Eq. (A3) as

μ(Λ)
α (R, ε) = 1

π
arctan(VTK(Λ)(R, ε)V), (A8)

and, since μ̄(Λ) (R, ε) ≡ Vμ(Λ)
α (R, ε) VT,

μ̄(Λ) (R, ε) = V
[

1

π
arctan(VTK(Λ)(R, ε)V)

]
VT. (A9)

Rearranging Eq. (A9) (compare Eq. (A7)),

K(Λ) (R, ε) = V tan(πVTμ̄(Λ) (R, ε) V)VT. (A10)

Matrix elements of μ(Λ) (R, ε) are then recovered from
Eq. (A10) using the relationship

μ
(Λ)
��′ (R, ε) = 1

π
arctan

(
K

(Λ)
��′ (R, ε)

)
. (A11)

APPENDIX B: SUMMARY OF R-MATRIX
CALCULATION METHOD

The R-matrix calculation method used here is largely
derived from the long history of R-matrix calculations, but
includes some unique features that make possible our direct
comparison to experimental data. Primary among them are
the use of a dipole reduction of the Hamiltonian and the
computation of the physical short-range reaction matrix in
spherical coordinates centered at the Ca atom. The method
is described in some detail in Refs. 26, 45, and 46. Our
current calculation largely follows Refs. 26, 45, and 46, with
some minor differences. This Appendix provides a schematic
overview of our method.

1. Dipole reduction of Hamiltonian

The large dipole moment in the CaF+ core influences
wavefunctions and quantum defects through the mixing of
Rydberg electron angular momentum states.28, 52–55 By pre-
diagonalizing the monopole and dipole parts of the potential,
we are able to shrink the reaction zone and reduce the dis-
tance at which the long-range boundary condition is imposed.
The dipole value is determined by a Gauss’ law integral of
the potential. The solution is expressed in the prediagonal-
ized system in terms of Coulomb functions for fractional or
imaginary angular momentum described by Dubau.56 How-
ever, those functions are linearly related to standard integer-�
Coulomb functions.

2. Variational solution

The dipole-reduced problem is solved using the Kohn
variational approach to the R-matrix method.47, 57 In the
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R-matrix method the log-derivatives of the wavefunction
are computed on a boundary surface. The Kohn variational
method converts the solution for the log-derivative to a ma-
trix equation involving integrals of the Hamiltonian with ba-
sis functions defined within the bounded region. Computing
these Hamiltonian integrals is time consuming and requires
integration over the Ca core, including the nucleus at which
the potential diverges. To ensure the accuracy of these inte-
grations, we use two concentric spherical boundary surfaces
centered at Ca: (i) an atomic zone around the Ca atom or Ca++

ion, and (ii) a molecular zone outside Ca but containing CaF.
Only spherically symmetric terms in the potential are used
in the atomic zone. Finally, a Green function propagator is
used iteratively to find the electronic reaction matrix, K(el)(Λ),
which satisfies both the log-derivative condition at the molec-
ular zone boundary and the long-range vanishing of the wave-
function. This procedure is more fully described in Sec. 2 C
of Ref. 45.

3. Computation of μ̄
(Λ)
calc and quantum defects

A set of calculated quantum defects, μ̄
(Λ)
calc, can be gen-

erated from the calculated electronic reaction matrix, K(el)(Λ)
calc ,

and can be directly compared to the fitted parameters, μ̄
(Λ)
fit .

The relationship between K(el) and μ̄(Λ)is described in Ap-
pendix A. The eigenquantum defects μα , which have unit pe-
riodicity, are calculated as an intermediate step in the trans-
formation and are adjusted into the same unit range as the
experimental eigenquantum defects prior to the final step of
the transformation.

4. Adjustment of calculated values for comparison
with fitted values

a. State selection

The angular momentum basis used in the calculation in-
cludes 0 ≤ � ≤ 6, whereas the fit only allowed for 0 ≤ � ≤ 3.
Electronic eigenchannels predicted by the calculation were
selected for comparison with the fitted eigenchannels based
on channel mixing coefficients and relative signs.

b. Basis rotation

A rotation, or a difference in basis between μ̄
(Λ)
calc and μ̄

(Λ)
fit

is observed. This basis rotation can be minimized by an or-
thogonal transformation, which we choose to be independent
of internuclear separation R. The relative rotation between the
fitted and calculated matrices is seen to be greater for � than
for � states. Correcting for this rotation improves the agree-
ment between μ̄

(Λ)
fit and μ̄

(Λ)
calc without affecting the eigenquan-

tum defects. The rotation may be an edge effect arising from
exclusion of high orbital angular momentum channels (g, h,
i) from the fit model.

The parameters used in the calculation include the radius
of the Ca atomic zone, ra = 0.8 a0, the radius of the molecular
zone, ro = 7 a0, and the radius of the dipole-reduced long-
range zone, rc = 15 a0. The value of rc is significantly smaller
than the radius used without dipole reduction. The angular
momentum basis set size was limited to � ≤ 6. This basis set
size was required at the lowest calculated energy, E = –0.02
Ry, by the requirement that � ≤ n – 1. Internuclear separa-
tion, R, was varied from 3.24 to 3.84 a0 in steps of 0.1 a0, and
the energy was varied from –0.020 to –0.004 Ry in steps of
0.004 Ry at each value of R. These values cover much of the
experimental ranges of energy and the vibrational motion in
R. In order to compare data for the states described by the fit-
ted and calculated μ̄, it is necessary to correctly match states
from the fitted group to the calculated group. We find that this
matching can be accomplished based on the magnitudes and
relative signs of the eigenchannel decompositions.

Because it uses a large angular momentum basis set,
the calculation reveals additional detail about the mixing
in of higher-� basis states that are outside of the s-p-d-f
block included in the fit. This out-of-block mixing sug-
gests an explanation for the enhanced electronic transition
access to non-penetrating states that has been observed
experimentally.31 Figure B1 shows that the state of nominal
f character contains contributions of g (10%) and h (2–4%)
characters that vary as a function of R. Similarly, the cal-
culated g and h states (not shown) show approximately 9%
and 2% f character, resulting in the observable intensities of
transitions from lower, nominally core-penetrating states into
these highly nonpenetrating Rydberg states.

3.3 3.4 3.5 3.6 3.7 3.8
0

0.02

0.04

0.06

0.08

0.1

Mixing in f state (–0.02 Ry, Σ)

g

h

i

3.3 3.4 3.5 3.6 3.7 3.8
0

0.05

0.1

0.15

0.2
Mixing in f state (–0.012 Ry, Π)

g

h

i

FIG. B1. Calculated R-dependence of higher-� mixing in � and � states of dominant f character, at E = –0.02 Ry. The calculation predicts mixing outside
of the experimentally fitted s, p, d, f block dominantly to g character, but also to h. These mixings enhance experimental access to non-penetrating states, as
reported in Kay et al. (Ref. 31).
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TABLE CI. UCF(R = 3.54a0) matrix for � symmetry.

Fit \ Calc s p d f g h i

s –0.9796 –0.0946 0.1766 –0.0017 –0.0084 0.0115 –0.0020
p –0.1028 0.9913 –0.0407 0.0674 –0.0236 0.0089 –0.0016
d 0.0296 0.0827 0.2230 –0.9043 0.3340 –0.1137 0.0177
f 0.1698 0.0403 0.9567 0.2005 –0.0971 0.0677 –0.0117
g –0.0054 –0.0008 0.0314 0.3690 0.8997 –0.2306 0.0110
h 0.0030 –0.0014 –0.0358 –0.0352 0.2605 0.9461 –0.1859
i 0.0000 0.0002 0.0005 0.0080 0.0320 0.1846 0.9823

APPENDIX C: BASIS ROTATION BETWEEN
CALCULATED AND FITTED μ̄

Using the notation of Appendix A and Ref. 58, calculated
and fitted μ̄ matrices can be diagonalized to determine the
eigenquantum defects μα that approximate the true values.
This can be expressed in terms of column eigenvectors as

μ̄fitUfit = Ufitμα,fit,

μ̄calcUcalc = Ucalcμα,calc,

μα,calc = UT
calcμ̄calcUcalc

∼= μα,TRUE
∼= UT

fitμ̄fitUfit = μα,fit.

(C1)

Our comparisons of fitted and calculated μ̄ matrices indi-
cate the presence of an orthogonal transformation or rotation
between the fitted and calculated basis sets that is small for
� states and moderate for � states. The agreement between
fitted and calculated μ̄ is improved if we transform the cal-
culated μ̄ to the same basis as the fitted μ̄. Because eigen-
values are unchanged by such a transformation, the compar-
ison between fitted and calculated eigenquantum defects is
unaffected.

An estimate of the basis rotation between the two sys-
tems is given by the relative rotation of eigenvectors, UCF

≡ UcalcUT
fit, where Ufit is increased to the size of Ucalc by

adding ones on the diagonal as if g, h, and i orbital an-
gular momentum waves were fully non-interacting. Using
equation (C1), the fitted μ̄ can be calculated from the calcu-
lated eigenquantum defects, μα,calc, effectively transforming
the calculated μ̄ to the fit basis:

μ̄calc(fit) ≡ UT
CFμ̄calc UCF=

(
UfitUT

calc

)
μ̄calc

(
UcalcUT

fit

)
= Ufitμα,calcUT

fit. (C2)

By this transformation, the μ̄calcmatrix is adapted for any
difference in basis between the fit and the calculation.

TABLE CII. UCF(R = 3.54a0) matrix for � symmetry.

Fit \ Calc p d f g h i

p 0.9753 –0.2140 0.0082 0.0311 –0.0420 0.0106
d 0.1278 0.6030 –0.7535 0.2078 –0.0913 0.0272
f 0.1772 0.7597 0.5588 –0.1938 0.1943 –0.0625
g –0.0286 0.0609 0.3239 0.9129 –0.2387 –0.0175
h 0.0124 –0.0971 –0.1154 0.2872 0.9287 –0.1795
i –0.0010 0.0173 0.0411 0.0503 0.1810 0.9812

Two R-dependent effects are noticeable, (i) a difference
in basis orientation at R = 3.54 a0 and (ii) a difference in the
R-dependence of eigenchannel decompositions. If we choose
to utilize the transformation computed for R = 3.54 a0 at all
R, μ̄calc(fit) can be calculated either using UCF (R = 3.54 a0) in
UT

CFμ̄calcUCF, or Ufit (R = 3.54 a0) in Ufitμα,calcUT
fit. The use

(at all R) of the transformation for R = 3.54 a0 maintains some
level of independence between the compared matrix elements,
both in value and in R derivatives.

We have chosen the first method, using
UCF (R = 3.54 a0), because it reveals the difference in
R dependence of channel mixing coefficients between the
current calculation and the fit, while the second method
suppresses those differences. Other methods of reconciling
the two basis sets can be defined, including the use of
singular value decomposition to determine a single least-
squares optimized transformation,59 but in the absence of an
interpretation for the transformation, we have selected this
fixed-R approach.

Tables CI and CII show UCF (R = 3.54 a0) for � and �

states. The rotation is nearly diagonal except for d and f states
in both cases.
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