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ABSTRACT

The propagalion of seismic waves in an open borehole is reviewed. The
principal wave types are the refracted P and 5 waves and the two guided waves
— pseudo-Rayleigh and Stoneley. The dispersion properties of the guided waves
are analyzed. An efficient method of computing synthetic microseismograms is
described. The relative effects of the borehole, fluid and formation properties
on the propagation characteristics of the different wave types are discussed.

INTRODUCTION

Full waveform accustic logging is rapidly emerging as an important
technique for formation evaluation and for seismic expleration. Borehole
measurements of compressional and shear wave velocities and attenuations
define formation properties and are used for the modeling and interpretation of
seismic reflection and Vertical Seismic Profiling (VSP) data.

In conventional sonic legging a tool may contain one or two sources and a
pair of receivers. Only the time-delay {or moveout) of the compressional
headwave is recorded and the slowness {inverse of velocity) calculated. With
the full waveform acoustic logging tools the entire microseismegram at each
receiver iz recorded digitally. These new digital tools generally have a longer (8
to 80 ft)} source/receiver separation than is commonly used in conventional
borehole compensated sonic logging (5 ft). With a combination of multiple
sources and receivers, as many as 80 or more records of data can now be
obtained at each depth. Thus a large velume of data is generated for even a
shallow well. There is more information on these new digital legs than has
previously been utilized. Engineering technology has moved ahead of log
interpretation. The purpose of this research project is te develop methods for
the interpretation and utilization of these data.

At MIT, research on full waveform acoustic logs has been concentrated in
three areas:

(1) Understanding the propagation of elastic waves in the complex
environment of the borehole.

(2) Determining formation P and S wave veloc1ty and attenuation from the
data in an efficient manner.



(3) Extracting additional information about formation properties from the logs
directly or by correlation with other logs.

This volume contains detailed technical reports on work that was
performed in the past year under the Full Waveform Acoustic Logging
Consortium. To understand how these papers fit inte the overall program, it is
necessary to review briefly the previous developments in full waveform acoustic
logging and teo introduce the termineolegy that is used in the reports.

WAVE TYPES IN A BOREHOLE

The borehole environment is complex. A logging sonde hangs in the center
of a fluid-filled cylindrical borehole (Figure 1). Waves generated by the source
propagate through the fluid (mud) and surrounding formation. In particular,
the borehole acts as a very efficient waveguide for the propagation of elastic
waves., Several authors have investigated this problem with varicous degrees of
geometrical complexity. Biot {1952), Somers (1953), and Peterson {1974) have
worked on analytical solutions of the dispersion characteristics of guided waves
in the borehole. Wyatt (1973) and Cheng and Tokséz (1980, 1981) have
extended their analyses to include the effects of the logging tool in the
borehole. Numerical simulation of the acoustic logs has been attempted by
White (1967), White and Zechman (1968), Rosenbaum (1974), Tsang and Rader
(1979), Cheng and Tokscz {1980, 1981), Paillet (1980, 1982), and Paillet and
White (1982). White and Tongtaow {1981) have extended the analysis to include
transversely anisotropic formations while other authors have generated
cylindrically layered models (Schoenberg ef al,, 1981; Cheng ef al., 1981; Baker,
1981; Tubman et al.,, 1982). Willis et al. (1982) have examined the effects of
elliptic boreholes and decentralized toels upon the waveforms. Schoenberg et
al. (1981} and Chen {1982) have used scale models to study the borehole wave
propagation problem.

For the simple case of a fluid-filled borehole in a formation where both P
and S wave velocities are higher than fluid velocity, there are essentially four
types of elastic waves which propagate: two headwaves and two guided waves,
The well known P wave begins as a compressional wave in the borehole fluid, is
critically refracted into the formation as a P wave, and then is refracted back
into the fAluid as a compressional wave. The so-called "S-wave” begins as a
compressional wave in the borehole fAuid, is critically refracted inte the
formation as an S wave, and is refracted back into the fluid as a compressional
wave.

Between the P and S headwave arrivals there exists a ringy packet called
the leaky or PL mode (Cheng and Tokstz, 1980). The classic PL wave {Phinney,
1961) in a water layer over a half space is an inhomogeneous wave. Paillet and
White (1982) have studied the leaky mode in the borehole by examining its
plane gecmetry analog — a fluid layer trapped between two solid half-spaces.
They have shown that in this case the leaky mode propagates al a veloeity very
close to the formation compressional wave wvelocity., Its phase wvelocity
decreases with increasing frequency. The leaky mode amplitude and hence the
appearance of the P-wave train varies strongly with changing Poisson's ratio.
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The guided waves are generally dispersive. They arrive after the 3 wave.
They have larger amplitudes and longer durations than either the P or the 3
wave. Their properties can best be studied by examining their dispersion
characteristics. In the following section, a brief review of the dispersion
relationships of the guided waves is given, starting from the basic equations.
This development will follow the work of Biot (1952) and will use the same
notation as Cheng et af. (1982).

Dispersion Characteristics of Guided Waves
Given an open borehole with radius R, filled with fluid and surrounded by a
homogeneous formation, the wave propagation aleng the z-axis can be

expressed in terms of displacement potentials, ¢ and .

In cylindrical coordinates, the radial displacement and stress are:
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where v = Poisson’s ratio, i = shear modulus and p = density.

The equations of motion are:
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where o and £ are compressional and shear wave velocities.

For the given geometry, the sclutions in the solid and fluid are simplified
greatly. Taking into account the radiation condition, the solutions for the
potentials in the solid are:

¢ = AKg(ir) e®(=ct) (5)
and
% = BK,(mr)e®(Ect) (8)

where k is the wave number, ¢ is the phase velocity, and
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o and 8 are compressional and shear wave velecities, respectively.

In the fluid, where regular behavier is imposed at r = 0, the scalar
potential is:
¢y = Clo(fr)e®E—) (7)
where

FE=rA(1-y
= ~~z
&

&y is the velocity and oy is the density of the fluid.

The pressure, Py, and radial displacement, 4y in the fluid are:
Py = CppkPcPly(fr) gtele—ct) = ~a (8)
and '
up = CfN(fr)e®E=) (9)

In the solid, radial displacement, © and radial stress, o are given by:
w = [AlKy'(Ir) = ikeBK,(mr)] e®E ) (10)
and

o= pl—:J—(-—kzce)AKg(lr) + 2pBR[ ALRKy (ir) —a;kmBKl'(mr)}}e*(H‘) (11)

At the borehole interface (r = E) the boundary conditions require the
continuity of radial displacement and stress, and the vanishing of the
tangential stress, 7, in the solid. The latter condition is given by:

T = {p(=k2e?)BK,(mR) + 2p8%ikAlKy (IR) + k*BK,(mR)[e®*E—<t) =0  (12)

which gives

k2BK (mR) = f_%%mzf{o'(m) (13)

Using equations (8-13) in the boundary conditions and carrying out the
algebra, the results reduce to:

Ic?K (IR)
2 A~ Th(FR)C =0 (14)

242 - c* 20mE(R) [ | 26%Ky(mP) | -
p{ 2 Ko(IR) + PRIy il caXl(mR)J +prlo{fR)C =0 (15)

For this system of equations to have a non-trivial solution, the determinant
of the coefficients (4, C) must be equal to zero. This gives the following period
equation: ‘
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The phase (¢ = %—) and group (U= %E-=c +k3k—c) velocities of the guided

waves can be calculated as a function of wavenumber k or frequency w by
solving the period equation {16). A set of such curves is shown in Figure 2.

The Pseudo-Rayleigh Wave

There are two separate guided wave types. The first group of guided waves
is known as the 'pseudo-Rayleigh' waves (Cheng and Toksdz, 1981; Tsang and
Rader, 1979). They are also called “"reflected conical” waves by Biot {1952) and
“normal modes” by Paillet (1980) and Schoenberg ef al. (1981). These waves
have an infinite number of modes, each with a low frequency cut-off. Their
amplitudes decay radially away from the borehole wall in the solid and are
oscillatory in the fluid. Their phase velocities are bounded by the formaticn
shear wave velocity {rom above and the borehole fluid velocity from below. The
group velocities dip below the fluid veloeity. The phase and group velocities for
the two modes are shown in Figure 2 as a function of frequency. At the low
frequency end there is a cut-off, below which these waves cannot propagate and
are rapidly attenuated. For the lowest mode the cut-off frequency is about 10
kHz or higher and is strongly dependent on borehcle radius. It is evident, from
the steepness of the dispersion curves, that the pseudoe-Rayleigh wave is very
dispersive. In a microseismogram, it will arrive as a nearly monochromatic wave
train, lasting from just after the refracted S wave to after the Stoneley wave
arrival, with an Airy phase at about 0.B times the fluid velocity. The pseudo-
Rayleigh wave can only exist as a proper guided wave in formations where the
shear wave velocity is higher than the borehole fluid veloeity.

'. The Stoneley Wave

The second type of guided wave is the Stoneley wave. Its amplitude decays
exponentially both in the fluid and in the formation away from the fluid/rock
interface. It has very little dispersion. As shown in Figure 2, its phase and
group velocities are slower than the compressional velocity of the borehole
fluid. The Stoneley wave is essentially a compact pulse and will arrive at a time
slightly later than what would be expected for a direct fluid arrival. The wave is
especially prominent when the receiver is placed close to the borehole wall. Tt
is important to note that when the shear velocity of the formation is slower
than the borehole fluid velocity, the Stoneley wave can still exist but will
propagate with a phase velocily lower than the shear velocity.

From the period egquation, it is clear that the dispersion curves for both
the pseudo-Rayleigh and the Stoneley waves are functions of the wavenumber
times the borehole radius. In terms of frequency, for a small radius borehole,
the dispersion curves will be shifted to higher frequencies, and vice versa for a
large radius borehole. Owing to the highly dispersive nature of the pseudo-
Rayleigh wave and the existence of a cut-off frequency for esach of its modes,
the radius of the borehole plays a role that is as important as the source
frequency in the relative excitation of the different modes of the pseudo-
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Rayleigh wave. In contrast, because the Stoneley wave is not very dispersive
and does not have a cut-off frequency, its excitation is less affected by the
borehole radius.

In order to determine the relative importance of guided waves it is
necessary to examine their amplitude response curves (Paillet and White, 1982).
Once the phase velocities are obtained from equation (16), these values can be
substituted into equations (14) and (15) to obtain the constant €. Then, using
equations (8) or (9), amplitude responses can be obtained in the borehole. In
Figure 8, relative amplitudes of the Stoneley and the two lowest modes of
pseudo-Rayleigh waves are shown. Note that at low frequencies (f < 10 kHz),
the Stoneley wave amplitudes are larger. At {requencies higher than about 20
kHz, more than one mode of the pseudo-Rayleigh wave will be present.

SYNTHETIC MICROSEISMOGRAMS

The full waveform acoustic logs are contreolled by the velocity and
attenuation of the different phases and their reiative amplitudes. The best way
of looking at the combined effect is to synthesize the microseismograms. The
pressure response P{r.z.t) in a fluid-filled borehole at an axial distance z and
radial distance r from a point isctropic source is given by Cheng et al. (1982):

Plrz.t)= fS(m)e"*:”‘ _/:Gfg(fr)eﬂ"dk (17)

where S(w) is the Fourier spectrum of the source and G is given by:
_ gKi(fR) — Ko(f R)

¢ LR ThUR (18)
where
_ Ip 288 2KoR)  2gfm ! 1 | pg? Ko(mR)
It T TR T | mE T o BmB) (1)

The above form is slightly modified from those given in Tsang and Rader
(1979) and Cheng and Toksodz (1981) so that the conventions used are
consistent with those used in this report.

To generate the synthetic microseismograms, a double numerical
integration in # and @ is necessary. The k integration is periormed using the
discrete wavenumber representation (Bouchon and Aki, 1977, White and
Zechman, 1968). An integration interval Ak is equivalent to an infinite
distribution of source separated by a distance I =2rn/Ak apart along the =z
axis. Thus Ak is chosen such that [ is large enough that the first arrivals from
neighboring fictitious sources are out of the time window under consideration.
The upper limit in the & summation can be determined numerically using a
gonvergence criteria.

To perform the k surnmmation, the singularities have to be removed from the
real & axis. This is done by assigning a small imaginary part to the frequency
{Rosenbaurm, 1974; Bouchon and Aki, 1877; Tsang and Rader, 1979, Cheng and
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Toksdéz, 1981): ‘
w=w. + '!:Q}i, Wy > 0. (20)

The effect of the imaginary part can be removed by multlplymg the resulting
time domain representation of the pressure response by e

The effect of formaticn and fluid attenuation can be intrecduced in very
much the same way. The transformation is (Anderson ef al., 1965):

1 1 | i
v " w@ | 2@-(@)] (21)

where v; and &; are the formation and fluid bedy wave velocities and their
respective @'s. For constant £, the phase velocity dispersion associated with
attenuation is given by (Futterman, 1982):

v(wyy _ Wy
'U(G)UJ =1+ ﬂ'Qm[ ]

50

" n{w/ wo)
+
mé;

- —1—(%)[1

v;{w) Uy

1+ 221‘] (22)

where wp is the reference {requency at which the velocity v; is taken. This
approach can be easily adapted to frequency dependent attenuation. For {ull
waveform acoustic logging, owing to the relatively narrow Ifrequency range
used, the frequency dependence of § is insignificant.

The type of source used plays an important part in the generation of the
synthetic microseismograms. Commonly used sources are; a sinusoid with a
decaying exponential envelope (Tsang and Rader, 1979), a Ricker (1977)
wavelet, and a Kelly type source {(Kelly et al,, 1978), which is similar to the
derivative of the Ricker wavelet. These sources are described in more detail in
the Appendix.

Numerical Examples

With an efficient method of generating synthetic microseismeograms, the
effects of formation and borehole parameters on the observed waveforms can
be investigated numerically. Figure 4 shows an example of a synthetic
microseismogram in a typical hard limestone formation. The source used is a
relatively broad banded Tsang and Rader source. The source-receiver distance
is 8 ft. The P and S wave arrivals are clearly identified. The lower frequency
branch of the pseudo-Rayleigh wave, with a group velecity higher than the
Stoneley wave velecity, is labeled @. There is a slight normal dispersion from
low to higher frequencies. The Stoneley wave arrives in a pulse and is labeled 3.
After the Stoneley wave arrival, there is a packet of higher frequency arrival
labeled e¢. This corresponds to the Airy phase of the pseudo-Rayleigh wave.
Thus, all the characteristics of the waveform are well illustrated and can be
preoperly identified.



Effect of Borehole Hadius

Plotted in Figure 5 are three synthetic microseismoegrams generated using
the same [ormation and fluid parameters but different borehole radii. Figure 5a
shows the case of a very small barehole (radiug = 1.8 in). The P and S arrivals
are not prominent, The pseudo-Rayleigh wave arrival after the 3 is also of
relatively small amplitude. The major arrival is the Stoneley wave with a group
veloeity slightly lower than the P wave velocity of the fluid. This behavior is
expected since for small boreheole radius, the dispersion curves are shifted to
higher frequencies. Thus the majority of the energy of the source is below the
cutof! frequency of the fundamental mede of the pseudo-Rayleigh wave. On the
other hand, since the Stoneley waves do not have a low frequency cutoff, they
are excited by all the energy in the source. Furthermore, since the amplitudes
of the Stoneley waves decay exponentially in the fluid away from the boundary,
a srnaller borehole radius means that the receiver is closer to the boundary,
thus detecting a larger amplitude Stoneley wave.

For contrast, the case of a large radius (4 in) borehole is shown in Figure
5b. The P and 3 arrivals are still not prominent. However, the pseudo-Rayleigh
wave arrivals aiter the S are larger in amplitude. The Stoneley wave arrival is
smaller than the previous case. The major arrival in this case is the Airy phase
coming in after the Stoneley waves,

The case of the intermediate hole size (radius = 2.84 in) is shown in Figure
Sc. The waveform of the microseismogram is entirely different from the
previous two cases. There is significant energy in the leaky mode between the P
and S arrivals. The amplitudes of the pseudo-Rayleigh and Stoneley waves are
comparable. Stoneley waves arrive in the middle of the pseude-Rayleigh wave
train and are visible when they disturb the coherency of the wave train. There
is a decrease in frequency at the Stoneley wave arrival.

Effect of Formuoiion Pofssan s Fatio

The effects of the Poisson's ratio of the formation on the
microseismograms are shown in Figure §. Here, all the parameters except the P
wave velocity of the {ormation are Kept constant. The formation Poisson's ratio
used in Figure Ba, b and ¢ are 0.32, 0.26 and 0.10, respectively. The figures
show that the micreseismograms are generally similar. The major difference
among the three cases is the relative amplitudes of the P leaky modes. As the
Poisson’s ratio of the formation decreases, the amplitude of the leaky mode
also decreases. This behavior is expected theoretically. Thus, the relative
prominence of the P wave leaky mode could give us a good indication of the
Poisson’s ratio of the formation. A similar observation in “soft” formations,
where the shear wave velocities are lower than the borehole fluid velocity, is
given in Paper 2 of this technical report.
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SENSITIVITY OF GUIDED WAVES TC FORMATION AND FLUID PROPERTIES

When the formation P wave velocity was changed, while all other
parameters remained constant, the P wave train changed significantly. Yet no
noticeable change occurred in the guided wave, as shown in Figure 6. The
questions that arise naturally then are:

(1) Are the guided waves sensitive to formation properties, and if so, which
ones?

(2) Do the properties of the borehole fluid (drilling mud) significantly affect
the properties of the guided waves?

The answers to both of these questions are affirmative, and among the
formation properties, the shear wave velocity and attenuation play much more
significant reles than their compressional wave counterparts.

Partition Coefficients

The relative effects of formation and fluid parameters on the velocity and
attenuation of the guided wave can be evaluated using partial derivatives and
energy “partition coefHcients”. Tollowing * the standard seismological
procedures (Anderson and Archambeau, 1964; Anderson et al., 1985; Cheng et
al., 1982), five partition coefficients can be defined for each mode of the
pseudo-Rayleigh and the Stoneley wave. These are the normalized partial
derivatives of the phase velocity of the guided wave with respect to the
formation and fluid body wave velocities and densities. More explicitly, they are
_a__B_c__, i_‘?j_' %y dc . &-QE-. and EL-—@—C—-. The partial derivatives are taken
c.6c’ ¢ 3 c 8oy ¢ Bp e dpy
either at a fixed frequency » or at a fixed wavenumber k. In the following
analysis, they are taken at a fixed wavenumber k.

The partition coefficients can be obtained by numerically differentiating
the dispersion curves, or, preferably, by the variational principle approach.
The latter is deseribed in detail by Cheng ef al. (1982). Only the results will be
summarized here for the sake of brevity.

Let the radial and axial displacements, © and w, be
u = u,(r)et(zct) : (23a)
w = dug(r)e®Eot) (23b)
Holding the formation and fluid densities constant, the partition coefficients
can be written as:

a Be _
c da

1 A du, u
zmaf_{;{k+2,u,)(a—r1+ TI_'.FC'U.2)2TdT, (24a)



Ac 3”1 Uy fu,  uy
g2 . Eff[ )2+k2u§‘—(—+ —kug)?

c ag ar T
+Wlku, + g-é%—z—)g]rdr, (Rab)
LI R W VL W (24)
c dap 2077 g ar T '
where
I= }éfp(uf +uZ Yrdr. (8)

2}

and A and u are the Lamé constants. If the Lamé constants are held constant,
the partial derivatives of the formation and fluid densities with respect to the
phase velocity of the guided waves are given by:

0
xg--é-g- = —-‘?——f (wf +ug rdr, (RBa)
pr e _ pr f

A byproduct of the variational principle approach is that the group velocity
U of the guided wave can be expressed in terms of integrals. This gives a much
more stable method of numerically evaluating the group velocity than taking
the derivative of the phase velocity dispersion curve. The group velocity U is
given by :

U= ;T[{[‘uul( 1t “"—) + (A+2u)uf F”-z("'"""*‘ ";.")]Td"" (R7)

All of the above integrals can be evaluated by first solving the period
equation (16} for the guided wave mode of interest and then evaluating the
displacement functions u; and w,. Specifically, the displacement functions are:

in the fluid (r < &)
uy = fCL{ST). (28a)
wy = kCl(fT): (28b)

and in the solid (r = R)
u, = —lAK,(Ir) ~ ik BK,(mr), (29a)

uy = RAKG(Ir) + imBKg(mr). (29b)

The constants 4 and B are related by equation (13). 4 and C are related by the
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solution to the period equation (16).
Attenuation

An important use of the partition coeflicients is the determination of the
contribution of formation and fluid body wave attenuation to the attenuation of
the pseudo-Rayleigh and Stoneley waves. For a given guided wave mede, the
attenuation, Qg'l, can be expressed as

o
i.-—ia_ci.g. EB_CL.{__]__QE_ 1 (30)

@ coa @ cO8 @ ¢ day @'

neglecting second order and higher terms in @' @, @', and @;' are the P
and S wave attenuation in the formation and the P wave attenuation in the
borehole fluid, respectively; ¢ is the phase velocity of the guided wave.

It should be noted that all partition coefficients are frequency dependent.
Thus, their magnitudes depend both on the formation and fluid properties and
on frequency.

Numerical Examples

The partition coeflicients versus frequency for a typical sandstone
formation are plotted in Figure 7. Figure 7a is for the fundamental mode of the
pseude-Rayleigh wave and Figure 7b is for the Stoneley wave. The partition
coefficients for the pseudo-Rayleigh wave are streng functions of frequency.
For low frequencies {around the cut-off frequency) the properties of the
pseudo-Rayleigh wave are primarily controlled by the shear wave properties of
the rock. However, the effect of the borehcie fluid increases rapidly with
frequency and dominates at higher frequencies. The contribution of the
formation P wave properties is negligible at all frequencies.

For the Stoneley wave, the partition coefficients are not a strong function
of frequency (Figure 7b). The borehole fluid most strongly affects the Stoneley
waves at all frequencies. The contribution from the S wave properties of the
rock are small. Once again, the P wave properties of the rock have little effect
on the attenuation of the Stoneley waves at all frequencies.

In Figure 8a, the partition coefficients for a "soiter” sedimentary rock
(e.g., shale or shaly sand) are plotted. The sediment shear wave velocity is
lower than the borehole fluid velocity, so the pseudo-Rayleigh wave does not
exist. The relative contributions of the fluid and the formation shear wave
properties on the Stoneley wave properties are quite different than in the
previous case, although the effect of the formation P wave remains
insignificant. The effects of the fluid and formation S wave on the Stoneley
waves are comparable at very low frequencies. As the frequency increases, the
centribution of the formation S wave increases, dominating at high frequencies.
This behavior is entirely opposite to the cases with more competent, or “fast”
formations.

For the same case, the normalized density derivatives, e8¢ and Pr Be are
c Bp C apf
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shown in Figure 8b. Note that in this case the Stoneley wave velocities are also
strongly affected by the formation density at higher frequencies. If the
formation shear wave velocity can be determined independently (e.g., from the
amplitude of the P wave leaky mode), and the fluid properties are known, then
the Stoneley wave velocity can be used to determine the formation density.

From the examples shown here, as well as those calculated for other
formations (Cheng et al., 1982), the following generalizations can be made
regarding the sensitivity of the guided waves to formation and fluid properties:

(1) The guided waves are most sensitive to formation shear and borehole fluid
velocities.

(2) For “hard” formations ({e.g., crystalline rocks, hard limestones and
dolomites), the pseudo-Rayleigh waves are sensitive to formation shear
wave properties at low frequencies (near the cut-off frequency), but at
high frequencies the borehole fluid (mud) effects dominate. For the
Stoneley waves, the fluid properties dominate at all frequencies.

(3) For formations with average sandstone velocities, the sensitivity of the
pseudo-Rayleigh wave te formation shear wave velocity becomes more
dominant than the "hard" formation case and extends to a wider
frequency range. For the Stoneley wave, the effects of the formation shear
wave properties become noticeable.

(4) For low shear wave velocity formations (ie. § = a,), the Stoneley waves are
very sengitive to formation shear wave velocities and moderately sensitive
to formation densities.

(3) In all cases, the guided waves are insensifive to formation P wave
velocities.

(6) In most cases, the relative sensitivities of guided wave velocity and
attenuation te formation and borehole fluid properties are frequency
dependent. Thus, if data are available from tools with bread band
frequency responses, both the formation shear wave and the borehole fluid
velocity can be determined from the velocity of the guided waves.

(7) Given the eflects of the borehole fluid velocity and attenuation on the
guided waves, it is important to measure these fluid parameters
independently, ideally in the well during the logging run, or at the least in
the laboratory or the mud pit at the well site.

COMPARISON WITH FIELD DATA

Given the number of parameters (formation P and S wave velocity and
attenuation, borehole radius, fluid velocity, formation and fluid density, and
source/receiver frequency response) that affect the full waveform acoustic
logs, the question arises whether it is possible to use the waveforms in real
earth applications. The answer is definitely positive. A practical approach to
the use of the synthetic microseismograms for the interpretation of field data
requires the following step-by-step procedure. Firstly, obtain the engineering
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information such as borehole radius, tool geometry, mechanical properties of
the sonde and its source/receiver frequency response. Secondly, obtain as
much information (velocity, density, attenuation) about the borehole fluid
(drilling mud) as possible. Thirdly, obtain the formation P and S wave velocity
using one of the methods described in Paper 8 of this technical report. Finally,
put in some approximate values of the P and S wave attenuation. Using these
parameters as initial guesses, calculate the synthetic microseismograms. Fine
tuning of the parameters can then be made to match the synthetic
microseismograms generated with the field data.

Comparisons of field data from two different formations with synthetic
microseismograms are presented in Figures 8 and 10. PFigure 9a shows the
observed microseismogram in a hard limestene formation. The source used has
very narrow bandwidth, around 15 kHz. This is typical of the comimercial tools
in existence at the present time. The waveform has a prominent P wave packet,
with a distinet S wave arrival. The pseudo-Rayleigh wave packet immediately
following the S wave arrival is large and ringy. There is no distinguishable
Stoneley wave arrival. Figure 9b shows the corresponding synthetic
microseismogram generated using the formation P and S wave velocity and
attenuation determined from the field data {see Paper 6 of this technical
report). The agreement between the synthetic and field data is excellent.

Figure 10a shows the observed microseismogram from a “slow” formation
where the shear wave velocity is lower than the borehole fluid velocity. The tool
used in this data set has a much broader source frequency bandwidth. The P
wave and the associated P leaky mode together constitute the large amplitude
packet seen in the microseismogram. The Stoneley wave is very low frequency
and distinet. As expected, there is no S wave arrival. Figure 10b shows the
corresponding synthetic microseismmogram. Once again, the agreement between
the two is excellent.

Matching the observed and synthetic waveforms for a complete
microseismogram is the ultimate test of the accuracy of the formation
parameters.
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APPENDIX
Commuonly Used Sources in. Synthetic Microseisograms

The three most commonly used sources in the generation of synthetic
microseismograms are: 1} the Tsang and Rader (1979) source; 2) the Ricker
(1977) wavelet; and 3) the Kelly source (Kelly ef al., 1978). The analytic Fourier
frequency spectrum of gach is as follows:

(1) Tsang and Rader:
Bawg(a —iw)

S{w) = [(a —iw)? + wd? (A1)
(2) Ricker wavelet:

S(a) = ()2e (42)
(3) Kelly:

S(@) = (FHade (43)

In both the Ricker wavelet and the Tsang and Rader source, &g is the
center frequency of the source. In the Kelly source, the center frequency is
given by fpeae = 0.39VE.

Each source has its own strength and wealkness. The Tsang and Rader
scurce is the only one that is both causal and in which the bandwidth can be
independently adjusted. The bandwidth is controlled by the parameter a. Both
" the Ricker wavelet and the Kelly source are zero phase wavelets. A time shift
can be applied to make s(t) 80 at £ =0. The bandwidth of these two sources
cannot be adjusted independently of the center frequency. The Tsang and
Rader source, however, has a dc offset in its frequency spectrum. For an
isotropic point source in the center of the borehole, the Stoneley wave has a
large amplitude at low frequencies. Thus the Tsang and Rader source, without
any high pass or bandpass filter, will preferentially excite a large amount of
Stoneley waves. This problem is magnified when attenuation is introduced. For
a constant @ model, attenuation increases linearly with frequency. On the
other hand, owing to the o® and w® behavior in the Ricker wavelet and the Kelly
source, respectively, these sources do not have the same problem with Stoneley
wave generation. In general, these three sources, in combination with a
bandpass filter, do an adequate job in mimicking the combined source /receiver
response of most tools in use at the present time.
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Figure 1: Schematic diagram of a logging tool.
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