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Abstract 

We present an approach for calculating nonlinear spectroscopic observables, which overcomes 

the approximations inherent to current phenomenological models without requiring the 

computational cost of performing molecular dynamics simulations. The trajectory mapping 

method uses the semi-classical approximation to linear and nonlinear response functions, and 

calculates spectra from trajectories of the system’s transition frequencies and transition dipole 

moments. It rests on identifying dynamical variables important to the problem, treating the 

dynamics of these variables stochastically, and then generating correlated trajectories of 

spectroscopic quantities by mapping from the dynamical variables. This approach allows one to 

describe non-Gaussian dynamics, correlated dynamics between variables of the system, and 

nonlinear relationships between spectroscopic variables of the system and the bath such as non-

Condon effects. We illustrate the approach by applying it to three examples that are often not 

adequately treated by existing analytical models – the non-Condon effect in the nonlinear 

infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, 

and chemical exchange processes in barrier crossing reactions. The methods described are 

generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz 

regions.  
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1. Introduction 

Ultrafast spectroscopy is the most widely used experimental approach for studying the 

dynamics of molecules in condensed phases. The interpretation of these experiments has relied 

heavily on nonlinear spectroscopy models which use perturbation theory to describe the 

dynamics in terms of multi-point correlation functions in the dipole operator. The most useful 

models to have been embraced by experimentalist and theoretician alike provide the ability to 

directly calculate the measured experimental observables, allowing interpretation and fitting of 

the data. Unfortunately, in several cases, the assumptions built into these models are proving to 

be too restrictive to properly describe nonlinear and two-dimensional infrared spectroscopy. To 

provide a realistic interpretation of such data, mixed quantum-classical models that use classical 

molecular dynamics (MD) simulations to describe the dynamics are being widely developed. 

These models map the classical coordinates of the MD simulation onto a quantum Hamiltonian 

for the spectroscopic degrees of freedom and provide direct insight into how specific dynamics 

influence the spectroscopy. However, they usually add a layer of complexity that makes them 

impractical for experimentalists. The goal of this paper is to present a simple and intuitive 

approach to modeling nonlinear spectroscopy that describes the system and dynamics 

phenomenologically but calculates observables from trajectories and mapping variables as 

performed in mixed quantum-classical calculations. 

The most popular approach to modeling nonlinear spectroscopy are the class of models 

that include the Brownian oscillator model and spin-boson model, which were popularized by 

Mukamel,1 and are often implemented with the aid of double-sided Feynman diagrams. This 

method treats the interaction of one or more quantum degrees of freedom with a quantum 

harmonic bath.1–4 Within that framework, it provides exact analytical expressions for observables 
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in nonlinear spectroscopy, given variables that describe the system and the frequency correlation 

function or spectral density for the bath. The high temperature limit and specific forms of the 

bath lead to simple analytic descriptions of homogeneous and inhomogeneous broadening and 

spectral diffusion. 

Analytical models typically rely on a series of approximations, including bilinear 

coupling of the system to a harmonic bath, the second cumulant approximation, and the Condon 

approximation. Perhaps the most restrictive is the use of the cumulant expansion to second order, 

also known as the Gaussian approximation. This allows the signal to be described exactly for 

Gaussian fluctuations or disorder in the system coordinate, which finds greatest use for the 

description of fluctuations about a free energy minimum. Barrier crossings, kinetics, and other 

non-Gaussian chemical dynamics are not accounted for, but are often added in an ad hoc 

manner. Bilinear coupling to a bath provides the ability to solve this problem analytically, but it 

only describes pure dephasing processes. Population relaxation and orientational relaxation must 

still be added in a manner that is uncorrelated with the pure dephasing. Finally, the Condon 

approximation states that the external electromagnetic field couples to a dipole operator that is a 

function of the system coordinates but not the bath. These approximations are proving to be too 

restrictive for many recent applications of nonlinear and two-dimensional infrared spectroscopy, 

which has spurred investigations into alternative methods of extracting such information from 

experiment.5–7 

The past decade has also seen the growth of spectroscopic models based on the semi-

classical approximation that draw from classical MD simulations. A number of variations for 

these mixed quantum-classical models exist, but they share in common a classical treatment of 

the molecular dynamics and the construction of a time-dependent quantum Hamiltonian for the 
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spectroscopic degrees of freedom by mapping from one or more coordinates of the classical 

simulation.8–12 These approaches may be used for spectroscopy of excitonic states and for 

reactive systems. They provide an atomistic interpretation of spectroscopic observables by nature 

of their direct correlation with underlying molecular dynamics. These advantages come at the 

cost of considerable effort for developing models and implementing the simulations, which 

makes them less accessible to experimentalists. 

Existing models have proven very useful for many problems in nonlinear spectroscopy, 

and continue to be the favorite for the analysis of condensed phase dynamics. However, the 

advent of two-dimensional spectroscopy, and the growth of infrared vibrational spectroscopy in 

particular, has highlighted the need for a new class of models to analyze the spectroscopy of 

dynamics in complex and reactive systems. Previously, a few approaches to stochastically model 

vibrational dynamics using semi-classical methods have been put forth to describe linear13 and 

nonlinear infrared spectroscopy.14–17 Here we describe a phenomenological approach, which 

draws on the semi-classical approximation and can be used to describe the nonlinear 

spectroscopy of barrier crossings, non-Gaussian dynamics, and the non-Condon effect. It draws 

from mixed quantum-classical modeling, using stochastic trajectories for one or more system 

coordinates that are constructed in a phenomenological manner, and mapping variables that 

relate these internal coordinates to the spectroscopic observables. This trajectory mapping 

method provides an avenue to interpreting nonlinear and two-dimensional spectroscopy in the 

optical and infrared regimes in terms of known dynamics of internal coordinates.  
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2. Approach 

a. Approximations to the Response Function   

The common description of spectroscopy emerges from a Hamiltonian ( )0H H V t= +  

where H0 is the Hamiltonian for the matter and ( )V t = − ⋅m E  describes the electromagnetic field 

E interacting with the matter through the quantum mechanical dipole operator m.1,18 Within 

linear response theory, time-domain spectroscopy depends on response functions, which are 

expressed as multipoint correlation functions in m. In the case of linear spectroscopy, the 

response function is related to ⟨m(t)·m(0)⟩, and the time-evolution of the dipole moment m(t) for 

all degrees of freedom can be obtained directly from ab initio molecular dynamics simulations19 

or a classical representation of the dipole operator.20 To reduce computational cost and 

complexity, one typically focuses only on the specific degrees of freedom that are resonant with 

E. This amounts to separating the spectroscopic degrees of freedom (“system” Q) from the 

remaining ones (“bath” q), which we account for by partitioning 0 S B SBH H H H= + + , where 

HSB describes the interaction between the “system” and the “bath”. In the case of vibrational 

spectroscopy, one can expand m in Q and q. For instance, when including the permanent dipole, 

transition dipole moment, and linear non-Condon corrections to the transition dipole we have, 

 
2

0 Q Qq
Q Q q α

α α

∂ ∂= + +
∂ ∂ ∂∑m mm m  (1) 

Then, we can write dipole correlation functions in terms of the transition dipole moment 

( ) ( )μ = mab t a t b  where matrix elements are taken in the eigenstates of HS, and the time 
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dependence results from HB. The linear response function for a two-level system with system 

states a and b becomes, 

 (1)

0

( ) Re ( ) (0) exp ( ') 'ab ba baR i d
τ⎡ ⎤

τ = μ τ μ − ω τ τ⎢ ⎥
⎣ ⎦
∫  (2) 

Here the time-dependent transition energy ( ) ( ) /ab S SB S SBt a H H a b H H bω = + − + , and 

the angular brackets denote a trace over the bath degrees of freedom. For nonlinear vibrational 

spectroscopy, the result for rephasing (−) and non-rephasing (+) contributions to the third-order 

response function is 4 
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∫ ∫ ∫

∫ ∫ ∫
 (4) 

Further simplification of Eq. (2) requires that we neglect the dependence of the transition 

moment on the bath (Condon approximation) and neglect orientational factors (isotropic 

approximation). Then for the specific case of Gaussian dynamics one can make the cumulant 

approximation and truncate at second order to obtain an expression of the following form, 

 ( ) ( )2(1)

0 0
( ) exp

′′τ τ− ω τ ⎡ ⎤′′ ′ ′ ′′τ = μ − δω τ δω τ τ τ⎢ ⎥⎣ ⎦∫ ∫ab
ab ab ab

iR e d d  (5) 
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where, δωab is the deviation of ωab from its mean value. Response functions in the second 

cumulant approximation can be derived analytically for the specific form of a system bi-linearly 

coupled to a harmonic bath. This leads to the commonly used phenomenological models, such as 

the Brownian oscillator model.1,4 

Mixed quantum-classical models apply a semi-classical approximation to Eqs. (2)–(4). 

This replaces the time propagator /BiH te− with classical dynamics for the bath variables q, and 

replaces the trace over the bath with an equilibrium average over phase space. For the quantum 

operator ( , , )Q q tm , only the system coordinate Q remains quantized, and the orientation and 

magnitude of the dipole moment and the dynamics depend on the classical degrees of freedom 

qα . In practice, use of this approximation in nonlinear spectroscopy has been handled in 

different ways, but practical considerations have dictated that ( )ωab t  and ( )μab t  are not 

separately calculated for each time step. Instead, within an adiabatic approximation, one can use 

a mapping that correlates these variables with the bath coordinates q.  For instance, 

 0 1⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑ab ab a qα α
α

ω ω  (6) 

 

0 1⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑ab ab b qα α
α

μ μ  (7) 

Here aα and bα  are the mapping coefficients between the bath and the transition frequency 

0( ) /ab aba qα αω ω= ∂ ∂  or transition dipole moment 0( ) /ab abb qα αμ μ= ∂ ∂ , and 0ωab  and 0
abμ  are 

their values in the absence of interactions with the bath. This expansion is only shown to the 

linear term, but the nonlinear terms in this expansion will be used where this method is most 

useful. The mapping may be to local or collective bath coordinates, and to as many degrees of 
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freedom as are necessary to obtain a highly correlated single-valued mapping of ωab(q) and 

( )μab q . Examples of these mappings include correlating ωab with the electric field of the bath 

acting on the system coordinate8,11,21–23 and with bond length.24,25 The construction of these maps 

is independent of the dynamics, and has been performed using perturbation theories for the 

system-bath interaction,21,26 DFT calculations on clusters and model systems,8,12,27,28 and 

empirical methods.29 In the case of multiple interacting degrees of freedom, the site energies and 

couplings of the system Hamiltonian can all be constructed by mapping procedures.30  

b. Trajectory construction 

The semi-classical approximation to Eqs. (3) and (4) allows one to calculate spectroscopic 

observables from trajectories for the transition energy gap ( )ωab t  and the transition dipole 

moment ( )μab t . If one can obtain trajectories for the dynamics of the system, this approach 

provides a clear physical interpretation to the spectrum. However, added complexity exists if 

these must be obtained by performing molecular dynamics simulations, which introduces more 

difficulties in the analysis of data. Instead, we propose that classical trajectories with specified 

dynamical characteristics for one or more stochastic variables of the bath be constructed and 

used with mapping to the spectroscopic quantities to calculate or fit the experimental observables 

using the semi-classical approximation. 

To illustrate this method, we make use of two approaches of constructing trajectories in 

the internal stochastic variable of the bath q to which we attribute the dynamics. In the first 

method, illustrated in Fig. 1, the phenomenological inputs are an equilibrium distribution 

function for q, P(q), and a correlation function for the stochastic variable cq(t)=⟨q(t)q(0)⟩. A 

trajectory is generated by convoluting a vector of random values for q, v(i), chosen randomly 
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from P(q), with the correlation function. A specified cq(t) is also saved in discrete form in a 

vector of equal length, where a time spacing Δt between points is understood. If we now 

associate the index of v(i) with a time point ti = i Δt, then a trajectory for q with the time-

dependent properties of cq(t) can be obtained by convoluting, 

 ( ) ( ) ( )qq t dt c t t v t′ ′ ′= −∫ . (8) 

In practice, we perform this convolution using fast Fourier transform methods. The time-ordered 

sequence of values for q can be translated into trajectories for the transition energy ωab(t) and 

transition dipole moment ( )μab t  on the basis of a mapping from q. A related approach is to use a 

transformation matrix that contains correlation information to convert Gaussian random 

fluctuations in the system-bath Hamiltonian into a correlated trajectory.16 

The second method involves generating a trajectory by using Langevin dynamics on a 

potential of mean force for the stochastic variables of interest, F(q) = −kT lnP(q). The dynamics 

are propagated on the potential of mean force as a function of q. With trajectories for the 

stochastic variable q(t), trajectories for the spectroscopic variables ωab(t) and ( )μab t  can be 

obtained using appropriate mapping.31 Alternatively, Langevin dynamics can be run on a higher 

dimensional potential of mean force that explicitly accounts for the statistical relationship 

between q(t) and ωab(t). These surfaces may have multiple minima for the purpose of describing 

barrier crossing kinetics. 

3. Examples 

To illustrate the utility and ease of the trajectory mapping method we calculate linear and 

nonlinear infrared vibrational spectra for three problems that are not easily addressed with 
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existing phenomenological or analytical models. We use two approaches to trajectory 

construction, and provide a description of the frequency and dipole maps. With frequency and 

dipole trajectories in hand, we calculate the R(1) and R(3) using their semi-classical forms (Eqs. 

(2)–(4)). Additional details for how we calculate nonlinear and two-dimensional spectra are 

described in more detail in Ref. 27. In the case of 2D IR spectra, the time domain responses were 

windowed, zero-padded and Fourier transformed in τ1 and τ3 to give rephasing and non-

rephasing spectra, which were summed to give 2D IR spectra.32 

a. The Non-Condon Effect: Nonlinear IR Spectroscopy of HOD/D2O 

 Ultrafast infrared spectroscopy of the OH stretch vibration has been widely used to 

understand hydrogen bond dynamics in liquid water.33,34 The sensitivity of the OH stretch 

frequency to its local hydrogen bonding environment has made it a powerful observable to probe 

the evolution of the hydrogen bond network.21,26,35 Moreover, molecular dynamics simulations 

using various water models, in conjunction with semi-classical approaches of calculating 

spectroscopy, have been extensively used to understand hydrogen bond dynamics in water.21,35–37 

Water is a highly anharmonic system and exhibits non-Gaussian dynamics, making traditional 

approaches to modeling the nonlinear response problematic. In particular, experiments and 

molecular dynamics simulations have indicated that the non-Condon variation in the transition 

dipole moment with OH stretch frequency is a particularly strong effect that may mask the 

underlying hydrogen bond dynamics in infrared spectroscopy.29,38,39  

We used the phenomenological approach outlined above to study the non-Condon effect 

in nonlinear spectra of the OH stretch in HOD/D2O. We focused on the results from three-pulse 

echo peak shift (PS) measurement,40 which can measure the OH stretch frequency correlation 

function, giving insight into the timescales involved in HB dynamics. In their original analysis, 



 11  
 

Fecko et al.40 fit their experimentally measured three-pulse peak shift decay to a Brownian 

oscillator model to extract the OH frequency correlation function.4 This analysis accounted for 

finite pulse length, population relaxation, thermally-shifted ground state, and molecular 

reorientation.  

To explore the effects of the Condon approximation on the extracted OH frequency 

correlation function, we fit the PS data with the trajectory mapping model that included variation 

of the OH transition dipole moment with OH frequency, but retained a Gaussian distribution of 

OH frequencies. Although evidence has indicated that water’s dynamics are non-Gaussian, we 

chose a Gaussian distribution to illustrate the specific manner in which non-Condon behavior 

influences nonlinear spectroscopy. Comparison of the correlation functions that best fit the PS 

data with or without non-Condon corrections shows the importance of including this effect. We 

generated a Gaussian frequency distribution for the v = 0-1 transition centered at 3400 cm-1, with 

its width scaled to match the full-width of the experimental linear infrared spectrum of 

HOD/D2O. We then convoluted random frequencies within this distribution with frequency 

correlation functions that had the same general form as in previously published work,40 but with 

varying decay timescales, and decay and oscillation amplitudes. We found the calculated spectra 

and PS to be very sensitive to the parameters governing the short time relaxation, and we 

iteratively varied the parameters of the input correlation function to find best agreement of the 

calculated PS with the experimental PS data. The resulting frequency trajectories were each 600 

ps long, with a 6 fs time step between successive frequencies. The corresponding dipole 

trajectories were scaled by their non-Condon relationship to the transition frequencies,41 as 

shown below:  

 3 7 2 11 3
10 10 10 101.8336 (1.2973 10 ) (4.7136 10 ) (6.8016 10 )μ ω ω ω− − −= − × + × − ×  (9) 
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Here ω10 is specified in cm-1 and μ10 is in D. We also generated a ω21 distribution that was fully 

correlated with the ω10 distribution, with a fixed anharmonicity of ω10-ω21=180 cm-1. We then 

calculated the third-order response from Eqs. (3) and (4) for a three-level system,29   

 

1 2 31

1 2

1 2 31

1 2

(3)
1 2 3 10 1 2 3 10 1 2 10 1 10 10 10

0

21 1 2 3 21 1 2 10 1 10 10 21
0

( , , ) Re 2 ( ) ( ) ( ) (0) exp ( ) ( ') '

( ) ( ) ( ) (0) exp ( ) ( ') '

R i d i d

i d i d

τ +τ +ττ

±
τ +τ

τ +τ +ττ

τ +τ

⎡ ⎤⎡
τ τ τ = μ τ + τ + τ μ τ + τ μ τ μ ± ω τ τ + ω τ τ⎢ ⎥⎢

⎢ ⎥⎣ ⎣ ⎦

⎤⎡ ⎤
⎥− μ τ + τ + τ μ τ + τ μ τ μ ± ω τ τ + ω τ τ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎦

∫ ∫

∫ ∫ ⎥

(10) 

For calculations of the peak shift and 2D IR spectra, we averaged response functions 

across three dipole and frequency trajectories for waiting times <400 fs, and across five 

trajectories for waiting times >400 fs. We then proceeded to calculate the peak shift decay for the 

various trial input correlation functions, by projecting the negative (rephasing) contribution in 

Eq. (10) onto the τ1 axis and plotting the maximum of this projected three-pulse echo at different 

waiting times, τ2. The normalized calculated PS that included the non-Condon behavior, which 

best follows the behavior of the experimentally measured PS is shown in Fig. 2. The calculated 

PS displays the salient features of the measured PS,40 showing a double exponential decay with 

timescales of ~75 ps and 1 ps with a weak recurrence at ~130 fs. However, since real pulse 

envelopes are critical to obtaining absolute peak shift values and were not included in our 

calculations, the calculated PS shows a higher zero-time peak shift of 95 fs, as opposed to the 28 

fs seen in experiments. 

The general nature of the extracted correlation function – double exponential decay with 

a weak oscillation – is similar to the one obtained by Fecko et al. The short time decay amplitude 

for the non-Condon case is smaller than seen in Ref. 40. Since we did not include real pulse 

effects, the short time component of the correlation function shows a longer decay than the 
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correlation function deduced in Ref. 40. The oscillation in the input correlation function 

calculated here is of lower amplitude compared to the correlation function from Fecko et al. 

Figure 2 shows the input trial correlation function, with and without the non-Condon effect, used 

to generate the best fit of the measured PS. The correlation function that best fits the 

experimental PS for the Condon case displays a larger amplitude fast time drop and a slightly 

larger amplitude oscillation, compared to the correlation function employed after accounting for 

the non-Condon effect. Skinner and co-workers calculated frequency correlation functions and 

peak shifts for Condon, non-Condon and cumulant cases from MD simulations of SPC/E water 

model, and found that the non-Condon peak shift and correlation function showed a larger 

amplitude fast decay and a stronger under-damped oscillation compared to the latter two 

scenarios.39 We tested to see if the PS calculated using our method displayed similar behavior for 

the two cases and found that for a given input correlation function, we see the same trend seen by 

Schmidt et al. for the Condon and the non-Condon PS calculations – a larger amplitude fast drop, 

a stronger oscillation and a smaller zero-time value for the non-Condon PS compared to the 

Condon case. It appears that the absence of the Condon approximation influences the short time 

amplitude as well as the amplitude of the oscillation in the extracted frequency correlation 

function, although the qualitative behavior is the same. 

Extending these calculations to 2D IR spectroscopy, Fig. 2 shows the 2D IR spectra of 

HOD/D2O calculated upon convoluting the random OH frequencies in a Gaussian distribution 

with trial correlation functions that fit the experimental PS best for both the Condon and non-

Condon cases, respectively. As expected, the 2D IR spectrum with the non-Condon effect clearly 

shows shifts in intensity to lower frequencies compared to the Condon 2D IR spectra, due to the 

enhanced transition dipole strengths at lower frequencies that characterize the non-Condon 
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behavior. These calculations are consistent with the spectra obtained from molecular dynamics 

simulations.10,29,37,39 

b. Non-Gaussian Dynamics: Spectroscopy of Strong Hydrogen Bonds 

The difficulties with current efforts to model vibrational spectroscopy are in striking 

evidence in the study of strongly hydrogen bonding systems, such as carboxylic acid dimers,42 

N:…H-O hydrogen bonds,43 and aqueous acids and bases.44 Here, one must consider several 

factors that emerge for highly anharmonic potentials – a large non-Condon effect, the importance 

of direct 0-2 transitions that are typically not allowed in the weakly anharmonic case, and 

unusual “negative anharmonicities” where ω21 > ω10.  

In our first example, we model the spectroscopy of protons in strong hydrogen bonds 

between water molecules and aqueous hydroxide. The anomalously fast diffusion of protons in 

water, both in aqueous acids and bases, has been attributed to the Grotthuss hopping mechanism 

of protons from a proton donor to an acceptor.45 In the case of hydroxide, this proton donor is the 

hydrogen bonded water molecule. The hydrogen bond rearrangements that facilitate the 

stabilization of the proton donor and acceptor molecules, as well as the nature and lifetimes of 

hydrated proton species that participate in its transport, are currently being investigated using 

ultrafast nonlinear IR spectroscopy.27,44 Molecular dynamics simulations of these systems have 

the additional challenge of accounting for the breaking and formation of covalent O-H bonds 

during Grotthuss proton transport.  

Our previous 2D IR experiments to understand proton transfer in aqueous bases were 

performed on dilute HOD in concentrated NaOD in D2O solutions, by probing the evolution of 

the OH stretch vibrational frequency during proton transfer from HOD to OD-.27,44 We have also 

described a mixed quantum-classical cluster-based mapping model that draws from a multistate 
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empirical valence bond (MS-EVB) MD simulation of aqueous hydroxide.46 For every snapshot 

in these simulations around a successful proton transfer event, an HOD molecule in the first 

solvation shell of the OD- ion, along with all water molecules within ~10 Å distance from the 

HOD molecule, were selected as a cluster. DFT calculations were performed on these clusters by 

stretching the OH bond in steps of 0.1 Å and tracing the corresponding potential energy curve.41 

As the proton moves from the donor molecule to the acceptor, the curve evolves from a Morse-

like potential when the proton is localized on the donor or acceptor, to a symmetric double-well 

when the proton is equally shared between two molecules. The potential energy curves from 

these DFT calculations were fit to an 8th degree polynomial, and the discrete variable 

representation method was used to calculate the transition frequencies and their corresponding 

transition dipole moments, thus generating a mapping of these quantities to the internal 

coordinate for the cluster.41 In the past, we used the EVB simulations of Martinez and 

coworkers46,47 and identified a collective solvation coordinate as the internal variable and used 

DFT-based electronic structure calculations to map this variable onto the spectroscopic 

quantities.27 

For the present example, we investigate the spectroscopy that arises from large amplitude 

fluctuations in the hydrogen bond length between donor and acceptor. For these purposes, the 

most intuitive stochastic internal variable is the differential distance of the proton from donor and 

acceptor oxygen atoms, = −r rO H O Ha d
δ , since it directly reports on the position of the proton as 

it transfers from a water molecule to a hydroxide ion. Small δ values correspond to the case 

where a proton is equally shared between two molecules, leading to a symmetric double-well 

potential and larger δ values correspond to a localized proton and a Morse-like potential. Using 
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the same cluster-based mapping method as described above, we also extracted the associated δ 

for each of the clusters and mapped these onto the corresponding ω and μ.  

 The variation of ω10 and μ10 with δ were fit to the following equations: 

 2
10 2581 [tanh(1.55 )] 433.9 tanh(2 ) 650ω δ δ= ⋅ + ⋅ +  (11) 

 11 3 7 2 4
10 10 10 102.9900061 10 2.8814324 10 9.8588217 10 1.7987508μ ω ω ω− − −= − × + × − × +  (12) 

Here, ω is in cm-1 and μ is in Debye, and the correlation coefficients for ω10 vs. δ and μ10 vs. δ 

were 0.73 and -0.59, respectively. Mapping parameters for all the transition frequencies and 

dipole moments we used are tabulated in the Supporting Information. The mappings of four of 

these quantities, ω10, ω21 and μ10, μ21, are shown in Fig. 3. The broad symmetric double-well 

potential of the shared proton species (small δ) results in a significant red-shift in the transition 

frequencies, an enhancement of transition dipole strength, and requires that one- and two-

quantum transitions to higher vibrational states, v = 2, 3 and 4, be considered for mid-IR 

spectroscopy in the 1000-4000 cm-1 region. 

For the purposes of using the trajectory mapping model, the proton transfer variable δ 

was used as the internal stochastic variable. We generated a Gaussian distribution in δ for 

different peak values ranging from ⟨δ⟩ = 0.6 Å to 1.1 Å and widths ranging from σ=0.25 Å to 

0.35 Å. Random values of δ within each of these distributions were then convoluted with a bi-

exponential time correlation function, with timescales (amplitudes) of 200 fs (0.7) and 2 ps (0.3), 

to obtain a correlated δ(t) trajectory. The δ(t) trajectories we use in this example are each 2.5 ns 

long, sampled at a 5 fs time step. Drawing on the nonlinear mapping between δ and transition 

dipoles and frequencies, we deduced the instantaneous transition dipole and frequency 
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trajectories for all relevant one-quantum and two-quantum transitions. From these trajectories we 

calculate the third-order response functions from Eqs. (3) and (4). Since we explicitly calculate 

the variation of the transition dipole with δ and ω, we rigorously include non-Condon effects in 

calculating spectra. In practice, these integrals are evaluated for v = 0 to 4, leading to 30 

Feynman diagrams that include pathways that exclusively involve one- or two-quantum 

transitions, as well as those that involve mixed one- and two-quantum transitions, and coherence 

during the waiting period τ2. 

 The linear IR spectrum for ⟨δ⟩ = 0.6 through 1.1 Å are shown in Fig. 4. We found that 

calculated spectra were very sensitive to the nature of the input δ distribution. At large ⟨δ⟩ the 

spectrum is dominated by the transitions >3000 cm-1 that correspond to the weakly anharmonic 

limit. With decreasing δ, and increasing double-well character to the proton transfer potential, we 

see a significant enhancement of the low frequency tail and the appearance of the continuum 

absorption in the mid-IR as seen in infrared spectra of aqueous acids and bases. The rise of an 

additional peak at around 800 cm-1 with decreased ⟨δ⟩ reflects fluctuations about the equally 

shared double well state (δ = 0), the even valued mapping of ω with δ, and the strong increase in 

μ for these configurations. 

2D IR spectra are shown in Fig. 4 for a waiting time of τ2 = 100 fs, for ⟨δ⟩ = 0.7 and 1.0 

Å, and σ = 0.3 Å. These spectra show similar spectral features and trends in frequency. For large 

δ, spectra are centered at around ω1 = 3430 cm-1 and the lineshape is the expected diagonally 

elongated doublet of a weakly anharmonic inhomogeneous system. As the center of the δ 

distribution shifts to smaller values, additional low frequency transitions for configurations δ  ≈ 0 

are observed. These low frequency features near 1000 cm-1 display the negative anharmonicities 

characteristic of strongly hydrogen bonded systems like the shared proton species. Streaked cross 
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peaks correspond to species with fast fluctuations of the proton between localized and shared 

configurations.  

As another example, we calculated 2D IR spectra of a model applicable to molecules 

linked by strong hydrogen bonds, such as carboxylic acid dimers. Pump-probe and peak shift 

spectroscopies on strongly hydrogen bonded dimers have shown evidence for strong modulation 

of the high frequency OH or NH vibrations at the dimer interface by inter-dimer low-frequency 

(bath) modes.42,43 We explore how varying fluctuations in these low frequency vibrations that 

impose different dephasing criteria on the high frequency vibrations affect the 2D IR line shapes 

of the high frequency mode.  

We consider the v = 0, 1, and 2 states of an OH stretch vibration coupled to a low 

frequency mode, and vary their coupling between underdamped and overdamped limits. We 

chose a Gaussian frequency distribution for the v = 0-1 transition of the OH stretch vibration 

centered at ⟨ω10⟩  = 3400 cm-1, with a width of σ = 300 cm-1. We then generate a ω21 distribution 

that is fully correlated with the ω10 distribution, offset in frequency by a fixed anharmonicity of 

ω21−ω10=200 cm-1. The system-bath interaction is represented through the analytical expressions 

for the complex Brownian oscillator correlation functions given by Mukamel,1 and the damping 

rate is varied to examine their effect on the calculated spectra. The frequency of the 

intermolecular mode was set to ω = 200 cm-1. For the damping rate γ, we used two values for the 

friction, γOD = 0.1319 fs-1 (700 cm-1) and γUD = 0.0028 fs-1 (15 cm-1) for the over-damped and 

under-damped scenarios, respectively, and the temperature was set to 300K. The corresponding 

imaginary parts of the complex correlation functions are shown in Fig. 5. The over-damped 

correlation function shows half an oscillation of the low frequency mode, while the under-

damped correlation function shows several oscillations that ring for picoseconds. 
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We then convoluted the uncorrelated random OH frequencies with the two complex 

correlation functions to generate trajectories that are each 250 ps long, at 5 fs time steps. For 

each case, we calculated the third-order response function using Eqs. (4) and (5) that included 

both the v = 0-1 and v = 1-2 transitions and the non-Condon scaling of the dipole moment 

according to Eq. (9). We then proceeded to examine the effect of damping on the calculated 2D 

IR and linear IR spectra for this system. As seen in Fig. 5, the 2D IR spectrum of an over-

damped OH stretch vibration shows a single broad peak (a doublet) centered at 3400 cm-1. On 

the other hand, under-damped modulations of the OH stretch vibration result in a low-frequency 

vibronic progression on the positive and negative lobes of the OH 2D IR spectrum. 

c. Chemical exchange  

As the final example, we model barrier crossings in a chemical exchange experiment 

using a trajectory generated from a Langevin simulation on a potential of mean force.1 With the 

exception of the work presented in Ref. 31, most chemical exchange models assume a separation 

of timescales between the dephasing dynamics of the spectroscopic transition and the slower 

kinetics for the reaction, leading to standard kinetic equations and explicit treatment of only one 

time variable in the experiment.24,48–52 In the present example, vibrational dephasing and the two-

state kinetics are intertwined. Our model is parameterized to reproduce the spectroscopy and 

two-state exchange kinetics between two configurations of a solute that can form either zero or 

one hydrogen bond to the solvent.50,51 The hydrogen bonded complex and free molecule give rise 

to two distinct absorption peaks in the linear IR spectrum with different center frequencies and 

widths. 

The exchange between species depends on a generalized reaction coordinate ξ, and the 

free energy is constructed to have two minima when projected onto the ξ−axis. Similarly, the 
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distribution of transition frequencies has two peaks, reflecting the two hydrogen bonding 

configurations. The statistical relationship between ξ and ω is expressed through a 

phenomenological two-dimensional probability distribution, P(ξ,ω), or equivalently the potential 

of mean force F(ξ,ω) = −kBT lnP(ξ,ω):  

 ( ) ( ) ( ) ( ) ( )2 22 2
,0 ,0,0 ,0

2 2 2 2
, , , ,

, exp exp
2 2 2 2ω ξ ω ξ

⎡ ⎤⎡ ⎤ ω− ω ξ − ξω− ω ξ − ξ ⎢ ⎥⎢ ⎥ξ ω = − − + − −
⎢ ⎥σ σ σ σ⎢ ⎥

⎣ ⎦ ⎣ ⎦

f fb b
b f

b b f f

P A A  (13) 

Here the subscripts b and f correspond to the hydrogen-bonded and free species, respectively. In 

the resulting potential of mean force (PMF), A, ω0, ξ0 and σ are the depth of the well, free-energy 

minimum in frequency, free energy minimum in reaction coordinate, and width of the well for 

the two species. The PMF is plotted in Fig. 6. In total, there are ten adjustable parameters in the 

PMF which were chosen such that the barrier to dissociation was roughly 0.5kBT and the change 

in energy for forming a hydrogen bond was roughly 0.2kBT, and that only a modest overall 

correlation existed between ξ and ω. Values for all parameters are given in the caption to Fig. 6. 

 The trajectory for the transition frequency is obtained by integrating the coupled 

Langevin equations for the ω and ξ coordinates:53,54 

 
0

F( , ) ( ) ( ) ( )ω ω ω ω
∂ω ∂ ξ ω= − − − δω +
∂ ∂ω ∫

t

c K t s s ds T f t
t

 (14) 

 
0

F( , ) ( ) ( ) ( )ξ ξ ξ ξ
∂ξ ∂ ξ ω= − − − δξ +
∂ ∂ξ ∫

t

c K t s s ds T f t
t

 (15) 

where, δω(t) and δξ(t) refer to the deviation from their average values. The three terms on the 

right side of Eqs. (14) and (15) are the mean force, the non-Markovian friction, and the random 

force. The constants ci and Ti are the magnitude of the acceleration and magnitude of the random 

force respectively. The memory kernel, Ki(t) is given by the fluctuation-dissipation theorem as 

being proportional to the autocorrelation of the random force: 2( ) ( ) (0)=K t f t fλ λ . The 
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proportionality constant is given by the inverse of the mean value of the square of the variable, 

which is typically a decreasing function of the temperature of the system.  

The random force was generated from a normal Gaussian distribution using the Box-

Muller method. To make the random force more realistic, it was convolved with an exponential 

decay with a 2 ps time constant to give rise to a correlated force trajectory. The magnitude of the 

random force was chosen such that there was a barrier crossing event roughly once every 4 ps. 

Similarly, the proportionality constants between the autocorrelation of the random force and the 

memory kernel were chosen such that the dynamics were not drastically affected by this term.  

The Langevin equations were solved using Euler's method using 4 fs time steps to a total 

length of 8.4 ns. Transitions between the free and bound states are clearly visible in the 

trajectories, as are the failed transitions, excursions to higher energy, and transitions which occur 

by taking paths that are higher in energy than the transition state. The corresponding frequency 

trajectory shown in Fig. 6 displays clear jumps between states. From the frequency trajectory, 2D 

spectra were calculated as a function of waiting time using Eqs. (3) and (4). These 2D spectra at 

different waiting times are shown in Fig. 7. 

 The calculated spectra show the same features as those observed in experiments on 

chemical exchange systems.52 At short times, two diagonal peaks are observed in the 2D 

spectrum, and appear diagonally elongated indicating inhomogeneous broadening. 

Inhomogeneous broadening arises due to correlations in the random force. If an uncorrelated 

force is used, peaks are symmetric about the diagonal even at zero waiting time. After 5 ps, 

spectral diffusion is complete and the peaks are completely symmetric since the random force 

has almost entirely lost correlation by that time. By 500 fs, a cross peak appears above the 

diagonal and by 750 fs, a cross peak appears below the diagonal. These are exchange cross peaks 
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due to the molecules that underwent a barrier crossing during the waiting time. The cross peak 

above the diagonal corresponds to molecules that started in the bound state but dissociated to the 

free state. Similarly, the cross peak below the diagonal corresponds to molecules that started in 

the free state and formed a complex. The fact that the dissociation cross peak appears before the 

formation cross peak implies that the barrier to dissociation is lower than the barrier for 

formation. In Fig. 7, the discrepancy between the rates of formation and dissociation is seen in 

the 750 fs surface where the two cross peaks have different magnitudes. The relative timescale 

between the appearance of the cross peaks can be changed by increasing or decreasing the 

activation energy for the reaction by modifying the PMF. Whereas the spectral diffusion time or 

how early the cross peaks appear can be adjusted by changing the magnitude of the random force 

or by changing the memory kernel. 

 

4. Discussion and Conclusions 

The trajectory mapping method provides a phenomenological approach to modeling 

nonlinear spectroscopy in cases where the Gaussian approximation and the Condon 

approximation are not appropriate, or in cases where there are nonlinear relationships between 

internal dynamical variables of the bath and the spectroscopic variables ω and μ.  One sets 

probability distributions for one or more internal dynamical variables, describes their stochastic 

or deterministic evolution through trajectory construction, maps the dynamical variable onto the 

spectroscopic variables, and evaluates the semi-classical nonlinear response function. 

Experimental observables can add constraints on the inputs to this model, like the width of the 

frequency distribution and the relevant correlation function for a given system, thus allowing the 
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model to be used for fitting experimental spectra and deducing the underlying dynamics of the 

microscopic variables. 

Here we concentrated on three classes of problem: (1) fitting of data to account for non-

Condon effects, (2) non-Gaussian dynamics and highly nonlinear relationships between the 

system and bath variables, and (3) barrier crossing and complex non-Gaussian dynamics on an 

arbitrary PMF. However, there are several other examples and different types of spectroscopy 

that can be addressed within the trajectory mapping approach. Generally speaking, the classes of 

problems for which we feel this method will find most use include the following: 

   

(1) Heterogeneous dynamics: Cases in which a dynamical property of the system depends on 

an evolving bath coordinate can be treated with trajectory mapping. For instance an 

inhomogeneous system may exhibit a frequency-dependent population relaxation, which 

can be addressed by mapping frequency to an instantaneous relaxation rate kab(t). One 

can integrate over this time-varying relaxation rate in the response function, i.e. 

exp( ( ) )− τ τ∫ bak d
 
in the case of the linear response function, Eq. (2).55 

(2) Correlated dynamics: The dynamics for varying relaxation processes of the system can 

now be treated as correlated when appropriate. For instance, orientational relaxation is 

often treated independent of vibrational or electronic degrees of freedom. Correlated 

vibrational and orientational dynamics can be obtained from Langevin simulations on a 

PMF that represents their statistical relationship, and mapped onto spectroscopic 

variables. 

(3) Multiple coupled vibrations: Although the examples presented here involve mapping to 

the dynamics of one system coordinate, an arbitrary number of coupled system 
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coordinates can in principle be incorporated and the dynamics calculated non-

perturbatively. Using either convolution or Langevin simulations, one can construct 

trajectories in internal variables that influence the frequency of oscillators (site energies) 

and the coupling between them. These variables can then be mapped onto a time-

dependent system Hamiltonian in the site basis. The resulting trajectory in the system 

eigenstates and dipole moments in turn can be directly evaluated or integrated to include 

non-adiabatic effects.2 

 

The trajectory mapping method also has drawbacks, which constraints how and when it is 

used. Since this involves numerical integration over one or more trajectories, constructing 

trajectories and calculating the response functions is more taxing than other phenomenological 

approaches. This means that it will be most useful as an interpretive tool for testing hypotheses 

regarding dynamics, whereas fitting data through error minimization will be time-consuming. 

Also, this approach requires a map relating stochastic internal variables to spectroscopic 

quantities. While the non-Condon scaling of the transition dipole with frequency can be deduced 

empirically,29 maps that relate microscopic quantities like bond distances or electric fields with 

transition dipole and frequencies require more expensive computations, either in the form of 

electronic structure calculations or molecular dynamics simulations or both. Moreover, dynamics 

in most complex systems cannot readily be attributed to one or two microscopic quantities, and 

therefore, it cannot substitute for classical and ab initio simulations. Finally, we note that 

trajectory mapping, as presented here, uses entirely classical descriptions of the bath, and we 

have ignored the action of the system on the bath or detailed balance.   
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The strength of the trajectory mapping approach lies in its flexibility to use a variety of 

inputs for stochastic quantities and mapping parameters, allowing us to directly assess their 

effects on the calculated spectra. This flexibility, combined with the ability to constrain the 

inputs to the model from a variety of spectroscopic techniques, can prove to be a powerful and 

inexpensive tool to understand chemical dynamics from infrared spectroscopy. 
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Figure 1: Procedure for calculating spectra. We identify the stochastic variable best suited for 

the problem, propose a random distribution for the variable and convolve it with a correlation 

function to arrive at the instantaneous correlated trajectory of the stochastic variable. We then 

generate a mapping between the variable and spectroscopic quantities like transition dipole and 

frequency. This mapping gives rise to a correlated frequency and transition dipole trajectory, 

which we use to calculate response functions and spectra. In this illustration, the stochastic 

variable q corresponds to the collective electric field of solvating D2O molecule projected onto 

the O-H bond of an HOD molecule. 
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Figure 2: Comparison of the normalized three-pulse echo peak shift calculated from our model, 

which includes the non-Condon effect, with the normalized experimental peak shift measurement 

(top left) of HOD/D2O.40 The correlation functions that went into the peak shift calculations, 

which gave us the best fit with experimental results for both the Condon and non-Condon 

response function calculations (top right). The corresponding 2D IR spectra of HOD/D2O with 

(bottom right) and without (bottom left) including the non-Condon effect. 
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Figure 3: Mapping of the v = 0-1 and v = 1-2 OH stretch frequencies (ω10, ω21) to δ (top) and the 

mapping of the corresponding transition dipoles (μ10, μ21) to δ (bottom) for HOD in NaOD/D2O. 

The insets in the μ vs. δ graph illustrate the potential energy curve and the position of the proton 

for two extreme values of δ.  Equations (11) and (12) in the text show the mapping for ω10 and 

μ10. Mapping parameters for the other transition frequencies and dipoles are provided in the 

Supporting Information. The ω21 and μ21 variables were mapped using the following 

expressions: 9 3 4 2 3
21 10 10 104.8376604 10 2.7443306 10 0.44309592 1.53 10ω ω ω ω− −= × + × + + ×  

and,
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( )( )24 7 2
21 10 10 108.5600 10 1.4429 10 0.28500 0.22000exp 0.65000 / 0.30000μ μ μ μ− −= − × + × − + − − . 

Here the ω are in units of cm-1 and the μ in units of D. 
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Figure 4: (Top) Linear IR spectrum of aqueous hydroxide for different values of ⟨δ⟩ (in Å), with 

constant distribution width of σ = 0.3 Å. Below, 2D IR spectra of hydroxide for two ⟨δ⟩ values of 

0.7 Å (middle) and 1.0 Å (bottom).  
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Figure 5: The imaginary part of the correlation function for the under-damped and over-damped 

cases for the coupling between the OH stretch vibration and the bath (top), and the corresponding 

2D IR spectra (middle and bottom), respectively. The 2D IR spectrum for the under-damped case 

has been truncated to show the lower 75% of the contours to emphasize the low-intensity peaks. 
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Figure 6: Potential of mean force used for the Langevin dynamics calculation of a chemical 

exchange process (top). The parameters used for the potential of mean force are: ωf,0 = 2729 

cm-1, σω,f = 22.4 cm-1, ωb,0 = 2683 cm-1, σω,b = 28.3 cm-1; ξf,0 = 0.465, σξ,f = 0.0316, ξb,0 = 0.378, 

σξ,b = 0.0387; Af = 0.88, Ab = 1.08. The correlated frequency trajectory showing the exchange 

between the free and the bound state (bottom).  
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Figure 7: Waiting time series of 2D IR spectra calculated from Langevin simulations show the 

evolution of the diagonal peaks from being inhomogeneously broadened to being symmetric, 

along with the growth of the cross peaks signifying chemical exchange. The parameters used in 

solving the Langevin equations are: cω = 2 cm-1s-1, cξ = 10-6 s-1, Tω = 0.030, Tξ = 0.000025, and 

2−λ  = 3x10-15 (units of cm-2 in the ω-equation and unit-less in the ξ-equation). 
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Table S1: Mapping coefficients for multi-quantum transition frequencies as a function of the 10 

frequency: 3 2
i0 10 10 10i i i ia b c d       . The i0 are in cm-1. 
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Table S2: Mapping coefficients for the transition dipole moments as a function of 10: 
3 2

i0 10 10 10i i i ia b c d       . The i0 are in cm-1 and i0 are in D.  
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1.4429 -0.285 0.22 0.65 0.15 0 0 0 

 
0 0 0 0.12472 0.57474 0.20513 
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1.7933 -0.475 0.25 0.59 0.15 0 0 0 

 
0 0 0.15808 0.53661 0.37703 
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Table S3: Mapping coefficients for the transition dipole moments as a function of 10: 
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