Reduced-Order Modeling for Ensemble Real-time
Estimation and Control
by
Binghuai Lin
B.S. Hydraulic Engineering, Tsinghua University, 2005
M.S. Hydrology, Tsinghua University, 2007

Submitted to the Department of Civil and Environmental Engineering

in partial fulfillment of the requirements for the degree of

ARCHIVES

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

‘A/—\SSA(,HUSFT'”-‘ INSTITUTE

June 2012 LIBRARIES

© Massachusetts Institute of Technology, 2012. All rights reserved.

Y S /)

Author ... N ],
epartment (3\ 6\]1 (ﬂinwronmental Engineering

i May 4, 2012

Certified by ..........ccccooveiiinnn IRUURPRPPRP ST SOURPRT N\
Dennis McLaughlin

H.M. King Bhumibol Professor of Civil and Environmental Engineering

Thesgs Supervisqr

Jdo 7T f

Accepted by ..o B o

I Heidi M. Netf

Chair, Departmental Committee for Graduate Students






Reduced-Order Modeling for Ensemble Real-time
Estimation and Control

by
Binghuai Lin
Submitted to the Department of Civil and Environmental Engineering
on May 4, 2012, in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in
the field of Civil and Environmental Engineering

Abstract

Efficient exploitation of subsurface resources requires better understanding of subsur-
face physical properties as well as optimization of control strategies. Advances in
technology have created the possibility of providing real time measurements of sub-
surface conditions. These measurements can be used to reduce uncertainty in the de-
scription of subsurface conditions, and combining uncertainty quantification and con-
trol optimization leads to improved management of subsurface resources through the
closed-loop control framework.

The ensemble closed-loop control utilizes an ensemble representation to describe
complex probabilistic distributions of uncertain model parameters. To reduce the
computational burden and make it feasible to apply the ensemble closed-loop control
to large-scale problems, this thesis proposes a robust reduced-order model for subsur-
face solute transport that is sufficiently accurate in the ensemble closed-loop process.
The reduced-order model is based on a second-order expansion of the governing eq-
uations discretized by the mixed finite element method and the upwind finite differ-
ence method. As a result, the reduced-order model can incorporate state and parame-
ter changes explicitly and thus it is possible to perform dimension reduction in both
state and parameter spaces. The high-dimensional state space is reduced by the proper
orthogonal decomposition, which can capture key features of states for complex sys-
tems, while the high-dimensional parameter space is reduced by the discrete cosine
transform, which allows for efficient and robust parameterization of physical proper-
ties.

The efficiency and robustness of the reduced-order model are demonstrated by an
uncertainty quantification example using the ensemble Kalman filter. It is shown that
model predictions by the reduced-order are sufficiently accurate for updating uncer-
tain model states and parameters. The channelized geological features presented in the
example are well preserved and captured by the reduced representations of states and
parameters. A further example, which combines reduced-order modeling with the en-
semble closed-loop control, illustrates the possibility of performing robust control of
large-scale problems under uncertainty with improved efficiency by reduced-order
modeling.
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Chapter 1
Introduction

1.1 Motivation

1.1.1 Heterogeneity and Uncertainty in Subsurface Transport
Problems

In many fields of science and engineering, mathematical models play an important
role in representing complex physical processes. Results from model simulations are
used for system management and risk analysis. Once mathematical models have been
established, how state variables evolve is determined by model parameters (such as
physical properties) and exogenous forcing. Identifying model parameters then be-
comes crucial for accurate description of system dynamics. However, limited observa-
tions and spatial/temporal variations of parameters often make a precise representa-
tion of model parameters infeasible.

The flow through subsurface materials is influenced not only by the distribution of
external forcing in time and space, but also by the nature of the materials. Characteri-
zation of hydraulic properties is of crucial importance for the exploitation of subsur-
face resources (e.g., water, oil and gas). Variations in geologic processes create earth
materials that have highly variable hydraulic properties [1]. Field measurements re-
ported in the literature show as a rule that hydraulic properties are spatially variable,

i.e. aquifers are heterogeneous [2-5].
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Since hydraulic properties of natural subsurface flow systems are extremely varia-
ble, it is then important to choose an appropriate description of natural variability and
combine it with the well-established mathematical models in permeable materials to
describe the dynamics of subsurface flow systems. A straightforward way is to meas-
ure the hydraulic properties in detail for the field site and implement the actual three-
dimensional representation in mathematical models to capture all the effects of varia-
bility. However, this method is not only computational expensive, but also not prac-
tical to require detailed measurements of hydraulic properties. One obstacle to acquire
a detailed description is that the measurement process in filed will alter actual proper-
ties in aquifers.

A second approach is to ignore small-scale variability of hydraulic properties, and
divide the porous media into homogenous zones, which are presumed to be adequate
to describe the situation. Then mathematical models with zonal homogeneous parame-
ters can simulate the dynamics of large-scale subsurface flow in an average sense. The
reliability of predictions from the model, however, is highly questionable.

To account for the small-scale variability a simple approach is the one in which
hydraulic properties are treated as being random [6]. This is the method of geostatis-
tics. Geostatistics in a probabilistic form assumes that hydraulic properties distributed
in space can be considered as a realization of a random field, defined by its jointly
probability distribution for all points of the medium. Freeze [2] described the distribu-
tion of a one-dimensional hydraulic conductivity field with a lognormal distribution,
but ignored the spatial correlation structure of the random field. The statistical analy-
sis of measurements at the Borden site in Canada [7] indicated that hydraulic conduc-
tivity fits quite accurately a lognormal distribution. An analysis of the spatial correla-
tion structure revealed that the random field could be regarded as stationary, and the
covariance of hydraulic conductivity could be described in an exponential form,
which decreases with distance. Thus, the natural formation could be categorized as

statistically homogeneous (stationary) and anisotropic.
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Traditional geostatistics is based on random function models such as the lognor-
mal random function, the truncated Gaussian random function, and the Boolean ran-
dom set [8]. Although this approach has been successfully applied to many cases in
subsurface modeling, it is always impossible to establish a random function model
that can represent more realistic geological features, such as channelized structures.
An alternative to the traditional geostatistics is the multi-point geostatistics, in which
empirical multivariate distributions are inferred from training images, and thus expli-
cit definitions of random functions are not required. This approach is much more flex-
ible and can represent complex geological structures.

Due to complexity of heterogeneity of subsurface hydraulic properties, acquisition
of in-situ measurements for characterization of geostatistical structures needs to be
comprehensive. However, exploratory drilling is expensive and hard to maintain con-
sistency of in-situ properties with current measurement techniques. Hence, hetero-
geneity and lack of data have lead to uncertainty in representation of subsurface geo-
logical properties. The uncertainty in the spatial distribution of subsurface hydraulic
properties can lead to unreliable predictions of flow displacement behavior of subsur-
face systems. Identification of appropriate probabilistic models and estimation of pa-
rameters for the models with limited data are thus essential for applications of ma-

thematical modeling to subsurface problems.

1.1.2 Inverse Problems in Subsurface Modeling

While the mathematical model is a powerful tool to assess subsurface dynamics, its
performance highly depends on the accuracy of representation of hydraulic properties.
Inverse methods are used to estimate uncertain properties from relevant observations.
An inverse method can be characterized by [9]: (1) parameterization of uncertain
properties; (2) the forward equation used to relate parameters and measurements; (3)
the performance criterion used to evaluate parameters; (4) and solution methods used
to find parameters estimates. This work focuses on parameterization and estimation of

uncertain parameters.
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One approach for describing spatial heterogeneity is to identify a distinct property
value in every cell of the numerical grid used to solve the forward model equations.
The resulting vector of uncertain model parameters is high dimensional, leading to a
difficult and ill-posed inverse problem. An ill-posed problem is one where either a
solution does not exist, the solution is not unique, and/or the solution does not depend
continuously on the data [10]. For subsurface problems, large parameter vectors and
limited data typically combine to give non-unique solutions since many different pa-
rameter combinations give comparable fits to available observations. One approach to
resolve this issue is to parameterize high dimensional unknown parameters, that is,
describe spatial variability of parameters in a more concise way than the numerical
grid cell-based option described above. A cell-based description of spatial variability
doesn’t take advantage of knowledge about subsurface geological features, such as
large-scale faults, finer-scale bedding planes, fractures, and channelized structures.
There is much redundancy in the cell-based description since properties tend to be
highly correlated across cells so. Parameterization aims at reducing the redundancy in
description of spatial variability before solving inverse problems.

A geostatistical description, in which hydraulic properties are treated as random
fields [11], often represents geological features better than a cell-based description. If
a (co) is defined as a random function in space ® for a hydraulic property (or a func-
tion of a hydraulic property) &, then under some regularity conditions, & can be de-

composed as an expansion [9]
o(0)=¥"a (1.1)

where W is a matrix with linearly independent basis functions 1//,.(0)), i=1,...,N,,in
each column, and a is a random vector containing coefficients for each basis func-
tion. N_ is often small compared to the number of cells in the numerical grid. The
inverse problem can then be posed as estimation of the elements of a rather than the

unknown function a(m).
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Different types of basis functions can be chosen based on characteristics of ran-
dom fields and geological features that need to be characterized. If we choose basis
functions as step functions with 1’s in some regions and 0’s in other places in the do-
main of interest, then equation (1.1) is reduced to a regionalized representation [12,
13] of the random field with each region having uniform hydraulic properties in some
average sense. Another classical approach is using a truncated Karhunen-Lo¢ve de-
composition [14, 15] of the random field. In this case, l[/i((n) are eigenfunctions of
the covariance of a((o), and a is a vector of uncorrelated random variables. When
there is significant spatial structure, the leading eigenfunctions carry most of the im-
portant information and thus truncation can be used to discard less important coeffi-
cients and reduce the number of unknowns. A relatively recent alternative is devel-
oped by Jafarpour and McLaughlin [16] in which the random field is treated as an im-
age and decomposed into pre-specified orthogonal basis functions having regular spa-
tial structure. Most of the information in the image is concentrated in a few low-
frequency components and thus the high-frequency ones can be discarded. This me-
thod has proven to be effective for channelized geological structures [16-20] and will
be discussed more in the following chapters.

The task of parameter estimation is then to find coefficients a in equation (1.1)
such that predictions from forward modeling fits measurements best. The criterion to
measure this agreement can be set up under the Bayesian framework. Based on the
Bayesian interpretation of parameter uncertainty and Gaussian statistical assumptions,
the maximum a posterior estimate of a (mode of the a posteriori probability density)

can be found by minimizing the following deterministic objective function [9, 18, 21]

J(a) = [z - g(‘I’Ta):lT o |:z— g(‘I‘Ta)]

(1.2)
+[a—a0:|T o [a—ao]

where Z is a measurement vector, gis a vector function that maps a(o)) to the mea-
surement, and a_ is the prior coefficient vector. C and C, are weighting matrices

that compromise the solution between the best-fit estimate and the prior information.
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This approach is equivalent to a regularized weighted nonlinear least-squares estima-
tion procedure.

The maximum a posteriori optimization can be solved using gradient-based search
algorithms such as steepest descent, conjugate gradient, Gauss-Newton, Newton, and
quasi-Newton methods. A brief review and comparison of these methods applied to
estimation of uncertain parameters in oil recovery can be found in [22]. All of these
methods require gradients of a specific objective function as in equation (1.2) with
respect to uncertain parameters. The adjoint method [23-26] is an efficient approach
to calculate the gradients for high-dimensional nonlinear forward models, which has
been successfully applied in meteorology and oil reservoir engineering. Non-gradient
search methods such as simulated annealing and genetic algorithms [27] have also
been implemented to solve the optimization problem. Typically, computational cost of
these methods increases exponentially with the number of uncertain parameters.

Due to nonlinearity and complexity of subsurface systems, the maximum a post-
eriori optimization problem is often ill-posed and can yield multiple solutions that
match the data even after parameterization. Stochastic inversion methods include un-
certainty assessment and quantification as part of parameter estimation to characterize
heterogeneous hydraulic properties. These provide a useful alternative to maximum a
posteriori inverse methods that rely exclusively on deterministic optimization. Recur-
sive Monte Carlo versions of the stochastic inversion approach update individual rep-
licates of hydraulic properties drawn at random from a prior distribution with newly
acquired measurements. This updating process generates replicates from the a post-
eriori distribution of properties conditioned on the new measurements [28-33]. The
ensemble Kalman filter (EnKF) is a classic example that has been successfully ap-
plied to large-scale complex systems in many geoscience fields.

Both the maximum a posteriori and recursive Monte Carlo inversion methods
summarized above are computationally expensive due to the fact that many forward
simulations required. A detailed three-dimensional subsurface model can be very

complex, as it may contain tens of thousands of grid cells with multiple unknowns
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(e.g., head/pressure, velocity and concentration/saturation) in each cell. For realistic
applications even a single forward simulation can take hours to days to run. During
the maximum a posteriori optimization search hundreds of forward simulations will
be needed, and recursive Monte Carlo methods such as the EnKF typically require
hundreds of replicates to properly represent the complex spatial variability of hydrau-
lic properties. Hence, it is then very useful to reduce the computational burden to en-

able practical applications of parameter estimation and uncertainty quantification.

1.1.3 Implications of Uncertainty for Subsurface Flow Control

This thesis considers the control of complex subsurface systems characterized by sig-
nificant geological uncertainty. A typical subsurface flow control problem is plume
management, which refers to indirect control of subsurface pollutants through direct
control of the movement of the water phase [34]. Well systems used for control of wa-
ter movement manipulate the subsurface hydraulic gradient through injection or
pumping of water and treat the pumped contaminants ex situ (after removal from the
subsurface). The ex situ pump and treat approach is presently the most common me-
thod of subsurface pollution control. One of the reasons is that hydrogeologists have a
firmer understanding of the mechanics of well hydraulics than they do of in-situ aqui-
fer restoration strategies. The cost of pump and treat remediation includes installation
of well systems and ex situ treatment operation and maintenance costs. These costs
could be substantial in practice, and thus an efficient plume management approach
needs to simultaneously minimize the pumping and treatment costs as well as the ha-
zardous effects of pollution. In a complex site, there are a large number of factors that
will affect the efficiency of the management system, such as the number and locations
of the injection and pumping wells, the heterogeneous distribution of contaminants,
the heterogeneous distribution of hydraulic properties, and the ex situ treatment op-
tion selected [35]. This is why an optimal solution is hard to identify without a rigor-
ous optimization scheme. Such a scheme must rely on numerical simulation of sub-

surface flow and contaminant transport to forecast the spatial distribution of contami-
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nants at different time instances. However, the uncertainty in hydraulic properties will
affect these forecasts, making them uncertain as well. The optimization scheme can
then produce unreliable pump and treat solutions, which turn out to be inefficient
and/or ineffective in practice. To improve performance it is crucial to develop a
scheme that incorporates parameter identification, which will reduce uncertainty se-
quentially, as well as robust optimization, which will produce reliable solutions under
a range of different geological conditions.

Another subsurface flow control problem that has received increasing attention in
recent years is reservoir management for better oil recovery. During the development
phase of an oil field, it is critical to determine recovery design factors, such as the po-
sitions of wells and well injection and pumping schedules, to improve the recovery
factor, namely the fraction of the total amount of oil in place that is recovered. To im-
prove recovery over the production life of the reservoir, reservoir simulation is tradi-
tionally utilized during the development phase as well as operation phase. One of the
major challenges of model-based reservoir management is the presence of very large
uncertainties in the geological structures and hydraulic properties that influence the
subsurface flow. Seismic information, which is a major source during the develop-
ment phase on subsurface structures, is generally too coarse to guide numerical simu-
lations for enhanced recovery [36].

Recent technological advancements in reservoir management, namely the use of
smart wells, have made significant impact on the improvement of oil recovery [37].
Extraction of subsurface resources (e.g., oil and gas) can be controlled using smart
wells on-line by manipulating flow rates and pressure, and at the same time real-time
data, such as pressure and flow rates in the wells, can be provided for on-line moni-
toring. The flexibility provided by the smart well approach makes it possible to apply
a closed-loop reservoir management framework that can optimize well settings and
improve reservoir characterization in real time, incorporatihg new measurements as
they become available [36, 38-40]. As depicted in Figure 1-1, closed-loop reservoir

management is typically performed in two linked steps: 1) a parameter identification
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and updating step, and 2) an optimization step. In this approach sensor measurements
and predictions from numerical models can be used together to determine the best
management strategy for a given reservoir. In particular, model parameters and con-
trol strategies can be continually adjusted to give better predictions of future system

response and to improve economic performance over the long term.
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Figure 1-1: Schematic illustration of the closed-loop reservoir management [41].

1.1.4 Necessity for Robust Reduced-Order Modeling

As mentioned above, numerical simulation is an indispensable tool for subsur-
face flow control. It can be used to guide contaminant remediation and oil re-
covery and to assess senmsitivity to uncertain parameters and quantify risk.
However, the complexity of subsurface numerical modeling makes it difficult
to use traditional optimization and uncertainty analysis methods, frustrating the
real world application of advanced control and decision-making technologies.
For example, a typical number of state variables in an oil reservoir model is in
the order of 10* to 10°, with similar numbers for the model parameters [42].
Numerical simulation of a few decades of oil production typically involves

hours to tens of hours computing time. Maximum a posteriori optimization and
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Monte Carlo methods for estimating model parameters both require hundreds of
forward simulations for a complex reservoir. Determining the number and posi-
tion of wells, or the optimal water injection and oil production flow rates over
the life of the reservoir requires hundreds or even thousands of additional for-
ward simulations. Thus, the curse of dimensionality of subsurface systems be-
comes a primary factor that needs to be addressed in order to optimize control
strategies efficiently in the presence of uncertainty.

Reduced-order modeling is the transformation of high-dimensional numeri-
cal models into more concise low-dimensional representations. While the re-
duced-order model is a simplified and efficient representation of the dynamics
of large-scale systems, it should still preserve critical aspects of the original
model, such as the model's overall input-output behavior. Applying reduced-
order models to large systems of equations that result from spatial and temporal
discretization of mathematical descriptions of dynamics has proven to be a via-
ble way to cope with the computational challenge posed by applications of pa-
rameter estimation and real-time control optimization methods.

Many model order reduction techniques has been proposed for linear time-
dependent systems, such as proper orthogonal decomposition (POD) [43], ba-
lanced truncation [44], and various related hybrids [45]. All of these approaches
are projection methods, which project the high-dimensional state space of orig-
inal models into a low-dimensional space, using basis functions such as those
described in (1.1). By applying these methods, significant computational reduc-
tion can be expected for linear large-scale systems. However, there are several
vital limitations that need to be resolved before applying model reduction tech-
niques to subsurface flow problems. First, the governing equations of subsur-
face flow systems are usually nonlinear, which leads to time-variant system ma-
trices in the discretized equations. These matrices need to be updated over time,
making it difficult to apply model reduction techniques. Second, in the closed-

loop control framework the uncertain model parameters must be updated when-
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ever new measurements become available. However, the traditional reduced-
order model cannot incorporate parameter variations, and thus the reduced-
order model must be updated whenever parameters are modified. This will de-
cease the efficiency of the reduced-order model dramatically. Third, in the
closed-loop control framework the numerical model must be evaluated for dif-
ferent combinations of control strategies. The traditional POD reduced-order
model cannot preserve the input-output behavior whenever the external forcing
changes. Thus, usually intensive training or updating of the reduced-order
model is needed during on-line simulations. To overcome these drawbacks and
improve the efficiency of on-line simulations, a robust reduced-order model
that can incorporate parameter variations and control changes will be attractive
in the applications of reduced-order modeling to the closed-loop control of non-

linear subsurface systems.

1.2 Thesis Scope

The objective of this thesis is to derive a general framework for efficient real-time
control of subsurface flow based on robust reduced-order models that avoid some of
the computational and accuracy limitations encountered in traditional model order re-
duction methods. In particular, this thesis will:

(D Set up a general ensemble real-time control framework for subsurface flow
control, with specific focus on identification of uncertain geological structures and
derivation of a robust nonlinear control strategy that explicitly accounts for uncertain-
ty.

@ Develop a systematic, automatic strategy to construct a robust reduced-order
model that is valid over a range of parameter variations and input forcing.

® Embed the reduced-order model into the ensemble real-time control frame-

work.

27



@ Demonstrate the use of the reduced-order model for ensemble real-time control
with an appropriate single-phase flow transport problem that relies on noisy mea-
surements.

® Compare the efficiency and performance of a real-time control approach based

on a reduced-order model with one based on the corresponding full order model.

1.3 Thesis Outline

This thesis proceeds as follows. In Chapter 2, a robust reduced-order model is con-
structed for subsurface contaminant transport problems. A second order expansion is
applied to the governing equations to incorporate variations of model parameters ex-
plicitly. A robust POD basis is constructed from snapshots of states as well as deriva-
tives of the states with respect to parameters at different times and for different para-
meter realizations in a specified training set. The reduced-order model is then applied
to selected realizations of uncertain parameters to test its performance under parame-
ter variations.

In Chapter 3, the robust reduced-order model is incorporated into the EnKF that
generates a posteriori (conditional) replicates of uncertain parameters and states (con-
ditioned on well measurements). The reduced-order model is constructed off-line
from a prior (unconditional) ensemble. The ensemble forecast step of the EnKF relies
on the reduced-order model instead of the full order model to reduce computational
time. The performance of the reduced-order model is tested by comparing the updated
replicates to those obtained from the EnKF based on the original full-order model.

In Chapter 4, the reduced-order model is extended to not only incorporate parame-
ter variations, but also control changes, such that the reduced-order model can be ap-
plied in a closed-loop control framework. The closed-loop control involves ensemble
updating of replicates with the EnKF and robust optimization of control strategies us-
ing conditional replicates. Each of these operations requires a significant number of

forward simulations. The reduced-order model is used for these forward simulations
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and the results are compared with those of the full order model to assess the perfor-
mance and robustness of the reduced-order model.
Finally, Chapter 5 summarizes all the work, identifies original contributions, and

concludes with some suggestions for future work.
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Chapter 2

Generation of a Robust Reduced-
Order Model for Ensemble Uncer-
tainty Propagation

2.1 Introduction

Subsurface flow modeling is an indispensible tool for the management of subsurface
resources including water, oil, and gas. It can be used for understanding flow and
transport processes, for sensitivity and uncertainty analysis, and for assessment of
performance under specific operating conditions. However, subsurface flow modeling
today has been increasingly challenged by the ever-increasing size and complexity of
subsurface geological systems. Moreover, optimization and uncertainty assessments
of heterogeneous subsurface systems require a significant number of forward simula-
tions. For example, the closed-loop control strategy described in [1] includes online
model updating and optimization of operating control strategies, each requiring re-
quire hundreds of forward model simulations. Practical applications of subsurface
modeling to optimization and uncertainty assessment are possible only if computa-
tional demands are reduced.

Reduced-order modeling aims at generation of an efficient representation of large-
scale complex systems while preserving, as much as possible, input-output properties

of these systems. It has been applied in diverse areas for simulation, classification,

35



visualization and compression of high-dimensional data. Many of reduced-order mod-
eling algorithms were developed for linear dynamic systems or parameterized linear
steady state problems [2, 3]. In the numerical examples of previous works the simula-
tion models typically only consider responses to a limited number of parameters. In
subsurface modeling, the number of uncertain parameters to be considered could be
vast when a grid cell-based description of spatial variability is adopted [4]. A robust
and efficient reduced-order model that can incorporate parameter uncertainty is then
crucial. When such a reduced-order model is available, the high-dimensional model
could be replaced with the reduced-order model during optimization and uncertainty
assessment, and computational effort can be reduced substantially.

A general representation of the uncertainty in subsurface systems is provided by
the probability distribution of hydraulic properties. An ensemble of realizations is
usually used to represent the probability distribution when the explicit mathematic
form is too complicated or hard to obtain. For complex systems, the ensemble size
needs to be sufficiently large to represent the uncertainty. Forward modeling then
propagates uncertainty in physical properties forward in time and results in uncertain-
ty in model forecasts. For a recursive estimator, such as the ensemble Kalman filter
[5], which is used for uncertainty characterization or reduction, the propagation in un-
certainty is an essential part of the forecast step. For large-scale subsurface problems,
assessments of uncertainty propagation can be computationally intractable for online
simulations need to be performed for each replicate in the ensemble to assess the
probability distribution of forecasts. Hence, an efficient approach to propagate uncer-
tainty in the ensemble would be attractive for large-scale applications.

It is also common to use a concise representation of the spatial variability of the
parameter uncertainty instead of a higher-dimensional grid-cell based description.
This helps to insure that the parameter estimation problem is well-posed and compu-
tationally efficient. The simplest parameterization method is zonation of the reservoir
into some homogeneous zones [6, 7]. A more effective procedure is to take advantage

of the strong spatial correlation of geological properties such as permeability or po-
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rosity. When properties are spatially correlated they may be projected to a subspace
formed from a relatively small number of covariance matrix eigenvectors. The result-
ing method is called Karhunen-Loéve (K-L) expansion or linear principle component
analysis (PCA). Jafarpour and McLaughlin [8] introduced the discrete cosine trans-
form (DCT) to parameterize the reservoir fields. Compared to the K-L expansion, the
DCT provides a robust parameterization alternative that doesn’t require specific de-
scription of a priori covariance or other statistics. Since the DCT matrix is constant,
there is no extra computational burden to determine the transform matrix. It has been
shown that the DCT is a flexible and effective method for describing structural geo-
logical fields [8, 9].

To apply reduced-order modeling to online assessments of uncertainty propagation
it is then crucial to make sure that: (1) the reduced-order model is robust such that the
prediction of the reduced-order model is reasonably accurate for the uncertainty prop-
agation process over the replicates in the ensemble; and (2) the reduced-order model
can take advantage of the concise representation of uncertain parameters such that the
uncertainty in the vast number of input parameters can be represented by a limited
number of reduced coefficients. In a word, we seek for a reduced-order model for
subsurface modeling that uses an efficient description of uncertain parameters and va-
lid for a range of different parameter values encountered during uncertainty propaga-
tion (i.e. the reduced-order model is robust). We try to generate the reduced-order
model off-line to avoid updating model structure (i.e. basis functions) during the real-

time control process. This minimizes the computational burden of online simulations.

2.2 Literature Review on Reduced-Order Modeling

Most of the existing reduced-order modeling (ROM) algorithms for linear time-
invariant systems are projection-based techniques. The key ingredient of these me-
thods is to approximate the high-dimensional state space of the original system with a

lower-dimensional state space. The projection can be achieved in many ways. Krylov
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subspace methods are among the most popular methods to construct the projection
bases. This group of methods aims at approximating the transfer function of the origi-
nal system around a specified frequency, or a set of frequency points [10-12]. Most of
the Krylov subspace methods are based on Lanczos method [11, 13, 14] or Arnodi al-
gorithm [15-17]. This group of algorithms has proved to be efficient and thus is suita-
ble for model reduction of large-scale linear models. The major drawbacks of these
methods, in addition to their dependence on linear assumptions, include that there are
no specific error bounds for model reduction, and no guarantees of preserving the sta-
bility and passivity of the original system.

The projection bases can also be derived from the Hankel norm approximants or
balanced truncation method. The Hankel norm approximants try to approximate the
linear system optimally by a lower-complexity system in the Hankel norm [18]. Ba-
lanced truncation methods are based on finding an appropriate coordinate system for
the state-space in which the chosen Gramian matrices of the system are diagonal and
equal [19-21]. Both Hankel norm approximants and balanced truncation methods be-
long to the family of absolute error methods, which try to minimize the error between
the transfer function and the approximant in some system norm [22]. Hence, com-
pared to Krylov subspace methods, these methods can provide provable error bounds,
and the stability and passivity of the reduced-order models can be guaranteed. How-
ever, efficiency remains the bottleneck for this family of methods. For example, the
solution of the Lyapunov equations in the balanced truncation methods is so expen-
sive (O(N 37)) that it is inapplicable for large-scale problems under current computa-
tional conditions [23].

Another group of ROM methods belongs to the proper orthogonal decomposition
(POD) family, which can be viewed as a data compression method to remove the re-
dundant information in the state space [24-26]. Typically, snapshots of the solution of
the system at different time instances are collected and compressed by the singular
value decomposition (SVD) to generate projection bases. The Galerkin projection [27,

28], then, can be used to project the system equations onto a lower-dimensional space.
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A more recent approach is to solve a minimization problem to derive the reduced-
order model [28]. The POD method is efficient, easy to implement, and capable of
capture complex system dynamics, which makes it popular for model order reduction
of large-scale problems. However, the POD basis cannot contain more information
than contained in the snapshots, and thus the ability of the POD method to approx-
imate the original system totally depends on the collected snapshots. The connections
between balanced truncation and the POD method have been illuminated in, for ex-
ample, [29], [30], and [31].

Most of the aforementioned linear model order reduction techniques can be ex-
tended to the nonlinear case. A straightforward method is based on linearization, or
polynomial expansion of the system nonlinearity [32, 33]. The linear projection-based
methods can then be applied to the resulting systems. The nonlinear system can also
be represented or accurately approximated by a Volterra series [34], and then a proper
projection method follows. Empirical methods, which are based on experimental or
simulation data for identifying the input-output behavior of nonlinear systems, have
great popularity due to their capability of reducing complex nonlinear systems with a
small number of inputs and outputs significantly [29, 35]. Most of these methods,
however, are limited to weakly nonlinear cases and are not appropriate for real-time
control applications.

For more general nonlinear systems, the trajectory piecewise linearization
(TPWL) method [23] has gained greater popularity recently due to its effectiveness
and robustness for model order reduction. The TPWL method provides a cost-efficient
representation of system’s nonlinearity, using state space projection methods based on
the aforementioned linear model reduction methods [36, 37]. The TPWL method di-
vides the state space of the nonlinear system into piecewise linear regions and then
reduces the order of each region. Compared to the linearization or polynomial expan-
sion methods, the TPWL method can capture the nonlinearity of the system in wider
ranges, but might be unable to represent high order nonlinearity. Dong and Roy-

chowdhury [38] extended this method and approximated each region with higher or-
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der polynomials, aiming at capturing strong and weak nonlinearities simultaneously.
This will likely sacrifice the computational efficiency carried by the TPWL method.

The POD method has been widely used for model order reduction of nonlinear
systems [27, 39-41]. Also, the POD reduced models has been utilized to improve the
efficiency for optimal control problems [26, 42-44]. A lot of computational effort is
indeed saved if the optimization process is only based on low-order models. The gen-
eration of a good snapshot set is crucial for successful applications of the POD re-
duced models in an optimization setting, for the physics changes with the control va-
riables. A simple approach is to sample the control variable space uniformly and use
the sample points to generate the snapshots. This will, however, require a lot of evalu-
ations of the full order model. Centroidal Voronoi Tessellations [45] could be an intel-
ligent alternative to sample the control variable space. Another approach for effective
optimal control based on reduced models uses an adaptive procedure that improves
the reduced-order model by successively updating the snapshots when the existing
POD reduced model is considered to be insufficient [46]. Bergmann et al. [47] pro-
posed a trust-region proper orthogonal decomposition (TRPOD) approach to update
the reduced-order model successively. This approach will guarantee the convergence
of the optimization based on the reduced-order model to the solution of the original
optimization problem defined by the full order model. The main drawback of these
adaptive approaches is that the full order model needs to be run in real time, which
defeats much of the point of using a reduced-order model.

The ROM can also be applied to efficient real-time estimation of ensembles that
are conditioned on measurements. Similar to the optimal control problems, the quality
of the POD reduced-order model used for conditioning is very dependent on the
choice of parameters over which the snapshots are generated. The aforementioned
techniques for optimal control based on reduced-order models are also applicable for
ensemble conditioning. Many authors are still contributing to parameterized model
order reduction. Bui-Thanh et al. [48] proposed a model-constrained adaptive sam-

pling method to sample the high-dimensional parameter space based on minimization
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of output errors between the full order model and reduced-order model, aiming at cap-
turing variations over the parameter space. Bond and Daniel [49] combined paramete-
rized reduction of linear systems with the TPWL method to approximate large nonli-
near systems over a practical range of geometric parameter variations. Amsallem and
Farhat [50] used an interpolation method based on the Grassmann manifold and its
tangent space to construct a new reduced basis associated with new sets of parame-
ters. Currently, this method is only suitable for problems with a limited number of pa-
rameters. Moreover, the robustness of this method is closely related to the dependency
of the system on the parameters.

In the field of subsurface modeling, an early attempt at applying ROM to real-time
control of water flooding was contributed by Markovinovic et al. [51]. They em-
ployed a black-box method, identifying low-order models of heterogeneous reservoirs
based on flowrate-pressure input-output behavior. The method was tested on a single-
phase flow in a 2D reservoir, and proved to be successful for identifying low-order
models for the synthetic reservoir.

Heijn et al. [52] presented five methods (i.e. modal decomposition, balanced reali-
zation, a combination of modal decomposition and balanced realization, subspace
identification, and POD) to derive low-order models of two-phase (oil-water) reser-
voir flow which were applied to synthetic examples. Based on the linearized reservoir
model, the first three methods resulted in low-order linear models, which were only
valid for a short timespan. The identification and POD methods, which remained valid
for longer periods, were more promising than the first three methods. However, in
their applications, the resulting nonlinear POD reduced-order model required compu-
tation with the full order state vector. This adversely affected the efficiency of the re-
duced model.

Van Doren et al. [53] developed a nested approach in which the POD method was
used to reduce the state space dimensions of both the reservoir model and the adjoint
model. This approach was applied to a synthetic 2D reservoir to optimize the water

flooding strategies. The optimization was first based on the POD reduced model to
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obtain the optimal strategies, and then a verification procedure based on the full order
model was carried out to ensure that the reduced-order model generated valid optimal
control strategies. If this was not the case, a new POD reduced model was generated
based on new sets of snapshots and an optimization procedure followed until conver-
gence criteria satisfied. In their approach, however, computation with the full order
state vector was still unavoidable.

To avoid evaluations of nonlinear terms with full order state vectors, Cardoso and
Durlofsky [54] used the TPWL method to approximate the nonlinear two-phase reser-
voir model and utilized the POD method to construct the reduced-order model for
production optimization. The snapshots used to generate the POD basis were chosen
under selected control settings. The resulting reduced-order model was applied to a
heterogeneous 3D reservoir with six wells over six control steps. The results obtained
from the reduced-order model showed consistent agreement with the results obtained
from the full order model. As pointed out in their later paper [55], it was necessary to
evaluate the mass balance errors during the simulation of the reduced-order model. If
the balance was violated, the full order model was then used to perform the simula-
tion for the current time step. This can significantly reduce the efficiency of the re-

duced-order model.

2.3 Methodology

Here we investigate 2D solute transport in a thin layer of isotropic saturated aquifer.

We assume a constant layer height. Pressure head and solute concentration are ap-

proximately vertically constant. Then the vertical flux and gravity can be neglected.
Based on the conservation of mass and momentum, the forward model for 2D non-

gravitational solute transport in porous media can be written as:
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s—§=—V-q+u

q=—k-Vh @.1)
Qﬁz—v-(qc)+0D-V2c+u-c

ot s

Here h is the piezometric head, q is the Darcy velocity vector, s is the specific sto-
rage, and u is the volumetric flux per unit volume from the aquifer through the wells.
Due to the isotropic property, the hydraulic conductivity k is a scalar. @ is the porosi-
ty, c¢ is the solute concentration, and ¢, is the concentration associated with the
source/sink. To simplify the transport equation we assume the dispersion coefficient

D is constant and isotropic in all directions.

2.3.1 Numerical Discretization and Second Order Expansion

Spatial discretization of the governing equations using traditional numerical schemes
will result in nonlinear equations. For example, discretized flow equations in (2.1)
with a traditional finite difference technique will include the harmonic mean of the
hydraulic conductivity of adjacent grid cells. The resulting equations are nonlinear in
both states and parameters. It is then difficult to apply linear model reduction tech-
niques to flow equations. Here we seek a numerical scheme that can easily incorpo-
rate reduced representations of both states and parameters.

Possible numerical options include the mixed finite element approximation [56,
57] of two flow equations as well as the upwind finite different approximation [58] of
the solute transport equation. With a uniform finite element partition of the computa-
tional domain and lowest-order Raviart-Thomas subspaces on rectangles [59], the

flow equations in (2.1) can be discretized into the following form

oJh
s——B-q=R
ot =%

B -h+A(n)-q=R,

2.2)
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where h is the vector containing the pressure head at each grid cell, q is the vector
containing the x and y components of the Darcy velocity at each cell, with all x
components numbered first. The components of the matrix B are constant, while the
components of matrix A depend linearly on the hydraulic resistivity M, which is de-
fined as n =1 / ki for j-th cell. The right-hand-side vectors R, and R, are dependent
on the boundary conditions including the flow conditions at the source/sink.

The resulting equations in (2.2) are bilinear in q and M. This feature makes it
easy to substitute full order states with reduced representations. To see this, we first
need to do a second order expansion of the discretized equations. Assume sh=h-h,
dq=q-q,, and M=n-n,. h and q, are solutions from the system equations for
the nominal resistivity configuration 1),, while h and q are solutions for the new
configuration M. The discretized equations can be expanded around the nominal

states as follows:

———~_-B-6q=0
o 1 2.3)

B"-5h+A(n,)-8q+M(q,) on+T(n®35q)=0

where M(qo) is the gradient matrix of the term A(’q)-q with respect to M evaluated
at q,. Since A(’q)-q is bilinear in q and M, the Hessian matrix T is constant and
sparse.

For an m by 7 matrix I', and a p by ¢ matrix II, the Kronecker product I' ® IT

is defined as

run rlnr‘[
I'®Il= : : 2.4)
rim .. r.iIl

ml mn

The resulting matrix is 7P by nq. If the number of cells is N after the domain is

discretized, then the dimension of the vector M ®4Hq is about 2N2,
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With the same grid used in the mixed finite element spatial discretization of the
flow equations, the transport equation can be discretized using the upwind finite dif-

ference method, and the resulting equation can be written as:

oc
6—+E(q)-¢c+G-¢c=R 2.5
~ +E(a)-c+Gc=R, 2.5)

where ¢ is the vector containing the solute concentration at each grid cell. E(q) ¢ is
the advection term and the matrix E nonlinearly depends on the Darcy velocity vec-
tor q. In the dispersion term G-¢, G is constant if dispersion coefficients are con-
stant. If the solute can only exit through the wells and the flow rates at the wells are
prescribed, then the source/sink term u-c_can be incorporated into the matrix K. In
this case, we have R, =0.

Note that if the specific storage s is very small then we can treat the flow equa-
tions as a steady state system when # doesn’t change. In subsurface flow control the
control variables at different wells are usually changed relatively infrequently so we
need only solve a steady state problem for h and q over each interval. Then qis con-
stant and the transport equation (2.5) is linear over each interval. We can then directly
apply linear order reduction techniques to evaluate the transport equation efficiently

at each control interval.

2.3.2 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) has been widely used in control and estima-
tion applications because of its ability to generate accurate reduced representations for
very complex systems with a small number of elements. Here we use the POD method
to develop reduced representations of the state vectors h, q, and ¢ in equations (2.3)
and (2.5).

POD [60] adopts the approximations:

h=®h
q~gq, (2.6)
c=Pc,

45



Here, @, <I>q, and @, are the matrices containing the POD basis for the head h,
Darcy velocity q, and solute concentration ¢. The reduced variables h,q, and c,
have the dimensions N,, N,, and N, respectively, which are determined by the ener-
gy threshold and much smaller than the original dimensions.

The basis vectors are the leading singular vectors of matrices constructed from
"snapshots" of the full-order model. Each column of a snapshot matrix consists of all
states of the full-order model at a given time and for a given replicate of the uncertain
resistivity or of derivatives of the states with respect to resistivity. The full-order
model simulations used to obtain snapshots are commonly called "training runs". The
leading singular vectors define the directions in the full-order state space that are
most closely aligned with the snapshot vectors, as indicated by the magnitude of the
corresponding singular values. These state-space directions are captured in the re-
duced-order model (i.e. the full-order model states are projected on the leading singu-
lar vectors). Careful adjustment is needed to select a representative but concise set of
snapshots for the basis vector derivation.

A POD basis derived from a small number of snapshots normally works only well
for the parameters lying near the parameters (e.g. resistivities) used in the correspond-
ing training runs. In ensemble-based real-time control, a significant number of repli-
cates corresponding to different parameter spatial distributions must be included in
the ensemble to ensure that the training runs cover the range of states and parameters
encountered during the estimation and control process. To insure this it is helpful to
include in the snapshots the sensitivities of the states with respect to the parameters
[61]. In principle, the sensitivities can improve the reduced-order model by approx-
imating the differences between the new states and the states used to generate the
POD basis. Numerical tests show that the POD basis of the states in the flow equa-
tions is more sensitive than the basis in the transport equation. Hence, only sensitivity
analysis for the flow equations is performed here.

To simplify the procedure, assume that the flow equations are steady, i.e. §=0.

Then after some derivation, we can obtain the equations of the form
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oh oq '
BTa_1L+A(n)a_1L =-m,

Here, m, is i-th column of the derivation matrix M(q) as in equation (2.3), and n, is
the hydraulic resistivity for i-th cell. Equation (2.7) can be solved iteratively for the
sensitivities 0h/0n, and 0q/0n,, where i=1,...,N. Then these sensitivities oh /07,
and 0q/Om, can be incorporated into the snapshot matrices.

Assume X, X:, Xﬁ , and X _are the snapshot matrices for h, q*, ¢”, and ¢.
Here we reduce the X and ¥ components, q* and q”, of the velocity q separately.
The columns of X, are composed of solutions for h as well as the derivatives
oh/0n,. Similarly, X: and Xi are composed of solutions for q* and q” as well as
derivatives dq/0r, in the columns. X _only includes solutions for ¢. To obtain the

POD basis matrix ®,_, we obtain singular vectors by solving the following eigenvalue

problem
(X7X, )4 = pid) 28)

Here, plf is the j-th largest eigenvalue. 4)': is the corresponding eigenvector and is
the j-th column of the matrix @, . The dimension N, of the reduced-order model
head vector is determined by the energy threshold &,
Ny ;
2P
&, = N
Zj:]ph

(2.9)

We arrange the singular vectors in order of decreasing singular values and only keep
the number of vectors N, needed to insure that £ =95~99%. The dimension of the
head vector in the reduced-order model is N, .

By following the same procedure, we can obtain the matrices ®;, ®,, and @, .

Note that

47



1 P’ (2.10)

2.3.3 Discrete Cosine Transform

We can also derive a reduced representation for the parameter vector. The full order

parameter vector Ml can be represented by the DCT basis in the matrix form [62]

n=06n 2.11)

where @ is the constant DCT matrix, satisfying @' =@ and and M is the DCT
coefficient vector. Normally, there are only a few large coefficients and thus it’s poss-

ible to use a truncated representation of the form

n=aomn, (2.12)

Here, <I>Tl only contains columns of @ that correspond to those largest DCT coeffi-
cients. The dimension of 1 , N, is usually significantly smaller than the original
dimension.

Note that we cannot predetermine which are the significant columns for the true
parameter configuration. One way to keep as few columns as possible and still obtain
a good representation of the parameter configurations drawn from the same probabili-
ty distribution is to apply the DCT to a representative ensemble. All the columns cor-
responding to the significant coefficients of each replicate are kept, and thus this re-

presentation will also be sufficient for the whole ensemble [8].

2.3.4 The Reduced-Order Model

Now that we have concise representations for both parameters and state variables we
can substitute (2.6) and (2.12) into (2.3) and (2.5), and perform the Galerkin projec-
tion with @, , <I>q, and @ _. This gives the following set of second order reduced-order

model equations:
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ot
B! -6h, + A, -5q, +M, -6n, + T, (o, ®5q,) =0 (2.13)
498;’ +E,(q)-¢, +G, ¢, =0

— T &7 T —_ T
Here, B, =®/B®, , A =®/A(n)®, , M, =®M(q,)®, ., G, =®/G®, , and
T =¢:-T-(d>n®<l>q), which can all be pre-computed. E,(q)=®/E(q)®. , which
must be recomputed each time the controls change. Note that the dimension of the
Kronecker product <I>“®<I>q is about 2N2X N an. The computation then requires a

significant amount of memory.
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DCT Basis

- B Full Order Model |[Snapshots of States | Determlnll.lg

Sclected Replicates Simulation and Derivatives POD Basis

Sclected Nominal Replicate POD Basis
A 4
Second-Order Sccond-Order Galerkin Projection ¢
Expansion Expanded Equations

Second-Order
Reduced-Order Model

3

Online Simulations

Figure 2-1: Flowchart showing ensemble-based generation of a reduced-order model.
Double lines indicate multiple operations on replicates in the ensemble.

2.3.5 Implementation Issues

Figure 2-1 illustrates the process of generating a robust reduced-order model for an

ensemble of uncertain parameter configurations. An ensemble is generated by using
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the Gaussian indicator simulator in SGeMS, where the necessary conditional cumula-
tive functions are inferred from the indicator kriging algorithm [63]. Two sets of pro-
jection basis vectors are needed to derive the reduced-order model. The first is the set
of POD basis vectors used to project the state vectors into reduced spaces. The second
is the set of DCT basis vectors used for parameterizing uncertain parameter fields. Al-
though the DCT basis vectors are constant, we need to determine which basis vectors
to retain. In both cases we need to make sure those basis vectors span the spaces of
the entire ensemble as sufficiently as possible. This can be done by comparing the re-
sults of reduced-model simulations with corresponding full-order model results, as
described in the next section.

A nominal parameter configuration as well as its corresponding full order solu-
tions is selected to perform the second-order expansion of the discretized governing
equations around the nominal parameters and solutions. The POD and DCT basis vec-
tors are then substituted into the second-order expanded equations and Galerkin pro-
jection is performed to reduce the number of equations. These operations are all per-
formed off-line. The resulting second order reduced-order model can then be applied
to online simulations of the entire ensemble. The robustness and accuracy of the re-

duced-order model can be validated by the following numerical examples.

2.4 Numerical Experiments

2.4.1 Experimental Setup

Here we consider a model of 2D non-gravitational solute transport in a porous me-
dium. In this synthetic example, a 640 mx640 mx1 m porous domain is discretized
into a 2D 64x64x1 uniform grid cell system. The size of each cell is 10 mx10 mx1 m.
The whole domain has the constant porosity of 0.2. Figure 2-2(a) shows the simula-
tion domain and the locations of 4 pumping wells. The length of the simulation hori-
zon is 800 days, and the pumping rates given by the control schedule for the 4 pump-

ing wells are illustrated in Figure 2-2(b). The simulation horizon is divided into 4
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constant intervals. Each of the intervals represents a control step. The solute is in-
jected into the domain at the mid-lower cells with a constant rate of 5 m’/day and
constant concentration of 50 mg/L for the first 400 days. Here specific storage s =0
is used to represent steady-state flow conditions, and the head is constant over each
control step. The flow equation has no water flux boundaries on the east and west
sides and constant head boundaries of 30 m and 0 m on the south and north sides. The
transport equation also has no solute flux boundaries on the east and west sides, but
has prescribed zero solute concentration boundaries condition on the south and north
sides. The dispersion coefficient is assumed to be constant over the whole domain in

all direction, and thus the transport equation is linear for each control step.

(a) Setup (b) Control Schedule
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Figure 2-2: Experimental setup. (a) Simulation domain with locations of four pump-
ing wells. (b) Pre-determined pumping rates for the four wells.

The unknown parameters are the hydraulic resistivity in each cell of the discre-
tized computational grid. We want to generate a reduced-order model that can incor-
porate the uncertainty in hydraulic resistivity and then test its robustness and effec-
tiveness for various realizations of hydraulic resistivity. To this end, an ensemble of

50 realizations of conductivity fields is generated using Gaussian indicator simulator
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in the Stanford SGeMS. The simulated ensemble is then parameterized by the DCT so
that each high-dimensional hydraulic conductivity replicate can be represented by a
corresponding set of truncated reduced-dimensional DCT coefficients. To obtain accu-
rate and effective representations of the conductivity fields, the DCT is performed for
all replicates in the original ensemble. The DCT basis vectors corresponding to the
first few largest DCT coefficients for each replicate are retained while the others are
discarded. The distinctive retained DCT vectors are combined to construct the DCT
projection matrix. For this ensemble, 110 out of 4096 DCT basis vectors are kept.
Five of reconstructed conductivity replicates obtained by multiplying the projection
matrix and the reduced-order DCT coefficients are shown in Figure 2-3. We can clear-
ly see that the conductivity fields have high permeable and low permeable zones,
which create pathways for solute transport. The resulting reconstructed ensemble is

used in the experiments instead of the original ensemble.

Sample Log Conductivity Fields in the Ensemble (m/day)

60 60

40 40

20 20
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Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5

Figure 2-3: Five replicates of hydraulic conductivity in the ensemble.

2.4.2 Generation of the Reduced-Order Model

As shown in Figure 2-1, two sets of basis vectors need to be constructed to generate
the reduced-order model. Construction of the first one includes the aforementioned
DCT parameterization. Each replicate of the ensemble can then be represented by re-
duced-order DCT coefficients, which are now used as inputs to the reduced-order

model instead of the original high-dimensional conductivity fields.
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Figure 2-4: POD spectra for head and concentration. Note that in the figure on the
right there are three different lines with each corresponding to various dispersion
coefficients.

To construct the projection matrices for the state vectors the full order model
needs to be run to collect snapshots of state vectors and derivatives of states with re-
spect to hydraulic resistivity. Note that only 10 of the replicates in the ensemble are
used to generate state vectors and 3 of the 10 replicates are used to calculate the ne-
cessary derivatives. To obtain a compact representation of the states, the POD expan-
sion is truncated at the number of basis function terms that account for 99%, 93%,
93%, and 99% of the energy in the head, x velocity, y velocity and concentration,
respectively. This gives reduced dimensions of 69, 113, 84, and 184, for these four
variables. The eigenvalues for corresponding eigenvectors are shown in Figure 2-4 for
head and concentration. For the head, we can see that the eigenvalues decrease rela-
tively fast and thus we need only keep a few of the total eigenvectors to achieve the
99% energy threshold. For concentration, however, how fast the eigenvalues decrease
depends on the dispersion coefficients. The blue, red, and magenta lines in the right
figure correspond to constant dispersion coefficients of 0.5, 1, and 4 m*/day, respec-
tively. Clearly, as dispersion increases, it becomes easier to perform order reduction
for concentration. For the following simulations, we use the dispersion coefficient of

1 m*/day.
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Figure 2-5 shows the projection basis vectors corresponding to the largest or most
important eigenvalues. We can identify interesting features of head and concentration
evolutions in the figure. The first plot in Figure 2-5(a) shows gradients of head in the
y direction. This corresponds to the head boundary conditions. The following plots
show drawdowns of the head at the well locations, indicating the effects of well
pumping on the head distributions. The first plot in Figure 2-5(b) shows an elongated
solute transport path in the y direction, corresponding to constant injection of the so-
lute and its propagation due to the head gradients in the y direction. The following
plots show effects of well pumping on the solute propagations. From the figure we
can see that the POD can identify the flow transport patterns and thus it is possible to
represent the original high-dimensional head and concentration fields with low-

dimensional subspaces spanned by those identified patterns.

2.4.3 Prediction Using the Reduced-Order Model

Here we use the reduced-order model to predict the evolutions of head and concentra-
tion for a specific conductivity field. The tested field is a replicate from the paramete-
rized ensemble but is not used for the generation of the reduced-order model. Note
that to generate the reduced-order model, first we need do a second-order expansion
of the governing equations around the nominal conductivity and corresponding states.
The nominal and tested conductivity fields are shown in Figure 2-6(a). Figure 2-6(b)
and (c) show predicted head and concentration fields from the full order model and
the reduced-order model. From the plots we can observe close agreement between si-
mulations of the full order and reduced-order models, although some slight mis-
matches can be observed, especially for the concentration fields. The propagation of
concentration fronts can be well captured by the reduced-order model. This can be
further illustrated in Figure 2-7, in which the predictions of head and concentration at
the well locations are shown. Although some disparities are present in the plots, the
breakthrough of the solute is well captured by the reduced-order model, which is im-

portant for subsurface solute management.
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(a) Eight Most Important Basis Functions for Head
60 60 60 60

40 i 40 40
20 20

20
20 40 60 20 40 60 20 40 60

40
20

20 40 60

- -

20 40 60 20 40 60 20 40 60

20 40 60

(b) Eight Most Important Basis Functions for Concentration
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Figure 2-5: Most important projection basis vectors for head and concentration. (a)
The first eight most important basis vectors for head. (b) The first eight most impor-
tant basis vectors for concentration.
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(a) Log Conductivity (m/day)
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Figure 2-6: Log conductivity fields and snapshots of head and concentration simu-
lated from the full order model and the reduced-order model for different time in-
stances. (a) Nominal conductivity used for second-order expansion of the governing
equations and the tested conductivity. (b) Snapshots of head fields simulated from the
full order model and the reduced-order model for day 200, 400, 600, and 800, respec-
tively. (c) Snapshots of concentration fields simulated from the full order model and
the reduced-order model for day 200, 400, 600, and 800, respectively.
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(a) Head Predictions (b) Concentration Predictions
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Figure 2-7: Predicted head and concentration at the four well locations for the tested
replicate from the full order model and the reduced-order model. (a) Head predictions.
(b) Concentration predictions.

The simulation for a single forward running of the full order model is about 19
seconds, while the simulation time using the reduced-order model is about 0.9
seconds. We can save about 95% of the time when using the reduced-order model,

which is very attractive for simulations of large-scale problems.

244 Uncertainty Propagation for the Ensemble

The section assesses uncertainty propagation for the ensemble with full order and re-
duced-order modeling. Figure 2-8 illustrates the head and concentration predictions at
the four well locations for the replicates in the ensemble. As shown in the figure, the
spreads in the predictions are significant, indicating significant uncertainty in model
parameters. Comparing the full order and reduced-order predictions, we can barely
find significant differences. This indicates the reduced-order can produce comparable
predictions for the ensemble.

To further illustrate the ability of the reduced-order model to assess uncertainty
propagation for the ensemble, we generate the histograms of the head and concentra-
tions predictions on day 600 at the four well locations for the ensemble as shown in
Figure 2-9. Clearly the probability distribution of the reduced-order forecasts matches
that of the full order forecasts quite well, indicating the effectiveness of the reduced-

order model to propagate the uncertainty in the ensemble.
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Figure 2-8: Predicted head and concentration at the four well locations for the en-
semble from the full order model and the reduced-order model. (a) Head predictions
for each replicate with blue lines indicating the mean over the ensemble. (b) Concen-
tration predictions for each replicate.
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(a) Head Histograms on Day 600 (b) Concentration Histograms on Day 600
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Figure 2-9: Histograms for head and concentration predictions on day 600 at the four
well locations by the full order model and the reduced-order model. (a) Head histo-
grams for the replicates in the ensemble with blue lines indicating the mean over the
ensemble. (b) Concentration histograms for the replicates in the ensemble.

2.4.5 Error Quantification for the Ensemble

Since the second order expansion of the full order model is exact, errors arise in the
reduced-order simulations for two main reasons: the reduction in the parameter space
and the reduction in the state space. Note that here we separate these two sources of
errors by using the reconstructed conductivity fields from DCT parameterization as
inputs to the full order model. Errors from reduction in the parameter space can then

be neglected. The accuracy of the reduced-order simulations depend merely on the
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ability of the POD basis vectors of the states to span the state spaces of interest, that
is the spaces corresponding to various parameter inputs.

Here we quantify the simulation errors by defining the following variables which
represent the average errors in head and concentration at well locations over the

whole simulation horizon [64]:
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(2.14)

where ¢, and ¢_represent errors in head and concentration, respectively. N, is the
number of wells, which is four in our case, and N r is the total number of simulation
steps. hi’;. and ci{j are predicted head and concentration from the full order model at
well i for time step j, while h; ; and ¢; , are predicted head and concentration from
the reduced-order order model at well i for time step j. Those two variables are good
indicators for the accuracy of the reduced-order model for two reasons. First, in the
application of ensemble updating of the uncertain parameters, the head and concentra-
tion data at the well locations are the primary sources of data for the conditioning
process. Second, in subsurface flow management, accurate predictions of solute or oil
breakthrough are essential for accurate evaluations of the operation performance.

To demonstrate the ability of the reduced-order model to predict head and concen-
tration evolutions on an ensemble base, we calculate the errors defined in (2.14) for
each replicate in the ensemble as shown in Figure 2-3(b). The resulting errors are
shown in the histograms of Figure 2-10(a). From the figure we can see that the major-
ity of the replicates have less than 10% errors in head. The concentration predictions

are less accurate than the head predictions. One reason is that we didn’t include deriv-
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atives of the concentration with respective to the conductivity in the snapshots ma-

trices.

(a) Error Histogram for the Ensemble——with Derivatives
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Figure 2-10: Error histograms for the ensemble. (a) Error histograms for the ensem-
ble with derivatives in the snapshots. (b) Error histograms for the ensemble without
derivatives in the snapshots.

To illustrate the importance of including the derivatives in the process of generat-
ing the reduced-order model, we construct a second reduced-order model in which the
POD basis vectors are calculated purely based on snapshots of state solutions. The
error histograms for this reduced-order model are shown in Figure 2-10(b). Clearly,
the predictions of head evolutions from the reduced-order model are much poorer than
those of the original one. For concentration predictions we don’t observe much im-
provement by including derivatives of the head and velocity with respect to the con-
ductivity. This indicates that errors in concentration predictions result mainly from the

incapability of the POD basis of the concentration to span the space of interest tho-
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roughly. It is evident the derivatives of the states with respect to parameters can im-
prove the accuracy of the reduced-order model in a way that the resulting POD basis
vectors can span more thoroughly the state spaces corresponding to various parameter

changes.

2.5 Conclusion

In this chapter we constructed a reduced-order model that has reduced representations
in both parameter and state spaces such that it can incorporate high-dimensional pa-
rameter changes as well as reduce the significant computational burden for large-scale
problems. Reduced-order models for large-scale problems have been intensively in-
vestigated in the literature. However, it is still difficult to incorporate high-
dimensional parameter changes into reduced-order models. Here, we addressed this
problem by expanding the governing equations of subsurface solute transport around
nominal parameters as well as nominal solutions. The resulting expanded equations
can then incorporate reduced representations of parameters and states explicitly. Un-
certain hydraulic conductivity is parameterized using the discrete cosine transform
(DCT). This enables the parameter dimension to be dramatically reduced while still
retaining important geological features. The state space reduction is done through the
POD method.

Numerical examples in this chapter show that the DCT basis vectors can capture
geological features of the uncertain conductivity fields, and the POD basis can cap-
ture temporal head and concentration patterns. The numerical examples also show the
ability of the reduced-order model to predict head and concentration evolutions for a
modified conductivity field that is significantly different from the nominal field. The
efficiency of the reduced-order model can be illustrated by comparing the computa-
tion time of a single forward simulation with the full order model. It is shown that the
reduced-order model can achieve 95% reduction in computation time. The histograms

of the head and concentration predictions illustrate the ability of the reduced-order
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model to propagate the uncertainty in the ensemble forward in time. To further vali-
date the ability of the reduced-order model for head and concentration predictions for
various conductivity configurations, an error analysis was performed for an ensemble
generated using Gaussian indicator simulations. The results demonstrate the robust-
ness of the reduced-order model for the ensembles with significant parameters
changes and the importance of including derivatives of states with respect to parame-
ters during the generation of the reduced-order model. The robustness and efficiency
of the reduced-order model highlight the fact that it is a very promising alternative in
the forward simulations of large-scale statistical inversion problems. This will be fur-

ther illustrated in the next chapter.
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Chapter 3

Application of Reduced-Order
Modeling for Ensemble Condition-
ing

3.1 Introduction

Subsurface flow modeling has been widely used for the management of subsurface
hydrological and energy resources. Subsurface flow and solute transport are often si-
mulated using discretized mathematical models with model parameters and external
forcing that govern the transport process. Relevant parameters include hydraulic
properties such as hydraulic conductivity and porosity and relevant forcing variables
include well pumping. The complexity associated with the spatial heterogeneity of
subsurface hydraulic properties, together with the high cost of data acquisition and
inconvenient access to in-situ measurements, leads to large uncertainty and inevitable
causes errors in the predictions of system models for investigating subsurface prob-
lems [1, 2]. In order to address this problem uncertain parameters are inferred, as
much as possible, from measurements of related states, such as pressure and solute
concentration. This inference or estimation process is typically posed as an inverse
problem.

Stochastic inversion methods have become increasingly popular for solving sub-

surface inverse problems in subsurface modeling due to their capabilities for dealing
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with ill-posedness and nonuniqueness problems. These methods explicitly account for
uncertainty in parameters and predictions and are useful for assessing how measure-
ments can improve forecasts through better estimation of poorly known parameters.
The objective of most stochastic inverse methods is to derive a posteriori (or condi-
tional) probability distributions for uncertain parameters. These distributions, which
summarize all available knowledge about the parameters of interest, are obtained by
conditioning prior (or unconditional) probability distributions on relevant measure-
ments. In complex problems involving spatial heterogeneity it is useful to describe
probabilities in terms of ensembles of random replicates of the uncertain variables ra-
ther than in terms of closed-form probability functions. An example is the ensemble
Kalman filter (EnKF) [3], which can be viewed as a Monte Carlo version of the clas-
sical Kalman filter. The EnKF uses prior and a posteriori ensembles to represent sta-
tistics, such as the means and covariances of uncertain parameters and states. The
EnKF is a recursive estimation method that has been effectively applied to large-scale
nonlinear inverse problems.

There are several variants of the EnKF, of which the square root filter [3, 4] is
probably the most widely used one with successful applications in the areas of weath-
er forecasting, oceanography, and petroleum [5-11]. In subsurface modeling the EnKF
is usually used for identification of uncertain hydraulic properties, such as conductivi-
ty and porosity. The success of parameter estimation by the EnKF in subsurface mod-
eling is largely attributed to the strong spatial correlations in hydraulic properties as
well as strong correlations between the parameters and system states such as fluid
pressure and velocity [12]. The EnKF can be divided into two separate steps: 1) the
forecast step, in which the model equations are used to propagate replicates of system
states forward in time, and 2) the update step, in which the forecast replicates are up-
dated with measurements. The update step is based on the first and second order mo-
ments of the probability distribution represented by the ensemble. This reliance on
first and second moment implicitly assumes that the relevant prior and a posteriori

probability distributions are Gaussian [5].
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In the subsurface inverse problems of interest here the forecast step of the EnKF,
requires many evaluations of large systems of partial differential equations. This pos-
es significant computational challenges and is a serious limitation for practical appli-
cations of the EnKF. Most practical subsurface applications use a relatively small en-
semble, in which the number of replicates is far less than the dimension of states, to
calculate the covariance matrices that are essential for the EnKF update. A small sam-
ple size could also seriously deteriorate the performance of the EnKF update due to
the influence of sample variability [13, 14]. The update is restricted to the space
spanned by the members of forecast ensemble. Sampling errors due to small ensemble
size can give spurious correlations between observations and model states. In such
cases the EnKF can incorrectly update the state variables in regions of no real influ-
ence by the observations. This causes the ensemble to diverge from the true parame-
ters and states. Localization [15, 16] is an empirical process that addresses divergence
by imposing constraints on the covariance estimate. Localization can increase the
rank of the update equation [17, 18]. However, it can also distort the physical rela-
tionships between different physical variables that are implicit in properly estimated
unlocalized covariances [18]. Covariance inflation [13] is another empirical strategy
for addressing problems created by small sample size. Inflation artificially increases
the variance of the ensemble by moving the ensemble members far from the ensemble
mean [19]. This method can avoid filter divergence caused by insufficient covariance
but suffers the same problem as the localization method since it can violate physical
balances that should be conveyed through the parameter and state covariances.

The best option for addressing problems created by small ensembles is to reduce
the significant computational burden posed by the EnKF by using model order reduc-
tion techniques that replace the original high dimensional forecast model with much
lower dimensional approximate model that preserves the key input-output properties
of the system. Most practical model order reduction techniques are projection-based
methods, which derive the reduced-order model by projecting the high-dimensional

governing equations onto the subspace spanned by basis vectors [20]. The basis can
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be generated by several techniques, including Krylov subspace methods [21-23], ba-
lanced truncation and its variants [24, 25], and proper orthogonal decomposition
(POD) [26-28].

Several methods have been proposed to generate basis vectors that insure the re-
duced-order model is effective and accurate over the entire parameter space of inter-
est. These methods include POD and Krylov-based sampling methods [29, 30], greedy
sampling approaches [31, 32], and interpolation methods [33, 34]. In most studies, the
model reduction process focuses only on the system states. However, reduction of the
number of parameters is also important, especially in subsurface applications, where
uncertain parameters vary dramatically over space.

A recent paper by Lieberman et al. [35] addressed the high cost of repeated evalu-
ations of large-scale models, as well as the difficulty of effectively exploring the un-
certain space due to high-dimensional input parameter spaces, by constructing a re-
duced-order model that can accept low-dimensional parameter inputs. The parameter
reduction was carried out separately from the state space reduction. In their study, a
Markov Chain Monte Carlo (MCMC) procedure was used for uncertainty quantifica-
tion. The reduced parameter basis was derived from sampled parameters incorporating
prior information by solving an optimization problem that minimized output errors
between full order and reduced-order models and penalized parameters of low proba-
bility. The reduced-order model was applied to 1D and 2D steady flow problems in
porous media with uncertain hydraulic conductivity. The results from their experi-
ments are promising for relatively smooth conductivity fields. However, uncertainty
propagation for transport of solute or other components and preservation of geologi-
cal features were not addressed in their study.

In this chapter, we consider uncertainty quantification for subsurface modeling
with channelized geological features. We apply a reduced-order model derived using
the concepts outlined in Chapter 2 to the forecast step of the EnKF. In Section 3.2, we
provide a brief overview of the EnKF as well as the method used to generate the ro-

bust reduced-order model. The procedure to embed the reduced-order model into the
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EnKF is also introduced. In Section 3.3, we evaluate the performance of the EnKF
combined with the reduced-order model by considering several unsteady solute trans-

port problems. In Section 3.4, we conclude this chapter.

3.2 Methodology

3.2.1 The Ensemble Kalman Filter

Bayes rule relates the a posteriori probability distribution of uncertain states and pa-
rameters conditioned on measurements to the prior probability distribution and the
likelihood function, which describes measurement uncertainty. Sequential application
of Bayes rule is often used in real-time estimation of states and parameters of a dy-
namic system. For linear Gaussian systems, the Kalman filter [36] derives updating
equations for the mean and error covariance of the a posteriori distribution. For nonli-
near systems, which generally have non-Gaussian distributions, the EnKF [3, 37] uses

Monte Carlo methods to approximate these moments..
Assume there are M replicates in the ensemble. The EnKF can be divided into

two stages at each time step: 1) a forecast of the new state variable xfk_l for replicate

J at current time ¢ based on the states and parameters at time 7—1 using the system

model; and 2) an update of the state variable to obtain analysis replicate thv based on

. ) .M .
the Kalman gain and the perturbed observation ensemble {z{IH}. | at time 7. Assum-
j=

ing there is no model error, the forecast step proceeds by applying the system equa-
tions to each of the replicates [12]

— R/ J J J
0= Ft—l (tht—l H Xt—1|t—1 SU, 90‘1—1]1-1 )
(3.1

J o = J J
Z,|,,1 - g(xt|1—1 ) + vt

where j=1,...,M denotes the j-th replicate in the ensemble, u _, is a nonrandom
input or control vector, @, is the updated parameter replicate at time 7—1, vtj is
the j-th realization of measurement errors, and F:j- , and g() are the nonlinear state

transition function and measurement operator that relates the states and measure-
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ments. Note that we write the state equation using an implicit rather than an explicit
time discretization.

In the applications of interest here the function g() is reduced to a linear operator
that multiplies the state vector by a selection matrix that specifies where measure-
ments are located. Also, we need to generate conditional ensembles for both the un-
certain states and parameters. This can be easily accomplished by augmenting the
state vector with uncertain parameters, that is

.\ au; xj
(/)" = “} (3.2)

where @/ is the parameter vector at time ¢. In this case the system of state equations

is also be augmented by linear parameter transition equations of the form:
(3.3)

fle-1

VM .
Once the ensemble forecast {x’ } as well as the perturbed observations
J=1

. M
{zfll_l} . is obtained we can write the update equation for each replicate as [38]:
=

() =g con{ s ) eor oz 0 -m) 60

where Cov(-,-) denotes the covariance between two arguments, and d, is the actual
observation vector. Note that, for the original model, the augmented state vector con-
tains the system states (such as pressure, velocity, and concentration), and the parame-
ters (such as hydraulic conductivity.

Equations (3.1) through (3.4) together with initial conditions define a complete
ensemble recursion. Note that instead of updating the mean and error covariance of
the state vector, the EnKF updates individual replicates. The desired statistics can
then be derived from the updated ensemble. In practice it is desirable to update the
ensemble mean and the ensemble perturbations separately [4]. This approach is com-
monly described as the ensemble square root filter (EnSRF). A number of variants of

this approach have been introduced, including the ensemble Kalman transform filter
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[39], the ensemble adjustment filter [40], and the local ensemble filter [17]. Not all of
the square root filters bear the desired relationship that the mean of the updated en-
semble mean (computed by averaging all the replicates) is equal to the actual a post-
eriori mean (i.e. the ensemble mean should be unbiased). Livings et al. [41] proposed
an unbiased square root filter by restricting the updating equation of the covariance
matrix. An alternative approach for obtaining an unbiased estimate is to use the for-
mulation proposed by Sakov and Oke [42]. In this work, we will choose an unbiased

filter between these two versions based on their performance.

3.2.2 Parameterization and Reduced-Order Modeling

The forecast stage involves M evaluations of the system model, one for each repli-
cate, which is usually computationally expensive. This computational burden is the
bottleneck for successful applications of the EnKF to large-scale nonlinear problems.
One way to overcome this problem is to include only a limited number of replicates
but use some techniques such as covariance inflation [19] to prevent ensemble diver-
gence and model errors. However, this method involves artificial manipulations and
there is no guarantee of good performance of the EnKF if the prior ensemble has a
large bias. In this work we try to overcome this problem by using the reduced-order
model to obtain the state forecast. Since the evaluation of the reduced-order model is
efficient, it’s possible to generate a larger prior ensemble to achieve good perfor-
mance of the EnKF.

The first step to derive the reduced-order that can be applied in the EnKF is to

generate reduced representations of the states, which can be written as
x=0'} (3.5)

where % is a reduced representation of the state vector X and has a much small di-
mension than x, @_is a transform matrix containing basis vectors. The basis vectors

can be derived using the proper orthogonal decomposition (POD) [43].
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For nonlinear systems the distribution of the states is usually non-Gaussian. The
update from the traditional EnKF can be poor for non-Gaussian cases [44]. Also, for
uncertainty quantification of complex geological structures inversion problems are
often underdetermined. Parameterization provides a remedy for these problems by
transforming non-Gaussian variables to a more nearly Gaussian variables [45] or by
reducing the dimension of uncertain variables [46]. The reduced-order model used
here is parameterized using the discrete cosine transform (DCT) [46], in which the

uncertain parameter vector is represented by
a =G (3.6)

where @ is a reduced representation of the parameter vector 0O, and has a much small
dimension than o. Compared to the POD transform matrix, ®_ is the DCT matrix
containing constant vectors. The DCT method are more efficient, effective, and flexi-
ble compared to the other methods such as the Karhunen-Loéve transform, which
needs to perform expensive singular value decomposition and is unsuitable for com-
pression of arbitrary fields that are not well characterized by the prior ensemble [46].

By substituting equations (3.5) and (3.6) into the system model and then applying
Galerkin projection, the forecast equations in (3.1) can be reduced to

—F (% %/ 5
0= Ft—l (Xt|t-1 s Xt—llt—] s U, ’at-l|t—1)

N , (3.7)
zy,=8 (xtjlt—l )+ \A

where F/, (-) and g(-) operate on the reduced state vector £ and parameter vector .
The EnKF simultaneously updates the reduced states and reduced parameters. This is

done by working with an augmented state vector, which can be written as
;)2 ﬁj
(/) g{ } (3:8)

-~y
a;

and the updating equation is in the form of

(%) =(&]. )" +Cov ((xf|1 )™ ,Z;L_lj Cov'(z),7,.)(d,-2.) (39
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Detailed derivation of the reduced-order model for subsurface solute transport can
be found in Chapter 2. Here we emphasize the fact that to preserve the efficiency
gained from reduced-order modeling, we should avoid updating of the reduced-order
model during online sequential data assimilation. Since the updated ensemble can be
characterized as a weakly nonlinear combination of the forecast ensemble [5], it is
expected that if the reduced-order model is valid in the space spanned by the initial
ensemble, it will still be valid during the updating steps. To ensure that the reduced-
order model is valid in the space spanned by the initial ensemble, both the basis vec-
tors of the states and the parameters should spanned the spaces characterized by the
initial ensemble. A good set of basis vectors for the state variables can be obtained by
choosing several replicates from the initial parameter ensemble to generate snapshots
of corresponding state vectors as well as derivatives of states with respect to parame-
ters, as described in Chapter 2. This training process transmits information about the
full order model through the snapshots to the reduced-order model basis so that the
reduced-order model is able to capture the dominant features of the full order model.
To choose DCT basis vectors properly for parameters, we should apply DCT to the
whole initial ensemble and then retain only the DCT basis vectors corresponding to
the largest DCT coefficients.

The resulting system equations (3.7) and (3.9) have much fewer dimensions than
the full order ones and yield a better-posed inverse problem. It is anticipated that if
the uncertain parameters fields are parameterized so that they preserve geological
structure, we should obtain a better conditional ensemble. This will be shown in the

numerical examples.

3.2.3 Implementation Issues

The whole procedure of the application of the EnKF with the reduced-order model
can be divided into offline and online stages. Figure 3-1 shows that at the offline
training stage, an initial ensemble of uncertain parameters is generated based on prior

information. A few of the prior ensemble members are selected to generate the snap-

79



shots of the states and derivatives using the full order model, and then the POD basis
vectors are obtained based on those snapshots. Here, the selection of training repli-
cates is purely arbitrary. As discussed in Chapter 2, including the derivatives can im-
prove the POD basis so that it is better able to capture the response of the states to
variations in the parameters. After taking the DCT of the prior ensemble, we can se-
lect the DCT basis vectors that contribute most to spatial variability. This is done by
ordering the DCT coefficients for each replicate in the ensemble, and keeping the
DCT basis vectors corresponding to the first few largest coefficients for each repli-
cate. The original discretized full order model can be expanded into second-order eq-
uations around nominal parameters and states, as described n Chapter 2. The reduced
representations of states and parameters can be substituted into the second-order eq-
uations. The resulting Galerkin projection gives the reduced-order model needed for
efficient online simulations.

In the EnKF experiments described in this Chapter a pre-determined control sche-
dule gives trajectories of control variables (e.g., well pumping rates) for each control
step. New measurements come in as field data in realistic applications. In the virtual
experiment considered here the pre-determined controll schedule and the "true" para-
meter values are fed into the full-order model to generate synthetic measurements that
can be used for updating reduced-order parameters and states in the EnKF. The EnKF
predicts the measurements that would be obtained with each of the parameter repli-
cates and uses the errors between synthetic and predicted measurements (the "innova-

tions") to compute the update for each replicate.
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Figure 3-1:

EnKF Conditioning

Flowchart showing offline ensemble-based generation of a robust re-

duced-order model with order reduction in both parameter and state spaces, and on-
line ensemble updating of uncertain reduced-order (RO) states and reduced-order
(RO) parameters. Double lines indicate multiple operations on replicates in the en-

semble.

The performance of the EnKF incorporating reduced-order forward simulations

can be evaluated by comparing the reduced-order and full-order updated ensembles.

As shown in Figure 3-2, at the online assimilation stage, the forward simulations are

based on the full-order model instead of the reduced-order model as shown in Figure

3-1.
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Figure 3-2: Flowchart showing online ensemble updating of uncertain full order (FO)
states and full order (FO) parameters. Forward simulations are based on the full order
model, and uncertain parameters are parameterized using DCT. Double lines indicate
multiple operations on replicates in the ensemble.

3.3 Numerical Experiments

3.3.1 Experimental Setup

Here we consider a model of 2D non-gravitational solute transport in a porous me-

dium. The governing equations can be written as

s%=— qt+u

ot

q=-k-Vh (3.10)
9%=—V-(q-c)+0D-V2c+u-c

ot !

where %, q, and c are the pressure head, velocity, and solute concentration, respec-
tively. s, 8, and D are the specific storage, porosity, and dispersion coefficient for
the aquifer, which are assumed to be constant over the whole domain. The vector u
contains the pre-determined control variables, i.e. the water pump rates at each well.
These are constant within each control step. The vector ¢, contains the solute concen-

tration at each pumping well.
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Figure 3-3: Experimental setup. (a) Simulation domain with 9 measurement locations
(blue diamonds) and 4 pumping well locations: Well P1 (black cross), Well P2 (red
cross), Well P3 (cyan cross), and Well P4 (magenta cross). (b) Pre-determined pump-
ing rates for the four wells.

In this synthetic example, a 640 mx640 mx1 m porous domain is discretized into a
2D 64x64x1 uniform grid cell system. The size of each cell is 10 mx10 mx1 m. The
whole domain has the constant porosity of 0.2. Figure 3-3(a) shows the simulation
domain and the locations of 4 pumping wells. The length of the simulation horizon is
800 days, and the pumping rates given by the control schedule for the 4 pumping
wells are illustrated in Figure 3-3(b). The simulation horizon is divided into 4 con-
stant intervals. Each of the intervals represents a control step. The solute is injected
into the domain at the mid-lower cells with a constant rate of 5 m*/day and constant
concentration of 50 mg/L for the first 400 days. Here specific storage s =0 is used to
represent steady-state flow conditions so the head is constant over each control step.
The flow equation has no water flux boundaries on the east and west sides and con-
stant head boundaries of 30 m and 0 m on the south and north sides. The transport

equation also has no solute flux boundaries on the east and west sides, but has pre-
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scribed zero solute concentration boundary conditions on the south and north sides.
The dispersion coefficient is assumed to be constant over the whole domain in all di-
rection, and thus the transport equation is linear for each control step.

The measurements at the data assimilations step include head and pressure infor-
mation at 9 measurement locations indicated by the blue diamonds in Figure 3-3(a).
The measurements are taken at the end of control steps, which are day 200, 400, 600,
and 800, and thus there are 4 EnKF updates during the simulations. In this study, the
measurements are drawn from predictions of full order simulations using a synthetic
true conductivity field as described above.

The unknown parameters are the hydraulic resistivity in each cell of the discre-
tized computational grid. An ensemble of 50 realizations of conductivity fields is
generated using Gaussian indicator simulator in the Stanford SGeMS. The simulated
ensemble is then parameterized by the DCT so that each high-dimensional hydraulic
conductivity replicate can be represented by a corresponding set of truncated reduced-
dimensional DCT coefficients. The prior ensemble is reconstructed from the simu-
lated ensemble after DCT parameterization. The parameterization process is discussed
in the following subsection. Five of the resulting replicates are shown in Figure
3-4(b). We can clearly see that the conductivity fields have high permeable and low
permeable zones, which create pathways for solute transport. The resulting recon-
structed ensemble is used in the experiments as the prior ensemble instead of the orig-
inal ensemble.

A synthetic true conductivity fields is drawn from the same probabilistic distribu-
tion as the prior ensemble. As shown in Figure 3-4(a), the log conductivity field gen-
erated by the Gaussian indicator simulator is characterized by two high permeable
channels in the middle of the domain. The true conductivity field is used in the simu-
lations to generate noisy synthetic true measurements.

To quantify the quality of the ensemble mean of the EnKF updates during online
simulations, a dissimilarity metric called Jaccard distance [47] is introduced to com-

pare the similarity and diversity of the true conductivity field and its estimates. To
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apply the Jaccard distance metric, the 2D conductivity fields are first converted to bi-
nary images. As shown in Figure 3-4(a), for the true conductivity field, the converted
binary image has 1’s in the cells with log(k)>1, where k denotes the conductivity.
All the other cells have zero values. This conversion emphasizes the similarity of
channelized structures between the two different conductivity fields. For our applica-

tion the Jaccard distance can be defined as
|1c Nk

[kU%

2(x.®)=1- (3.11)

where x(lc,fc) is the Jaccard distance between two binary images K and K. K and K
are converted true conductivity field and the ensemble mean, respectively. |1c ﬂﬁ| de-
fines the size of the intersection of the two binary sets, which can be defined as the
number of cells that both K and k denote as high permeable. |KU1"(’ defines the size
of the union of the two binary sets, which indicates the total number of cells that are
denoted by either K or K as high permeable zones. By definition, a Jaccard distance
of one denotes the largest dissimilarity between the true conductivity field and the en-
semble mean of the EnKF updates, and lower Jaccard distance denote higher similari-

ty between the true and the ensemble mean.

(a) Synthetic True Conductivity Field (m/day)
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Figure 3-4: Samples of hydraulic conductivity. (a) The true conductivity field. (b)
Five representative replicates from the prior ensemble.

3.3.2 Generation of the Reduced-Order Model

The reduced-order model uses reduced-dimensional DCT coefficients to represent
high-dimensional hydraulic conductivity. The DCT is performed for the entire prior
ensemble, and the resulting DCT coefficients are arranged in a descending order for
each replicate in the ensemble. The DCT vectors correspond to the first few (about
30) largest coefficients of each replicate are retained and the others are discarded.
Then all distinctive retained DCT vectors are combined to form the DCT projection
matrix for the ensemble. The process results in about 3% DCT basis vectors in the
projection matrix.

In the reduced-order model derivation 10 of the replicates in the ensemble are se-
lected for off-line full order simulations. As discussed in Chapter 2, these provide
snapshots of states at different times for each selected replicate. Also, derivatives of
the head and velocity with respect to hydraulic resistivity are calculated and collected
as part of the snapshots for 3 of the replicates. For each replicate, there are a total of
4096 columns of derivative vectors and thus the snapshot matrices are expanded sig-
nificantly. POD projection matrices can then be obtained based on the snapshots to
generate reduced representations of the states. To obtain a compact representation of
the states, the POD expansion is truncated at the number of basis function terms that
account for 99%, 93%, 93%, and 99% of the energy in the head, x velocity, y veloci-
ty and concentration, respectively. This gives reduced dimensions of 69, 113, 84, and
184, for these four variables, each of which originally has a full order dimension of
about 4096. With the reduced representations of the parameters and states, a second
order reduced-order model can then be constructed based on the expanded governing
equations in (3.10). Detailed derivation of the reduced-order model and validation of

its robustness for the ensemble can be found in Chapter 2.
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The next two subsections present the results of two EnKF numerical experiments.
In Experiment 1 the EnKF update is based on both head and concentration measure-
ments. In Experiment 2, only head measurements are included. For both experiments,
we compare the performance of the EnKF with the full order and reduced-order mod-

els used in the forecast step.

3.3.3 Experiment 1: EnKF Estimation with Head and Concen-
tration Measurements

Figure 3-5 summarizes the EnKF estimation results for Experiment 1. Figure 3-5(a)
presents the channelized true conductivity field. The EnKF conductivity ensemble
means at different times are shown for the full- and reduced-order cases in each row
of Figure 3-5(b). The Jaccard distance defined in equation (3.11) is presented at the
top of each plot to illustrate the dissimilarity between the true conductivity filed and
each ensemble mean. From the figure it is clear that the Jaccard distances gradually
decrease and the channelized structures of the conductivity field are gradually recov-
ered for both full order and reduced-order cases after the updates on day 200, 400,
600, and 800. The full order case illustrates the ability of the EnKF to identify chan-
nelized geological structures. This capability is mainly due to the strong correlations
between measurements and uncertain conductivity, which help the EnKF updates
converge to the true value, provided that the ensemble is sufficient to characterize the
correlation information. The reduced-order case shows that the EnKF can also capture
channelized structures in this case, indicating that the reduced-order model is suffi-
cient and accurate enough to provide the information necessary for accurate EnKF
updating. This illustrates that the reduced-order is a promising alternative during the
forward simulations of the EnKF.

The Jaccard distances of the reduced-order case are smaller on day 600 and 800
than those of the full order case. This indicates that the EnKF can capture the high
permeable zones better in the reduced-order case. The reason can be attributed to the

fact that in the reduced-order case there are fewer unknowns that need to be updated
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by the EnKF. The ratio between the number of the states in the reduced-order model
and the full order model is about 1 to 40.

A close inspection reveals that it is difficult for the EnKF to capture the high per-
meable zones at the upper-left corner of the domain in both cases. This is due to the
fact that there is no measurement information near the boundaries. In ideal cases that
the ensemble is sufficient to capture the correlations, the head measurements can re-
veal more conductivity information for those cells near the measurement locations,
while the concentration measurements can reveal more information for those cells
within solute propagation paths.

Figure 3-5(c) shows snapshots of concentration predictions at different time in-
stances for the true conductivity field. The four crosses with different colors indicate
the locations of the four pumping wells. As illustrated by the figure, the plume is
dragged to the wells by the pumping force such that each well has solute break-
through over the simulation horizon. This insures that the concentration data can give
sufficient information for the EnKF updating. Figure 3-5(d) shows the ensemble mean
concentration snapshots in the full order and reduced-order cases. Compared to Figure
3-5(c), it is clear that in both cases the EnKF can capture the shapes of the plume at
different time steps, especially on day 800 when the last update happens. On day 800,
the shapes of the plume in both cases are very close to the one predicted by the true
case. This is consistent with the fact that the filter performance improves over time, as
more measurements are collected.

A close inspection of the plume shapes reveals that the ensemble mean in the re-
duced-order case is more consistent with the true plume than in the full order case. As
shown in Figure 3-5(c), on day 200 the plume has a left tip pointing to Well P1 (indi-
cated by the black cross), indicating a dragging force by well pumping. This is miss-
ing in the full order case, while in the reduced-order the EnKF successfully captures
the tip. A similar observation can be made on day 400. This is due to the fact that the
EnKF updates the reduced-order concentration vector, making it easier for the EnKF

to capture the dominant spatial features of the concentration plume.
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Although reduced-order modeling can better capture the shapes of the concentra-
tion plume, we can observe some wrinkles around the fronts of the plume estimated in
the reduced-order case. The wrinkles are resulted from the prediction errors by the
reduced-order model. However, this doesn’t deteriorate the performance of the EnKF,
provided that we properly select the concentration measurement error covariance. In
principle, we need to make sure that the error covariance is adequately accounts for

prediction errors.
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Figure 3-5: Results for Experiment 1: (a) the true log-conductivity field; (b) ensemble
mean log-conductivity with corresponding Jaccard distances using the full- and re-
duced-order models; (c) concentration snapshots corresponding to the synthetic true
conductivity field with well locations indicated by black (Well P1), red (Well P2),
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cyan (Well P3), and magenta (Well P4) crosses; (d) ensemble mean concentration us-
ing the full- and reduced- order models with well locations indicated by crosses.
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Figure 3-6: Time series of head predictions at the four well locations for replicates
(gray lines), the true conductivity field (red lines), and the ensemble mean (blue lines)
in Experiment 1: (a) predictions using the full order model for replicates in the prior
ensemble without EnKF updating; (b) predictions using the full order model for the
replicates in the ensemble with the EnKF updating the states and parameters at the
end of each control step; (c) predictions using the reduced-order model for the repli-
cates in the ensemble with the EnKF updating.

In this problem head predictions are related to energy consumption of pumping
and the concentration predictions are related to water treatment cost in containment
transport cases. Figure 3-6 and Figure 3-7 illustrate head and concentration predic-

tions for replicates in the ensemble (gray lines), the true conductivity field (red lines),
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and the mean over the ensemble members (blue lines) at the four pumping wells. Gray
lines in Figure 3-6(a) and Figure 3-7(a) show predictions using the full order model
for the prior ensemble without the EnKF updating. The spreads of the gray lines indi-
cate the variability in the prior ensemble. Sufficient variability in the prior ensemble
is needed to properly calculate the covariance used in the EnKF updating. In the plots
we can also observe significant disparity between the ensemble mean (indicated by
blue lines) and the true predictions (red lines). However, the true predictions fall in-
side the spreads of the ensemble. This suggests that the true predictions fall in the
space spanned by the replicates.

Gray lines in Figure 3-6(b) and Figure 3-7(b) show ensemble predictions using the
full order model with EnKF updates on day 200, 400, 600, and 800. In the plots the
spreads of the ensemble shrinks noticeably over time compared to the unconditional
case, indicating decreased variability or uncertainty in the ensemble. The ensemble
mean (blue lines) gradually converges to the true values, indicating the ability of the
EnKEF to capture the dynamic of the true system.

Gray lines in Figure 3-6(c) and Figure 3-7(c) show predictions using the reduced-
order model with EnKF updates on day 200, 400, 600, and 800. We can observe beha-
vior similar to Figure 3-6(b) and Figure 3-7(b), indicating the ability of the reduced-
order model to predict system behavior. One noticeable difference between plots in (b)
and (c) is that the spreads in (c) can be larger than those in (b) over some control steps.
This is primarily due to additional model errors introduced by the reduced-order mod-
el. For example, a close inspection of the concentration predictions at Well P1 in Fig-
ure 3-7(c) reveals that on day 400, there is a jump in the concentration curves of the
replicates. This corresponds to the small wrinkles in Figure 3-5(d), which result from

predictions errors.
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Figure 3-7: Time series of concentration predictions at the four well locations for rep-
licates (gray lines), the true conductivity field (red lines), and the ensemble mean
(blue lines) in Experiment 1: (a) predictions using the full order model for replicates
in the prior ensemble without EnKF updating; (b) predictions using the full order
model for the replicates in the ensemble with the EnKF updating the states and para-
meters at the end of each control step; (c) predictions using the reduced-order model
for the replicates in the ensemble with the EnKF updating.
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Figure 3-8: Updated conductivity and concentration replicates in the ensemble for
Experiment 1: (a) the true log-conductivity field; (b) the snapshot of the concentration
filed on day 800; (c) five replicates of the conductivity field in the prior ensemble; (d)
corresponding updated conductivity replicates on day 800; (e) replicates of the plume
on day 800 corresponding to predictions based on the five sample prior conductivity
fields without the EnKF updating; (f) corresponding updated replicates of the plume
on day 800.
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Figure 3-8 illustrates some typical conductivity and concentration updated repli-
cates on day 800. Figure 3-8(a) and (b) present the true conductivity field and the true
plume shape on day 800. Figure 3-8(c) show five prior conductivity replicates and the
plots in (d) show the corresponding five updated replicates, all on day 800. The up-
dated replicates are more similar than the prior samples. Also, the updates display
channels that are more similar to those observed in the true field. This illustrates the
EnKF's ability to recover geological features. Similar behavior is shown in Figure
3-8(e) and (f). The update decreases the variability in the plumes displayed in these
figures. The updated plumes are generally closer to the true plume of Figure 3-8(b)
than the corresponding prior plumes.

From the aforementioned results it is clear that the reduced-order model is an ac-
curate and effective alternative to the full order model during the forward simulations.
Another advantage of using the reduced-order model is that the computation time has
dropped dramatically from about 1500 seconds to about 100 seconds. This indicates
that it should be possible to use a larger ensemble so as to reduce the adverse effects
of sampling errors. Such errors arise in high dimensionality problems when computa-
tional constraints make it impractical to iﬂclude an adequate number of samples in the

ensemble.

3.3.4 Experiment 2: EnKF Estimation with Only Head Mea-
surements

In this experiment we investigate the effect of excluding concentration measurements
in the EnKF updating. This will demonstrate the importance of accurate predictions of

concentration, which are more difficult for the reduced-order model.
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Figure 3-9: Results for Experiment 2: (a) the true log-conductivity field; (b) ensemble
mean log-conductivity with corresponding Jaccard distances using the full- and re-
duced-order models; (c) concentration snapshots corresponding to the synthetic true
conductivity field with well locations indicated by black (Well P1), red (Well P2),
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cyan (Well P3), and magenta (Well P4) crosses; (d) ensemble mean concentration us-
ing the full- and reduced- order models with well locations indicated by crosses.
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Figure 3-10: Time series of head predictions at the four well locations for replicates
(gray lines), the true conductivity field (red lines), and the ensemble mean (blue lines)
in Experiment 2: (a) predictions using the full order model for replicates in the prior
ensemble without EnKF updating; (b) predictions using the full order model for the
replicates in the ensemble with the EnKF updating the states and parameters at the
end of each control step; (c) predictions using the reduced-order model for the repli-
cates in the ensemble with the EnKF updating.
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Figure 3-11: Time series of concentration predictions at the four well locations for
replicates (gray lines), the true conductivity field (red lines), and the ensemble mean
(blue lines) in Experiment 2: (a) predictions using the full order model for replicates
in the prior ensemble without EnKF updating; (b) predictions using the full order
model for the replicates in the ensemble with the EnKF updating the states and para-
meters at the end of each control step; (c) predictions using the reduced-order model
for the replicates in the ensemble with the EnKF updating.

Figure 3-9 through Figure 3-11 summarize EnKF results for Experiment 2, using
the same format as the results for Experiment 1. By comparing Figure 3-5(b) and Fig-
ure 3-9(b), we can observe that in both full order and reduced-order cases, although
the EnKF can still capture the channelized structures in the true conductivity field, the

geological features are not so well portrayed and thus the Jaccard distances are larger,
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especially in the reduced-order case. This is expected since there are fewer measure-
ments for the EnKF update. In Figure 3-9(c) and (d) we can also see that the EnKF
cannot recover the plume distributions effectively, indicating head measurements are
not sufficient to estimate the concentration propagation.

However, head and concentration predictions in Figure 3-10 and Figure 3-11 re-
veals an interesting fact that, although the EnKF can only recover some of the geolog-
ical features of conductivity, the variability in head predictions of the ensemble de-
creases significantly during the EnKF updating and the ensemble mean is consistent
with the true predictions. The variability in concentration replicates is still significant
and individual replicates can differ significantly from the true value. It is possible that
if we rely on only head measurements during the EnKF updating, we can obtain good
agreement between the predicted and measured heads. However, the geological fea-
tures and transport dynamics are not well captufed and thus a performance evaluation

based only on head predictions could be misleading.

3.4 Conclusion

In stochastic inversion methods, the ensemble Kalman filter is an effective and effi-
cient alternative to traditional deterministic inverse methods. However, the computa-
tion burden of the EnKF can be a significant bottleneck in the application of the
EnKF to large problems. For such problems a relatively small size of ensemble is typ-
ically used to obtain the statistical moments needed to update prior replicates with
measurements. Unfortunately, the performance of the EnKF relies heavily on the abil-
ity of the ensemble to accurately represent the first and second moments of the proba-
bility distributions. Sampling errors due to small ensemble sizes will deteriorate the
performance of the EnKF. Traditional approaches to deal with this problem include
covariance inflation and localization. In this chapter we present a promising alterna-
tive solution to the sampling error problem by reducing the computation burden of the

EnKF.
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In the applications considered here the forecast step contributes most of the com-
putation burden of the EnKF. Reduced-order modeling is an attractive option for de-
creasing the computation time during online forecast simulations. In this chapter, an
efficient reduced-order model is implemented during online simulations. This re-
duced-order model replaces a much larger and more expensive full order model. The
reduced-order model is derived from representative full order model snapshots to in-
sure that it is valid over a reasonable range of parameter replicates. There is no need
to update the reduced-order model during the online EnKF forecast steps. This re-
flects the fact that the reduced basis vectors adequately span the parameter spaces. In
our example reduced-order modeling can decrease the online forecast computation
time from 1500 seconds to 100 seconds. This opens up the possibility of applying the
EnKF with reduced-order modeling to large-scale inversion problems.

Another advantage of combining reduced-order modeling with the EnKF is that
the dimensions are reduced in both parameter and state spaces. The reduced-order
model is intrinsically parameterized, and thus it can preserve geological features dur-
ing the EnKF updating when an effective parameterization method such as DCT is
implemented. Since the reduced-order EnKF only needs to update a small number of
parameters and states compared to the full order EnKEF, it is better able to capture
complex geological structures and plume shapes, even though it relies on an approxi-
mation of the full-order model. Hence, model order reduction in both parameter and
state spaces facilitates computational efficiency while also producing EnKF ensem-
bles that give a more accurate description of reality.

The reduced-order model used here for ensemble updating can also be imple-
mented in management problems when the optimization process is time-consuming so
long as the reduce-order model is still valid over the range of control values encoun-
tered during optimization. Hence, it is possible to apply reduced-order modeling in a
closed-loop control framework [48], which includes both parameter inversion and

control optimization. This possibility is discussed in the next chapter.
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Chapter 4

Application of Reduced-Order
Modeling to Ensemble Real-time
Control

4.1 Introduction

One of the aims of subsurface flow modeling is to predict the response of variables
such as pressure and concentration to external forcing, such as well pumping and in-
jection. Simulation results from a subsurface flow model can provide important in-
formation for management of subsurface resources, including water, oil, and gas re-
servoirs. By controlling pumping and injection configurations, water, solutes, and
other fluid components can be controlled to achieve a particular management goal
such as minimizing containment concentrations [1], maximizing oil production [2], or
optimizing carbon dioxide sequestration. In such applications a design tool is needed
to determine the best well configurations and pumping strategies.

Modern design tools for subsurface management combine simulation models with
optimization techniques [3]. This combination provides a framework to formulate the
management problems rigorously. In the management of subsurface resources, the op-
timization problem is constrained by conservation laws and other relationships in-
volving pressure, solute concentration, well pumping rates, etc. The optimization ob-

jective is typically the net benefit, defined as the difference between the economic
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benefit of the resources extracted and the cost of well placement, energy consump-
tion, etc.. This objective depends on the system's response to the control strategy, as
reflected by system states such as pressure and saturation. The system model relates
these states to the control variables. An open loop control [4] strategy derives optimal
controls offline from predictions based only on information available before the con-
trols are actually applied. By contrast, a closed-loop strategy derives controls on line,
in real time. In this approach the control values applied at any control time depend on
the current state of the system, as revealed by current measurements of variables such
as saturation and pressure.

Since the parameters used to predict the response of subsurface system are uncer-
tain open loop control strategies can perform poorly. The system states derived from
estimated parameters gradually diverge from the true values, leading to optimization
solutions that do not actually maximize actual net benefits. Closed-loop control [2, 5-
7] usually performs better in practical applications because the controls are continual-
ly adjusted in real time to respond to the information conveyed by new measurements.
In effect, the optimization problem is resolved and the control strategy is adjusted
whenever a new measurement becomes available.

In recent years, a lot of work has been done on deterministic closed-loop control
of subsurface flow systems. Early studies carried out by Birnovskii [8] and Virnovsky
[9] investigated a thorough optimization of the well location, well type, water flood-
ing efficiency, etc., for multiphase flow in 2D reservoirs. In their studies the fluids
were incompressible and the gravity was neglected. They found that the optimal flow
rates were lower for wells in high permeable areas. Also, their optimization procedure
adjusted controls to produce a uniform displacement front. Some studies have also
considered optimization of switching times (pumping schedules) as well as pumping
rates [10-12].

Control strategies derived from a deterministic description of the system do not
account for parameter and state uncertainties, which are significant in subsurface ap-

plications. As a result, such strategies tend to be "over confident", applying controls
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that do not work as expected because the real system has properties that are different
than those assumed in the control derivation. Although the closed-loop provides a way
to address this problem it is still important to account for uncertainty when deriving
closed-loop controls. Robust optimization [13-15] deals with this problem by utilizing
the ensemble representation of the system uncertainty and optimizing over the whole
ensemble. Water flooding examples in the studies by Chen et al. [15], Chen et al. [14],
and van Essen et al. [13] showed that the net present value obtained by using robust
optimization was comparable to the net present value obtained from the optimization
based on known geology.

Here, we apply an ensemble-based closed-loop control strategy to a subsurface
system with uncertain physical properties. Uncertainty in these properties is initially
represented by an ensemble of realizations that describes a prior probability distribu-
tion. As time passes and measurements of the system response are collected the en-
semble is updated to account for new information. Here the updates are based on the
Bayesian formulation described in Chapter 3. In particular, the prior (or uncondition-
al) replicates are adjusted with an ensemble Kalman filter to obtain a set of a posteri-
ori (conditional) replicates that follow the a posteriori distribution specified by Bayes
theorem. These posterior replicates provide a description of the likely range of para-
meter values that can be expected, given available measurements and prior informa-
tion.

As indicated by Figure 4-1, the whole closed-loop procedure includes two key
loops, i.e. the optimization loop and the ensemble-updating loop. The ensemble-
updating loop updates current states and uncertain model parameters based on mea-
surements collected on the current time step. The optimization loop derives controls
for the next control step by maximizing expected net benefits, averaged over the a
posteriori ensemble of updated states and model parameters. These controls are then

applied to the subsurface system.
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Figure 4-1: Flowchart showing the ensemble-based closed-loop control approach (af-
ter [6]). Double lines indicate that the specific operation is performed for each repli-
cate in the ensemble.

The ensemble Kalman filter (EnKF) [16-18] has been introduced to the petroleum
industry recently [19] and has been implemented and tested by many authors [20-24].
Although the EnKF is easy to use, its accuracy depends on the ensemble size. Nor-
mally, a large ensemble is needed to obtain a good representation of geological uncer-
tainty. This increases the computational burden for large-scale subsurface problems.

To facilitate real-time ensemble updating and control optimization, an efficient
parameterization algorithm is required for efficient representation of the uncertain
geological parameters. Parameterization aims to remove redundancy in the geological
description by taking advantage of spatial correlation between parameter values in
adjacent cells. The simplest parameterization method is zonation of the reservoir into
regular homogeneous zones [25]. An improvement of this technique is to use a multi-
scale technique to condition the dynamic data by history-matching a coarse model
[26]. The coarse model is then successively refined using a combination of downscal-
ing and history matching until the data matches the model at the finest scale.

An alternative approach is the Karhunen-Loéve (K-L) expansion or linear prin-

ciple component analysis (PCA), which was introduced to the petroleum field by Ga-
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valas et al. [27]. This method projects a high-dimensional grid cell-based parameter
vector onto a lower dimensional space spanned by the leading eigenvectors of the pa-
rameter spatial covariance matrix. The truncated Karhunun-Loeve parameterization
has used by many other authors [28, 29]. However, the K-L expansion has three major
limitations. First, it needs requires knowledge of the parameter covariance. Second, it
presumes that this covariance adequately characterizes spatial variability, an assump-
tion which implicitly supposes the parameter is multivariate Gaussian. This may not
be justified in many geological setting such as channelized formations. Third, eigen-
decomposition of the covariance matrix is prohibitively expensive for practical high-
dimensional problems.

As an alternative, Jafarpour and McLaughlin [30] introduced the discrete cosine
transform (DCT) for parameterization of subsurface properties. Compared to the K-L
expansion, the DCT provides a robust parameterization alternative that doesn’t re-
quire specification of a covariance or other statistics. Since the DCT basis vectors and
the associated transformation matrix are constant, there is no need for extra computa-
tion to derive the basis. It has been shown that the DCT is a flexible and effective me-
thod for describing structural geological fields [30, 31].

Any of the aforementioned parameterizations can be included in the ensemble
closed-loop control framework as shown in Figure 4-1. Lorentzen et al. [32] per-
formed an ensemble closed-loop control study on a large-scale oil reservoir model
with about 60, 000 grids. In their study the EnKF was used for ensemble updating and
a sequential quadratic programming method was used for the step. An ensemble size
of 104 was used to represent uncertainty in geological properties. However, only ten
of the replicates in the ensemble were chosen to calculate the expected value of the
objective function during the optimization. This is because the large-scale model
needs to be run for each replicate for each iteration of the optimization search, which
makes the computation prohibitively expensive.

Reduced-order modeling (ROM) is a promising option for improving the efficien-

cy of forward simulations significantly so that robust real-time control can be made
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practical for high-dimensional subsurface management problems. With reduced-order
modeling, it is possible to use a larger size of ensemble for both ensemble updating
and robust optimization. Chapter 2 describes a reduced-order subsurface flow and
transport model that works well over a range of spatially variable parameter fields.
This reduced-order model relies on projections onto low-dimensional state and para-
meter subspaces. In Chapter 3, the reduced-order model is used to greatly decrease
the computational effort of an EnKF forecast step. This creates the possibility of using
a large ensemble size for high-dimensional problems, so that sampling error and re-
lated filter divergence issues can be resolved.

In this chapter, we extend the reduced-order model so that it works well over a
range of different control strategies as well as a range of different parameter repli-
cates. This extension enables us to apply reduced-order modeling in both ensemble-
updating loop and optimization loop of the real-time control procedure. In our ap-
proach the parameter space is reduced with the discrete cosine transform (DCT),
while the state space is reduced with the proper orthogonal decomposition (POD).
The DCT is used to preserve geological features and thus can facilitate model-
updating procedure. The POD basis vectors are based on snapshots of model states as
well as the derivatives of states with respect to parameters. These snapshots are gen-
erated by evaluating the full order model for several realizations of model parameters.
The effectiveness of a particular set of POD basis vectors depends on the information
contained in the snapshots. In Chapter 3 it is shown that a combined snapshot set of
states and derivatives contains sufficient information to derive robust POD basis vec-
tors over an entire ensemble of realizations consisting of either prior or updated repli-
cates.

In order to extend the reduced-order model so that it works over a range of control
inputs it is important to ensure that the state space POD basis vectors account for a
realistic range of possible control sequences. Several techniques have been proposed
to improve the POD basis to account for control variability. In the field of fluid con-

trol, Gunes and Rist [33] used POD basis vectors extracted from the dynamics of un-
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controlled flow but corrected the dynamics of the reduced-order model based on new
snapshots of controlled flow. Another approach is to use so-called shift modes [34],
which are derived from the difference between the time-averaged flow under pre-
scribed control conditions and the corresponding steady flow solutions, to comple-
ment the uncontrolled flow POD basis such that a better representation of the con-
trolled flow dynamics can be achieved.

The POD basis can also be updated online in response to changes of control strat-
egies during the optimization procedure. One way to do that is to use an adaptive pro-
cedure that improves the reduced-order model by successively updating the snapshots
when the existing POD reduced model is considered to be insufficient [35]. Another
approach is so-called trust-region proper orthogonal decomposition (TRPOD) ap-
proach [36] in which a trust region in the control space is defined. The reduced-order
model is deemed to be representative of the controlled dynamics in the trust region.
Whenever the control strategy leaves the trust region, the reduced-order must be up-
dated to better account for the system dynamics in the actual range of operating con-
ditions.

Although the methods described above have been shown to be effective in certain
applications, they are either heuristic or require additional on-line computation effort.
Here we seek a reduced-order model that does not need to be updated during online
simulations. To achieve this, the POD basis must rely on snapshots that adequately
portray the range of likely control sequences. A straightforward way to achieve this is
to sample in the control space a priori to generate a snapshot set as rich as possible.
Centroidal Voronoi Tessellations [37] is an intelligent method to sample the control
space. This method essentially selects snapshots that are sufficiently representative of
the system dynamics in some neighborhood of the control range and discard those that
are less representative. However, this method requires a large number of samples to
enrich the snapshot set.

In ensemble-based control, the offline training procedure relies on evaluations of

the full order model for each replicate in the ensemble. In order to account for the ef-
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fect of control variability we solve a deterministic control problem for several of the
realizations in the ensemble. Each of these solutions represents a plausible control se-
quence that is associated with a particular parameter replicate. If the selected realiza-
tions are sufficiently representative of the dynamics of the prior parameter ensemble
the derived control set should span the neighborhood of the actual control sequence
derived from the real-time control procedure.

Section 4.2 summarizes the various techniques used in the ensemble closed-loop
control, including the adjoint method to derive the gradients used in the optimization
algorithm and the EnKF method for updating model states and parameters. Derivation
of the reduced-order model, including sampling in both the control and parameter
spaces, is also discussed in Section 4.2. In Section 4.3 a 2D solute transport control
example is introduced to validate the reduced-order model. Section 4.4 concludes this

work.

4.2 Methodology

4.2.1 The Subsurface Transport Model

Here we investigate 2D solute transport in a thin layer of isotropic saturated aquifer.
We assume a constant layer height. Pressure head and solute concentration are verti-
cally uniform so the vertical flux and gravity can be neglected. The simulation model
presented here assumes transient nonreactive single species solute transport and pre-
dicts head and solute concentration at particular locations and times in response to a
particular set of pumping rates at several well locations. The predicted concentration
is then used to evaluate the performance of the specific control strategies.

Based on the conservation of mass and momentum and with relevant initial and
boundary conditions, the discretized forward model for 2D non-gravitational solute

transport in saturated porous media can be written in an implicit form as:
Ft—l (xr ’xt-l’ut—l’a) =0 (4- 1)
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Here x, are vectors of state solutions that including head, velocity, and concentration,
evaluated ¢=1,...,N, . The vector u,_ is composed of controls (pumping rates) at
specific wells, at time ¢f—1. The vector @ is a vector of model parameters defined at
the discretized computational grid cells. In this work ot is specifically referred to as
hydraulic conductivity or its inverse, i.e. hydraulic resistivity. As shown in Chapter 2,
the vector functions F, | are bilinear functions in X and @ if the flow equations are
discretized using the mixed finite element scheme, and the transport equation is dis-

cretized using the upwind finite difference scheme.

In this work we assume there is uncertainty in the parameter vector 0/, and the
uncertainty will eventually result in uncertainty in predictions of x. The ensemble
closed-loop control framework presented here uses an ensemble of realizations

AM
{Oc’ } to represent the probabilistic distribution of O, where M is the number of
J
realizations in the ensemble. The propagation of the state variable xtj for the realiza-
tion o/ is determined by

=12 712

E{l(x{,xj u aj)=0 4.2)

The feedback from the real system consists of measurements of the states, in par-
ticular head and concentration at a few monitoring well locations. The relationship

between the measurement vector Z and the state vector X can be written as
Z, =g(x,)+ v, 4.3)

where v, is a vector of measurement noise. Since z is a vector of measured state va-
riables at particular locations, g is a linear function that simply identifies the mea-

surement locations. For realization o/, the measured output can be written as
z/ =g(x{)+v,’ (4.4)
42.2 Formulations of the Real-time Control Problem

In the example considered here the objective of solute transport control is to minimize
the total cost associated with aquifer cleanup. This includes 1) the cost of remedial

well pumping needed to remove solute, 2) ex situ treatment of the pumped groundwa-
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ter, and 3) a penalty cost related to the solute concentration at a target (e.g. municipal
water supply) well. Formally, the real-time stochastic control problem can be formu-

lated as a minimization problem in the form of:

minimize E[J, |z,,,u,,_, ] (4.5)
Won, -1
where
Np-t
J, =) Jiux,,u,,0) (4.6)

=t

Here, J is the contribution to the optimization objective function J, at the time step
72>t. Note that J/(x,,u,,a) is are random by virtue of its dependence on the random
parameter a and the random states x_. The notation J, |z,,,u,, , indicates that the ex-
pectation in (4.5) is conditional on knowledge of all previous controls and all mea-
surements available through time ¢#. Equation (4.6) recognizes that J, depends on x,
and a implicitly, through the model constraints (4.1).

The complete set of optimization problem constraints include the model con-

straints expressed in equation (4.1), as well as upper and lower bounds on u, :
ul<u <ut  r=t,..,N,-1 4.7

For deterministic control a is assumed to be perfectly known. There is no need to
condition on measurements, and the expectation operation drops out. The control

problem is then to seek a set of well pumping configurations {u,}i’;1 to minimize the

cost expressed in equation (4.6) for a particular known hydraulic conductivity distri-
bution, subject to constraints expressed in equation (4.1) and (4.7), as well as initial
conditions. For open loop control, a is assumed to be random with a known probabil-
ity distribution (or known statistical moments) but there is no measurement condition-
ing. In the deterministic and open loop cases, the entire control sequence can be com-
puted off-line, before the initial control time. For closed loop control, a is assumed
to be random with a known probability distribution (or known statistical moments)
and there is measurement conditioning. In this case, the control must be computed on-
line, as new measurements become available.

Gorelick et al. [38] describe an approach for solving a deterministic subsurface
control problem. Their objective is to minimize the total pumping rates subject to so-

lute concentration constraints at some specific locations. However, this approach
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doesn’t account for uncertainty in o, and thus lacks robustness in real field applica-
tions. Wagner and Gorelick [39] describe two alternative formulations for determin-
ing optimal well pumping configurations with uncertain conductivity. In this case the
objective is to minimize total pumping rates subject to so-called chance constraints on
the concentrations at specific locations. In this work the objective is a deterministic
function of the pumping rates, while the constraints are stochastic and dependent on
specific realizations of conductivity. In the first approach they generated an ensemble
of conductivity realizations and then minimized the objective function while simulta-
neously enforcing constraints for all realizations in the ensemble simultaneously.
Since the constraints must be satisfied for all replicates, including the most unfavora-
ble one optimal strategies from this formulation are conservative. The second ap-
proach is to solve the aforementioned deterministic optimization problem for each of
the realizations. If there are M realizations in the ensemble, this approach will result
in M sets of control strategies. For a single control variable, this approach can give a
probabilistic distribution of possible optimal control values, and thus the applied con-
trol value can then be determined by a specific reliability level. However, for multiple
control variables, there is no monotonic relationship between control variables and
reliability levels. The "optimal" control is then ambiguous.

In the problem considered here the objective is stochastic since it depends impli-
citly on the random parameter a. through the flow and transport model equations. The
expectation in the objective function can be approximated by the average taken over

all replicates in the ensemble:

Nrp-1
E[‘]t | zl:t’“l:l—l] = E{ Z J; (xrlt’“r’arlt ):|

T=t

(4.8)

M Nyl

~ —]\l—l-z Z J; (X1{|t’u7’ail’)

j=1 =t

where x’, is the state obtained by solving (4.2) with the parameter replicate a/, . The

Tt Tl *

notation 7 |¢ indicates that the state and parameter replicates at time 7 have been up-
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dated using measurements available through ¢. If 7 >¢ the state or parameter is a fore-
cast obtained from the augmented model equations.

The control solution obtained by solving this optimization problem is determinis-
tic if there is only one perfectly known replicate and there is no measurement condi-
tioning, so =0, xfl, =X, ,and a/, =a . If the control is open loop, there is an ensem-

ble of prior replicates to represent uncertain parameters but no measurement condi-

tioning, so x/

7|t

—x/ i =qf
=x/,and a), =a’ .

Equation (4.8) assumes realizations in the ensemble are equiprobable. The com-

plete real-time stochastic optimization problem at time # can be defined as
M Np-l1

min 3" 3 (x4 u,. a4 4.9)

WeNT j=1 7=t

subject to

Frj (X£+1|t ’Xilt’ur aaill ) = O
(4.10)

ul <u, <u
where j=1,...,M, and 7=¢,..., N, —1. After the optimization has been carried out
only the first control u, is retained. All future controls u,,,y, ;are discarded since
they will be re-computed with new measurements on subsequent time steps. This ap-
proach to real-time control is a stochastic extension of Model Predictive Control
(MPC).

At any given time ¢ the real-time control problem then seeks an pumping rate vec-
tor u, that minimizes the objective function defined in equation (4.9), subject to mod-
el constraints and upper and lower bounds imposed for each realization in the ensem-
ble. The new objective in equation (4.9) is one particular way to account for the im-
pact of uncertainty within the optimization problem. There are other objectives that
can be implemented under this framework, such as objectives that incorporates the
variance of the cost over all replicates or objectives that focus on worst-case costs. In

this work, however, we limit ourselves to the expected objective.
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4.2.3 The Adjoint Model for Calculating Gradients

The ensemble optimization problem can be solved using gradient-based methods,
such as Newton’s method, conjugate gradient methods, or the steepest descent me-
thod. Here we utilize the fmincon function in MATLAB with the interior point method
[40], which requires the gradients of the objective with respect to the control va-

riables, i.e.

f dJ} (4.11)

where u is a vector containing all controls u,y,_, . Here we define

() =Ji (% 0.0,
Nr-1 . (4.12)
I =2
rt
The gradients are essentially an average of the gradients dJ/ /du over the entire en-
semble.

We need to calculate individual dJ/ / du first. These gradients can be evaluated
using the finite difference method. However, this requires additional forward simula-
tions of the system model for each realization, and to obtain dJ} / du the total number
of evaluations equals the number of control steps remaining multiplied by the number
of realizations in the ensemble. For large problems, this approach is prohibitively ex-
pensive. A more efficient way to calculate the gradients dJ/ / du is achieved by the
use of an adjoint model [41]. The derivation of the adjoint model is closely connected
to the classical way to solve a constrained optimization problem.

Setting aside the lower and upper bound constraints, a new objective augmented
by the model constraints in (4.2) through the Lagrange multipliers A! for realization

Jj can be written as
NT—I

f{ = Z J; (Xi\nunaz{.]:)"'( 1]:+1 )T Frj (Xf+1|,,xf|,,u,,a£|,) (413)

7=t
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Here the vectors A/, are Lagrange multipliers for model constraints. Treatment of
other types of constraints is similar and thus omitted here. The first variation of the

augmented objective is then

5t =(M+( ,’;I)Tai'-j]'&!it
&‘[_a(ﬂ)l( LYy 6Ff’ﬁ-1} X, @14

i 7= i 1y f
o34, ) T xS () R E(Mw LY ‘;uiJa

o), %\ "o, ,
where there are no variations of @/, due to the fact that afl, is independent of u,. To
achieve optimality the terms involving 8x/,, 8A.,,, and Su, should all vanish. Note
that the first term in equation (4.14) automatically vanishes due to the fact that a
change in inputs does not affect the initial condition x;,. The fourth term in equation
(4.14) vanishes due to the fact that F/ = 0. The terms involving 6x/, and ox},, will
vanish if the following conditions are satisfied:

oo Sy | )
e W l t=t+1,...,N;y -1 (4.15)
(Ad,) =0

Equation (4.15) defines the adjoint model for realization j. To calculate the La-
grange multipliers 7\,{ the adjoint model must be solved backwards in time. If the ad-

joint model is satisfied then equation (4.14) can be written as

— AV i
5t/ =E[M+(M y Zﬁ’j}éur 4.16)

7=t auf T

Thus the gradients of the objective with respect to the controls are then
Joodel 8y .. J
szd&:(f)+@&yﬁ;

du, du, ou, ou,

Yr=t,..,Ny -1 (4.17)
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Detailed derivation could be found, for example, in [42]. For each realization, eq-
uation (4.15) and (4.17) can be used to calculate the necessary gradients. The gra-
dients of the objective for the whole ensemble then can be calculated using equation
(4.11). The interior point method is implemented to search for the optimal control
strategies until all gradients are sufficiently close to zero. This is a very efficient ap-
proach compared to the finite difference approximation. For each realization, only one
backward simulation of the adjoint model is needed to calculate the gradients.

Note that additional derivatives 6F/,/éx., oF//ox!, and OF/ /ou, are needed to
calculate the gradients. As shown in Chapter 2, the second-order expansion of the dis-
cretized equations during the derivation the reduced-order model has already included

those derivatives, and thus there is no additional effort to calculate these derivatives.

424 The EnKF for Ensemble Model Updating

An essential component of the closed-loop control framework is the model-updating
part, i.e., conditioning of the states and model parameters to measured data. Here we
utilize the ensemble Kalman filter to update the states and model parameters. There
are several advantages using the EnKF within the ensemble closed-loop control
framework. First, it is natural and efficient to use the EnKF here since we use the en-
semble to represent uncertainty in model parameters and the EnKF can update the
whole ensemble collectively. Second, the EnKF is able to characterize uncertainty
propagation for large-scale nonlinear systems. Third, with appropriate parameteriza-

tion methods, geological features are readily preserved during the EnKF updating.
The EnKF can be divided into two stages at each time step: the forecast of new
states x/,, for replicate j at current time z+1 based on updated states x/, and pa-

T+t

rameters o’

|t

at time 7 using the system model; and updating of the predicted states

to obtain conditional replicates x’ and o/

T+lj7+1 r+lr+1

and model parameters o’

T+t

x/

T+t

. . M .
based on the Kalman gain and perturbed observation ensemble {szl,} _, attime 7+1.
j=

The forecast step proceeds by applying the system equations to each of the replicates

i/ J J )=
Ft (Xr xrlt ’ur’arlt) =0
=0

e ‘ (4.18)
al

|t

aj

T+l
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where x’

T+t

indicate predicted states at time r+1 based on information available at

time 7, i.e. states and model parameters at time 7. x’, and o’

2 ;. denote state and pa-

rameter forecasts at time 7 conditioned on measurements at time . The second equa-
tion in (4.18) is an augmented equation to propagate static parameters forward in
time. The augmented equation is needed due to the fact that the states are augmented
by model parameters in the updating step such that the states and parameters can be
updated simultaneously. This can be easily accomplished by augmenting the state vec-
tor with uncertain parameters, that is

3]

Tt

At the model updating step the predicted states and model parameters in equation

(4.18) can be updated using the following equation [43]

: aug . aug . aug : . :
j —(y/ j J R -1 J . -
(Xr+1|r+1 ) = (xmp ) +Cov ((xmp ) Loy ) Cov (zr+l|1 Loy ) (dm Z ) (4.20)

where Cov(-,-) denotes the covariance between two arguments, and d_,, is the mea-
surement vector for the true system. z’ ,, are predicted measurements for realization

T+t

J , which follow
zi+1|: = g(xi+1|t ) +v, (4.21)

where v/, is the measurement noise for realization j.

To complete the updating procedure, the following initial conditions are needed:

x/ =x/
j“’ "] (4.22)
aop = ('XO

4.2.5 Ensemble Open loop and Closed-loop Control Strategies

The characteristic of open-loop control is that it does not use the feedback to deter-

mine whether or not the system output has achieved the desired goal. For the subsur-
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face transport control, the desired goal is the objective defined in equation (4.6). Ap-
plied pumping rates are intended for achieving cost minima. However, due to uncer-
tainty in model parameters, open-loop control strategies often fail to achieve this goal
in practice. To improve the robustness of open loop control strategies, an ensemble
that characterizes probabilistic distribution of uncertain model parameters can be used
to derive the optimal controls [13]. Formally, the ensemble open loop control strate-

gies are solutions to the following optimization problem:

1 M Nr-1 ) .
min—>" " J7(x}g,u;,alo) (4.23)
UgNT-1 M =1 7=0

subject to

Fr] (xi+1|0 s X£|0 sUg, a'i|0 ) = 0
(4.24)
u <u, <u’

where 7=0,...,N; -1, and j=1,..., M. Note that there is no model updating at time
0, and thus x/, =x/ and a/, =a’. The ensemble open loop control strategy Ug.y, 1 is
essentially derived at the initial time step based on the prior ensemble.

The closed-loop control utilizes feedback information to adjust current controls in
real time. In this implementation, the feedback information includes measurement da-
ta for the true system. Assume at time ¢ the states and model parameters have been
updated using equation (4.20) based on measured data available at time ¢. The new

controls for current time step ¢ can be obtained by solving the following optimization

problem:
1 M NT—l . .
min—>" " Ji(x/,u,,a},) (4.25)
ura M j=1 7=t
subject to

Frj (Ximn xilt SUz, ailt ) = 0
(4.26)
ul <u, <u!
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where 7=¢,...,Nr -1 and j=1,...,M . The new optimal controls u, for current time
step are then applied to the system. All future controls u,,,, are discarded since they
will be re-computed with new measurements on subsequent time steps.

4.2.6 Ensemble Closed-loop Control with Reduced-Order
Modeling

The ensemble closed-loop control requires evaluations of the system model during the
forecast step of the EnKF for each realization. Moreover, during the optimization pro-
cedure, there are usually a significant number of search steps, and for each step, the
system model is evaluated for each realization. Hence, for large-scale problems, the
ensemble closed-loop control is prohibitively expensive. In this work, we use a re-
duced-order to substitute the expensive full order model during forward simulations.
This create the possibility of apply the ensemble closed-loop control to large-scale
subsurface control problems.

A robust, efficient second order reduced-order model for 2D subsurface solute
transport has been derived and validated in Chapter 2. In this work, we implement the
reduced-order model in the forward simulations of the closed-loop control. The re-

duced-order system model can be written as ,
F/ (%,,%),,u,,6,)=0 (4.27)

where F denote reduced-order system equations. X/, and &fk are reduced representa-
tions of the states and model parameters, which follow
let ~ (DxTij',
I (4.28)
oy ~ D ay
Here, @ _is the projection matrix for the states and is derived from the POD method,
while @_ is the projection matrix for model parameters and is actually drawn from
the constant DCT matrix. Detailed introduction to the reduced-order model could be
found in Chapter 2 and thus omitted here.
The key step to apply reduced-order modeling to the ensemble closed-loop control

is to replace model constraints in equation (4.26) with equation (4.27) and propagate
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the reduced-order states X/, instead of the full order states in time. During the model-
updating step, the reduced representations X/, and &/, are updated using the EnKF
instead of the full order states and model parameters. For the optimization loop, the

objective function can now be evaluated as

1 & N _ .
J, zHZI Z Ji (@7 %),u,, 074, )
L (4.29)
ZH; Z Ji(%,u,,6,)

The adjoint model is then derived based on X/, and reduced model constraints defined
in equation (4.27). However, the procedure of derivation is exactly the same as the
full order case and thus is omitted here.

The objective, model constraints, and model-updating equations can all be ex-
pressed in terms of the reduced representations of the states and model parameters.
This is much more efficient that the full order case as long as the reduced-order model
is sufficiently robust. As shown in Chapter 2, the accuracy of the reduced-order model
mainly depends on the ability of the DCT basis vectors to span the relevant parame-
ters space as well as the ability of the POD basis vectors to span the relevant state
space. The DCT representation is sufficient as long as it can characterize the geologi-
cal features properly, while the ability of POD basis vectors depends on the snapshots
of states used to generate the basis. It is crucial to enrich the POD basis vectors suffi-
ciently such that the reduced-order model is accurate enough during the closed-loop
control procedure.

In previous chapters, a combined snapshot set of states and derivatives of the
states with respect to model parameters for several selected parameter configurations
in the ensemble is used to generate the basis vectors to ensure that the reduced-order
model is valid over the ensemble. In this work, it is necessary to ensure the POD basis
vectors to span the space corresponding to both parameter and control changes. To
this end, several control configurations are selected for the training runs of the full

order model to generate necessary snapshots. Those training control configurations
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are not arbitrary. Instead, to increase the possibility that the training control configu-
rations are close to the optimal control configurations for the true system, those train-
ing control configurations are actually optimal for the selected parameter configura-
tions. That is, each of the training control configurations corresponds to minimum
cost for a particular parameter configuration. If the training parameter configurations
have optimal control configurations close enough to the optimal control configura-
tions for the true system, then, as the ensemble tends to converge to the true system
with model updating, the POD basis vectors are then sufficient to span the state space
relevant to the optimization procedure. Generally the true optimal control strategies
are not identical to the ensemble closed-loop control strategies. Here we assume there
are close to each other. This is especially true for a convex optimization problem

where only one optimum exists.

4.2.7 Implementation Issues

Figure 4-2 illustrates the procedure of the ensemble closed-loop control with reduced-
order modeling. The whole process can be divided into two stages: offline training
and online closed-loop control. The offline training process of generating a robust re-
duced-order model has been elaborated in Chapter 2. Note that the training runs to
generate snapshots of states are performed for combinations of selected parameter
configurations and control configurations such that the POD basis vectors are suffi-
ciently enriched. The resulting second order reduced-order is deemed to be robust
during the ensemble closed-loop procedure and thus there is no updating of the re-

duced-order model during online simulations.
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Figure 4-2: Flowchart showing offline ensemble-based generation of a robust re-
duced-order model with order reduction in both parameter and state spaces, and on-
line closed-loop control of the system with ensemble updating of uncertain reduced-
order (RO) states and reduced-order (RO) parameters. Double lines indicate multiple
operations on replicates in the ensemble.

During online simulations, the controller solves an optimization problem defined
in equation (4.25) and (4.26) to obtain optimal pumping rates for the current time
step. Note that with reduced-order modeling now the objective is defined using the
reduced representations and the model constraints are substituted by equation (4.27).
The optimal control strategies are applied to the ensemble to generate necessary fore-
casts for the EnKF. Also, the optimal control strategies are applied to the true system

to generate measurement data. The EnKF then updates reduced representations of
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model states and model parameters. The conditional model states and parameters can
then be used to solve for optimal control strategies for the next time step by the con-
troller. In this ensemble closed-loop control loop, the EnKF updates uncertain model
states and parameters sequentially based on feedback from the true system, while the
controller adjust controls accordingly to steer the true system to approach minimum

cost.

4.3 Numerical Experiments

4.3.1 Experimental Setup

In this synthetic example, a 320 mx320 mx1 m porous domain is discretized into a
2D 32x32x1 uniform grid cell system. The size of each cell is 10 mx10 mx1 m. The
whole domain has the constant porosity of 0.2. Figure 4-3 shows the simulation do-
main and the locations of 4 pumping wells. The length of the simulation horizon is
400 days, which is divided into 4 constant intervals. Each of the intervals represents a
control step. The solute is injected into the domain at the mid-lower cells with a con-
stant rate of 5 m’/day and constant concentration of 50 mg/L for the first 200 days.
Here specific storage s =0 is used to represent steady-state flow conditions so the
head is constant over each control step. The flow equation has no water flux bounda-
ries on the east and west sides and constant head boundaries of 10 m and 0 m on the
south and north sides. The transport equation also has no solute flux boundaries on
the east and west sides, but has prescribed zero solute concentration boundary condi-
tions on the south and north sides. The dispersion coefficient is assumed to be con-
stant over the whole domain in all direction, and thus the transport equation is linear

for each control step.
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Figure 4-3: Experimental setup: simulation domain with 9 measurement locations
(blue diamonds) and 4 pumping well locations: Well P1 (black cross), Well P2 (red
cross), Well P3 (cyan cross), and Well P4 (magenta cross).

The measurements at the data assimilations step include head and pressure infor-
mation at 9 measurement locations indicated by the blue diamonds in Figure 4-3. The
measurements are taken at the end of control steps, which are day 100, 200, 300, and
400, and thus there are four EnKF updates during the simulations. In this study, the
measurements are from full order simulations using a synthetic true conductivity
field.

In this experiment, only well P1, P2, and P3 can be controlled, while well P4 is
used for drinking purpose and has a constant pumping rate of 10 m*/day. The control

objective for time step 7 is defined as

3
i (Xl 0l ) = D i+ wec (4.30)

i=1
where u,; is the pumping rate for the i-th well at time step 7, w is a weighting coef-
ficient, and c, 4, is the solute concentration for well P4 at time step 7. The first term
in (4.30) represents cost incurred by pumping while the second term penalizes the
amount of solute pumped out from well P4. The lower and upper bounds for pumping

rates are
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-50 m’/day <u,; <0 i=1,2,3 (4.31)
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Figure 4-4: Samples of hydraulic conductivity. (a) The true conductivity field. (b)
Five representative replicates in the prior ensemble.

The unknown parameters are the hydraulic resistivity for each cell of the discre-
tized domain. A synthetic true conductivity fields is generated using Gaussian indica-
tor simulator in the Stanford SGeMS. As shown in Figure 4-4(a), the true conductivity
generated by the Gaussian simulator is characterized by one high permeable channel
in the middle. The true conductivity field is used in the simulations to generate noisy
synthetic true measurements. The true conductivity field is also converted to a binary
image for the purpose of calculating Jaccard distances. As shown in Figure 4-4(a), for
the true conductivity field, the converted binary image has 1’s in the cells with
log(k) > 1.5, where k denotes the conductivity. All the other cells have zero values.
The channelized structures are retained after this conversion.

Reasonable probabilistic models of the conductivity field need to be constructed
before a successful EnKF implementation. An ensemble of 50 realizations of conduc-
tivity fields, which has the same probability distribution as the true conductivity field,
is generated using Gaussian indicator simulator in the Stanford SGeMS. The prior en-

semble used in experiments is a reconstructed ensemble from the simulated ensemble
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using DCT parameterization. The parameterization process is described in the follow-
ing subsection. Five of the resulting realizations are shown in Figure 4-4(b). We can
clearly see that the conductivity fields have high permeable and low permeable zones,

which create pathways for solute transport

4.3.2 Generation of the Reduced-Order Model

The reduced-order model uses reduced-dimensional DCT coefficients to represent
high-dimensional hydraulic conductivity. The DCT is performed for the entire prior
ensemble, and the resulting DCT coefficients are arranged in a descending order for
each replicate in the ensemble. The DCT vectors correspond to the first few (about
20) largest coefficients of each replicate are retained and the others are discarded.
Then all distinctive retained DCT vectors are combined to form the DCT projection
matrix for the ensemble. The process results in about 10% DCT basis vectors in the
projection matrix.

In the reduced-order model derivation 10 of the replicates in the ensemble are se-
lected for off-line full order simulations under 10 different control sequences. Each
control configuration corresponds to optimal control solutions for one of the replicate.
The simulations are done for each combination of the replicates and control configu-
rations, and thus a total of 100 training runs are needed. As discussed in Chapter 2,
these provide snapshots of states at different times for each selected replicate. Also,
derivatives of the head and velocity with respect to hydraulic resistivity are calculated
and collected as part of the snapshots for one of the replicates under 10 different con-
trol sequences. There are a total of 1024 columns of derivative vectors and thus the
snapshot matrices are expanded significantly. POD projection matrices can then be
obtained based on the snapshots to generate reduced representations of the states. To
obtain a compact representation of the states, the POD expansion is truncated at the
number of basis function terms that account for 99%, 93%, 93%, and 99% of the
energy in the head, x velocity, y velocity and concentration, respectively. This gives

reduced dimensions of 56, 103, 97, and 194, for these four variables, each of which
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has a full order dimension of about 1024. Detailed derivation of the reduced-order

model and validation of its robustness for the ensemble can be found in Chapter 2.

4.3.3 Control Comparison

This and the next subsections present concentration evolutions for the true conductivi-
ty field under various control sequences. There are several cases discussed here. The
first case is an uncontrolled case, where there is no pumping at Well P1, P2, and P3,
while Well P4 maintains the constant pumping rate. This is the reference case, indicat-
ing how the plume behaviors under head gradients incurred by boundary conditions as
well as pumping at Well P4. In the second case the true field is under optimal controls
derived by solving a deterministic optimization problem with perfect conductivity
knowledge. This case illustrates the best performance that can be achieved under all
scenarios. In the third case the plume is controlled by optimal pumping rates derived
by solving the ensemble closed-loop optimization problem defined in equation (4.25)
with full order model constraints. During the control process, the ensemble is updated
using the EnKF based on measured head and concentration. This case illustrates the
benefits of taking feedback to control the true system under uncertainty. Similarly, in
the fourth case the plume is controlled under ensemble closed-loop control strategies,
with reduced-order, instead of full order model constraints. This case can evaluate the
efficiency and robustness of applying reducing order modeling to the ensemble
closed-loop control framework. In the last case the control sequence is derived by
solving the optimization problem defined in equation (4.23) with full order constraints.
This is the ensemble open loop control case, where there is no EnKF updating and the

controls are purely based on the prior ensemble.
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Figure 4-5: Comparison of various control strategies with dark blue indicating optim-
al controls based on perfect conductivity knowledge, cyan indicating ensemble
closed-loop controls with EnKF updating using full order modeling, yellow indicating
ensemble closed-loop controls with EnKF updating using reduced-order modeling,
and brown indicating ensemble open-loop controls without EnKF updating using full
order modeling: (a) various optimal control strategies for Well P1, P2, and P3; (b)
corresponding minimum cost under various control strategies.

Figure 4-5 presents optimal control strategies under various scenarios. In Figure
4-5(a) the dark blue corresponds to the deterministic case where the true conductivity
field is known perfectly. It is shown that the pumping rates increase first then de-
crease at Well P1, which is located within the high permeable channel (cf. Figure
4-3). There is almost no pumping at Well P2, while there is a noticeable amount of
pumping at the last control step at Well P3. This indicates that the optimal control is
trying to drag the plume to the high permeable channel and then pump the solute from
Well P1. The cyan illustrates the ensemble closed-loop controls with full order model-
ing. Generally, the ensemble closed-loop control also tries to drag the plume to the
channel. However, there is no pumping at Well P1 during the second control step.
This is due to the fact that the EnKF hasn’t recover the channelized structure and thus

the controller determine there is no pumping for Well P1. This will be illustrated more
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clearly in the estimation subsection. On the contrary, the ensemble closed-loop con-
troller with reduced-order model constraints (yellow) suggests that Well P1 should be
pumped during the second control step and thus the strategies are closer to those in
the deterministic case. This is due to the fact that with reduced-order modeling, the
channelized structure is recovered earlier than the full order case (cf. Figure 4-9). The
brown illustrates the open loop control strategies derived by solving the optimization
problem defined in equation (4.23). Since it is purely based on the prior ensemble and
thus it is expected that the strategies are different from the previous cases where feed-
back is utilized.

Figure 4-5(b) presents the minimum costs corresponding to the aforementioned
control scenarios. Obviously, with perfect conductivity knowledge, the performance is
best in the sense that the defined cost in equation (4.30) is minimum. With uncertainty
in conductivity, the ensemble closed-loop control can achieve comparable perfor-
mance to the deterministic case. Note that the reduced-order case outperforms the full
order case for it can derive more comparable controls than the full order case (cf. Fig-
ure 4-5(a)). The ensemble open loop controller has the worst performance due to the
fact that it doesn’t take advantage of the feedback from the true system.

Another trivial way, which is called Monte Carlo approach [39], to derive control
strategies for the true system is based on individual replicate in the ensemble. This
approach solves a series of individual optimization problems, each with a single reali-
zation from the prior ensemble of conductivity. Hence, there are a total of 50 optimi-
zation problems to be solved. The resulting 50 sets of optimal controls are then ap-
plied to the true system to evaluate their performance. Figure 4-6 illustrates the cost
histogram for the true system after applying the 50 sets of controls. Obviously, the
resulting costs are quite diverse. None of the 50 sets of controls can outperform the
true optimal controls (indicated by the blue line). A few sets can outperform the en-
semble closed-loop controls (indicated by the cyan and yellow lines), while most of

them can outperform the open loop controls (indicated by the brown line). The results
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indicate that the ensemble closed-loop controls are more robust than the open loop
controls.

Note that although some of the 50 control sets have comparable performance to
the true optimal controls, it is hard to determine which control sets will achieve the
desired low cost. This is because there are a total of 12 controls in one single set and

thus it is impossible to set up a direct map from controls to costs for the ensemble.

Cost Histogram for True Conductivity Under Replicates’ Optimal Controls
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Figure 4-6: Cost histogram for the true conductivity field under individual replicates’
optimal controls with dark blue indicating minimum cost based on perfect conductivi-
ty knowledge, cyan indicating cost under ensemble closed-loop controls with EnKF
updating using full order modeling, yellow indicating cost under ensemble closed-
loop controls with EnKF updating using reduced-order modeling, and brown indicat-
ing cost under ensemble open-loop controls without EnKF updating using full order
modeling.

4.3.4 Controlled Concentration Evolutions

Figure 4-7 illustrates how the plume evolves under various control strategies. Fig-

ure 4-7(a) illustrates the uncontrolled case, i.e. the reference case. Without pumping at
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Well P1, P2, and P3, the plume is swept from the bottom to the top due to head gra-
dients. Figure 4-7(b) illustrates the optimal control case with perfect conductivity
knowledge. In this case the plume is dragged to the channel and pumped out from
Well P1 (cf. Figure 4-5(a)). Figure 4-7(c) illustrates the ensemble closed-loop control
case with full order modeling. Generally the situation is close to the deterministic
case, suggesting that with feedback the controller achieve comparable performance. A
noticeable feature of the plume on day 200 is that the front of the plume reaches Well
P4. This is due to this no pumping at Well P1 during the second control step. On the
contrary, in Figure 4-7(c) where the reduced-order model is utilized, the front of the
plume is dragged to Well P1 due to pumping. Figure 4-7(d) illustrates the ensemble
open loop control case. The controls are quite different from the previous three cases.
The plume is dragged to the right instead of the channel on the left. This is due to the
fact the based on the prior ensemble the controller cannot sense the channelized struc-
ture on an average base.

Figure 4-8 illustrates the concentration time series at Well P4. The controller seeks
minimum concentration at Well P4 with as little pumping as possible. Without control,
the concentration increases until almost the end of horizon. With perfect knowledge
of the conductivity field, the concentration can be suppressed a lot (compared dark
and dark blue lines) with affordable pumping rates. With ensemble closed-loop con-
trol and full order modeling, from day O to day 200 the concentration still increases
since there is no pumping for the first two control steps. After day 200, the concentra-
tion decreases a lot due to pumping. For the reduced-order case, the concentration has
already decreased during the second control step due to pumping. However, the con-
centration increases significantly after day 300 due to decrease in pumping rates. This
is due to the fact that the EnKF underestimates the concentration over this period (cf.
Figure 4-12), and there is a compromise between increasing pumping rates and de-
creasing concentration during this period. In the ensemble open loop control case, the

concentration decreases after day 250.

136



(a) True C (mg/L) without Controlling Well P1, P2, and P3 (Full Order)
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(b) True C (mg/L) under Deterministic Open Loop Control with Perfect Conductivity (Full Order)
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(c) True C (mg/L) under Ensemble Closed-Loop Control with EnKF Updating (Full Order)
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(d) True C (mg/L) under Ensemble Closed-Loop Control with EnKF Updating (Reduced-Order)
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(e) True C (mg/L) under Ensemble Open Loop Control without EnKF Updating (Full Order)

o

o

30 30 30 30 30
40
20 20 20 20 20
10 10 10 ~ 10 10 =
B ‘
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 0

Day 0 Day 100 Day 200 Day 300 Day 400

Figure 4-7: Concentration evolutions under various control strategies with well loca-
tions indicated by black (Well P1), red (Well P2), cyan (Well P3), and magenta (Well
P4) crosses: (a) uncontrolled plume (no pumping at Well P1, P2 and P3); (b) plume
under optimal controls based on perfect conductivity knowledge; (c) plume under en-
semble closed-loop controls with EnKF updating using full order modeling; (d) plume
under ensemble closed-loop controls with EnKF updating using reduced-order model-
ing; (¢) plume under ensemble open loop controls without EnKF updating using full
order modeling.
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Figure 4-8: Concentration time series at Well P4 under various control strategies.

43.5 Estimation Results under Ensemble Closed-Loop Control

In this section the EnKF results of ensemble closed-loop control cases (full order and
reduced-order) for estimating grid cell values of head, concentration, and conductivity
are presented. The EnKF updating is based on both head and concentration measure-
ments. Two cases are performed to evaluate the performance of the reduced-order
model. The first case is the one with the full order model used in the forward simula-
tions of the EnKF as well as the optimization, while the second case is the one with
the reduced-order model used in the forward simulations.

Figure 4-9 summarizes the conductivity estimation results. Figure 4-9(a) presents
the channelized true conductivity field. The EnKF conductivity ensemble means at

different times are shown for the reduced and full-order cases in each row of Figure
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4-9(b). The Jaccard distances are presented at the top of each plot to illustrate the dis-
similarity between the true conductivity filed and each estimate. From the figure it is
clear that the Jaccard distances gradually decrease and the channelized structure of
the conductivity field is gradually recovered for both full order and reduced-order
cases after the updates on day 100, 200, 300, and 400. The full order case illustrates
the ability of the EnKF to identify channelized geological structures. This capability
is mainly due to the strong correlations between measurements and uncertain conduc-
tivity, which help the EnKF updates converge to the true value, provided that the en-
semble is sufficient to characterize the correlation information. The reduced-order
case shows that the EnKF can also capture channelized structures in this case, indicat-
ing that the reduced-order model is sufficient and accurate enough to provide the in-
formation necessary for accurate EnKF updating. This illustrates that the reduced-

order is a promising alternative during the forward simulations of the EnKF.
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Figure 4-9: Conductivity estimation results: (a) the true log-conductivity field; (b) en-
semble mean log-conductivity with corresponding Jaccard distances using the full-
and reduced-order models.
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(a) True C (mg/L) under Ensemble Closed-Loop Control with EnKF Updating
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(b) Ensemble Mean C (mg/L) under Ensemble Closed-Loop Control
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Figure 4-10: Concentration estimation results: (a) true concentration evolutions under
ensemble closed-loop control using the full- and reduced- order models with well lo-
cations indicated by black (Well P1), red (Well P2), cyan (Well P3), and magenta
(Well P4) crosses; (b) ensemble mean concentration under ensemble closed-loop con-
trol using the full- and reduced- order models.

It is noticeable that the Jaccard distance of the reduced-order case on day 100 is
smaller than that of the full order case. On day 100, the EnKF has already recovered
the channelized structure while it is not the case with full order modeling. The reason
can be attributed to the fact that in the reduced-order case there are fewer unknowns
that need to be updated by the EnKF. The ratio between the number of the states in
the reduced-order model and the full order model is about 1 to 10. Since with re-
duced-order modeling, the EnKF can recover the channelized structure earlier than
the full order case, the controller can generated more comparable controls to the de-

terministic case where the conductivity is known perfectly (cf. Figure 4-5(a)).
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A close inspection reveals that it is difficult for the EnKF to capture the high per-
meable zones at the left and right boundaries of the domain in both cases. This is due
to the fact that there is no measurement information near the boundaries. In ideal cas-
es that the ensemble is sufficient to capture the correlations, the head measurements
can reveal more conductivity information for those cells near the measurement loca-
tions, while the concentration measurements can reveal more information for those
cells within solute propagation paths.

Figure 4-10(b) illustrates the ensemble mean concentration snapshots in the full
order and reduced-order cases. Compared to Figure 4-10(a), it is clear that in both
cases the EnKF can capture the shapes of the plume at different time steps, especially
on day 400 when the last update happens. Note that for those two cases, the control
strategies are different and thus the shapes of the plume are slightly different. On day
400, the shapes of the plume in both cases are very close to the ones predicted by the
true case. This is consistent with the fact that the filter performance improves over
time, as more measurements are collected. Note that the front the plume for the full
order case on day 100 is quite different from the true case as shown in Figure 4-10(a),
where the front has approaches closer to Well P4. This is why the controller deter-
mines there should be no pumping during the second control step for the full order

case, while for the true field it is not optimal.
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Figure 4-11: Time series of head predictions at the four well locations for replicates
(gray lines), the true conductivity field (red lines), and the ensemble mean (blue
lines): (a) ensemble open loop predictions using the full order model for replicates in
the prior ensemble without EnKF updating; (b) ensemble closed-loop predictions us-
ing the full order model for the replicates in the ensemble with the EnKF updating the
states and parameters at the end of each control step; (c) ensemble closed-loop predic-
tions using the reduced-order model for the replicates in the ensemble with the EnKF
updating.

In this problem head predictions are related to energy consumption of pumping
and the concentration predictions are related to water treatment cost in containment
transport cases. Figure 4-11 and Figure 4-12 illustrate head and concentration predic-

tions for replicates in the ensemble (gray lines), the controlled true conductivity field
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(red lines), the mean over the ensemble members (blue lines), and the uncontrolled
true field (magenta lines) at the four pumping wells. Gray lines in Figure 4-11(a) and
Figure 4-12(a) show predictions using the full order model under the ensemble open
loop control for the prior ensemble without the EnKF updating. The spreads of the
gray lines indicate the variability in the prior ensemble. Sufficient variability in the
prior ensemble is needed to properly calculate the covariance used in the EnKF updat-
ing. In the plots we can also observe significant disparity between the initial estimates
(ensemble mean indicated by blue lines) and the true predictions (red lines). However,
the true predictions fall inside the spreads of the ensemble. This suggests that the true
predictions fall in the space spanned by the replicates.

Gray lines in Figure 4-11(b) and Figure 4-12(b) show ensemble predictions using
the full order model with the EnKF updates on day 100, 200, 300, and 400. In the
plots the spreads of the ensemble shrinks noticeably over time compared to the un-
conditional case, indicating decreased variability or uncertainty in the ensemble. The
ensemble estimates (blue lines) gradually converge to the true values, indicating the
ability of the EnKF to capture the dynamic of the true system.

Similarly, Gray lines in Figure 4-11(c) and Figure 4-12(c) show predictions using
the reduced-order model with the EnKF updates on day 100, 200, 300, and 400. We
can observe behavior similar to Figure 4-11(b) and Figure 4-12(b), indicating the abil-
ity of the reduced-order to predicate system behavior. One noticeable difference be-
tween plots in (b) and (c) is that the spreads in (c) can be larger than those in (b) over
some control steps. This is primarily due to additional model errors introduced by the
reduced-order model. For example, a close inspection of the concentration predictions
at Well P3 in Figure 4-12(c) reveals that on day 300, there is a jump in the concentra-
tion curves of the replicates. This corresponds to the unsmooth plume in Figure 4-9(c),

which are due to predictions errors.
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Figure 4-12: Time series of concentration predictions at the four well locations for
replicates (gray lines), the controlled true conductivity field (red lines), the ensemble
mean (blue lines), and uncontrolled true conductivity field (magenta lines): (a) en-
semble open-loop predictions using the full order model for replicates in the prior en-
semble without EnKF updating; (b) ensemble closed-loop predictions using the full
order model for the replicates in the ensemble with the EnKF updating the states and
parameters at the end of each control step; (c) ensemble closed-loop predictions using
the reduced-order model for the replicates in the ensemble with the EnKF updating.
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Figure 4-13: Updated conductivity and concentration samples in the ensemble under
ensemble closed-loop control with reduced-order modeling: (a) the true log-
conductivity field; (b) the snapshot of the concentration filed on day 400; (c) five
samples of the conductivity field in the prior ensemble; (d) corresponding updated
conductivity samples on day 400; (e) samples of the plume on day 400 corresponding
to predictions based on the five sample prior conductivity fields without the EnKF

updating; (f) corresponding updated samples of the plume on day 400.
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Figure 4-13 illustrates some typical conductivity and concentration updated repli-
cates under ensemble closed-loop control with reduced-order modeling on day 400.
Figure 4-13(a) and (b) present the true conductivity field and the true plume shape on
day 400. Figure 4-13(c) shows five prior conductivity replicates in the prior ensemble,
and the plots in (d) show the corresponding five updated replicates, all on day 400.
The updated replicates are more similar than the prior samples. Also, the updates dis-
play channels that are more similar to those observed in the true field. This illustrates
the EnKF's ability to recover geological features. Similar behavior is shown in Figure
4-13(e) and (f). The update decreases the variability in the plumes displayed in these
figures. The updated plumes are generally closer to the true plume of Figure 4-13(b).

From the aforementioned results it is clear that the reduced-order model is an ac-
curate and effective alternative to the full order model during the forward simulations
in the ensemble closed-loop control. Another advantage of using the reduced-order
model is that the computation time has dropped significantly from about 10000
seconds to about 2000 seconds. In this problem, there are only about 1000 grids in the
discretized domain. The speedup could be more dramatic for higher dimensional
problems. This indicates the possibility of using a large size of ensemble to calculate
necessary statistics such that small sample errors of the EnKF could be reduced.
Moreover, it is feasible to perform ensemble-based optimization to obtain optimal
controls. The effectiveness and efficiency of the reduced-order model make it a prom-

ising alternative for large-scale problems.

4.4 Conclusion

The closed-loop control is a useful tool to steer the system in real time to approach
the desired goal under uncertainty. With uncertainty in model parameters, the derived
control strategies from model-based optimization often lacks robustness in real appli-
cations. The closed-loop control takes the advantage of the feedback from the system

and updates model states and parameters such that the uncertainty can be reduced

146



over time. The controls can be adjusted accordingly in real time to accommodate to
parameter changes. The resulting controls are then much more robust than open loop
ones.

In this application, an ensemble is generated based on prior information to
represent the uncertainty in model parameters. The EnKF is used to update model
states and parameters collectively, and robust optimization, which optimizes the ex-
pected objective, is used to generate the optimal controls in real time. The ensemble
representation is effective for large-scale complex systems. However, normally a large
ensemble size is needed for effective representations, and thus this approach is usual-
ly computationally prohibitive. To deal with this issue, a robust reduced-order model,
which incorporates reduced representations of both states and parameters, is utilized
to perform forward forecast in the ensemble closed-loop control framework instead of
the high dimensional model. The model parameters are parameterized using the DCT
method, which is effective in preserving geological features during statistical inver-
sion. To enrich the reduced-order model such that it is valid during the optimization
and the model-updating processes, selected parameter replicates and corresponding
optimal controls for the selected replicates are combined to generated snapshots of
states for derivation of POD basis vectors. The resulting POD basis vectors can span
the space of interest during the ensemble closed-loop procedure.

The ensemble closed-loop control with reduced-order modeling is tested by a syn-
thetic 2D solute transport problem. In this example the control objective is a compro-
mise between energy cost and containment treatment cost. Under conductivity uncer-
tainty, the ensemble open loop control, which disregards feedback from the true sys-
tem, can improve the performance slightly based on the prior ensemble but lack ro-
bustness. The ensemble closed-loop control, which takes advantage of measurements,
can adjust the control strategies in real time and thus is much more robust. Compared
the performance of the ensemble closed-loop control with full order modeling and re-
duced-order modeling, it is revealed that the reduced-order model is capable of pre-

dicting head and concentration propagations for the ensemble during the optimization
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and model-updating processes. Also, the fact that the controls resulted from reduced-
order modeling outperforms those resulted from full order modeling suggests the im-
portance of recovering geological features as early as possible. With reduced repre-
sentations in both state and parameter spaces, the reduced-order model is more effec-
tive during the model-updating process. Last but not least, a significant speedup can
be achieved by utilizing reduced-order modeling. Although the ratio between the
computation time of full order modeling and that of reduced-order modeling is only
about five in this example, it is expected that for larger problems, the efficiency can
be improved more significantly due to the fact that dimensional reduction will be
more dramatically for large-scale problems. Hence, the reduced-order model is a
promising and effective alternative to the full order model in applications of closed-

loop control.
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Chapter 5
Conclusions and Recommendations

5.1 Conclusions

This thesis addressed the application of reduced-order modeling to the ensemble
closed-loop control of subsurface solute transport. The closed-loop control is essen-
tially a combination of the model updating process and optimization process to adjust
control strategies in real time with reduction in model uncertainty. The resulting con-
trol strategies are then more robust in realistic applications.

However, the closed-loop control requires a large number of evaluations of the
complex subsurface model, and thus is usually computationally prohibitive for large-
scale problems. Reduced-order modeling is an efficient tool that can replace the orig-
inal high-dimensional model to predict necessary information with reasonable accura-
cy, and thus it is promising to combine closed-loop control with reduced-order model-
ing to open up the possibility of closed-loop control of large-scale problems.

Traditional reduced-order models often lack applicability and robustness in the
closed-loop control of subsurface flow due to the facts that: (a) the subsurface model
is usually nonlinear and thus it is difficult to derive an efficient reduced-order model
based on traditional linear model reduction techniques; (b) the reduced-order model
should be able to incorporate model parameter changes explicitly and efficiently,

which is crucial for uncertainty quantification in the closed-loop control; and (c) the
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reduced-order model should be able to incorporate control changes such that there is
no need to update the reduced-order model during online simulations. This thesis at-
tempted to address these issues by developing a robust second order reduced-order
model.

The reduced-order model for subsurface solute transport was derived favoring
specific characteristics of discretized governing equations. Discretizing the flow eq-
uations by the mixed finite element method resulted in a model bilinear in states and
parameters, and thus it was then possible to incorporate parameter changes explicitly
by expanding the equations around nominal parameters and states. The second-order
expansion is crucial to apply reduced-order modeling to uncertainty quantification for
it creates the possibility of dimension reduction in both state and parameter spaces.
The POD method provides an attractive mechanism to extract low-dimensional basis
that contains the key features of model states for complex systems, while the DCT
method is an efficient and effective method to project high-dimensional parameters to
the low-dimensional DCT coefficient space.

To enrich the POD and DCT basis vectors such that they sufficiently span neces-
sary spaces of interest, the reduced-order model was generated on an ensemble base.
This is consistent with the ensemble closed-loop control method proposed here. In the
ensemble closed-loop control an ensemble of realizations represents model uncertain-
ty in physical properties. The DCT basis vectors were selected from a constant matrix
by ordering the transformed DCT coefficients for each realization in the ensemble.
The selected DCT vectors correspond to leading DCT coefficients over the entire en-
semble and thus geological features of the random fields can be well captured. It is
found by including derivatives of model states with respect to parameters into the
snapshots of model states the resulting POD basis vectors are sufficiently robust over
the’entire ensemble. Significant improvement of model accuracy was observed by
comparing the performance of a reduced-order model with derivative information and

another one without derivative information.
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The efficiency and robustness of the resulting reduced-order model was verified
by applying reduced-order modeling to the forecast step of the ensemble Kalman fil-
ter to predict state propagations. In the 2D solute transport example the simulation
model contained significant uncertainty in hydraulic conductivity. With reduced-order
modeling, the high dimensional state and parameter spaces were both reduced to dra-
matically lower dimensional spaces where only about 3% states and parameters were
preserved. The EnKF then updated model states and parameters based on predictions
from the reduced-order model as well as measurements from the true system. After
several updates the channelizéd geological features of the true system was well cap-
tured. This illustrates that the reduced-order model can provide predictions that are
sufficiently accurate and robust for the EnKF updating of the entire ensemble, while
the computational burden can be reduced by as much as 95%. Robust reduced-order
modeling can then create the possibility of representing uncertainty in large-scale
complex systems by a large ensemble size. Small sampling errors, which are normally
treated with covariance inflation or location methods, can then be reduced to improve
the performance of the EnKF.

Another attractive feature of combining reduced-order modeling with the EnKF
for uncertainty quantification is that with reduced representations of both states and
parameters, the EnKF can recover the geological features better than full order model-
ing. This is due to the fact that the DCT can characterize the geological features well
and correlations between model states and parameters can be better captured with re-
duced representations. Hence, the reduced-order model is a promising alternative to
the full order model for the EnKF updating not only because it can reduce computa-
tion burden for large-scale problems, but also because it can improve the performance
of the EnKF by reducing system unknowns while preserving necessary features.

The reduced-order was then extended to incorporate control changes to make it
applicable to the ensemble closed-loop control. To enrich the POD basis vectors to
incorporate control changes samples of control configurations were generated by op-

timizing control performance for selected realizations of uncertain model parameters
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in the ensemble. With sufficient diversity in control configurations it is hoped that the
actual optimal control configurations for the closed-loop control fall inside the neigh-
borhood of the selected configurations. This targeted sampling method is expected to
target the actual optimal controls as accurate as possible with as little computation
burden as possible for training runs. The numerical example presented in this work
has proven this method is effective for generating a robust reduced-order model in the
ensemble closed-loop control of 2D solute transport. This numerical example has also
proven that the closed-loop control strategies derived by reduced-order modeling are
more robust under uncertainty to achieve good performance with reduced computa-
tional burden. Hence, the reduced-order model can serve as an effective and efficient
tool for robust control of complex systems under uncertainty.

It has been shown that it is crucial to capture geological features as early as possi-
ble to improve the performance of closed-loop control strategies. With reduced-order
modeling, the geological features can be well captured at early control steps and thus
the resulting control strategies have superior performance, provided that the reduced-
order model is sufficiently accurate and robust during online simulations. Overall,
combining reduced-order modeling with the ensemble closed-loop control can provide
an accurate, efficient, robust, and effective option for robust control of large-scale

complex systems.

5.2 Thesis Contributions

The original contributions of this thesis can be summarized as follows:

(1) Derivation of an efficient and robust second order reduced-order model for
subsurface solute transport. The reduced-order model can incorporate state and para-
meter changes explicitly, and thus it is possible to utilize reduced representations for
model states and parameters simultaneously. The reduced-order can be used to im-

prove computational efficiency to evaluate uncertainty propagation for large-scale so-
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lute transport problems. Also, it can facilitate stochastic analysis of uncertain model
parameters with reduced representations.

(2) Addressing the aforementioned small sample error problem of the EnKF by
improving the efficiency of forward simulations using the reduced-order model. This
is the first attempt to address computational burden of the EnKF by reduced-order
modeling. Limited ensemble sizes will introduce significant small sample errors and
cause divergence of the EnKF updates. Reduced-order modeling creates the possibili-
ty to use a large ensemble size for large-scale problems, provided the reduced-order
model is sufficiently robust. It has been shown that reduced-order modeling can also
improve the performance of the EnKF by reduced representations of states and para-
meters.

(3) Development of an ensemble closed-loop control framework with reduced-
order modeling for robust subsurface transport control under uncertainty. The ensem-
ble closed-loop control adjusts control strategies in real time to account for the EnKF
updates. It has been proven to be robust under parameter uncertainty for subsurface
solute transport. However, due to computational burden, it is infeasible to apply en-
semble closed-loop control to large-scale problems. With reduced-order modeling, the
computational burden can be reduced significantly, suggesting possibility of large-

scale applications.

5.3 Recommendations

In reduced-order modeling of subsurface solute transport the full order velocity vec-
tors need to be reconstructed during each control step due to the fact that with upwind
finite different discretization of the transport equation, the resulting equations are
nonlinear in model states, and thus it is infeasible to perform a low order expansion.
This procedure will deteriorate the efficiency of the resulting reduced-order model. To
overcome this shortcoming, a reduced approximation of nonlinear terms in the equa-
tions can be adopted to avoid reconstruction of high-dimensional states. This can be

achieved, for example, by the discrete empirical interpolation method (DEIM) [1],
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which can be treated as a modification of the traditional POD method with ability to
reduce dimensions for general nonlinear equations. With sufficient training of the
POD basis, it is possible to reduce the computational burden of the transport equation
further by the DEIM while preserving reasonable accuracy for the ensemble closed-
loop control.

The resulting discretized flow equation by the mixed finite element method bears
a bilinear form, and thus it is possible to reduce dimensions of model states and para-
meters simultaneously. However, for more complicated multi-phase transport prob-
lems the discretized equations usually have higher order nonlinearity and thus addi-
tional effort is needed to perform model order reduction in state and parameter spaces.
A possible option is to adopt the idea of the piecewise-polynomial representations of
nonlinear terms [2] and use a piecewise second-order representation of nonlinear
terms in the multiphase model. This is an extension of the trajectory piecewise-linear
approximations [3, 4]. The flow equations can still be discretized using the mixed fi-
nite element method and the resulting equations have additional dependency on satu-
ration. This approach has the advantage that the velocity can be calculated more accu-
rately for unsmooth permeability fields.

It is noticeable from the numerical examples presented in this work that the re-
duced-order model adds additional model errors during the EnKF updates. It is mainly
due to insufficiency of the POD basis to span necessary spaces in the process of
closed-loop control. To reduce model errors the greedy sampling method for selection
of snapshots in high-dimensional space proposed by Bui-Thanh [5, 6] can be adopted
here. Note that this method requires a number of optimization procedures to search
for worst cases in the parameter space and thus the training process is usually compu-
tationally extensive. To extend this method to the ensemble closed-loop control a
modification must be made to avoid unnecessary computational burden while im-
proved accuracy can be achieved. For example, combinations of samples of control
configurations and the ensemble of uncertain model parameters can be proposed to
find the worst combinations. The reduced-order model can then be improved by in-
corporating the snapshots of the selected cases. Note that during this procedure opti-

mization is not necessary, and predicting state propagations for each combination us-
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ing a proposed reduced-order model can efficiently approximate the errors between
the reduced-order model and full order model.

In the application of reduced-order modeling to the ensemble closed-loop control
a relatively small-size example is presented in this work. It is expected for large-scale
problems more dramatic speedup can be achieved with reduced-order modeling.
However, significant computation burden is required to generate the reduced-order for
high-dimensional problems, partly because the POD method requires singular value
decomposition of huge snapshot matrices. This issue can be addressed by clustering
snapshots to eliminate redundant snapshots that are sufficiently close to each other
[7]. Another bottleneck to generate the reduced-order model efficiently is evaluating
the Kronecker product of two projection matrices for the second-order term in the ex-
panded equations. However, since the Hessian matrix for the second order term is
sparse and constant, it is then possible to avoid calculating the whole matrix of the
required Kronecker product [8]. With improved efficiency to generate the reduced-
order model, applying reduced-order modeling to more realistic large-scale control

problems becomes more promising and feasible.
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