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A biocompatible post-polymerization functionalization reaction 

takes advantage of a polymer’s structural motif for the 

controllable attachment of biotin as a model biosensor that 

responds to streptavidin. 10 

Strategies for the post-polymerization functionalization (PPF) 

of polymers are advantageous in that they allow for tuning of 

a polymer’s properties without synthetically retreating to the 

monomer stage. Further, PPF permits the incorporation of 

functional groups that may be incompatible with 15 

polymerization conditions. Several strategies have been 

reported for conjugated polymers. A number of designs 

involve substitution reactions with pendant halogen,1 alcohol,2 

or carboxylic acid moieties,3 and application of high yielding 

click chemistries4 like the 1,3-dipolar cycloaddtion of alkynes 20 

and azides5 or thiol-conjugate addition6 have also been 

reported. Two potential drawbacks are characteristic of the 

above strategies: (i) an appropriately functionalized monomer 

specific for the intended PPF must be incorporated into the 

polymer synthesis––often in protected form and (ii) it can be 25 

difficult to control the extent of functionalization. 

 

 We recently reported the synthesis of a rigid hydrophilic 

monomer (1) that––when incorporated into poly(p-phenylene 

ethynylenes) (PPEs)7 (P1)––leads to increased spectral purity 30 

by preventing hydrophobically induced aggregate emission.8 

We envisioned that the three dimensional array of vicinal 

hydroxyl groups might be further elaborated through periodate 

oxidation and reductive amination (P1→2→3, Scheme 1).9 

Similar processes have been widely applied for 35 

bioconjugation through periodate oxidation of carbohydrate 

residues, making this process compatible with existing 

bioconjugation schemes. Herein we report a biocompatible 

post-polymerization biotinylation of P1, where (i) the need for 

a PPF specific monomer is negated by activation of an 40 

existing structural motif, and (ii) the extent of 

functionalization can be controlled by the equivalents of the 

NaIO4 reagent. Further, the improved spectral purity imparted 

by the presence of 1 in 3a is not lost. In turn, this 

demonstrates an improved signal amplified biosensor10 45 

response to fluorophore-labeled streptavidin, a tetrameric 

protein with high biotin affinity (4 x 10-14 M)11 that has been 

applied to a variety of conjugated polymer affinitychromic3,12 

and agglutination2b biosensor designs. 

 50 

Scheme 1 Periodate oxidative activation and reductive amination 

 Treatment of P1 with 0.2 equivalents of NaIO4 in water 

generated 1,6-dialdehyde moieties at random positions along 

the backbone (2, Scheme 1).13 Subsequent incubation with an 

excess of amine-containing compound (a or b) in aqueous 55 

alkaline solution generated the putative Schiff base, which 

was reduced in situ to the tertiary amine 3 with NaCNBH3 

(vide infra, Scheme 2). 

 The azepane linkage in 3 is proposed based on two model 

studies. Firstly, the broad nature of the 1H NMR signals of 3a 60 

overlapped with the weaker biotin signals making 

determination of the extent of functionalization difficult. 

Thus, 3b––exhibiting a strong, unobstructed pivalamide 

signal––was prepared under identical conditions for 3a. 

Integration analysis revealed a 18–20% incorporation of b 65 

(Fig. S3, ESI). Therefore, while 0.2 equivalents of NaIO4 

oxidant should generate 0.4 aldehyde equivalents, there 

appears to only be 0.2 equivalents of the incorporated amine. 

 Secondly, acetonide protected 4––a synthetic intermediate 

in the synthesis of 18––was treated with periodate anion and 70 

 
Scheme 2 a) Model reductive amination product, b) proposed mechanism 
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Fig. 1  (a) Absorbance spectra of 1 and 3a in water and PBS solution. (b) 

Fluorescence spectra of 1 and 3a in water and PBS solution. (c) Energy 

transfer schematic showing how intra- and interchain exciton migration 

and energy transfer to TRXS can lead to amplification. (d) Addition of 5 

9.15 pmol aliquots of Texas red X™-labeled streptavidin to 3.46 nmol 

(based on repeat unit of 3a). (e) Excitation of 1 in the presence of 100 

pmol TRXS (black) and direct excitation of 100 pmol of TRXS (red).  

 

produced the tetraaldehyde 5 (Scheme 2a). Addition of an 10 

excess of butyl amine and NaCNBH3 to 4 in methanol gave 5 

as the major product. Such products have been observed for 

bridging 1,6-dialdehydes15 and likely form via a 7-exo-trig 

reductive cyclization to install one amine for every dialdehyde 

present (Scheme 2b). Thus, we propose the PPF in Scheme 1 15 

proceeds in an analogous manner, allowing for the extent of 

functionalization to be controlled by the molar equivalents of 

NaIO4. 

 The effect of the described PPF method on the 

photophysical properties of the polymer can be seen in Fig. 1a 20 

and 1b. The absorbance and fluorescence maxima of 3a show 

excellent overlap with the parent polymer P1 in both water 

and PBS solution, indicating that the oxidation and reductive 

amination reactions leave the conjugated polymer backbone 

intact. The origin of the reduced quantum yield of 3a is 25 

unclear. The possibility of excited state photo-electron 

transfer from the newly installed amine lone pairs to the 

polymer was examined by varying the pH but no effect was 

found (pH = 1–12, Fig. S5, ESI). The reduced quantum yield 

may be attributed to replacing diol moieties with the relatively 30 

insoluble biotin, leading to a more aggregated state of the 

polymer and diminished quantum yield. In any event, the 

effect of incorporating 1 in 3a is still present as no lower 

energy excimer emission is observed and spectral purity is 

maintained. 35 

 The response to streptavidin in the presence of 3a is 

represented schematically in Fig. 1c, where Texas Red X™-

labeled streptavidin (TRXS) is able to aggregate the 

biotinylated polymers (3a). Amplification is achieved through 

the funneling of polymer excitons to the lower energy Texas 40 

Red X™ dyes through intra- and interchain energy migration 

within the supramolecular aggregate. The results of serial 

additions of TRXS to 3a at room temperature in PBS solution 

are shown in Fig. 1d. As anticipated, a decrease in the 3a 

emission and a corresponding increase in dye emission was 45 

observed. The amplifying effect of the polymer sensor can be 

seen through direct excitation of the dye (Fig. 1e, red). 

Finally, incubation of TRXS with P1 showed no response 

(Fig. 1e, black). 

 To better understand the nature of the interaction between 50 

TRXS and 3a, we determined the Stern–Volmer quenching 

constant for the polymer emission (460 nm) in Fig. 1d. The 

Stern–Volmer plot showed positive curvature (Fig. S6, ESI), 

which is likely due to additional energy migration pathways 

within the polymer assembly16 produced by the strong biotin–55 

streptavidin association. Further, no detectable excited state 

lifetime change was observed with increasing TRXS 

concentration, indicating that static quenching is the dominant 

mechanism of energy transfer. 

 Compared with previous systems,10 a 100 fold greater KSV 60 

of 2x107 was found. This higher sensitivity is likely due to 

enhanced energy transfer through avoidance of lower energy 

excimers. These states––negated by the presence of 18––are 

localized and perhaps too low in energy to undergo transfer to 

the dye. 65 

 In summary, a biocompatible PPF strategy has been 

developed, which takes advantage of existing monomer 

functionality and design. Further, the extent of 

functionalization can be controlled through the equivalents of 

NaIO4. Finally, a highly sensitive (KSV = 2x107) turn-on 70 

model biosensor based on ET between 3a and TRXS was 

demonstrated where the presence of 1 lead to dramatically 

increased sensitivity.  

 Financial support for this work was provided by the Natural 
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Materials: Silica gel (40 µm) was purchased from SiliCycle. All solvents used for 
photophysical experiments were spectral grade. Pd(PPh3)4 was purchased from Strem 
Chemicals, Inc. All other reagent grade materials were purchased from Aldrich, TCI 
America, and Alfa Aesar, and used without further purification. 
 
Experimental: 
NMR Spectroscopy: 1H and 13C NMR spectra for all compounds were acquired in CDCl3, 
D2O and DMF-d7 on a Bruker Avance Spectrometer operating at 400 and 100 MHz, 
respectively. The chemical shift data are reported in units of δ (ppm) relative to residual 
solvent. 
Gel Permeation Chromatography (GPC): Polymer molecular weights were determined 
using a triple detection method for calibration with poly(acrylic acid) standards on a 
Viscotek TDA 305-040 instrument equipped with two Viscotek A-MBHMW-3078 
columns and analyzed with light scattering and refractive index detectors. Samples were 
dissolved in 5% NH4OH. 
Absorption and Emission Spectroscopy: Fluorescence spectra were measured on a SPEX 
Fluorolog-τ3 fluorometer (model FL-321, 450 W Xenon lamp) using right-angle 
detection. Ultraviolet-visible absorption spectra were measured with an Agilent 8453 
diode array spectrophotometer and corrected for background signal with a solvent filled 
cuvette. Fluorescence quantum yields of #### in both water and 1X PBS were 
determined relative to perylene and are corrected for solvent refractive index and 
absorption differences at the excitation wavelength.  
Lifetime measurements: Time resolved fluorescence measurements were performed by 
exciting the samples with 160 femtosecond pulses at 390 nm from the double output of a 
Coherent RegA Ti:Sapphire amplifier. The resulting fluorescence was spectrally and 
temporally resolved with a Hamamatsu C4780 Streak Camera system. 
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Synthetic Procedures 
 
Biotin functionalization, synthesis of 3a: Polymer 1 (11.8 mg, 14.6 µmol based on 
repeat unit) was dissolved in 4 mL of H2O and NaIO4 (2.92 µmol in 0.2 mL) was added 
dropwise under vigorous stirring. After 30 min, a (Biotin-PEG3-NH2, 3 mg, 7 µmol in 1 
mL of 0.2M Na2HPO4) was added and the reaction was stirred for 20 min. A solution of 
NaCNBH3 (15 mg, 239 µmol in 1 mL of 40 mM Na2HPO4) was added and the reaction 
stirred for 3 hours. The reaction was dialyzed against water with 5 changes of water and 
lyophilized to yield 3a. GPC gave Mn = 38,474, PDI = 3.4. 1H NMR (600 MHz, D2O): 
δ7.44 (s, 2H), 4.64 (broad, 4H), 4.37 (broad, 4H), 4.05 (broad, 4H), 3.89 (broad, 4H), 
3.80-3.30 (biotin, PEG), 3.18 (broad, 4H) 2.35 (broad, 4H), 1.30-0.90 (biotin). 
 
 Piv-Lysine functionalization, synthesis of 3b: Prepared using identical conditions as 
above for 3a except that b (Piv-Lys-NH2) was used in place of a. GPC gave Mn = 49,073, 
PDI = 4.9. 1H NMR (600 MHz, D2O): δ7.42 (s, 2H), 4.61 (broad, 4H), 4.35 (broad, 4H), 
4.03 (broad, 4H), 3.88 (broad, 4H), 3.16 (broad, 4H), 2.33 (broad, 4H), 1.05 (broad, tBu, 
1.6–1.8*). 
*Based on three experiments and corresponds to 18–20%. 
 
Synthesis of tetraaldehyde 5: A solution NaIO4 (0.200 g, 0.935 mmol) in 10 mL of 
water was added to a solution of 4 (0.200 g, 0.248 mmol) in 10 mL of THF. Solid 
TBAIO4 (54 mg, 0.124 mmol) was added directly and the solution was refluxed for 30 
min. After cooling, the reaction was partitioned between EtOAc and brine and the 
organic phase collected. The aqueous layer was washed with fresh EtOAc and the 
combined organic layers were dried over Na2SO4 and concentrated in vacuo. The residue 
was eluted through a silica gel plug using EtOAc to give 5 (95%). 1H NMR (400 MHz, 
CDCl3):  δ 9.65 (d, J=2, 4H), 4.98 (nfo, actual ddd, J=6.6, 2.8, 2, 4H), 4.89 (dd, J=6.6, 
2.8, 4H), 1.48 (s, 6H), 1.46 (s, 6H), 1.12 (s, 42H). 13C NMR (125 MHz, CDCl3) δ 197.6, 
134.1, 125.9, 110.7, 105.7, 101.2, 73.9, 54.5, 25.9, 24.2, 18.8, 11.4. HRMS (EI) calcd. for 
C46H66O8Si2 [M+H] 803.4369, found 803.4344. 
 
Synthesis of amine 6: To a solution of 5 (0.150 g, 0.186 mmol) in 10 mL of MeOH was 
added butyl amine (82 mg, 1.12 mmol). After stirring for 10 min at room temperature, 
NaCNBH3 (0.250 g, 3.98 mmol) was added and the mixture was refluxed for 3 hours. 
Once cool, 1 mL of sat. NaHCO3 was added and the solvent was removed in vacuo. The 
residue was partitioned between DCM and sat. NaHCO3. The organic layer was dried 
over Na2SO4 and evaporated to dryness. Silica gel chromatography (EtOAc:Hex, 8:2) 
provided 6 (65%) as a white solid. 1H NMR (400 MHz, CDCl3):  δ 4.33 (dd, J=4.0, 2.4, 
4H), 4.00 (m, 4H), 2.84 (d, J=12, 4H), 2.58 (dd, J=11.8, 7.5, 4H), 2.29 (br t, 4H), 
1.64 (s, 6H), 1.40 (s, 6H), 1.28 (m, 4H), 1.12 (br s, 42H), 1.06 (m, 4H), 0.74 (t, J 
=7.4, 6H). 13C NMR (125 MHz, CDCl3) δ 139.5, 119.8, 110.8, 103.2, 98.3, 76.5, 57.4, 
48.7, 41.5, 28.7, 25.9, 24.7, 20.7, 19.0, 14.1, 11.6. HRMS (EI) calcd. for C54H88N2O4Si2 
[M+H] 885.6355, found 885.6357. 
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NMR Spectra 
 

 

 
Figure S1: 1H and 13C NMR spectra of compound 5 
 

Page 9 of 12 ChemComm - For Review Only



S5  

 

 
Figure S2: 1H and 13C NMR spectra of compound 6 
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Figure S3: 1H spectrum of compound 3b 
 
 
 
 
 
 
 
 

 
 
Figure S4: 1H spectrum of compound 3a 
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UV-vis and Fluorescence data 
 
Table S1: Summary of photophysical data of 3a 

 Abs λmax (nm) Em λmax (nm) log ε ΦF 
3a, water 436 451 4.52 8% 

3a, 1X PBS 450 461 4.58 7% 
 
General protocol for energy transfer assays in PBS: 
50 µL of a stock polymer solution (0.056 mg/mL in PBS) was diluted with PBS to a total 
volume of 3 mL in a fluorescence cuvette. To this was added aliquots of Texas Red-X™ 
labeled streptavidin (0.5 µL of a 1 mg/mL solution) and fluorescence emission was taken 
at each addition. Excitation wavelength was 426 nm. 
 

 
Figure S5: Effect of quantum yield of 3a at different pH. Measurements performed in 
PBS where pH was adjusted with HCl or NaOH. 
 

 
 
Figure S6: Stern–Volmer quenching analysis of Figure 1d in main text.  
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