Keyword Join: Realizing Keyword Search in
P2P-based Database Systems

Bei Yu' , Ling Liu? , Beng Chin Ool and Kian-Lee Tah
1Singapore-MIT Alliance
2Georgia Institute of TechnologyNational University of Singapore

Abstract—In this paper, we present a P2P-based database information of various peers at the data level, using efficient
sharing system that provides inform_ation sharing capabilitigs algorithms to prune the search space. We propokeyavord
through keyword-based search techniques. Our system requires join gperator for integrating partial answers from different

neither a global schema nor schema mappings between different The K d ioi ¢ t of lists of tial
databases, and our keyword-based search algorithms are robust peers. € keyword join operates on a set of liSts of parlia

in the presence of frequent changes in the content and mem- answers (with incomplete keywords), and produces the global
bership of peers. To facilitate data integration, we introduce answers (with complete keywords) by joining partial answers
keyword join operator to combine partial answers containing from different lists based on Information Retrieval (IR) princi-
different keywords into complete answers. We also present an ples [10]. We also propose an efficiekgyword listalgorithm

efficient algorithm that optimize the keyword join operations that . tial lists f diff t
for partial answer integration. Our experimental study on both al reorganizes partial answer lIStS from diierent peers as

real and synthetic datasets demonstrates the effectiveness of ourthe input lists of keyword join, so that we can generate global
algorithms, and the efficiency of the proposed query processing answers very quickly.

strategies. Our system does not pose any constraint to peers, allowing
Index Terms—keyword join, keyword query, Peer-to-Peer, PE€E€rs to remain autonomous and the network to be dynamic. In
database consequence, the semantics of query answering in our system

is different from that of traditional data integration systems: we

have a more relaxed notion of correctness and completeness

of results based on the traditional IR concepts. We answer
Keyword search is traditionally considered as the standatdyword queries by providing a list of potentially relevant

technique to locate information in unstructured text files. huples ranked with relevance scores as final answers for users

recent years, it has becomeda factopractice for Internet to select.

users to issue queries based on keywords whenever they neethe rest of the paper is structured as follows: Section

to find useful information on the Web. This is exemplified byl gives the framework of our proposed system. Section Il

popular Web search engines such as Google and Yahoo. describes the partial answer integration strategy in detail,
Similarly, we see an increasing interest in providing keywhich we evaluate experimentally in Section IV. Section V

word search mechanisms over structured databases [6], E@ncludes the paper.

[1], [3], [2]. This is partly due to the increasing popularity

of keyword search as a search interface, and partly due to II. THE DESIGN FRAMEWORK

the need to shield users from_usmg formal database qUeNy this section, we present a framework to support keyword

languages such as SQL or having to know the exact sche 83rch in a P2P environment.

to access data. However, most of keyword search mechanisms

proposed so far are designed for centralized databases. To)

our knowledge, there is yet no reported work that supports Overview

keyword search in a distributed database system. The objective of our design is to enable peers to share
We propose a keyword-join based framework that facilitatélseir relational databases in the P2P community. A unique

keyword search over a P2P network of autonomous databaslearacteristic of our framework is to enable peers to search

without schema level integration. Our system capitalizes alata using keywords, instead of issuing complex SQL queries.

the query processing capability of individual peers to produ€gven a set of keywords, our system employs IR principles

potential answers or partial answers that contain some tof search for tuples that contain these keywords in the

the query keywords. Where necessary, we then integrate ttgabases of the whole network. Each database that contains

the matching tuples returns a set of potential answers or

Bei Yu is in (;omput(_er Science Program, Singapore-MIT Alliance. Tebartial answers to the given keyword query. The peer that
68744774. E-mail: yubei@comp.nus.edu.sg.

Ling Liu is in College of Department of Computer Science, Georgié§sues the queﬂ_/ will perform the _keyword Join operations
Institute of Technology. E-mail: lingliu@cc.gatech.edu. to integrate partial answers from different peers to generate

Beng Chin Ooi is in Department of Computer Science, National Universithe “phest” answers where necessary. Consider an example
of Singapore. E-mail: ooibc@comp.nus.edu.sg. -~ . .
Kian-Lee Tan is in Department of Computer Science, National Universif'}f two databases, DB1 and DB2, reS|d'ng in two different

of Singapore. E-mail: tankl@comp.nus.edu.sg. peersP; and P, shown in Figure 1. Suppose an user issues

I. INTRODUCTION

a keyword query “Titanic, 1997, DVD”. Our system is ableontains at least one of the keywords@h (2) The tuples of

to obtain the following partial answers: fror?,, we have the tuple tree are all retrieved from a single databa&eB;

one partial answer tuplel = (Titanic, 1997, Love (1 < ¢ < m); (3) The tuple tree must be minimal if we
Story, 6.9/10) that contains the keywords “Titanic” remove any tuple from the tuple tree, the resultant tuple tree
and “1997”; and from P, we have two partial answerwill contain fewer number of keywords.

tuples ¢2 = (Titanic, Paramount Studio, DVD,]))
$22.49) and £ = (Titanic(A&E Document) A local answer is a tuple tree provided by any peer in the

Image Entertainment, DVD $33.91) both System by processing the que over its local database.
containing the keyv(/ords "‘Titanic” and “DVD”. Now. Naturally, the semantic link between tuples in a local answer

we can join the two sets of partial answers based on cert&fPuld be the foreign key relationship between the tables that
keyword join criteria, such as substring matching betwe&PNtain the tuples [7]. Local answers can be further classified
a pair of tuples. For example! and 2 can be combined into local partial answers— having n_wcomplete keywords of
based on their common columitanic ” to get the final @ andlocal complete answers: having complete keywords
integrated answer (Titanic, 1997, Love Story, of Q. In .the rest of .the paper we refer tq the local p.art|al
6.9/10, Titanic, Paramount Studio, DVD, answer simply apartial answerwhen there is no confusion.

$22.49) . Similarly, t} and 3 can be combined. Thus, we .
have two complete answers to the keyword query in thidEFINITION 3 A global answer to a keyword querg is
example. an integrated tuple tregoined by a number of local partial

answers and satisfying the following three conditions: (1)

m Having all the keywords of); (2) Be minimal, i.e., if we

remove any partial answer from the integrated tuple tree, the
result is not a valid global answer; (3) Do not contain any
movielame |Vear {Genre {Rating Keyword Query: two partial answers from the same peer.

Titanic 1997 Love 6910 . .
story Q = (Titanic, 1997, DVD)

Artificial 2001 Drama 6.9/10

Inteligence Note that the condition (3) ensures that no duplicate local

>\d_/< answers are included in a global answer. This duplicate

removal condition is especially important for unstructured P2P
systems.
Name [Swdio | Ediion pm] Given a keyword queryy, our system will return a list

B 11 I A of desired answers that are either local complete answers or
Doty | Frtoesmare| | #51 global answers. A global answer must be meaningful to users,
N which depends on how the local partial answers are joined.
One of the technical contribution of this paper is to study how
Fig. 1. An example. to find meaningful global answers with local partial answers
from different peers. One way to approach this objective is
to introduce ranking measure such that each query will be
B. The keyword query model returned with a ranked list of answers, ranking in descending
The first basic concept used in our keyword query model @der according to their relevance to the query. The ranking
tuple tree which was introduced in [7], We define the tuplgunction will be discussed in latter sections.
tree concept in our keyword query model using a somewhat
more relaxed definition than that in [7]. C. Query processing strategy

DEFINITION 1 A tuple tree is a tree of tuples where for The keyword query processing in our system consists of

each pair of adjacent tuple§ andt;, there are semantically three steps: (1) query distribution, (2) local processing of

correspondent column values between them, which we qp/word queries sut.)m|tted.to each peer Qatabase, and (3)
semantic links results merging and integration of local partial answers when

necessary. We describe each of the three steps in the following
Note that the tree structure of a tuple tree only shov&ibsections respectively.
the relationship between its component tuples, we can justl) Query distribution: When a peer, say’,, receives a
represent them flatly as a list of tuples for internal processirkgyword query@, it will not only search the answers in its
Our P2P database system is logically modeled as a kutal database, but also send the query to other peers that could
of relational databaseSDB;, DB, -, DB,,}, which have have relevant information with the query keywords.
heterogeneous schemas and data. A keyword query with We propose to use some search mechanism to infer an
keywords is denoted a§ = {wi,ws,- -, w,}. Now we approximate relevant peer s¢ARPS) by representing the
definelocal answersand global answergo a keyword query content of each local database as a “document” through trans-
Q = {wy,wa, -+, wy}, in OUur system. ferring its local index into a dictionary as the summary of the
database. In consequence, it leads to the problem of content-
DEFINITION 2 A local answer to a keyword que€y is a tuple based text information retrieval in P2P networks. Although this
tree satisfying the following three conditions: (1) The tuple tregroblem is important and complex by itself, it is not the focus

of this paper. Further, it is possible to employ some existing [1l. I NTEGRATION OF PARTIAL ANSWERS

work on this topic, such as [4], [9], in our system. In this section, we discuss the strategy for integrating local
After receiving a keyword quer§ from users P, firstfinds partial answers from different peers. We first analyze the

the approximate relevant peer set (ARPS) to the query. Thegguirements and then formalize the problems for integrating

is a system paramete¥ to limit the cardinality of ARPS. partial answers, and present the solutions.

SubsequentlyP, forwards the keyword query) to all the

peers in ARPS.

2) Local query processingAll the peers in ARPS will
receive the keyword query sent b¥,, and perform the have N lists of local tial I I
keyword search over their local databases as in [6]. we have ists of local partial answersZg, Ly, ..., Ly).

Wh . K q it first N For simplicity of presentation, we assume that all lists have
€N a peer TECcEIVes a keywor uny' st creates a equal number of partial answers, That is, each listL;

& < i < N) consists of pairs of tuple trees and the associated
relevance scores to the quenyti(st), (t5,s5), ..., (1, s%)),
"rted in descending order according to the scores. These tuple
trees all have incomplete keywords of the query, Mé; €
ii, keywords(t;) C Q. Given a queryQ = (wi, ws, ..., wy),
ith n keywords, we want to integrate the local partial answers
m various peers and output tdp integrated tuple trees as

A. Problem definition
Recall that there are at mos$t peers in the ARPS, so

local indexes. Each tuple s&® is a relation extracted from
one relationR of the peer’s database, containing tuples havi
keywords ofQ, i.e., R% = {t|t € R A Score(t,Q) > 0},
whereScore(t, Q) is the measure of the relevance of the tupl
t in relation R with respect to the keywords i@y, which is
computed with the peer’s local index according to standard
definition [6]. Next, with these tuple sets, the system genera bal answers, wher& is the number of integrated tuple

a set of Candidate Networks (CNs), which are join expressio es the user r;eeds

capable of creating potential answers. The CNs involve tup ©To rank the global énswers we need to associate each global
sets and base relations (relations that do not have keywords swer with a score indicati,ng its relevance to the keyword

and they are generated based on the foreign key relationsfi . .
between relations. By evaluating these generated CNs, the p cha)erry' We define the score of an integrated tuple fiéeas
D _terr score(t)

can finally produce its local answetstrees of joining tuples score(IT) ?)
from various relations. Each tuple tréeis associated with a - size(IT)

score indicating its degree of relevance to the query, Wh'Chv{ﬁ’]eret represents every local partial answer that constitutes
calculated as IT, size(IT) is the number of sources (peetE} involves.
This is based on the intuition that if an integrated tuple tree
> ier Score(t, Q) . . .
Score(T,Q) = - , (1) involves fewer sources, and has higher total score, it would be
size(T) more relevant to the query since it is expected to incur less
)]] “noises” during the integration. In the example of Figure 1, the
wheresize(T) is the number of tuples iff". score of the integrated tuple trép-t? is 1.585, and the score
Having obtained its local answers @, a peer in ARPS of +143 is 1.545. We can observe th&t3 is less relevant
separates local partial answers from local complete answgfan¢!—2 to the query.
(it is possible that some peers may not have local completein order to generate tof global answers from the set of
answers at all). Local complete answers are ready to be outpigut lists, we need to address the following three problems.
to users, since they already contain all the keywordQitOn (1) Selection and organization of combinations of lists
the other hand, the local partial answers have to be furth§f partial answers. Considering that a global answer could
integrated with the partial answers of other peers if possiblgotentially be joined by partial answers from any combination
Each peer will return both local complete answers and loc@ input lists, naively all the combinations should be explored.
partial answers to the query initiataf,. However, the number of combinations increases dramatically
3) Results merging and integratiorAfter P, receives the when the number of input lists increases, which may degrade
local answers from all the peers in the ARPS, it begirthe system’s efficiency greatly. The first problem is how to
to prepare output results to users. We use a user-providagblore the minimal number combinations of input lists from
parametet,, to indicate the needed number of resulés first (L1, Lz, ..., L) without losing possible global answers.
merges local complete answers from different peers, sorting(2) Joining of a combination of lists of partial answers.
them decreasingly according to their relevance scores. Thé&sgen a combination of lists of partial answers, the second
results are ready to be output to the user. If the total numb@oblem is how to join them to obtain the set of integrated
of local complete answers is less thap P, will integrate tuple trees as global answers, which is referred taegsvord
those local partial answers from different peers, and try join.
output the required number (the difference betwégnand
the total number of local complete answers), denoted{as DEFINITION 4 Given a keyword quer§, a set of lists of tuple

of global answers—- meaningfully integrated tuple trees, totrees (1, Lo, - - -, L), together with a similarity threshold,
the user. Obviously, the integration part is a challenge as we keyword joinL <y, Loy, - - - <, L, returns all set of tuple
do not assume any global schema information. We present tnees ¢;,t2,---,t,) such that (1)t; € Ly, t2 € Lo, ---,

global integration solution in detail in the next section. tp € Ly, (2) UL_; keywords(ty) = Q, (3) for i «— 1 to p,

Ui:wf;si keywords(ty) C Q, (4)t1,t2,---,t, are connected similarity can be evaluated with
into an integrated tuple tree such that for each pair of adjacent

tuple treest; andt;, similarity(t;, t;) > T. Dwec(er ey the tfe

Vi wea U5 Lpee (L2

sim(c!, ?) =

©)

In the definition,similarity(t;,t;) defines the information

overlapping betweet; andt;. 1 o 9
Observe that this problem is similar to the traditional joiquereC(c) is the set of common tokens of and?, and

. . . . 1 andtf? are frequencies ofv in ¢! andc? respectively.
operation on multiple relations. However, our problem is mu L
. . . e tokens of a column value could be space-delimited words,
more complex for a number of reasons. First, in a relationg

o - or g-grams — all substrings of consecutive characters in a
table, all the tuples are homogeneous, while in a inpufljsh : L 9 e
olumn value. Obviouslysim(c',¢*) is in the range of O to
our problem, the tuple trees are heterogeneous because the RSN 5 ; e 9
) . nd it is O ifc* andc¢* are totally different, 1 ife' andc
may be generated from different CNs. There is no standary

criteria to join the tuple trees. Second, when performin%]re exactly the same.

ordinary join operations, the join condition is determined, However it is computationally intensive to compare every

and values from corresponding columns of the input tabl8&'" _Of cplumns from the two given tupI.e. trees respectively,
d it will also produce many false positives because of the

are evaluated. But in our problem, given two tuple trees, v . . .
need to decide whether there are semantically correspond‘fﬁ resentation heterogeneities between different databases. For

columns between them. Further, tuple trees from differefi¥@MPle, the number 2 could be the ID value of a student
databases may have conflicts in their representations of d&tP"€ tple tree, and be the serial number of a product, in
values. Therefore some similarity heuristics are essentidlother- If we join the two tuple trees based on their common
Third, since our goal is to generate minimal integrated tupft?lumn va]ue 2, it does not make any sense. o

trees having all of keywords i@, we need to take care of the 10 alleviate such a problem, we identify some “significant”
occurrences of keywords in the tuple trees. Finally, differefP!Umn values from a tuple tree, i.e., the column values that
from ordinary join operator which is dyadic, our keyword joirfr® self-describing, and we only compare significant columns

need to operate on multiple input lists, and it is not associatiyEOM two tuple trees respectively. For example, for a column
value like “SIGMOD Conference”, it is much less likely to

cause ambiguity. We therefore measure the similarity between

THEOREM 1 Keyword join is not associative, i.e., two columns as

sim(ct, c¢?) if ¢!, ¢? are significant columns

-0 1 2\
sim’ (¢, ¢%) = 0 else
(4)

The first two differences between our keyword join and
traditional join operation lead to the third problem below. As to the task of identifying “significant” columns, it is

(3) Similarity measure fo.r _heterogeneous tuple trees. database specific. It can be achieved through the DBAs of
When we perform keyword join, we need to decide whether ; .
e local databases or by some meta-data information such

two heterogenous tuple tr andt, are joinable to render . . L e
0 heterogeno P eés t2 €lo € € as index attributes, and this information is augmented to the
meaningful information to the user. Since we do not have : .
: .] ._local answers generated by the peers. In our implementation,
schema level information, the solution can only be heuristic . .
based we select columns that are indexed by the local index as

. . . “significant” columns.
In the subsequent subsections, we will present our solution .
ow given two tuple treeq; and 75, we can measure

to these three problems in reverse order for ease of explar’ha—. . . i . ;
tion. their information overlapping by comparing all the pairs

of significant columns between them. We set the similarity

score betweerl; and T, as the maximum among all the
B. Similarity measure similarity scores of the significant column pairs. Formally, it
g represented as

(ledkLQ)NkLg 7& L1[><]}€(L21><]kL3). {

In this section we consider the problem of how to deciuJ
whether two heterogeneous tuple trees from different peers L T
are joinable, i.e., whether they have overlapping information. similarity(Ty, T2) = 1<i§rlrll,a’1}ij§12 sum (Ci’C?)7 ®)
If we view each tuple tree as a flat list of column values,
and we can find semantically equivalent columns from thgherel; andl, are the number of columns df; and T
two tuple trees respectively, they could be joined based tespectively. In the example of Figure diynilarity(t1,t3) =
the common column values to render meaningful informatioh, since they have common column value “Titanic”, and
By “semantically equivalent”, we mean that the two columnimilarity(ti,t3) = 0.5 based on their similar columns
values refer to the same object in real world. Basically, thiditanic” and “Titanic(A&E Documentary)”.
problem can only be solved by heuristics since we do not haveWe define a threshold” such that if the similarity score
complete domain knowledge about all the databases. To thfstwo tuple treesl; and 7> exceedsl’, they are considered
end, we make use of IR techniques to measure the similatigmnable. However, the meaningfulness of the results combined
between two column values by treating them as “documentsdm partial answers still very much depends on human
[10]. Specifically, given two column values and c?, their observation and application-dependent preferences.

C. Top4 processing for keyword join
We use keyword joins combined with tdp global answers

to address the problem of how to generate tEpresults F\qmary)
efficiently when performing keyword join to a given set of : _.CT _.;
lists of partial answers. Note that when we perform keyword 1 1 A
join operation on more than 3 input lists, it is difficult to ST

use traditional query evaluation plans, such as left deep tree,

right deep tree, etc., since keyword join is not associati

\)ég 3. An example of pruning spanning space.

Given a number of tuple tree lists, we can only join them

by examining every combination of tuple trees extracted from _ _ o
getween two input lists, the next sequence of combinations

the input lists respectively. Figure 2 shows the algorithm
integrate a combination of tuple tre@sts, - - - , ¢, given query

@ and similarity thresholdl'. Lines 1 to 5 are for checking
the keywords in the combination of tuple trees, and lines 7

13 are for checking the “connectivity” df, ts, - - -, ¢p.

integrate(Q,T,t1,ta,- -, tp)
1. if the union of the sets of keywords of, t2, -, ¢, is a
subset of@
return null
fori «— 1top
if the union of the sets of keywords of
ti,to, - ti—1,tipa, 0, Ty, equals@
return null
Create two empty liStd connected, aNd LuncCompared
Putty into Leonnected, Put all the others intd ncompared
while Lyncompared IS NOt empty
if there are two tuple treelsandt’ from Luncompared
and L.onnected respectively, such that
similarity(t,t’) > T
Removel from L. ncompared
Putt into Leonnected
Putt into adj(t") > adjacent list oft’
else
return null
. Combine the tuple trees iB.onnecteqa INtO an integrated
tuple treelIT
return IT

~wn

©oNo !

16.

Fig. 2. Integrate a combination of tuple trees.

To perform topK processing for keyword join, we make
use of ripple join [5], which is a family of join algorithms
for online processing of multi-table aggregation queries.
the simplest version of the two-table ripple join, one tuple
retrieved from each table at each step, and the new tuples

joined with all the previously-seen tuples and with each other.5.

In our context, the input tables are lists of tuple trees, a

we can order the tuple trees in each list in descending order

of their relevance scores. The combination score of the join

result is calculated based on Equation 2, which is monotonijc.10.

of tuple trees for examination would be e, f,g,h,i >.
Therefore, before we examine the validity of each combination
?3 tuples trees at a point, we first calculate its combination
score assuming the combination is valid. At the same time, a
list L,,s is used to store the tofA” join results we currently
have. We then compare the virtual combination score with the
K-th largest score i’,,s, and if the former is smaller, we
can prune it and all the rest points along that dimension. For
example, as in Figure 3, suppose we are going to examine the
validity of point g. We first calculate its combination score,
if the score is smaller than the curreftth largest score we
already have, we can safely prune the remaining points along
that dimension, i.e., points. h,: >, since their scores must
be smaller than that of point

In addition, if in a step all the points along all dimensions
are pruned- meaning that the points in the rest of the space
that have not been spanned all have smaller scores than the
current K-th largest score- the algorithm could be stopped.
For instance, in Figure 3, if the scores of poiatsind g are
both smaller than the curref-th largest score, all the points
in this step are pruned, and consequently we can stop the
algorithm and return the current tdg results.

keywordJoin(K,Q,T, L1, Lo, - -
1.

-, L)
» p

Setp pointerspty, pta, - - -, ptp, pointing to the top unscanned

tuple trees ofLy, Lo, - - -, L, respectively

nj SetS;, as theK-th lowest score of the joined results
S obtained so far
3. while there is unscanned tuple treen, Lo, - -+, L,
arg Set boolean variablell Pruned «— true
fori «— 1top
6. Get next tuple tred; [pt;] from L;
nd;. if score(L1[1],- -, Li[pt],- -2 Lp[1]) < Stow
> all points along: dimension are pruned
(g goto5
S all Pruned < false
Set variablesd,, - - - ,id;—1,%d;41, - ,idp tO 1

11. for k — 1topandk # ¢

Therefore, in the spanning space during joining a set of tuple;s’
tree lists, the score of the combination of tuple trees at eachﬁ-
point is less than that of the combinations of tuple trees
previously seen along each dimension. This property enables
us to prune the spanning space for generating Abgoin =
results efficiently.
. 17.
The pruning process works as follows. In each step, wheng
we retrieve one tuple tree from each input list, we join each ;g-
new tuple tree with previously-seen tuple trees in all other;.
lists, in the sequence of the original order of the tuple trees|in22
their lists, i.e., in descending order of their relevance score

16.

for idj < 1topt; —1landj < ltopandj # i,k
for idx «— 1topty — 1

if score((L1[id1], -, Lglidg], -,
L; [pti]v R} Lp[idp])) < Stow

> rest points are pruned

go to 12
IT = integrate(Q, T, L1[id4],- - -,
Li[idi], -+, Lilpti], -+, Lylidy))
if IT # null

PutIT into Lgns

UpdateS; o

Increasept;
if allPruned = true
return Lgns

23. return Lgns
S

In other words, the examination of the combinations of tupkg. 4.
trees is towards the decreasing direction along each dimension.

For example, in Figure 3, which is at step 3 of ripple join The above pruning process can be easily extended to the

Keyword join algorithm.

TABLE |

represented with a-bit vector ¢1,b,...,b,), in which b;
NUMBER OF ITERATIONS OF BASIC ALGORITHM . . .
corresponds to a keyword; in @, andb; is set to 1 if the
N =4 N =g N =12 N =16 tuple trees in the TTKL containg,.
n=2 62 2872 6612 12012 The tuple trees fronfL,, Lo, - - -, L) are first assigned to
n=3 6I*+4* 28> + 661> + 1201° + corresponding TTKLs according to the keywords they have.
5613 2200 5601° Next, we need to find out thealid combinations of TTKLSs.
n=4 6> + 28> + 661> + 1201* +
4P 410 5612+ 22007 + 5600 + _ o _
7014 49574 182074 DEeFINITION 5 A valid combination of tuple tree keyword lists

(TTKLs) must be botbompleteand minimal. A combination

of TTKLs is complete if the logical OR of all the bit vectors
of its element TTKL results in a bit vector with all one.
joining on more than 3 input lists. Figure 4 shows the keyword combination is minimal if an incomplete combination of

join algorithm to produce top integrated tuple trees from aTTKLs will result if any of its element is removed.

set of listsLy, Lo, - - -, Ly.
For example, suppose there are three keywords in a query,

D. Selection of partial answer lists so we will create six TTKLs, which are represented with

bit vectors in{(0, O, 1), (0, 1, 0),..., (1, 1, O} respec-

tively. All valid combinations selected from these TTKLs

are: (1)< (1,1,0),(1,0,1) >, (2) < (1,1,0),(0,1,1) >,

3) < (1,1,0),(0,0,1) >, (4) < (1,0,1),(0,1,1) >, (5)

< (1,0,0),(0,1,1) >, and (6)< (0,0,1),(1,0,0),(0,1,0) >.

Now we address the problem how to organize theV
lists of partial answers so that we can generate Aoglobal
answers with keyword join quickly.

1) The basic conceptA straightforward approach is to

perform keyword join operations to evekycombination ¢ < Obviously, the number of TTKLs in any valid combination

k < n) of the N lists (L, Lo, ..., Ly) to produce potential . : : :
. . s not greater tham. Finally we integrate the partial answers
global answers involvinge sources (peers). The number o . - . S
y performing keyword join on all the valid combinations of

lists in a combinationk, must .be smaller than, the number TTKLs. The only difference is that in thaitegrate() routine
of query keywords, because if a global answer has more than

. . . shown in Figure 2, we can remove lines 1 to 5, since we do not
n partial answers, it must not be minimal, and not a vali)
; - need to check the keywords, and we only need to check if the
global answer according to Definition 3.

. . Eu le trees are from different peers. We refer to this approach
If we assume each partial answer list has the same num & . !
C of using TTKL to generate global answers ksyword list
of tuple trees,/, the total number of combinations of tupleal orithm
trees to be examined, i.e., the maximum number of iterationsq ’ . .
X . . However, the number of valid combinations of TTKLs for
of the basic algorithm/, is] N .
a query withn keywords still increases very fast with the
I " (N i 6 growth of n. If we use¢(n, k) to denote the number of valid
- Z A ®6) k-combinations of TTKLs when the number of keywordsiis
Table 1l shows the value af(n, k) whenn equals2, 3, - - -, 6.
Table | shows the values af under different values of the But Considering that the number of keywords of a query
number of listsN and the number of keywords. We can s very small, and it is often not bigger than four, we can
see that/ increases very fast with the increasing 8fand therefore use the combinations of TTKLs to generate global
n. Therefore, we expect the performance of the algorithm ihswers efficiently. If we assume the tuple trees are distributed
degrade significantly when the number of keywords or thgiformly to each TTKL, the maximum number of iterations

number of peers is large. for keyword list algorithm,I”, is
2) Reorganization of input listsObserve that an important

requirement for a global answer is that it must both contain I — iqsm k)(Nl
all the keywords of@Q and be minimal. It is redundant to TAon — 2
. . . k=2

compare those combinations of tuple trees that cannot satisfy

this requirement. For example, givéh= (w1, wa, ws), tuple Table Il shows the values of’ with different N and n.

treet; has keyword sefw; }, tuple treet, has keyword set Comparing it with Table I, we can see that the number of

{ws}, and tuple tre¢; has keyword sefw;,ws}. Itis obvious iterations for keyword list algorithm is much less than that of

that we should not examine the combinations, ;) — not the basic algorithm. The keyword list algorithm is therefore

having all the keywords of), and {1, t2,t3) — not minimal. expected to be more efficient than the basic algorithm.

We only need to examine the combinatian, {s3). Further, we consider that different combinations of TTKLs
We therefore propose to reorganize the input lists accordingually have different contributions to the final tép global

to the keywords of the partial answers. We maintain one lishswers. Some combinations providing answers with very

for each subset of) (except the empty set and full set@)), high scores usually contribute more answers, while some

which is used to store the tuple trees that have exactly tbembinations even do not contribute any. Therefore, we can

corresponding subset of keywords. We call each listgle attempt to find the upperbound score of the potential integrated

tree keyword list(TTKL). In total, there are2™ — 2 TTKLs, tuple trees for each combination of TTKLs and prune useless

where n is the number of keywords id). Each TTKL is combinations where possible.

k=2

)~ ()

TABLE Il
NUMBER OF VALID COMBINATIONS OF TTKL S vS. NUMBER OF

potential results must be smaller tha3, and thus smaller
than S;,west. COnsequently, we can stop the algorithm and

KEYWORDS. output current the tog< global answers inLg;,s. On the
o(nk) n=2 n=3 n=4 n=5 n=6 other hand, ifUB < Sigwest, butlen < K, we only need
k=2 1 6 25 90 301 to get top K — len results from the combination, since its
k=3 - 1 22 305 3410 potential results cannot change the order of the current results
k=4 - - 1 65 2540 in Lypans. We can output the togen results in Lypans
k=5))) 1 e first, which can improve our system’s response time greatly.
k=6 - - - - 1 \ i

Otherwise, we can get the rankof UB in the scores of
the answers inL g 4,5, and we only need to get tof — r
TABLE Il

NUMBER OF ITERATIONS OF KEYWORD LIST ALGORITHM

N =141 N =28 N =12 N =16

answers from the combination because its potential results
cannot change the topresults inLgy 4,5, and thus we can
also output the top: results. The keyword list algorithm in
given in Figure 5.

n=2 4l 1617 361° 641°
=3 267 10.671° 4+ 241%481° 42,671 . L :
" 0.313 N 9.373 M N 18.96l3+ THEOREM2 The keyword list algorithm is equivalent to the

n=4 2% 4+ 816> + 12.451°+ 32.651°+
0.5> + 4.1 + 13.85134+ 32.8413+
0.00671* 0.11* 0.541* 1.714

basic algorithm.

The whole proof of the theorem is lengthy and hence the
sketch is provided here. LeR and R’ denote the result
sets generated by the basic algorithm and the keyword list
algorithm, respectively. Each global answer fhis joined

We get the upperbound scasg;,,..- of the potential results py partial answers such that each of them has the keywords

of a combination of TTKLs by calculating the score of th@et equivalent to that of each corresponding TTKL of a valid
combination of the first tuple trees retrieved from the TTKLgombination of TTKLs. This infersR C R’. On the other

respectively.

Keyword list algorithm

1.
2

o0 AW

22.

. Assign tuple trees from all local partial answer lists to the

Create2™ — 2 TTKLs

corresponding TTKL
Find all valid combinations of the TTKLs, put them in a €&t
for each combinatior € C
Calculate its upperbound scoteB
Order the combinations 6" in descending order according to
their U B, and put them into a lisL o
Create a listL 4, 4n s t0 Store the global answers, with variableg
Siowest Storing the lowest score of the tuple trees in it, dad
storing the number of results in it
for each combinatior: from L sequentially
if UB <= Sjowest andlen >= K
OutputLgipans
return
else
if UB <= Siowest andlen < K
Output the toen results inL g 4n s first
Lans = keywordJoin(K — len,Q, T, c)
AppendLans 10 LgipAns
elser> UB > Siowest
Get rankr of UB in Lgipans
Output the top- results iNL g5 5 first
Lans = keywordJoin(K —r,Q, T, c)
InsertLgns into Lgipans accordingly
Output the rest results iBgipan s

Fig. 5. Keyword list algorithm.

hand, each global answer iR’ is joined by partial answers
from the corresponding input lists from each peer. This infers
R’ C R. To conclude,R = R/, so the two algorithms are
equivalent.

IV. EXPERIMENTS

We evaluate the effectiveness and efficiency of our keyword
join based integration algorithms in this section.

A. Datasets

In this experiment, we use the amalgam dataset [8] to
test the quality of the integration with our similarity measure
and relevance ranking method. It consists of 4 bibliography
databases with similar content developed by 4 separate stu-
dents. Then we use the TPC-H synthetic database for testing
the efficiency of our proposed integration algorithms.

B. Quality of the integrated tuple trees

In this experiment, we measure the precision and recall of
the returned results of the keyword list algorithm. We issue 10
3-keyword queries to the system, to get the average precision

First, we order the set of valid combinations of TTKLsand recall values.
in descending order of their upperbound scores. Then weFirstly, we collect top 30 integrated tuple trees with each
perform top# keyword join for each combination of TTKLs local database generating 40 local partial answers, and measure
sequentially. A listLgpans is maintained to store the topthe precision and recall with various values of similarity
K global answers from the combinations of TTKLs alreadthreshold. It is hard to measure the recall using the standard

executed, and we always maintain the lowest sc6fg,.s;, Measurement, which is the ratio of the number of relevant
of the results inLgpans, and its total number of results,results retrieved to the total number of relevant results, because
len. Each time, when a new combination of TTKLs is tat is difficult to find out all meaningful integrated tuple trees
be executed, we first compare its upperbound s€bBewith to a keyword query from the databases manually. In our
Siowest. If UB < Siowest @ndlen > K, we can prune the experiment, we useelative recall i.e., we measure recall as
rest of the combinations of TTKLs because the scores of théie ratio of the number of relevant results retrieved to the total

number of the meaningful results returned by the keywotthsic algorithm with topk” keyword join processing (BSTK),
list algorithm with different similarity thresholds. Figure 6(a)3) the keyword list algorithm without tope keyword join
plots average precision and relative recall as functions of theocessing and any optimizations (KL), (4) the optimized
similarity threshold for the amalgam dataset. keyword list algorithm with topX keyword join processing
Observing from the figure, we can see that the precisi¢LTK), in various situations. The system parameters that we
of the results increases with the increasing of the similaritsary in the experiments are (a) the number of query keywords
threshold, but the recall increases at first and decreases latef(b) the required number of global answeks, (c) the
on. This is reasonable because when similarity thresholdnamber of peers in ARP, and (d) the number of local
high, the number of returned final global answers is oftguartial answers generated in each peer. In all the experiments,
few but with high quality, which leads to high precisiorthe similarity thresholdl’ is set to 0.3, and all the reported
and low recall. When similarity threshold gets lower, morexecution time is the average value over the execution time of
global answers with decreasing overall quality are returned, 50 randomly selected keyword queries.
recall becomes higher and precision gets lower. As similarity 2) Effect of the number of query keywordsgure 7 shows
threshold gets lower and lower, the quality of the returngtie effect of the number of query keywords to the time for
results degrades greatly, so both of precision and recall becoimtegrating local partial answers by various algorithms, when
very low. the number of peers in ARPS equal to 8 and 16 respectively.
Next, we fix the similarity threshold to 0.3 to test thdn this experiment, the value df is set to 10, the number of
precision and recall of collecting top 30 global answerscal answers generated by each peisr20. From the figures,
with the number of local partial answers from each péer, we make the following observations:
increasing from 20 to 40. Figure 6(b) reports the result ol From the curves in the figures, we can see that the keyword
this test. From the figure, we can see that when the numbelist algorithm reduces the integration time dramatically
of partial answers from each peer increases, the precisiocompared with the basic algorithm. The KLTK is orders
decreases, but the relative recall increases. This is expectedf magnitude faster than BS and BSTK when the number
since the partial answers returned from each peer are rankedf keywords is greater than 2.
decreasingly according to their relevance scores. Whian ® The execution time of BS and BSTK algorithms increases
small, the overall relevance of the partial answers are bettermuch faster than that of KL and KLTK when the number
so they tend to produce global answers with high precision.of keywords increases. In Figure 7(b), when the number of

In another hand whehis small, some “good” partial answers keywords equals 5, both BS and BSTK can not complete
may also be lost, so the recall is re|ative|y low. the integration task within the time ||m|t, i.e., 3000 seconds.

Finally, we fix the similarity threshold to 0.3 to test the ® M€ top# processing of the keyword join are very effec-

precision and recall when the number of global answers we : :

collect, K, increases from 10 to 30. The number of Iocal.a_?ﬁeKlr-eglg:nrgg”t‘isrr']ere(s)?elglt_'.‘r’?yén d BSTK is close to its

partial answers from each peer is set to 30 in this test. FigureCom Ietiol; time in most situations

6(c) illustrates the average precision and relative recall as3) EFfzfect of the number of required. global answeRgure

functions of K. It can be observed from the figure that whe :

K increases, the average precision gets Iowgr and lower rteports the effect of the number of required global answers,
e) ' I.e., K, to the time for integrating local partial answers. The

the recall increases. This shows that the returned answers wi g g P

. : . . ber of peers in the ARPSY, was set to 16 in this
high ranks are generally with better quality, which reveals thg;[(eriment, and is 20. Figures 8(a) and 8(b) show the
our ranking function is effective. P ' -9

execution time of the algorithms when the number of keywords
equals 3 and 4 separately. From the figures, we make the
] following observations:

1) Experimental setupWe use the TPC-H data for our o The execution time of BS and KL keeps almost the same
experiments in this section. We create 16 databases, assigninghen the value ofK increases from 10 to 30. This is
each of them to one peer. Each database contains 2-4 relationgnected because the dominating execution time of the two
of TPC-H, which are related with each other with one or 5igqrithms is used to perform the keyword join operations

two foreign key relationships of the TPC-H schema. These, the combinations of tuple tree lists, which is independent
databases are different from each other, but have overlappings ihe value ofK.

tables. We use the set of these 16 databases as ARPS 1n contrast, the execution time of BSTK and KLTK in-
the keyword queries we issue. We integrate the local partialcreases when the value &f increases because whén is
answers generated by these databases with our proposegrger, it needs to take longer time to get tApresults by
integration algorithms. The average size of each database is 1the keyword join algorithm from each combination of tuple
MBytes. The databases are individually managed by MySQL tree lists, and may need to perform keyword join to more
RDBMS. We ran all the experiments on a PC with a 2.4GHz combinations of tuple tree lists.
Pentium CPU and 768MB memory. We implemented bothe We can also see that in both figures the response time of
local and global query processing in Java, and used JDBCBSTK and KLTK increases slower than their completion
for database connection. time. This is because that the value BF will not affect

We compare the execution time of 4 integration algorithms: much to the algorithms for generating first top answers that
(1) the basic algorithm without topc processing (BS), (2) the could be output before all the tal§ answers are generated.

tive, since both BSTK and KLTK are much faster than BS

C. Efficiency of the partial answer integration algorithms

01k averagerelativerecal —— _| 01

€ L average relative recall —+— | o1k average relative recall —+— |
o . | average precision o o | average precision - o | average precision ——%-—
0.1 02 03 04 05 20 30 40 10 20 30
similarity threshold number of local partial answers per peer required number of global answers
(@) (b) (©)
Fig. 6. The precision and recall.
1000 : : 100 :
BS —+—
BSTK completion -->--
BSTK response ---% --
100 |- KL g] |
KLTK completion — 8-~
- KLTK response --©- T 10[— €1
ki 4 - - St S
g o g BS —+—
= = BSTK completion -->--
§ —_— el % BSTK response ---%---
e 1+ KL - g
S KLTK completion —--#—--
] KLTK response ---©- o
S i DT T
1 01 1
4 5 10 20 30
#keywords required number of global answers
(a) #peers = 8 (a) #keywords = 3
10000 . : 10000 :
BS ——
BSTK completion -->---
1000 BSTK rspor(sl_e é ‘
KLTK completion ——-- X 1000 = ' n
. KLTK response --©- [@
§ S 5
E ’ B 8 1ol .
£ y £ 5 b
< < h — =
B - 8 BSTK fon -
e completion -->¢
7 10 |- BSTKresponse ---%-- .
. - KL B
o KLTK completion —--#—--
KLTKresponse --0-- . _._._ -
1 L e -
4 5 10 20 30
#keywords required number of global answers
(b) #peers = 16 (b) #keywords = 4
Fig. 7. Effect of the number of query keywords. Fig. 8. Effect of the required number of global answers.

This is desirable since wheR is large, our system is still [3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.

able to provide fast response to users. Keyword Searching and Browsing in Databases using BANKSCDE,
2002.
[4] F. Cuenca-Acuna, C. Peery, R. Martin, and T. Nguyen. PlanetP:
V. CONCLUSIONS Using Gossiping to Build Content Addressable Peer-to-Peer Information

. Sharing Communities. IfEEE Int'l Symposium on High Performance
We have presented a framework for keyword search in P2P- pistributed Computing2003.

based database systems. Our system supports the keywdP. Haas and J. Hellerstein. Ripple Joins for Online Aggregation. In

3 .) ; . SIGMOD, 1999.
Sear(_:h interface, and enables the Integration of Imcorma‘tlo['g] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-Style
(partial answers) from various peers where necessary. OUl Keyword Search over Relational DatabasesVIDB, 2003.

proposed system avoids complex data integration, makirlg V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword Search in

. . . : Relational Databases. MLDB, 2002.
It SUIt_abl_e for dynamlc and ad-hoc environments and co] Rerée J. Miller, Daniel Fisla, Mary Huang, David Kymlicka, Fei Ku,
effective in terms of implementation. We have also proposed’ and vivian Lee. The Amalgam Schema and Data Integration Test Suite.

an efficient keyword list algorithm for generating tépglobal o] ﬁo%lﬁ v sh 4B YU, Eficient S e based C cearchi
: i . Shen, Y. Shu, and B. Yu. Efficient Semantic-based Content Search in
answers with our proposed keyword join operator. P2P NetworkIEEE Transactions on Knowledge and Data Engineering
16(7):813-826, 2004. _ _ _ _
REFERENCES [10] A. Singhal. Modern Information Retrieval: A Brief OverviewEEE
Data Engineering Bulletin24(4):35-43, 2001.
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System for
Keyword-Based Search over Relational Database$CDE, 2002.
[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank:
Authority-Based Keyword Search in DatabasesVIDB, 2004.

