
1

Keyword Join: Realizing Keyword Search in
P2P-based Database Systems

Bei Yu1 , Ling Liu2 , Beng Chin Ooi3 and Kian-Lee Tan3
1Singapore-MIT Alliance

2Georgia Institute of Technology,3National University of Singapore

Abstract— In this paper, we present a P2P-based database
sharing system that provides information sharing capabilities
through keyword-based search techniques. Our system requires
neither a global schema nor schema mappings between different
databases, and our keyword-based search algorithms are robust
in the presence of frequent changes in the content and mem-
bership of peers. To facilitate data integration, we introduce
keyword join operator to combine partial answers containing
different keywords into complete answers. We also present an
efficient algorithm that optimize the keyword join operations
for partial answer integration. Our experimental study on both
real and synthetic datasets demonstrates the effectiveness of our
algorithms, and the efficiency of the proposed query processing
strategies.

Index Terms— keyword join, keyword query, Peer-to-Peer,
database

I. I NTRODUCTION

Keyword search is traditionally considered as the standard
technique to locate information in unstructured text files. In
recent years, it has become ade factopractice for Internet
users to issue queries based on keywords whenever they need
to find useful information on the Web. This is exemplified by
popular Web search engines such as Google and Yahoo.

Similarly, we see an increasing interest in providing key-
word search mechanisms over structured databases [6], [7],
[1], [3], [2]. This is partly due to the increasing popularity
of keyword search as a search interface, and partly due to
the need to shield users from using formal database query
languages such as SQL or having to know the exact schemas
to access data. However, most of keyword search mechanisms
proposed so far are designed for centralized databases. To
our knowledge, there is yet no reported work that supports
keyword search in a distributed database system.

We propose a keyword-join based framework that facilitates
keyword search over a P2P network of autonomous databases
without schema level integration. Our system capitalizes on
the query processing capability of individual peers to produce
potential answers or partial answers that contain some of
the query keywords. Where necessary, we then integrate the

Bei Yu is in Computer Science Program, Singapore-MIT Alliance. Tel:
68744774. E-mail: yubei@comp.nus.edu.sg.

Ling Liu is in College of Department of Computer Science, Georgia
Institute of Technology. E-mail: lingliu@cc.gatech.edu.

Beng Chin Ooi is in Department of Computer Science, National University
of Singapore. E-mail: ooibc@comp.nus.edu.sg.

Kian-Lee Tan is in Department of Computer Science, National University
of Singapore. E-mail: tankl@comp.nus.edu.sg.

information of various peers at the data level, using efficient
algorithms to prune the search space. We propose akeyword
join operator for integrating partial answers from different
peers. The keyword join operates on a set of lists of partial
answers (with incomplete keywords), and produces the global
answers (with complete keywords) by joining partial answers
from different lists based on Information Retrieval (IR) princi-
ples [10]. We also propose an efficientkeyword listalgorithm
that reorganizes partial answer lists from different peers as
the input lists of keyword join, so that we can generate global
answers very quickly.

Our system does not pose any constraint to peers, allowing
peers to remain autonomous and the network to be dynamic. In
consequence, the semantics of query answering in our system
is different from that of traditional data integration systems: we
have a more relaxed notion of correctness and completeness
of results based on the traditional IR concepts. We answer
keyword queries by providing a list of potentially relevant
tuples ranked with relevance scores as final answers for users
to select.

The rest of the paper is structured as follows: Section
II gives the framework of our proposed system. Section III
describes the partial answer integration strategy in detail,
which we evaluate experimentally in Section IV. Section V
concludes the paper.

II. T HE DESIGN FRAMEWORK

In this section, we present a framework to support keyword
search in a P2P environment.

A. Overview

The objective of our design is to enable peers to share
their relational databases in the P2P community. A unique
characteristic of our framework is to enable peers to search
data using keywords, instead of issuing complex SQL queries.
Given a set of keywords, our system employs IR principles
to search for tuples that contain these keywords in the
databases of the whole network. Each database that contains
the matching tuples returns a set of potential answers or
partial answers to the given keyword query. The peer that
issues the query will perform the keyword join operations
to integrate partial answers from different peers to generate
the “best” answers where necessary. Consider an example
of two databases, DB1 and DB2, residing in two different
peersP1 andP2, shown in Figure 1. Suppose an user issues



a keyword query “Titanic, 1997, DVD”. Our system is able
to obtain the following partial answers: fromP1, we have
one partial answer tuplet11 = (Titanic, 1997, Love
Story, 6.9/10) that contains the keywords “Titanic”
and “1997”; and from P2, we have two partial answer
tuples t21 = (Titanic, Paramount Studio, DVD,
$22.49) and t22 = (Titanic(A&E Document),
Image Entertainment, DVD, $33.91) both
containing the keywords “Titanic” and “DVD”. Now,
we can join the two sets of partial answers based on certain
keyword join criteria, such as substring matching between
a pair of tuples. For example,t11 and t21 can be combined
based on their common column “Titanic ” to get the final
integrated answer (Titanic, 1997, Love Story,
6.9/10, Titanic, Paramount Studio, DVD,
$22.49) . Similarly, t11 and t22 can be combined. Thus, we
have two complete answers to the keyword query in this
example.

Fig. 1. An example.

B. The keyword query model

The first basic concept used in our keyword query model is
tuple tree, which was introduced in [7], We define the tuple
tree concept in our keyword query model using a somewhat
more relaxed definition than that in [7].

DEFINITION 1 A tuple tree is a tree of tuples where for
each pair of adjacent tuplesti and tj , there are semantically
correspondent column values between them, which we call
semantic links.

Note that the tree structure of a tuple tree only shows
the relationship between its component tuples, we can just
represent them flatly as a list of tuples for internal processing.

Our P2P database system is logically modeled as a set
of relational databases{DB1, DB2, · · · , DBm}, which have
heterogeneous schemas and data. A keyword query withn
keywords is denoted asQ = {w1, w2, · · · , wn}. Now we
define local answersandglobal answersto a keyword query
Q = {w1, w2, · · · , wn}, in our system.

DEFINITION 2 A local answer to a keyword queryQ is a tuple
tree satisfying the following three conditions: (1) The tuple tree

contains at least one of the keywords inQ; (2) The tuples of
the tuple tree are all retrieved from a single database,DBi

(1 ≤ i ≤ m); (3) The tuple tree must be minimal− if we
remove any tuple from the tuple tree, the resultant tuple tree
will contain fewer number of keywords.

A local answer is a tuple tree provided by any peer in the
system by processing the queryQ over its local database.
Naturally, the semantic link between tuples in a local answer
should be the foreign key relationship between the tables that
contain the tuples [7]. Local answers can be further classified
into local partial answers− having incomplete keywords of
Q, and local complete answers− having complete keywords
of Q. In the rest of the paper we refer to the local partial
answer simply aspartial answerwhen there is no confusion.

DEFINITION 3 A global answer to a keyword queryQ is
an integrated tuple treejoined by a number of local partial
answers and satisfying the following three conditions: (1)
Having all the keywords ofQ; (2) Be minimal, i.e., if we
remove any partial answer from the integrated tuple tree, the
result is not a valid global answer; (3) Do not contain any
two partial answers from the same peer.

Note that the condition (3) ensures that no duplicate local
answers are included in a global answer. This duplicate
removal condition is especially important for unstructured P2P
systems.

Given a keyword queryQ, our system will return a list
of desired answers that are either local complete answers or
global answers. A global answer must be meaningful to users,
which depends on how the local partial answers are joined.
One of the technical contribution of this paper is to study how
to find meaningful global answers with local partial answers
from different peers. One way to approach this objective is
to introduce ranking measure such that each query will be
returned with a ranked list of answers, ranking in descending
order according to their relevance to the query. The ranking
function will be discussed in latter sections.

C. Query processing strategy

The keyword query processing in our system consists of
three steps: (1) query distribution, (2) local processing of
keyword queries submitted to each peer database, and (3)
results merging and integration of local partial answers when
necessary. We describe each of the three steps in the following
subsections respectively.

1) Query distribution: When a peer, sayPa, receives a
keyword queryQ, it will not only search the answers in its
local database, but also send the query to other peers that could
have relevant information with the query keywords.

We propose to use some search mechanism to infer an
approximate relevant peer set(ARPS) by representing the
content of each local database as a “document” through trans-
ferring its local index into a dictionary as the summary of the
database. In consequence, it leads to the problem of content-
based text information retrieval in P2P networks. Although this
problem is important and complex by itself, it is not the focus



of this paper. Further, it is possible to employ some existing
work on this topic, such as [4], [9], in our system.

After receiving a keyword queryQ from users,Pa first finds
the approximate relevant peer set (ARPS) to the query. There
is a system parameterN to limit the cardinality of ARPS.
Subsequently,Pa forwards the keyword queryQ to all the
peers in ARPS.

2) Local query processing:All the peers in ARPS will
receive the keyword query sent byPa, and perform the
keyword search over their local databases as in [6].

When a peer receives a keyword queryQ, it first creates a
set of tuple setsbased on the keywords in the query using its
local indexes. Each tuple setRQ is a relation extracted from
one relationR of the peer’s database, containing tuples having
keywords ofQ, i.e., RQ = {t|t ∈ R ∧ Score(t,Q) > 0},
whereScore(t,Q) is the measure of the relevance of the tuple
t in relation R with respect to the keywords inQ, which is
computed with the peer’s local index according to standard IR
definition [6]. Next, with these tuple sets, the system generates
a set of Candidate Networks (CNs), which are join expressions
capable of creating potential answers. The CNs involve tuple
sets and base relations (relations that do not have keywords),
and they are generated based on the foreign key relationship
between relations. By evaluating these generated CNs, the peer
can finally produce its local answers− trees of joining tuples
from various relations. Each tuple treeT is associated with a
score indicating its degree of relevance to the query, which is
calculated as

Score(T, Q) =
∑

t∈T Score(t,Q)
size(T )

, (1)

wheresize(T ) is the number of tuples inT .
Having obtained its local answers toQ, a peer in ARPS

separates local partial answers from local complete answers
(it is possible that some peers may not have local complete
answers at all). Local complete answers are ready to be output
to users, since they already contain all the keywords inQ. On
the other hand, the local partial answers have to be further
integrated with the partial answers of other peers if possible.
Each peer will return both local complete answers and local
partial answers to the query initiator,Pa.

3) Results merging and integration:After Pa receives the
local answers from all the peers in the ARPS, it begins
to prepare output results to users. We use a user-provided
parameterkg to indicate the needed number of results.Pa first
merges local complete answers from different peers, sorting
them decreasingly according to their relevance scores. These
results are ready to be output to the user. If the total number
of local complete answers is less thankg, Pa will integrate
those local partial answers from different peers, and try to
output the required number (the difference betweenkg and
the total number of local complete answers), denoted asK,
of global answers− meaningfully integrated tuple trees, to
the user. Obviously, the integration part is a challenge as we
do not assume any global schema information. We present our
global integration solution in detail in the next section.

III. I NTEGRATION OFPARTIAL ANSWERS

In this section, we discuss the strategy for integrating local
partial answers from different peers. We first analyze the
requirements and then formalize the problems for integrating
partial answers, and present the solutions.

A. Problem definition

Recall that there are at mostN peers in the ARPS, so
we haveN lists of local partial answers (L1, L2, ..., LN ).
For simplicity of presentation, we assume that all lists have
equal number of partial answers,l. That is, each listLi

(1 ≤ i ≤ N ) consists ofl pairs of tuple trees and the associated
relevance scores to the query, ((ti1, s

i
1), (t

i
2, s

i
2), ..., (t

i
l, s

i
l)),

sorted in descending order according to the scores. These tuple
trees all have incomplete keywords of the query, i.e.,∀tij ∈
Li, keywords(tij) ⊂ Q. Given a queryQ = (w1, w2, ..., wn),
with n keywords, we want to integrate the local partial answers
from various peers and output topK integrated tuple trees as
global answers, whereK is the number of integrated tuple
trees the user needs.

To rank the global answers, we need to associate each global
answer with a score indicating its relevance to the keyword
query. We define the score of an integrated tuple treeIT as

score(IT ) =
∑

t∈IT score(t)
size(IT )

, (2)

wheret represents every local partial answer that constitutes
IT , size(IT ) is the number of sources (peers)IT involves.
This is based on the intuition that if an integrated tuple tree
involves fewer sources, and has higher total score, it would be
more relevant to the query since it is expected to incur less
“noises” during the integration. In the example of Figure 1, the
score of the integrated tuple treet11–t21 is 1.585, and the score
of t11–t22 is 1.545. We can observe thatt11–t22 is less relevant
than t11–t21 to the query.

In order to generate topK global answers from the set of
input lists, we need to address the following three problems.

(1) Selection and organization of combinations of lists
of partial answers. Considering that a global answer could
potentially be joined by partial answers from any combination
of input lists, naively all the combinations should be explored.
However, the number of combinations increases dramatically
when the number of input lists increases, which may degrade
the system’s efficiency greatly. The first problem is how to
explore the minimal number combinations of input lists from
(L1, L2, ..., LN ) without losing possible global answers.

(2) Joining of a combination of lists of partial answers.
Given a combination of lists of partial answers, the second
problem is how to join them to obtain the set of integrated
tuple trees as global answers, which is referred to askeyword
join.

DEFINITION 4 Given a keyword queryQ, a set of lists of tuple
trees (L1, L2, · · · , Lp), together with a similarity thresholdT ,
the keyword joinL1./kL2./k · · · ./kLp returns all set of tuple
trees (t1, t2, · · · , tp) such that (1)t1 ∈ L1, t2 ∈ L2, · · ·,
tp ∈ Lp, (2)

⋃p
k=1 keywords(tk) = Q, (3) for i ← 1 to p,



⋃p
k=1∧k 6=i keywords(tk) ⊂ Q, (4) t1, t2, · · · , tp are connected

into an integrated tuple tree such that for each pair of adjacent
tuple treesti and tj , similarity(ti, tj) ≥ T .

In the definition,similarity(ti, tj) defines the information
overlapping betweenti and tj .

Observe that this problem is similar to the traditional join
operation on multiple relations. However, our problem is much
more complex for a number of reasons. First, in a relational
table, all the tuples are homogeneous, while in a input listLi in
our problem, the tuple trees are heterogeneous because they
may be generated from different CNs. There is no standard
criteria to join the tuple trees. Second, when performing
ordinary join operations, the join condition is determined,
and values from corresponding columns of the input tables
are evaluated. But in our problem, given two tuple trees, we
need to decide whether there are semantically corresponding
columns between them. Further, tuple trees from different
databases may have conflicts in their representations of data
values. Therefore some similarity heuristics are essential.
Third, since our goal is to generate minimal integrated tuple
trees having all of keywords inQ, we need to take care of the
occurrences of keywords in the tuple trees. Finally, different
from ordinary join operator which is dyadic, our keyword join
need to operate on multiple input lists, and it is not associative.

THEOREM 1 Keyword join is not associative, i.e.,

(L1./kL2)./kL3 6= L1./k(L2./kL3).

The first two differences between our keyword join and
traditional join operation lead to the third problem below.

(3) Similarity measure for heterogeneous tuple trees.
When we perform keyword join, we need to decide whether
two heterogenous tuple treest1 and t2 are joinable to render
meaningful information to the user. Since we do not have
schema level information, the solution can only be heuristic
based.

In the subsequent subsections, we will present our solutions
to these three problems in reverse order for ease of explana-
tion.

B. Similarity measure

In this section we consider the problem of how to decide
whether two heterogeneous tuple trees from different peers
are joinable, i.e., whether they have overlapping information.
If we view each tuple tree as a flat list of column values,
and we can find semantically equivalent columns from the
two tuple trees respectively, they could be joined based on
the common column values to render meaningful information.
By “semantically equivalent”, we mean that the two column
values refer to the same object in real world. Basically, this
problem can only be solved by heuristics since we do not have
complete domain knowledge about all the databases. To this
end, we make use of IR techniques to measure the similarity
between two column values by treating them as “documents”
[10]. Specifically, given two column valuesc1 and c2, their

similarity can be evaluated with

sim(c1, c2) =

∑
w∈C(c1,c2) tf1

w · tf2
w√∑

w∈c1(tf1
w)2 ·∑w∈c2(tf2

w)2
, (3)

whereC(c1, c2) is the set of common tokens ofc1 andc2, and
tf1

w and tf2
w are frequencies ofw in c1 and c2 respectively.

The tokens of a column value could be space-delimited words,
or q-grams – all substrings ofq consecutive characters in a
column value. Obviously,sim(c1, c2) is in the range of 0 to
1, and it is 0 ifc1 and c2 are totally different, 1 ifc1 and c2

are exactly the same.
However it is computationally intensive to compare every

pair of columns from the two given tuple trees respectively,
and it will also produce many false positives because of the
representation heterogeneities between different databases. For
example, the number 2 could be the ID value of a student
in one tuple tree, and be the serial number of a product, in
another. If we join the two tuple trees based on their common
column value 2, it does not make any sense.

To alleviate such a problem, we identify some “significant”
column values from a tuple tree, i.e., the column values that
are self-describing, and we only compare significant columns
from two tuple trees respectively. For example, for a column
value like “SIGMOD Conference”, it is much less likely to
cause ambiguity. We therefore measure the similarity between
two columns as

sim′(c1, c2) =
{

sim(c1, c2) if c1, c2 are significant columns
0 else.

(4)
As to the task of identifying “significant” columns, it is

database specific. It can be achieved through the DBAs of
the local databases or by some meta-data information such
as index attributes, and this information is augmented to the
local answers generated by the peers. In our implementation,
we select columns that are indexed by the local index as
“significant” columns.

Now given two tuple treesT1 and T2, we can measure
their information overlapping by comparing all the pairs
of significant columns between them. We set the similarity
score betweenT1 and T2 as the maximum among all the
similarity scores of the significant column pairs. Formally, it
is represented as

similarity(T1, T2) = max
1<i≤l1,1<j≤l2

sim′(c1
i , c

2
j ), (5)

where l1 and l2 are the number of columns ofT1 and T2

respectively. In the example of Figure 1,similarity(t11, t
2
1) =

1, since they have common column value “Titanic”, and
similarity(t11, t

2
2) = 0.5 based on their similar columns

“Titanic” and “Titanic(A&E Documentary)”.
We define a thresholdT such that if the similarity score

of two tuple treesT1 andT2 exceedsT , they are considered
joinable. However, the meaningfulness of the results combined
from partial answers still very much depends on human
observation and application-dependent preferences.



C. Top-K processing for keyword join

We use keyword joins combined with topK global answers
to address the problem of how to generate topK results
efficiently when performing keyword join to a given set of
lists of partial answers. Note that when we perform keyword
join operation on more than 3 input lists, it is difficult to
use traditional query evaluation plans, such as left deep tree,
right deep tree, etc., since keyword join is not associative.
Given a number of tuple tree lists, we can only join them
by examining every combination of tuple trees extracted from
the input lists respectively. Figure 2 shows the algorithm to
integrate a combination of tuple treest1, t2, · · · , tp given query
Q and similarity thresholdT . Lines 1 to 5 are for checking
the keywords in the combination of tuple trees, and lines 7 to
13 are for checking the “connectivity” oft1, t2, · · · , tp.

integrate(Q, T, t1, t2, · · · , tp)
1. if the union of the sets of keywords oft1, t2, · · · , tp is a

subset ofQ
2. return null
3. for i ← 1 to p
4. if the union of the sets of keywords of

t1, t2, · · · , ti−1, ti+1, · · · , tp, equalsQ
5. return null
6. Create two empty listsLconnected, andLunCompared

7. Putt1 into Lconnected, put all the others intoLunCompared

8. while LunCompared is not empty
9. if there are two tuple treest andt′ from LunCompared

andLconnected respectively, such that
similarity(t, t′) ≥ T

10. Removet from LunCompared

11. Putt into Lconnected

12. Putt into adj(t′) ¤ adjacent list oft′

13. else
14. return null
15. Combine the tuple trees inLconnected into an integrated

tuple treeIT
16. return IT

Fig. 2. Integrate a combination of tuple trees.

To perform top-K processing for keyword join, we make
use of ripple join [5], which is a family of join algorithms
for online processing of multi-table aggregation queries. In
the simplest version of the two-table ripple join, one tuple is
retrieved from each table at each step, and the new tuples are
joined with all the previously-seen tuples and with each other.

In our context, the input tables are lists of tuple trees, and
we can order the tuple trees in each list in descending order
of their relevance scores. The combination score of the joined
result is calculated based on Equation 2, which is monotonic.
Therefore, in the spanning space during joining a set of tuple
tree lists, the score of the combination of tuple trees at each
point is less than that of the combinations of tuple trees
previously seen along each dimension. This property enables
us to prune the spanning space for generating topK join
results efficiently.

The pruning process works as follows. In each step, when
we retrieve one tuple tree from each input list, we join each
new tuple tree with previously-seen tuple trees in all other
lists, in the sequence of the original order of the tuple trees in
their lists, i.e., in descending order of their relevance scores.
In other words, the examination of the combinations of tuple
trees is towards the decreasing direction along each dimension.
For example, in Figure 3, which is at step 3 of ripple join

Fig. 3. An example of pruning spanning space.

between two input lists, the next sequence of combinations
of tuple trees for examination would be< e, f, g, h, i >.
Therefore, before we examine the validity of each combination
of tuples trees at a point, we first calculate its combination
score assuming the combination is valid. At the same time, a
list Lans is used to store the topK join results we currently
have. We then compare the virtual combination score with the
K-th largest score inLans, and if the former is smaller, we
can prune it and all the rest points along that dimension. For
example, as in Figure 3, suppose we are going to examine the
validity of point g. We first calculate its combination score,
if the score is smaller than the currentK-th largest score we
already have, we can safely prune the remaining points along
that dimension, i.e., points< h, i >, since their scores must
be smaller than that of pointg.

In addition, if in a step all the points along all dimensions
are pruned− meaning that the points in the rest of the space
that have not been spanned all have smaller scores than the
currentK-th largest score− the algorithm could be stopped.
For instance, in Figure 3, if the scores of pointse and g are
both smaller than the currentK-th largest score, all the points
in this step are pruned, and consequently we can stop the
algorithm and return the current topK results.

keywordJoin(K, Q, T, L1, L2, · · · , Lp)
1. Setp pointerspt1, pt2, · · · , ptp, pointing to the top unscanned

tuple trees ofL1, L2, · · · , Lp, respectively
2. SetSlow as theK-th lowest score of the joined results

obtained so far
3. while there is unscanned tuple tree inL1, L2, · · · , Lp

4. Set boolean variableallPruned ← true
5. for i ← 1 to p
6. Get next tuple treeLi[pti] from Li

7. if score(L1[1], · · · , Li[pti], · · · , Lp[1]) ≤ Slow

¤ all points alongi dimension are pruned
8. go to 5
9. allPruned ← false
10. Set variablesid1, · · · , idi−1, idi+1, · · · , idp to 1
11. for k ← 1 to p andk 6= i
12. for idj ← 1 to ptj − 1 andj ← 1 to p andj 6= i, k
13. for idk ← 1 to ptk − 1
14. if score((L1[id1], · · · , Lk[idk], · · · ,

Li[pti], · · · , Lp[idp])) ≤ Slow

¤ rest points are pruned
15. go to 12
16. IT = integrate(Q, T, L1[id1], · · · ,

Lk[idk], · · · , Li[pti], · · · , Lp[idp])
17. if IT 6= null
18. PutIT into Lans

19. UpdateSlow

20. Increasepti

21. if allPruned = true
22. return Lans

23. return Lans

Fig. 4. Keyword join algorithm.

The above pruning process can be easily extended to the



TABLE I

NUMBER OF ITERATIONS OF BASIC ALGORITHM.

N = 4 N = 8 N = 12 N = 16
n = 2 6l2 28l2 66l2 120l2

n = 3 6l2 + 4l3 28l2 +
56l3

66l2 +
220l3

120l2 +
560l3

n = 4 6l2 +
4l3 + l4

28l2 +
56l3 +
70l4

66l2 +
220l3 +
495l4

120l2 +
560l3 +
1820l4

joining on more than 3 input lists. Figure 4 shows the keyword
join algorithm to produce topK integrated tuple trees from a
set of listsL1, L2, · · · , Lp.

D. Selection of partial answer lists

Now we address the problem− how to organize theN
lists of partial answers so that we can generate topK global
answers with keyword join quickly.

1) The basic concept:A straightforward approach is to
perform keyword join operations to everyk-combination (2 ≤
k ≤ n) of the N lists (L1, L2, ..., LN ) to produce potential
global answers involvingk sources (peers). The number of
lists in a combination,k, must be smaller thann, the number
of query keywords, because if a global answer has more than
n partial answers, it must not be minimal, and not a valid
global answer according to Definition 3.

If we assume each partial answer list has the same number
of tuple trees,l, the total number of combinations of tuple
trees to be examined, i.e., the maximum number of iterations
of the basic algorithm,I, is

I =
n∑

k=2

(
N

k

)
lk. (6)

Table I shows the values ofI under different values of the
number of listsN and the number of keywordsn. We can
see thatI increases very fast with the increasing ofN and
n. Therefore, we expect the performance of the algorithm to
degrade significantly when the number of keywords or the
number of peers is large.

2) Reorganization of input lists:Observe that an important
requirement for a global answer is that it must both contain
all the keywords ofQ and be minimal. It is redundant to
compare those combinations of tuple trees that cannot satisfy
this requirement. For example, givenQ = (w1, w2, w3), tuple
tree t1 has keyword set{w1}, tuple treet2 has keyword set
{w3}, and tuple treet3 has keyword set{w1, w2}. It is obvious
that we should not examine the combinations (t1, t2) − not
having all the keywords ofQ, and (t1, t2, t3) − not minimal.
We only need to examine the combination (t2, t3).

We therefore propose to reorganize the input lists according
to the keywords of the partial answers. We maintain one list
for each subset ofQ (except the empty set and full set ofQ),
which is used to store the tuple trees that have exactly the
corresponding subset of keywords. We call each list atuple
tree keyword list(TTKL). In total, there are2n − 2 TTKLs,
where n is the number of keywords inQ. Each TTKL is

represented with an-bit vector (b1, b2, . . . , bn), in which bi

corresponds to a keywordwi in Q, and bi is set to 1 if the
tuple trees in the TTKL containswi.

The tuple trees from(L1, L2, · · · , LN ) are first assigned to
corresponding TTKLs according to the keywords they have.
Next, we need to find out thevalid combinations of TTKLs.

DEFINITION 5 A valid combination of tuple tree keyword lists
(TTKLs) must be bothcompleteand minimal. A combination
of TTKLs is complete if the logical OR of all the bit vectors
of its element TTKL results in a bit vector with all one.
A combination is minimal if an incomplete combination of
TTKLs will result if any of its element is removed.

For example, suppose there are three keywords in a query,
so we will create six TTKLs, which are represented with
bit vectors in {(0, 0, 1), (0, 1, 0),. . ., (1, 1, 0)} respec-
tively. All valid combinations selected from these TTKLs
are: (1) < (1, 1, 0), (1, 0, 1) >, (2) < (1, 1, 0), (0, 1, 1) >,
(3) < (1, 1, 0), (0, 0, 1) >, (4) < (1, 0, 1), (0, 1, 1) >, (5)
< (1, 0, 0), (0, 1, 1) >, and (6)< (0, 0, 1), (1, 0, 0), (0, 1, 0) >.

Obviously, the number of TTKLs in any valid combination
is not greater thann. Finally we integrate the partial answers
by performing keyword join on all the valid combinations of
TTKLs. The only difference is that in theintegrate() routine
shown in Figure 2, we can remove lines 1 to 5, since we do not
need to check the keywords, and we only need to check if the
tuple trees are from different peers. We refer to this approach
of using TTKL to generate global answers askeyword list
algorithm.

However, the number of valid combinations of TTKLs for
a query withn keywords still increases very fast with the
growth of n. If we useφ(n, k) to denote the number of valid
k-combinations of TTKLs when the number of keywords isn,
Table II shows the value ofφ(n, k) whenn equals2, 3, · · · , 6.
But considering that the number of keywords of a query
is very small, and it is often not bigger than four, we can
therefore use the combinations of TTKLs to generate global
answers efficiently. If we assume the tuple trees are distributed
uniformly to each TTKL, the maximum number of iterations
for keyword list algorithm,I ′, is

I ′ =
n∑

k=2

φ(n, k)(
Nl

2n − 2
)k. (7)

Table III shows the values ofI ′ with different N and n.
Comparing it with Table I, we can see that the number of
iterations for keyword list algorithm is much less than that of
the basic algorithm. The keyword list algorithm is therefore
expected to be more efficient than the basic algorithm.

Further, we consider that different combinations of TTKLs
usually have different contributions to the final topK global
answers. Some combinations providing answers with very
high scores usually contribute more answers, while some
combinations even do not contribute any. Therefore, we can
attempt to find the upperbound score of the potential integrated
tuple trees for each combination of TTKLs and prune useless
combinations where possible.



TABLE II

NUMBER OF VALID COMBINATIONS OF TTKL S VS. NUMBER OF

KEYWORDS.

φ(n, k) n = 2 n = 3 n = 4 n = 5 n = 6
k = 2 1 6 25 90 301
k = 3 - 1 22 305 3410
k = 4 - - 1 65 2540
k = 5 - - - 1 171
k = 6 - - - - 1

TABLE III

NUMBER OF ITERATIONS OF KEYWORD LIST ALGORITHM.

N = 4 N = 8 N = 12 N = 16
n = 2 4l2 16l2 36l2 64l2

n = 3 2.67l2 +
0.3l3

10.67l2+
2.37l3

24l2+8l3 42.67l2+
18.96l3

n = 4 2l2 +
0.5l3 +
0.0067l4

8.16l2 +
4.1l3 +
0.1l4

12.45l2+
13.85l3+
0.54l4

32.65l2+
32.84l3+
1.7l4

We get the upperbound scoreSupper of the potential results
of a combination of TTKLs by calculating the score of the
combination of the first tuple trees retrieved from the TTKLs
respectively.

Keyword list algorithm
1. Create2n − 2 TTKLs
2. Assign tuple trees from all local partial answer lists to the

corresponding TTKL
3. Find all valid combinations of the TTKLs, put them in a setC
4. for each combinationc ∈ C
5. Calculate its upperbound scoreUB
6. Order the combinations inC in descending order according to

their UB, and put them into a listLC

7. Create a listLglbAns to store the global answers, with variable
Slowest storing the lowest score of the tuple trees in it, andlen
storing the number of results in it

8. for each combinationc from LC sequentially
9. if UB <= Slowest and len >= K
10. OutputLglbAns

11. return
12. else
13. if UB <= Slowest and len < K
14. Output the toplen results inLglbAns first
15. Lans = keywordJoin(K − len, Q, T, c)
16. AppendLans to LglbAns

17. else¤ UB > Slowest

18. Get rankr of UB in LglbAns

19. Output the topr results inLglbAns first
20. Lans = keywordJoin(K − r, Q, T, c)
21. InsertLans into LglbAns accordingly
22. Output the rest results inLglbAns

Fig. 5. Keyword list algorithm.

First, we order the set of valid combinations of TTKLs
in descending order of their upperbound scores. Then we
perform top-K keyword join for each combination of TTKLs
sequentially. A listLglbAns is maintained to store the top
K global answers from the combinations of TTKLs already
executed, and we always maintain the lowest score,Slowest,
of the results inLglbAns, and its total number of results,
len. Each time, when a new combination of TTKLs is to
be executed, we first compare its upperbound scoreUB with
Slowest. If UB ≤ Slowest and len ≥ K, we can prune the
rest of the combinations of TTKLs because the scores of their

potential results must be smaller thanUB, and thus smaller
than Slowest. Consequently, we can stop the algorithm and
output current the topK global answers inLglbAns. On the
other hand, ifUB ≤ Slowest, but len < K, we only need
to get topK − len results from the combination, since its
potential results cannot change the order of the current results
in LglbAns. We can output the toplen results in LglbAns

first, which can improve our system’s response time greatly.
Otherwise, we can get the rankr of UB in the scores of
the answers inLglbAns, and we only need to get topK − r
answers from the combination because its potential results
cannot change the topr results inLglbAns, and thus we can
also output the topr results. The keyword list algorithm in
given in Figure 5.

THEOREM 2 The keyword list algorithm is equivalent to the
basic algorithm.

The whole proof of the theorem is lengthy and hence the
sketch is provided here. LetR and R′ denote the result
sets generated by the basic algorithm and the keyword list
algorithm, respectively. Each global answer inR is joined
by partial answers such that each of them has the keywords
set equivalent to that of each corresponding TTKL of a valid
combination of TTKLs. This infersR ⊆ R′. On the other
hand, each global answer inR′ is joined by partial answers
from the corresponding input lists from each peer. This infers
R′ ⊆ R. To conclude,R ≡ R′, so the two algorithms are
equivalent.

IV. EXPERIMENTS

We evaluate the effectiveness and efficiency of our keyword
join based integration algorithms in this section.

A. Datasets

In this experiment, we use the amalgam dataset [8] to
test the quality of the integration with our similarity measure
and relevance ranking method. It consists of 4 bibliography
databases with similar content developed by 4 separate stu-
dents. Then we use the TPC-H synthetic database for testing
the efficiency of our proposed integration algorithms.

B. Quality of the integrated tuple trees

In this experiment, we measure the precision and recall of
the returned results of the keyword list algorithm. We issue 10
3-keyword queries to the system, to get the average precision
and recall values.

Firstly, we collect top 30 integrated tuple trees with each
local database generating 40 local partial answers, and measure
the precision and recall with various values of similarity
threshold. It is hard to measure the recall using the standard
measurement, which is the ratio of the number of relevant
results retrieved to the total number of relevant results, because
it is difficult to find out all meaningful integrated tuple trees
to a keyword query from the databases manually. In our
experiment, we userelative recall, i.e., we measure recall as
the ratio of the number of relevant results retrieved to the total



number of the meaningful results returned by the keyword
list algorithm with different similarity thresholds. Figure 6(a)
plots average precision and relative recall as functions of the
similarity threshold for the amalgam dataset.

Observing from the figure, we can see that the precision
of the results increases with the increasing of the similarity
threshold, but the recall increases at first and decreases later
on. This is reasonable because when similarity threshold is
high, the number of returned final global answers is often
few but with high quality, which leads to high precision
and low recall. When similarity threshold gets lower, more
global answers with decreasing overall quality are returned, so
recall becomes higher and precision gets lower. As similarity
threshold gets lower and lower, the quality of the returned
results degrades greatly, so both of precision and recall become
very low.

Next, we fix the similarity threshold to 0.3 to test the
precision and recall of collecting top 30 global answers
with the number of local partial answers from each peer,l,
increasing from 20 to 40. Figure 6(b) reports the result of
this test. From the figure, we can see that when the number
of partial answers from each peer increases, the precision
decreases, but the relative recall increases. This is expected
since the partial answers returned from each peer are ranked
decreasingly according to their relevance scores. Whenl is
small, the overall relevance of the partial answers are better,
so they tend to produce global answers with high precision.
In another hand whenl is small, some “good” partial answers
may also be lost, so the recall is relatively low.

Finally, we fix the similarity threshold to 0.3 to test the
precision and recall when the number of global answers we
collect, K, increases from 10 to 30. The number of local
partial answers from each peer is set to 30 in this test. Figure
6(c) illustrates the average precision and relative recall as
functions ofK. It can be observed from the figure that when
K increases, the average precision gets lower and lower, but
the recall increases. This shows that the returned answers with
high ranks are generally with better quality, which reveals that
our ranking function is effective.

C. Efficiency of the partial answer integration algorithms

1) Experimental setup:We use the TPC-H data for our
experiments in this section. We create 16 databases, assigning
each of them to one peer. Each database contains 2-4 relations
of TPC-H, which are related with each other with one or
two foreign key relationships of the TPC-H schema. These
databases are different from each other, but have overlapping
tables. We use the set of these 16 databases as ARPS for
the keyword queries we issue. We integrate the local partial
answers generated by these databases with our proposed
integration algorithms. The average size of each database is 10
MBytes. The databases are individually managed by MySQL
RDBMS. We ran all the experiments on a PC with a 2.4GHz
Pentium CPU and 768MB memory. We implemented both
local and global query processing in Java, and used JDBC
for database connection.

We compare the execution time of 4 integration algorithms:
(1) the basic algorithm without top-K processing (BS), (2) the

basic algorithm with top-K keyword join processing (BSTK),
(3) the keyword list algorithm without top-K keyword join
processing and any optimizations (KL), (4) the optimized
keyword list algorithm with top-K keyword join processing
(KLTK), in various situations. The system parameters that we
vary in the experiments are (a) the number of query keywords
n, (b) the required number of global answersK, (c) the
number of peers in ARPSN , and (d) the number of local
partial answersl generated in each peer. In all the experiments,
the similarity thresholdT is set to 0.3, and all the reported
execution time is the average value over the execution time of
50 randomly selected keyword queries.

2) Effect of the number of query keywords:Figure 7 shows
the effect of the number of query keywords to the time for
integrating local partial answers by various algorithms, when
the number of peers in ARPS equal to 8 and 16 respectively.
In this experiment, the value ofK is set to 10, the number of
local answers generated by each peerl is 20. From the figures,
we make the following observations:
• From the curves in the figures, we can see that the keyword
list algorithm reduces the integration time dramatically
compared with the basic algorithm. The KLTK is orders
of magnitude faster than BS and BSTK when the number
of keywords is greater than 2.
• The execution time of BS and BSTK algorithms increases
much faster than that of KL and KLTK when the number
of keywords increases. In Figure 7(b), when the number of
keywords equals 5, both BS and BSTK can not complete
the integration task within the time limit, i.e., 3000 seconds.
• The top-K processing of the keyword join are very effec-
tive, since both BSTK and KLTK are much faster than BS
and KL algorithms, respectively.
• The response time of KLTK and BSTK is close to its
completion time in most situations.
3) Effect of the number of required global answers:Figure

8 reports the effect of the number of required global answers,
i.e., K, to the time for integrating local partial answers. The
number of peers in the ARPS,N , was set to 16 in this
experiment, andl is 20. Figures 8(a) and 8(b) show the
execution time of the algorithms when the number of keywords
equals 3 and 4 separately. From the figures, we make the
following observations:
• The execution time of BS and KL keeps almost the same
when the value ofK increases from 10 to 30. This is
expected because the dominating execution time of the two
algorithms is used to perform the keyword join operations
to the combinations of tuple tree lists, which is independent
of the value ofK.
• In contrast, the execution time of BSTK and KLTK in-
creases when the value ofK increases because whenK is
larger, it needs to take longer time to get topK results by
the keyword join algorithm from each combination of tuple
tree lists, and may need to perform keyword join to more
combinations of tuple tree lists.
• We can also see that in both figures the response time of
BSTK and KLTK increases slower than their completion
time. This is because that the value ofK will not affect
much to the algorithms for generating first top answers that
could be output before all the topK answers are generated.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5

similarity threshold

average relative recall
average precision

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 30 40

number of local partial answers per peer

average relative recall
average precision

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30

required number of global answers

average relative recall
average precision

(c)
Fig. 6. The precision and recall.

0.01

0.1

1

10

100

1000

2 3 4 5

se
c 

(i
n 

lo
g 

sc
al

e)

#keywords

BS
BSTK completion

BSTK response
KL

KLTK completion
KLTK response

(a) #peers = 8

0.1

1

10

100

1000

10000

2 3 4 5

se
c 

(i
n 

lo
g 

sc
al

e)

#keywords

3000s, time out
BS

BSTK completion
BSTK response

KL
KLTK completion

KLTK response

(b) #peers = 16

Fig. 7. Effect of the number of query keywords.

This is desirable since whenK is large, our system is still
able to provide fast response to users.

V. CONCLUSIONS

We have presented a framework for keyword search in P2P-
based database systems. Our system supports the keyword
search interface, and enables the integration of information
(partial answers) from various peers where necessary. Our
proposed system avoids complex data integration, making
it suitable for dynamic and ad-hoc environments and cost
effective in terms of implementation. We have also proposed
an efficient keyword list algorithm for generating topK global
answers with our proposed keyword join operator.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System for
Keyword-Based Search over Relational Databases. InICDE, 2002.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank:
Authority-Based Keyword Search in Databases. InVLDB, 2004.

0.1

1

10

100

10 20 30

se
c 

(i
n 

lo
g 

sc
al

e)

required number of global answers

BS
BSTK completion

BSTK response
KL

KLTK completion
KLTK response

(a) #keywords = 3

1

10

100

1000

10000

10 20 30

se
c 

(i
n 

lo
g 

sc
al

e)

required number of global answers

BS
BSTK completion

BSTK response
KL

KLTK completion
KLTK response

(b) #keywords = 4

Fig. 8. Effect of the required number of global answers.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword Searching and Browsing in Databases using BANKS. InICDE,
2002.

[4] F. Cuenca-Acuna, C. Peery, R. Martin, and T. Nguyen. PlanetP:
Using Gossiping to Build Content Addressable Peer-to-Peer Information
Sharing Communities. InIEEE Int’l Symposium on High Performance
Distributed Computing, 2003.

[5] P. Haas and J. Hellerstein. Ripple Joins for Online Aggregation. In
SIGMOD, 1999.

[6] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-Style
Keyword Search over Relational Databases. InVLDB, 2003.

[7] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword Search in
Relational Databases. InVLDB, 2002.

[8] Reńee J. Miller, Daniel Fisla, Mary Huang, David Kymlicka, Fei Ku,
and Vivian Lee. The Amalgam Schema and Data Integration Test Suite.
2001.

[9] H. Shen, Y. Shu, and B. Yu. Efficient Semantic-based Content Search in
P2P Network.IEEE Transactions on Knowledge and Data Engineering,
16(7):813–826, 2004.

[10] A. Singhal. Modern Information Retrieval: A Brief Overview.IEEE
Data Engineering Bulletin, 24(4):35–43, 2001.


