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ABSTRACT

While it is critical that nuclear plants frequently inspect their facilities for cracking, corrosion or

other failure modes, humans cannot safely perform these tasks due to the hazardous conditions

within the tanks and piping systems. In response, the d'Arbeloff Laboratory in the Mechanical

Engineering department is designing a compact submersible robot that is capable of precise

navigation and maneuvering in order to detect defects within water filled piping systems. The

robot is spheroidal with a smooth surface and no external appendages. It propels itself with

centrifugal pumps which suck in water from the environment, and pump it out in various

directions.

This thesis covers the design and implementation of the software, electrical, and a few

mechanical systems of the robot. Specifically, it details the programming techniques for the

microcontroller and graphical user interface code, circuit board design, wiring, and

waterproofing. A robot prototype was built, and experiments have given useful data to construct

a model to supplement the field of underwater robotic design.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

As nuclear powerplants age, their components degrade and require frequent inspection

and maintenance. Corrosion at metal joints and pipe leakage are examples of the

safety challenges that exist today. Typical inspections involve shutting down the

reactor and then inspecting critical areas. The desire to make these inspections

more efficient has created a growing interest in robotic inspection techniques. Several

research projects on external pipe inspection, such as those by Mackenzie [1], and

Buckingham [2], have been reported.

Despite these advancements there is an increasing need for direct inspection of

possible corrosion sites and cracks from inside the pipes and reactor itself. Robots

that can carry cameras and other sensors directly to the inspection site can provide

additional valuable information. To this end several snake-like robots from both

industry and academia have been developed for deployment inside the water filled

piping systems of nuclear reactors [3].

An alternative approach is to use small underwater Remotely Operated Vehi-

cles (ROV) inside the water-filled pipes that can travel deep into the piping systems

and around corners. Several companies have developed similar underwater vehicles,

however the presence of cables remains a key challenge. Cables are used for commu-

nication and power transmission, but long cables can interfere with the dynamics and
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control of small underwater vehicles. The author's research group envisions that the

use of tetherless compact ROVs with a high level of maneuverability has the potential

to further improve the direct inspection capability of nuclear power plants.

1.2 Robot Description

Robots intended for use within the nuclear reactor environments are subjected to

very strict requirements. We will focus on three key functional requirements outlined

below as a valuable starting point for the research and development of prototype

direct inspection robots.

1. Untethered: Tethered underwater robots have been developed for nuclear power

plant inspection. Use of a tether resolves many technical challenges that an untethered

vehicle design has to overcome, and will be a practical solution to many inspection

problems. However, tethers limit accessibility of the vehicle, as cables may get tan-

gled with various appendages and obstacles. Furthermore, a long tether limits the

maneuverability and control fidelity of the vehicle. Finally, maintenance and storage

of long cables is costly and troublesome.

2. Compact, tangle-free body shape: For accessing a confined area the vehicle

must be compact. To this end, components must be internal, electronics must be

miniaturized, and battery size must be minimized. Batteries tend to comprise a large

fraction of the total mass and volume, so making the vehicle efficient through de-

sign and controls is essential. Furthermore, to avoid interference with the existing

structure and minimize the chance of getting stuck, the body of the vehicle must

be smooth and have minimal appendages. Streamlined shapes without external pro-

pellers or rudders are therefore a desirable approach.

3. Precision low-speed maneuvering: The vehicle must be able to deliver sensors

and cameras precisely to a specified inspection site. Precise multi-axis positioning

and maneuvering are required for the exploration and inspection of confined spaces

and complex environments such as piping systems. Additionally, in order to carry

out sophisticated visual inspection, high-precision control is necessary. Moreover,
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due to low video frame rates, these inspections must be performed at low enough

speeds for the operator to sufficiently evaluate the images and conditions. Low-speed

maneuvering presents unique challenges since control surfaces such as fins and rudders

scale with the square of velocity. Also, at very low speeds propeller thrusters may be

commanded to only rotate a few times. This can cause them to act in a manner that

is difficult to control ([4], [5]).

Our new robot design concept addresses all three of these important requirements;

the vehicle is designed to be tetherless, compact and streamlined, and capable of

precision low-speed maneuvering (Fig. 1-1). The robot is spheroidal with a completely

smooth outer shape and has 5 degrees of freedom. This is achieved by using central

centrifugal pumps that draw in fluid and then expel it at high velocity from various

exit ports depending on the desired direction. High speed valves are used to switch

the direction of the jets. Previous work by our group has outlined the fluidic valves

which we refer to as Coanda Jet Devices (CJD) [6], and provided preliminary analysis

on how they can be used for the maneuvering of underwater vehicles. This paper will

next review the Coanda Jet Device and outline the relevant models used for analysis.

Figure 1-1: Photographs of the prototype robot.
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1.3 Pump Valve Architecture

The Coanda Jet Device is a fluidic valve based on the Coanda effect. As Figure 1-2

illustrates, a flow enters the device at the inlet I, and the control ports C1 and C2 are

used to control the exit flow. If control port C1 is closed while C2 is opened to ambient

pressure, the jet will exit E 1 . If control port C2 is closed and C1 is opened the flow

will exit E 2 . This phenomenon is based on the Coanda Effect [7], and allows high

speed switching of jets with very simple and compact hardware. A Computational

Fluid Dynamics (CFD) image is also provided in Figure 1-2. Note how the jet bends

completely and exits only from the right side exit. For further details on the device

design and underlying physics, see [6], [8].

Exit E1 E

Control Port Control Portr
C1 - C2

Inlet I

Figure 1-2: A schematic diagram (left) and a CFD image of the CJD design (right).

One use of the CJD is to apply the device directly to a centrifugal pump and

therefore allow the centrifugal pump to provide a jet in two directions (Fig. 1-3).

Centrifugal pumps hold several advantages: they are mechanically simple, commer-

cially available at a range of size scales, and they are driven by DC motors and can be

combined with simple and compact drive electronics. The key innovation is that this

combination will be lighter than simply combining centrifugal pumps together. The

bearings, seals, motor and gearbox that comprise most pumps can be substantially

18



heavier than a simple plastic CJD and its associated switching mechanism.

Coanda Jet Device

Centrifugal Pump

Figure 1-3: A schematic diagram of pump-valve architecture (left) and a photo of the
physical prototype (right).

1.4 Outline of Paper

This paper begins with an overview of the electronic hardware needed in the de-

sign, detailing each component used in the robot, as well as the printed circuit board

(PCB). Chapter 3 discusses the incorporation of the electronics within the actual

robot, including waterproof housing. Chapter 4 describes the low level software con-

trol programmed on the robot's microcontroller. Chapter 5 explains the high level

software such as the graphical user interface (GUI) and data processing. Chapter

6 shows the implementation of the electrical and software systems within a robot

prototype. Finally Chapter 7 discusses the conclusions and details for future work.
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Chapter 2

Electronic Hardware

2.1 Microcontroller

A microcontroller is a small computer on an integrated circuit, often containing a

processor core, memory, and programmable inputs and outputs. They are used in

automatically controlled products and devices, such as automobile engine control

systems, implantable medical devices, and other embedded systems. Due to their

relatively small size and cost, microcontrollers make it economical to digitally control

devices and processes. Our design uses an onboard mixed signal microcontroller

capable of integrating analog components needed to control non-digital electronic

systems. It handles the low level logic, activating each component when necessary,

creates and deciphers the radio signals sent and received, coordinates pump and

actuator behavior, and handles the information from the onboard gyro.

Specifically our robot is equipped with an Arduino Pro Mini 328 (Fig. 2-1). This

microcontroller is thin (0.8mm) and has a small footprint (0.7x1.3 inches). Designed

by SparkFun, it is a 5V Arduino running the 16MHz bootloader. It features USB

connection off board, a reset button, 5V regulator, over current protection, reverse

polarity protection, DC input up to 12V, and on board Power and Status LEDs [9].

It also offers 4 analog and 13 digital pins which is enough to interface with all the

other components.
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Figure 2-1: Onboard microcontroller used in our robot design. Its small size and large
feature set made it an ideal choice for our application.

2.2 Radio Transceiver

A radio transceiver is a single unit which contains both a receiver and a transmitter,

capable of sending and receiving radio signals for communication. It allows our design

to be tetherless, sending commands to the robot and receiving data (such as position

or camera data) without the use of wires. Our robot uses an easyRadio Advanced 433-

4MHz multi-frequency transceiver (Fig 2-2). easyRadio Advanced modules include

the ability to change bandwidth of the radio from 19.2KHz down to 12.5KHz, which

means narrow-band performance on a wide-band budget. They also feature temporary

channel/power level selection, allowing the user to scan other channels without storing

the settings in internal memory, free flash firmware upgrades that can be quickly

programmed to make a future proof solution, and temperature compensation for

frequency accuracy less than +/- 1KHz over full temperature range [10].

2.3 Motor Driver

The motor driver governs the performance of the motor in some predetermined man-

ner. It might include a manual or automatic means for starting and stopping the

motor, selecting forward or reverse rotation, selecting and regulating the speed, regu-

lating or limiting the torque, and protecting against overloads and faults. Our robot

uses two different motor controllers.
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I I IlliflI
Figure 2-2: High-sensitivity radio transceiver used to wirelessly communicate with
the robot.

2.3.1 TB6612FNG Dual Motor Driver Carrier

The TB6612FNG (Fig. 2-3) is a dual motor driver for interfacing two small DC

motors to a microcontroller (Arduino). It uses MOSFET-based H-bridges as opposed

to BJT-based H-bridges commonly used in older drivers. MOSFET-based H-bridges

are more efficient, allowing more current to be delivered to the motors and less to

be drawn from the logic supply. The small breakout board gives direct access to

all of the features of the TB6612FNG chip and adds power supply capacitors and

reverse battery protection on the motor supply. Each of the two motor channels has

two direction control pins and a speed control pin that accepts a PWM input with a

frequency of up to 100 kHz [11]. This motor driver is used to control the two drive

pumps that circulate fluid throughout the robot.

+ 0.6"+ n

Figure 2-3: Dual motor driver used to control the robot's two drive pumps.
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2.3.2 Qik 2s9v1 Dual Motor Controller

The Qik 2s9v1 (Qik) (Fig. 2-4) is a second-generation dual serial motor controller.

The compact board allows the microcontroller to drive two small, brushed DC motors

with full direction and speed control. Improvements over the previous generation in-

clude high-frequency PWM to eliminate switching-induced motor shaft hum or whine,

a robust, high-speed communication protocol with user-configurable error condition

response, and reverse power protection on the motor supply [12]. It also features two

on-board indicator LEDs (status/heartbeat and serial error indicator) for debugging

and feedback. Two of these motor drivers are used to control the four flapper-motors

on the CJDs.

1.2"
1.0"

0.7"
eqi 2sv e ee ae ee

Figure 2-4: Dual motor driver used to control the flappers on the CJDs.

2.4 Gyroscope

A gyroscope (gyro) is an electronic, microchip-packaged MEMS (micro-electro-mechanical

systems) device for measuring or maintaining orientation, based on the principles of

angular momentum. When the gyro is turned at a steady rate about its input axis,

a torque is applied to the spin axis. This causes the gyroscope to precess about the

output axis through a damping fluid that resists motion. The rate of precession is di-

rectly proportional to the rate of turn of the gyroscope about its input axis. Through

integration, the total angle of movement about the output axis will be proportional

to the speed and length of time the input axis is turning.

Our design features a two-axis gyro, which we use to measure rotation rates about
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the pitch and yaw axes of the robot. Specifically we are using a a basic breakout

board for the ST LPY510AL dual-axis gyro (Fig. 2-5). Two separate analog voltage

outputs for each axis provide angular velocity ranges of 100 deg/s and 400 deg/s.

This board has a 3.3V regulator for easy integration with the 5V components we are

using, includes a low-pass filter on each output for noise reduction, and has an overall

size of half a square inch [13]. Data taken from this gyro is transmitted from the

robot to the operator's computer for position and speed analysis.

Figure 2-5: Two-axis gyro that measures rotation rates in the pitch and yaw axes.

2.5 Pump

Centrifugal pumps were chosen as the basic propulsive component due to their me-

chanical simplicity, availability at small size scales, and the ease of use with electronic

circuitry. However, one common issue with some centrifugal pumps is that they are

not reversible. This means that the pump can only provide force in one direction and

will need to be combined with a second one in order to achieve bi-directional forces.

With a reversible pump, the exit ports can be designed to provide forces in two di-

rections. Our group has developed a retro-fitted pump design to achieve this while

eliminating backflow (fluid loss through the unused exit port). Specifically our design

uses two waterproof TCS M400S micro centrifugal pumps running on 12V (Fig. 2-6).
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Figure 2-6: The two centrifugal pumps used to suck in water for the valve system.

2.6 DC Motor

Four small DC motors are used as the switching mechanism for the CJDs. Waterproof

TCS M200S micro centrifugal pumps were chosen due to their small size. The top

housing and impellers were removed and replaced with a custom flapper attachment

to open and close the control ports. The right image in Figure 1-3 shows a valve

prototype.

2.7 Battery

As mentioned in the Introduction, batteries often comprise a large portion of a robot's

mass and volume. Our design uses lithium polymer batteries (LiPo) because of their

high power density and small weight. They are also generally cheaper than lithium

ion batteries and come in a wide variety of shapes. LiPo batteries are packaged in

pouch cells. Unlike lithium-ion cylindrical cells, which have a rigid, heavy metal case,

pouch cells have a flexible, light, foil-type case. Our current robot uses a Thunder

Power RC G6 Pro Lite 25C Series LiPo Battery capable of 250mAh at 11.1 volts (Fig.

2-7).

26



1.54"

Figure 2-7: The onboard battery that powers the robot.

2.8 Circuit Design

With all of the components chosen, an electronic schematic was designed to appropri-

ately wire the circuit as a whole (Fig. 2-8). This was done in CadSoft's Eagle software

program for easy manipulation, editing and error checking. A fuse was added to the

schematic to prevent short circuits from damaging the electronics. Similarly, other

basic electronic components were placed in the circuit: capacitors to reduce electrical

noise, voltage regulators to control the voltage supplied to components, mosfets for

electrical switching (used to change the direction on the pumps), and headers to plug

in the motors and pumps.

After all the components were laid out, a circuit board was designed, again within

Eagle. Use of a PCB greatly reduced the amount of wires needed to connect electrical

components, decreasing the overall mass and size, and avoiding tangles. Components

were packed and configured to minimize the board's overall footprint. To this end,

a multi-layered architecture was used to allow certain chips to overlap other chips

or small components. The board's final dimensions were 1.9x1.65 inches (Fig. 2-9).

The board's data files were sent to a fabrication house, and, after delivery, it was

populated (Fig. 2-10). Note the layered architecture; several areas of the board have

three tiers.

A second board (Fig. 2-11) featuring an extra motor driver (another Qik) was

designed and created for a later robot design that uses a propeller for forward actu-

ation.
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Figure 2-8: A schematic of the electronics within the robot.

+-+-+--+-+- * I165"

Figure 2-9: The circuit board layout for the electronics.
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Figure 2-10: The populated circuit board for the robot prototype. Note the layered
design to minimize size.

Figure 2-11: The populated circuit board for a propeller-actuated robot prototype.
This board has an additional Qik motor driver.
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Chapter 3

Incorporation of Electronics into

the Robot

3.1 Electronics Housing and Wiring

With the electronics assembled onto a single, compact PCB, we next considered

incorporating it into the overall robotic design. Other members in our group had

already developed the shape, size, and configuration of the valve architecture (Fig.

3-1), reserving a large space (nearly half of the entire design) for electronics and wires

(Fig. 3-2). To determine the exact amount of space needed, CAD models of the

electronics were designed in Solidworks and manipulated within the structure. It was

determined that only the center 2.25 inches were necessary. A box-like structure was

designed to adequately constrain the electronics (extra space would allow them to

slide around, altering the robot's center of gravity during operation). The top of the

box was designed to interface with a previously purchased water-tight lid.

3.2 Waterproofing

One of the most important aspects of the design was the waterproofing of the elec-

tronics. Several methods were considered, such as conformal coating and potting, but

these encase the electronics and prevent further alteration. Our group wanted the
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Figure 3-1: A CAD model of the robot design. Note the streamlined shape and lack

of appendages.

Figure 3-2: A CAD model of the space reserved for electronics.
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freedom of removing or replacing components within the circuit (for example remov-

ing the Arduino to program it, unplugging the pumps or certain motors, recharging

the battery, etc.). We decided to create a waterproof box-like structure with a re-

movable top (Fig. 3-3, center). We had used commercially bought watertight boxes

for previous prototypes and test beds due to their availability and low cost. For the

final robot prototype, we designed a custom box that would minimize unused space

and conform to the robot's contours. The top of the box matched the commercially

bought boxes, allowing us to use the original gasket-lined tops.

Four pegs were placed on the sides of the box to snap together with the two outer

sides (Fig. 3-3), making up the top half of the robot. Small slots were also placed

on the sides of the box to thread the wires for the pumps and motors. This housing

was printed on a high resolution stereolithography 3D printer out of a waterproof

composite. After fabrication the wires were fed through, and the slots were sealed

with epoxy.
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Figure 3-3: Models for the electronics-half of the robot. The central box is fabricated
from waterproof material, snaps together with the two sides, and prevents free motion
of the electronics.
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Chapter 4

Low Level Software Control

4.1 Introduction

The Arduino microcontroller uses the Arduino programming language and the Ar-

duino development environment. A great benefit of programming in Arduino is the

open-source support and resources available online. Arduino has a large online com-

munity of hobbyists, artists, and designers who often upload their work, code, and

designs. Furthermore, several hardware manufacturers, and general users, offer li-

braries (files of code written in C or C++ which provide extra functionality, such as

the ability to control an LED matrix, or read an encoder, etc. [14]) for use with their

hardware. Our code uses a library to improve the Arduino's control of the Qik motor

drivers. Additionally, to save programming time, the code was written to be used with

both robot designs (with and without propellers). For this reason it communicates

with three Qiks and can control two, optional propellers.

4.2 Previous Work

One of our group's members, Megan Roth, previously wrote a control code for a sim-

pler robot prototype. It read single-character inputs into the Arduino environment's

serial command window to toggle a light, swim straight or turn at a constant rate,

or stop. I built upon her work, keeping much of her setup code, as well as her use of
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characters to trigger certain actions.

4.3 Program Initialization

Each time an Arduino program first runs, all pins to be used, whether digital or

analog, must be declared as inputs or outputs. Our code, specifically, also needs to

establish communication with the three Qiks upon startup. This requires assigning

three digital pins on the Arduino for each Qik (one to transmit, one to receive, and

one to reset the signal), using nine of the 13 digital pins available. However after

the initial setup, the Qiks no longer need to be reset, creating three unused pins.

To utilize these pins, the code first establishes communication with the Qiks, then

reassigns the reset-pins to be used with other components. Using this priority-based

juggling of pins, our single Arduino board can interface with a greater number of

sensors and actuators. Table 4.1 shows the pin assignments of the Arduino. Pin

numbers preceded with an 'A' are analog pins; all others are digital. The starred

pins are capable of outputting a pulse-width modulated (PWM) voltage signal. To

adjust the speed of the pumps, giving us an adjustable force, the pumps needed to

be connected to PWM pins. The gyro outputs an analog voltage signal, requiring it

to be connected to an analog input pin.

Table 4.1: Pin assignments on the Arduino. 'A' denotes an analog pin; all others are
digital. '*' denotes PWM output capability.

Pin Final Assignment Original Pin Final Assignment
Assignment

2 Qik1 receive 9 Propeller1 direction
3* Qik1 transmit 10* Qik2 receive
4 Qik3 receive 11 Qik2 transmit
5* Pump1 voltage Qik1 reset 12 Qik3 transmit
6* Pump2 voltage Qik2 reset 13 Propeller2 direction
7 Pump1 direction Qik3 reset AO Gyro X-axis
8 Pump2 direction Al Gyro Z-axis
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4.4 Radio Communication

The ability to control the pump voltage allows control of the drive speed, an imper-

ative feature of a nuclear inspection robot. The original code did not allow the user

to adjust the pump voltage. Each time the appropriate key was pressed, the robot

would propel forward at the same speed. Our goal was to send a number (between 0

and 255) within a radio signal to the Arduino, which corresponds to the pump voltage

(between 0 and 5 volts). Unfortunately sending numeric commands serially to the

Arduino is not very intuitive. The Arduino reads each command as a string of ASCII

characters and converts these into the appropriate decimal value. (Figure 4-1 shows

a conversion table between decimal and ASCII.) Because of this, sending the number

"125" is read as "495053".

4.4.1 Previous Work

After a bit of online research, I found an Arduino clock program by Rob Faludi that

decodes a 15-character input-string (of the format "6*20120608102212" for the year

2012, month of June, day the 8th, hour 10, minute 22 and second 12) sent via an

XBee radio into six integer variables that hold the current year, month, day, hour,

minute and second [15]. His method is summarized below.

Setup and Wait for Trigger Character

First clear the serial buffer before reading new data. Create an empty string (input-

String) to hold the time value when it is read. Declare and initialize a variable to

track whether the string has all valid characters, and declare and initialize a byte to

read in serial data. Set the current time as the start time, and force the program

to timeout after one second. Now read data and wait for an asterisk character (the

trigger character).
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Figure 4-1: A conversion table from ASCII characters to other values.



String Validation

If the start character is read before a timeout, declare and initialize a variable to track

whether the string has all valid characters. Update the start time to the current time,

and again timeout after one second. Wait for enough data to be available (the 14

additional expected characters). Place each string character into the inputString

array while checking if each character is a value between 0 and 9. If any character is

bad then the whole string is bad.

Data Extraction using Digit Location

If inputString is valid, create another empty string to hold only the year part of the

string (yearString). Copy the first four characters of the 14-character inputString

into yearString. Convert yearString from ASCII to decimal values, and store in a

year integer variable (yearInteger).

Create another empty string to hold the month part of the string (monthString).

Skip the first four characters of inputString and copy the next two into monthString.

Convert monthString from ASCII to decimal values, and store in a month integer

variable (monthInteger). Repeat this process for day, hour, minute and second.

Repeat

Whether an incorrect string was read or a valid string was successfully decoded, clear

the serial buffer and return to step one.

4.4.2 Modifications

Faludi's code was a tremendous help to our application. I adjusted the code to wait

for multiple trigger characters, and, depending on the trigger, expect multiple input-

string lengths. This enabled the trigger character to also carry information. I also

increased the communication baud rate to 19200 bits per second.
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4.5 Command Directory

Table 4.2 gives a directory of all the input commands (trigger characters and cor-

responding numeric values) and their function for the Arduino. Flappers Al and

B1 affect motion in the horizontal plane, thus the trigger character "H". Likewise,

flappers A2 and B2 affect motion in the vertical plane.

Table 4.2: Directory of input commands for the Arduino code.

Trigger Input Numeric Function

Character Command Values

P P***xxx 000 < *** < 255 Pump1 voltage

000 < xxx < 255 Pump2 voltage

D D+- += 0 or 1 Pump1 direction

- = 0 or 1 Pump2 direction

H H+- + = 0 or 1 FlapperAl direction

- = 0 or 1 FlapperB1 direction

V V+-- + = 0 or 1 FlapperA2 direction

- = 0 or 1 FlapperB2 direction

A A***xxx+- See P and H See P and H

B B***xxx+- See P and V See P and V

0 0***xxx 000 < *** < 127 Propeller1 voltage

000 < xxx < 127 Propeller2 voltage

F F+- + = 0 or 1 Propeller1 direction

- = 0 or 1 Propeller2 direction

R R Resets camera

G G Queries gyro

!_ _ !Stops pumps and all motors

40



4.6 Noteworthy Features

4.6.1 Flapper Behavior

The CJDs are actuated by flapper mechanisms attached to four small, reversible

motors. The closed control port depends on the direction of rotation of the motor.

The CJD time constant (switching time) should be at least five times faster than

the robot's time constant (governed by vehicle dynamics) to allow us to neglect the

effects of PWM valve switching. Knowing this, I programmed the code to switch the

motors at a higher speed (4.5 volts) whenever the command is given. However, power

onboard an untethered robot is extremely valuable, so to avoid drawing too much

current and wasting power (after switching, the motor stalls and continues trying to

turn the flapper into the CJD), after 50 milliseconds this voltage drops to 0.75 volts,

ensuring the flapper stays against the control port without drawing more current than

needed.

4.6.2 Gyro Behavior

At this time the gyro is the only component that transmits data to the user's computer

(although research is currently being done to transmit live video from the robot).

When the Arduino receives the gyro query command, it reads the pitch and yaw

rotation data from the gyro in the form of an analog voltage, converts this to a

digital value (a number from 0 to 1023), and transmits these values serially through

the radio. This process was optimized for runtime efficiency to be executed in quick

succession, allowing continuous, nearly real-time accuracy for position control.

4.6.3 Safety Features

As discussed in the Introduction, it is critical that a robot for the inspection of nuclear

piping systems moves in a precise, controlled manner. To this end, our control code

features two safety measures to prevent unwanted behavior: motor voltage validation

and an emergency stop.
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Motor Voltage Validation

In addition to the input string validation implemented in the communication code,

the motor driver code validates that the received integers are within an appropriate

voltage range to prevent damage to the motors. For example, if the pumps were to

be driven at a voltage larger than 12 volts (their maximum input voltage) they could

fail prematurely from an increase in heat [161.

Emergency Stop

In the event that the robot behaves unexpectedly, an emergency stop command has

been coded to immediately stop all pumps and motors.
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Chapter 5

High Level Software Control

5.1 Introduction

The higher level processing takes place in Matlab, a programming environment for al-

gorithm development, data analysis, visualization, and numerical computation. Mat-

lab was chosen for its capability to solve technical computing problems faster than

other traditional programming languages, such as C and C++ [17]. It supports a

wide variety of applications, including signal and image processing, communications,

control design, measurement, and modeling and analysis, all of which this research

project involves. It's a powerful computing tool for engineers with thousands of func-

tions and commands, which can be read about in the command directory or searched

online. Specifically Matlab was used to develop the robot's GUI, process data from

the gyro, and create the robot's control system. The first two are discussed in this

chapter.

5.2 Graphical User Interface

The Arduino software control, while effective, is not very efficient. The user must

type in the desired commands and send them. Our group wanted a more intuitive

and visual means of driving and controlling the robot. I developed a graphical user

interface (GUI) using Matlab's built-in GUI editor. Figure 5-1 shows the current
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version. An explanation of its design is given in the following subsections.

5.2.1 Communication with Arduino

Before using the GUI, the user must first establish communication with the Arduino.

This is done by connecting a radio transceiver with an antenna into one of the com-

puter's serial ports, and, within Matlab, assigning this serial port the same baud rate

of the Arduino's transceiver (19200 bps). At this point, the robot can be controlled

by typing in the desired commands directly into the Matlab command window (as

opposed to the Arduino command window). This is essentially what the GUI does.

Each button or slider has a specific purpose, causes a specific action, and is pro-

grammed to send that specific command (trigger character and numeric values) each

time it is pressed.

For example, in Figure 5-1, under Drive Control, the robot has been commanded to

drive forward at 44%. This corresponds to having both horizontal actuators (flappers)

in the forward position and powering the pumps at 5.28 volts. The GUI accomplishes

all of this by sending a single command ("B***xxx+-", where *** and xxx are the

pump numeric values corresponding to 5.28 volts, and + and - are the flapper numeric

values for the forward direction) as soon as the slider is released.

5.2.2 Switchable Drive Plane

Note in Figure 5-1 that the GUI also features a button to toggle the plane of actuation,

allowing the user to switch between horizontal and vertical motion. This is achieved

by sending the command to change the direction of the motors each time the button

is pressed. The pump-valve architecture has been designed such that when the pumps

rotate in one direction, the water flows through CJDs that release in the horizontal

plane, and the robot is propelled forward, backward, or turns. When the pumps

rotate in the opposite direction, the water exits in the vertical plane, and the robot

is propelled up, down, or pitches.
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Figure 5-1: User input from this GUI (created in Matlab) remotely controls the

underwater robot.
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5.2.3 Flapper Control

Similarly the flappers are controlled with toggle buttons. Actuators AH and BH are

on the horizontal CJDs, and actuators AV and BV are on the vertical. Their current

configuration is displayed at the top of the GUI to inform the user of the robot's

state. Additionally, the horizontal flappers may be programmed to follow a PWM

behavior, rapidly switching between states to achieve either a mixed, diagonal motion

or to drive at lower speeds. This is done in the PWM Control box on the GUI. The

user can specify how long the flappers remain in each state (how long they are closing

each port on the CJD) in milliseconds.

5.2.4 Pump Control

The GUI provides two ways to control the pumps: Pump Control and Drive Control.

Pump control only controls the pumps, featuring a slider for each one. These sliders

range from 0 to 12 and represent the voltage with which to supply the pumps. Here the

pumps can be driven individually (at two different voltages) or, if the Simultaneous

Control button is clicked, driven at the same voltage each time either slider is changed.

Drive Control is a bit more complex, setting the voltage of the pumps as well

actuating the flappers to move at the desired speed and in the desired direction.

When in the horizontal drive plane, these directions are forward, backward, turn left,

and turn right. When vertical, they are up, down, pitch up, and pitch down.

5.2.5 Safety Features

Just like the lower level Arduino code, the higher level Matlab code validates the

numeric command values (to ensure they are within an appropriate range) and has

an emergency stop button.
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5.3 Gyroscope

The GUI also features gyroscope controllability and display. In the current design,

there are two ways of interfacing with the gyro, outlined below.

5.3.1 Single Query

The Query button allows the user to quickly read the rotation rates of the robot and

check that it is behaving as expected. When the button is pressed, the GUI sends

a single gyro query command ("G") to the Arduino. The Arduino then reads the

data from the onboard gyro and transmits the yaw and pitch rotation rates back to

the computer. Matlab displays these two values on the GUI and also stores them for

later processing.

5.3.2 Continuous Measuring

The Measure button is a toggle button that, when pressed, measures the gyro rates

continuously until the button is unpressed. This is done by repeatedly sending the

gyro query command. In this mode, by default, the gyro data is read every 10

milliseconds (the maximum frequency), but the frequency can be changed to a lower

value if desired. As the yaw and pitch rotation data is read, the values are stored

in respective arrays within Matlab. When the measure feature is terminated, these

two arrays are then plotted with respect to time and displayed in separate windows,

giving the user a visual representation of the robot's rotation over time. Furthermore,

this data is also used in the control system for position and trajectory control.
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Chapter 6

Results

6.1 Introduction

The robot prototype was created to quickly and cheaply test the overall design: the

effectiveness of the Coanda jet devices, the driving and steering effects of the stream-

lined shape, the integration of the electronics, the robustness of the Arduino code, the

efficiency of the GUI, and the behavior of the position and trajectory control systems.

6.2 Robot Operation

We first experimented with the robot's drive control. Several hours were spent test

driving the robot in a small tank. The robot was commanded to drive forwards, back-

wards, turn, dive, pitch, and several combinations of these motions. Video of these

tests were recorded and analyzed using video tracking software. We used Tracker,

an open source video analysis and modeling tool. The software can manually or

automatically track objects, then compute and plot the position, velocity and ac-

celeration graphs. The position coordinate data are also stored for further analysis

with the built-in modeling tools [18]. With this software, we were able to analyze

the behavior of the robot with respect to time, such as time constants for turning,

time to reach terminal speeds, and its velocity. Figure 6-1 shows the results of an

experiment in which the robot was commanded to drive backwards, then immediately
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forwards using the GUI Drive Control. The top image is a time-lapsed capture of

the robot's motion, as tracked by Tracker, and the bottom image is a plot of the

computed velocity.

6.3 Position Control

The spheroidal shape of the robot makes it naturally unstable due to the Munk

moment. High pressure at the front of the robot, and low pressure at the back

act to turn the vehicle perpendicular to the flow [19]. The robot quickly begins to

spin out of control in the horizontal plane (yaw) as it moves through the water. To

correct for this, a closed-loop control system (developed by Anirban Mazumdar) is

used to stabilize the robot dynamics, allowing precision maneuvering and making the

vehicle easier for an inspector to remotely operate. Using data from the onboard

gyro, the control system tracks the robot's current angle, computes the error with

the desired angle, and minimizes that error by adjusting the CJD flapper valves with

PWM. Figure 6-2 compares the angular behavior of the robot without the closed-

loop control (open-loop) and with the closed-loop control, when commanded to drive

forward at a desired angle, he.,. The closed-loop control system does a very good

job maintaining the robot at the specified angle.

In addition to stabilizing the robot, the control system allows the robot to execute

compound trajectories, such as travel forward for three feet then continue another

four feet at 45 degrees to the left. It also enables the robot to reject disturbance

inputs due to strong currents or collisions with other objects. The results of one of

our disturbance tests are given in Figure 6-3. Here the robot was commanded to

drive forward (no yaw angle). After about three seconds, the robot's orientation was

disturbed by an outside torque (a research member spun the robot). As you can

see, the robot immediately began to correct the error, reaching a steady state at the

original angle after another 2.5 seconds.
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Figure 6-1: The results of one of the robot's drive control tests in which it was
commanded to drive backwards, then immediately forwards. The software tracked
the center of the robot (top), and then plotted the robot's calculated velocity with
respect to time (bottom).
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Figure 6-2: Experimental results of the closed-loop PWM controller when commanded
to drive forward at a desired yaw angle. The controller stabilizes the robot at the
desired angle, while the unstable open-loop (no controller) immediately misses the
desired value with increasing error.
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Chapter 7

Conclusion

7.1 Overview

This work has described the analysis, design, and evaluation of a tetherless, compact,

streamlined, precision low-speed maneuvering underwater robot, focusing specifically

on the electronics and software. It detailed the chosen electronic components, the

designed circuitry and printed circuit board, and the waterproof housing for the

electronics. Next it explained the low-level software program written for the Arduino

microcontroller, and the higher-level program for the graphical user interface and gyro

data processing. Finally the software programs, electronics, and previously developed

mechanical devices (Coanda Jet Devices and flapper mechanisms) were combined into

a fully-functioning test robot to explore the functionality of the overall design and

closed-loop control system. The initial experimental and analytical results are very

encouraging. It was found that the programs were written effectively, the CJDs

provided the necessary propulsion to actuate the robot, and the closed-loop control

and flapper mechanisms maintained stability. This is an exciting and important area

of research, and the hope is that one day this device will improve nuclear reactor

safety.
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7.2 Future Work

Towards our goal, work is currently underway to improve the robot's design, control

system, and other components. Three specific areas are 1) the Camera System, 2)

Communication, and 3) Joystick Control.

7.2.1 Camera System

The motivation behind this research is to develop an effective and reliable robotic

piping inspection system. While a number of sensors may be used to inspect the

internal integrity of a pipe, our group is focusing on visual inspection. This requires

an onboard camera system, which must be embedded within the robot to maintain its

streamlined shape. Our group has already developed a prototype featuring a small,

waterproof camera. While early results prove promising in terms of video quality,

waterproofing, and camera size, several challenges remain. First, all video tests so

far have taken place in well-lit tanks, but nearly no light is present within complex

piping systems. To ensure that usable footage is being recorded, an embedded lighting

system has to be developed. Second, the camera currently stores its data to onboard

memory. The recorded footage can only be viewed after retrieving the robot and

removing the camera. The hope is to transmit live video from the robot to the

user, to aid in the inspection process. Unfortunately this leads to issues with data

transmission (communication).

7.2.2 Communication

Underwater communication is challenging; radio waves are highly attenuated under-

water, limiting the range of control, and acoustic systems may be too large for certain

applications. However, the clean and highly-regulated water within nuclear reactors

may allow a combination of optical and radio communication. In clean water, cer-

tain wavelengths of optical light propagate further than radio waves. Work on this is

currently underway by our group.
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7.2.3 Joystick Control

While the GUI described in this paper offers a more effective and visual means of

commanding the robot (compared to typing serial commands), the use of a mouse to

click buttons is not the most intuitive way of driving a vehicle. Especially in such a

high-risk and delicate operation as steering through nuclear reactor piping systems,

the inspector driving the robot should feel comfortable with the controls. This is the

motivation behind our work in developing a joystick-compatible drive control for the

robot.
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