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ABSTRACT

Synthetic seismograms of elastic wave propagation in a fluid-filled borehole
were generated using both the finite difference technique and the discrete
wavenumber summation technique. The latter is known to be accurate for both
body and surface (gUided) waves. The finite difference grid has absorbing
boundaries on two sides and axes of symmetry on the remaining two sides. A
grid size no less than 10 points per wavelength was used. The far absorbing
boundary was located at a distance of five to 10 radii from the borehole. Two
types of solid-liquid interfaces were investigated: 1) a velocity gradient using
the heterogeneous formulation, and 2) a sharp boundary using a second order
Taylor expansion of the displacements. The results from the finite difference
modeling were compared with the synthetic seismograms generated by the
discrete wavenumber summation method. No comparison the heterogeneous
formulation and the discrete wavenumber method has been made. The second
order approximation to the solid-liquid interface produced seismograms that
compared 'well with the discrete wavenumber seismograms. A detailed
comparison between the seismograms generated by the two methods showed
that the body waves (refracted P and S waves) are identical. while the gUided
waves showed a slight difference in both phase and amplitude. These
differences are believed to be due to the approximations introduced in the
fluid-solid interface, the absorbing boundary at the edge of the grid, and the
grid and time step sizes involved. Owing. to the fact that they are interface
waves, the gulded waves, especially the higher modes, are much more sensitive
to the above mentioned approximations.

INTRODUCTION

In order to obtain the best possible interpretation of an acoustic log it is
necessary to fully understand the physics of acoustic and elastic wave
propagation in and around the borehole. Because of the complexity of the wave
equations involved, models of the acoustic logging problem almost always
assume radial symmetry and depth independent elastic properties (e.g .. Biot,
1952; White and Zechman, 196B; Tsang and Rader, 1979; Cheng and Toksoz,
19B1). This type of analysis is certainly acceptable for identifying the major
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modes of wave propagation and their ideal properties. The next step in
studying the problem is to gain some insight into the effects of more realistic
structure. How does variable borehole diameter between the source and
receiver affect the logs? How would thin layers and horizontal bed boundaries
change the observed waveforms? At the present time only finite difference or
finite element methods applied to the elastic wave equation have the potential
to answer these questions. Stephen (1983) had applied finite difference
methods to seismic wave propagation through the sea floor. This is a
theoretically similar problem to seismic wave propagation in a borehole. For
this reason, the finite difference method was chosen to address some of the
above mentioned problems.

The first task is to compare finite difference acoustic logs with logs
generated by the discrete wave number approach (Cheng and Toksoz, 1981).
This will provide a useful cheek on the accuracy of the two methods since they
are fundamentally different ways of solving the same problem and the nature of
the numerical approximations in each case is entirely different. This paper will
outline the finite difference method as applied to the acoustic logging probiem.
as well as report the preliminary findings of the comparison between the results
of the finite difference and discrete wavenumber analysis.

THE FINITE DIFFERENCE METHOD

A list of all the papers on the finite difference method in seismology would
be too iengthy to include here. Three groups were "pioneers" in the work (see
for example Alterman and Karal (1968); Boore (1972); Kelly et. at. (1976)).
Stephen (1983) has given finite dif!erence formulations for sharp liquid-solid
interfaces and compared the results to the reflectivity method (a discrete wave
number technique) for sea fioor models.

The equation to be solved is the eiastic wave equation for perfectly elastic,
isotropic media in the absence of body forces (Aki and Richards, 1980):

(

(

(

(

(

(

(1)

where p is density, u.; is the displacement vector and Tij is the stress tensor for
isotropic media, with summation over repeated indices. Anisotropy and
attenuation can be inciuded in the finite difference soiution if necessary. The
stress tensor for isotropic media can be written as

Tij =[MijoJcL +M(Oil:Ojl +OiL Ojk) ]eJcL (2)

where A and M are Lame's parameters, 0;; is the Kronecker delta, and.

ekl =~ (Uk.l +uu,) is the straln tensor. Equation (1) will be solved in two·

dimensional cylindrical co-ordinates (1' ,z) and the parameters (P,A,M) will be
assumed to be functions of radius l' and depth z only. A purely compressional
source will be located in a liqUid on the axis of symmetry (1'=0) and a liquid­
solid interface will be located at a radius, R. A vertical line of pressure
receivers will be located beiow the source on the axis of symmetry (Figure 1).
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The time dependence of the potential of the impulsive compressional point
source is given by Kelly et al. (1976):

f(t)=-2W-t.)e-<Ct- t
.)2 (3)

where t. is a time shift chosen such that f (0)'"0 and ~ governs the pulse width.

Stephen (1963) showed that in order to obtain agreement between finite
difference and discrete wavenumber approaches for liquid-solid interfaces. it
was necessary in the finite difference method to specifically code the boundary
conditions for the sharp interface and that a code correct to second order in
the space increments gave the best results. The above mentioned paper dealt
with sea fioor models. In this paper. the finite difference formulation f0r slowly
varying media will be reviewed and the second-order formulation for a sharp
liquid-solid borehole interface will be given.

Formulation for Slowly Varying Media

As outlined by Alterman and Loewenthal (1972) and Kelly et al. (1976) the
elastic wave equation with the parameters (p,A,P.) , functions of range and/or
depth can be solved directly by an explicit finite difference method. In terms of
displacements only, equations (1) and (2) become

(4)

The finite difference formulation of this equation is given in Stephen (1963). It
is important to note that there are a number of explicit finite difference
formulations for this equation and stability and accuracy will differ for each
one (Zienkiewicz. 1977). Thus it is important to state precisely which
formulation is used in a particular application. It is necessary to allow for
density variations in the code because of the sharp density contrast at the
borehole wall. The borehole fluid can be considered simply by letting the shear
modulus, p., go to zero. .

For the case of propagation in infinite homogeneous
finite difference formulation is stable only if:

At.,; min(~r ,~z)

...;a2+f32

media. this explicit

(5)

where a=-V X+2fl" and f3=-V l:!:... Kelly etal. (1976) suggested that stability
p p

in heterogeneous media could be expected provided equation (5) held
everywhere on the grid. Experience suggests that this is only the case for
"slowly" varying media.

The principle cause of inaccuracy in finite difference calculations for
slowly varying media is grid dispersion. If the grid increments (~r ,~z) are too
large, low frequencies will travel faster across the grid than high frequencies
causing apparent dispersion. (This result is generally true for compressional
waves. For shear waves the dispersion relation is more complex and for some
combinations of Poisson's ratio and propagation direction high frequencies will
travel faster than low frequencies (see Bamberger et al. (1960)). Estimates of
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the number of grid points per wavelength which will give acceptable results vary
from ten to fifty and depend on the problem. This uncertainty makes the
comparison of finite difference results with results of other techniques
extremely important.

Second Order Boundary Conditions for a Liquid-Solid Cylindrical Interlace

Stephen (1983) showed that it is necessary to represent the liquid-solid
interface specifically in the finite difference code by boundary conditions.
Unfortunately the formulation given by Stephen (1983) was for interfaces
normal to the depth z axis and is inappropriate for interfaces normal to the
radius r in cylindrical co-ordinates. The formulation for this case, which is
analogous to a formulation for solid-solid interfaces originally presented by
Ungar and Han (1977) is given below.

The wave equation in the homogeneous liquid to the left of the interface
(see Figure 1) is:

(

(

(

1 '( 1 1 1 1 I), 1 -0PI'Ut'-"1 u,.;.+-:-u,; ---zu -"IW,.,.­
r r

and in the homogeneous solid to the right of the interface is:

P2'Ut~ -(A2+.£L2)(~+ 1c.u,.2_-4ru2)_.£L2u.:;' -(A2+JL2)W'; =0
r r

(6)

(7)

(8)

(9)

(

The boundary conditions which must hold at the liquid-solid interface are
continuity of normal stress,

AI(u,.I+.Lu.I)+AIW.1=(A2+2JL2)U;+A2( .Lu.2 +w.2) (10)
r r

(

vanishing of the tangential stress in the solid,

JL2(U;+w;) =0

and continuity of normal displacement,

u l =U 2

(11)

(12)

The superscripts, 1 and 2, refer to values in the liqUid and solid respectively.
The unknowns in the derivation are the horizontal displacement at the
interface, u1.2 (M,n,l), the vertical displacement in the liqUid at the interface,
W I(M,n ,l) and the vertical displacement in the solid at the interface, w 2(M,n ,l).
The interface is at a radius of R=M!:lr.
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Additional reiationships required in the derivation are the Taylor
expansions:

1
-/:'ru,.' + 2t:,r2u,.l. =u '(M-1,n ,I) -u '(M, n ,I)

and the finite difference expressions for mixed derivatives:

-2/:'r/:'zw,;,=w l (M-l,n +1,1)-w l (M-l,n-l,I).

-w l(iJ,n +1,1 )+wl(iJ,n -1,1)

2/:,r/:'zu,;=u2(iJ +1,n +1 ,I )-u2(iJ +1,n -1,1)

-u2(M,n +1,l )+u2(iJ,n -1,l)

2/:'r /:'zw,;=w 2(M +i,n +1,1 )-w2(iJ +1,n -1,l)

-w2(iJ,n +1,1 )+w2(iJ,n -1 ,I),

(13)

(14)

(15)

(16)

(17)

(IB)

The finite difference formulation for the horizontal displacement on the
interface, is obtalned by solving equations (6), (B), (10), (12), (13), (14), (16) and
(IB) and replacing z and t derivatives with centered finite differences, Hence:

u1.2(iJ,n,1 +1)=2u 1.2(iJ,n ,l)-u1.2(iJ,n ,1-1)

+a. l [ w 2(M,n+l,l) -w2(M,n -1,/)]

+a.2[w l(iJ,n +1 ,I )-wl(iJ,n -1,1)]

+a.3u l,2(M,n,l)

+a.4[U2(iJ+1,n ,I )-u l ,2(M,n,I)]

+a.o[u l ,2(M,n,1 )-ul(iJ -l,n,I)]

+a.e[u l ,2(M,n +1,1 )-2u 1.2(M,n,1 )+u l ,2(M,n -1,1)]

+a.7[w 2(iJ +1,n +1 ,I )-w2(iJ,n +1,1 )-w2(iJ+l,n -1 ,I )+w 2(iJ,n-l ,I)]

+a.e[w '(iJ,n +1 ,I) -wl(iJ -1 ,n +1,1)-w '(iJ,n -1,1 )+w '(iJ -1,n -1 ,I)]
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where

D.t 2 A2a -
, {;r{;z (p, +P2)

D.t2 A,
a2= ({;r {;z P, +P2)

!:J.t 2 2 1 1
as= -2 (p ) [M(A2-A')---2(A2+2!J.2+A,)]

{;r ,+P2 2M

D.t2 2(A2+2J.1.2) ( 1)
a4= 1+-

!:J.r2 (PI +P2) 2M

D.t 2 2A, 1
a 5 = !:J.r2 (P,+P2) (1- 2M )

{;t2 !J.2
a.s=

{;z2 (p, +P2)

D.t2 (A2+!J.2)
a ---

7- !:J.r{;z 2(P,+P2)

!:J.t 2 A,
a -

B- !:J.r{;z 2(PI +P2)

In all the formulations presented in this paper u=(u ,w );{;r ,{;z ,M are the
increments in radius, depth and time and m, n, I are the indices for radius,
depth and time (i.e. (m,n,l)=(m!:J.r,n{;z ,lD.t».

Similarly by solving equations (6), (7) and (13) for the vertical
displacement in the liquid at the interface one obtains:

w l(M,n ,l +1)=2w ' (M,n,l )-w ' (M,n,l-l)

+b ,[w'(M,n +1,l )-2w ' (M,n ,l)+w '(M,n -l,l)]

+b 2[u '(M,n +1,l )-u'(M,n-l,l)]

+bs[u '(M,n+1 ,l)-u'(M-l,n +l,l )-u'(M,n -l,l)+u '(M-l,n -l,l)]

+b4 [u '(M,n+1,l +1)-2u ' (M,n +1 ,l)+u'(M,n +1 ,l-l)

-u'(M,n -1 ,l +1)+2u '(M,n -l,l)-u ' (M,n -1,l-1)]

+b 5 [w '(M,n +l,l )-2w '(M,n,l )+w '(M,n -l,l)

-w
'
(M-1 ,n +l,l )+2w ' (M -1 ,n ,l) --w '(M-l,n -1 ,l)]

+bB[u '(M,n +1 ,l )-u'(M,n-1 ,l )-u'(M-l,n +l,l) +u '(M-1,n -l,l)]

+6

(

(

(

(



IJ _!lt 2
Al ( 1 + 1 )

2- !:ir!:iz ZPI M ZM2

!lt 2 Al
IJ 3= !:ir!:iz ZPI

IJ = !:ir
4 4!:iz

b _ {:;t2 Al
5-- !:iz2 ZPI

/:;t2 Al 1
b 6=-----­

!:iz!:ir PI 4M.

Note that this solution requires the horizontal component on the interface at
future points in time «l+l)/:;t) and it must follow the calculation of the
horizontal components.

The vertical displacement in the solid at the interface is obtained from
equations (9). (11). (15), and (17):

w 2(M,n ,l +1)=Zw2(M,n ,l )-w2(M,n,l-1)

+c I[u1.2(M,n +l,l)-u 1.2(M,n -1 ,l)]

+C2[w 2(M +1 ,n ,l )-w2(ilf,n ,l)]

+C5[w 2(M,n +l,l) -Zw 2(ilf,n,l )+w2(ilf,n -l,l)]

+C 4 [u 2(M+l ,n +l,l )-u2(M,n +1,l )-u2(M +1 ,n -l,l )+u2(ilf,n -l,l)]

where

C =~J.L2 [1+ 1 (A2+}J.2)]
I !:ir!:iz P2 ZM }J.2

/:;t2 Z}J.2 1
c2=--(1+-)

!:ir2 P2 Zilf

c 5= !lt
2

( A2+Z}J.2 )
!:iz2 P2
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Boundary Conditions

In order to minimize the computation time for the problem, it is necessary
to minimize the size of the grid. This is accomplished by the proper selection of
axes of symmetry and absorbing boundaries. If absorbing boundaries were not
used (e.g., the displacement is simply set to zero at some distance from the
source), the grid dimensions would be necessarily large in order to prevent the
reflections from these artiflcial boundaries producing interference at the
receivers.

In the present model the top and left-hand boundaries are selected to be
axes of sy=etry, thus placing the compressional point source in the upper left
corner. Exact finite difference formulation to the elastic wave equation is
possible at axes of symmetry and these are generally preferable to absorbing
boundaries where approximations must be made. The axes of symmetry
formulations can be obtained from the body formulations outlined in the
previous section by either 1) applying symmetry cDnditiDns fDr the
displacements (e.g .. for the left-hand boundary, vertical displacements are
sy=etrical Dn either side of the axis and hDrizDntal displacements are
asy=etrical on either side of the axis) or 2) apply I'HDspital's rule fDr terms
containing a/ ar, as Dutlined by Alterman and Loewenthal (1972), (e.g., for the

1 au a2u )left-hand boundary, -- becDmes -- as r goes to zerD .r az araz

A special cDde fDr the absorbing bDundaries fDllDws the fDrmulatiDn of
Clayton and Engqulst (1977), as mDdifled by Emerman and Stephen (1983). The
method assumes a parabDlic apprDximation to the elastic wave equatiDn abDut
an axis nDrmal tD the bDundary and works best fDr energy prDpagating at near
nDrmal incidence. The absorbing boundary cDnditiDns are applied in cylindrical
cODrdinates for the liquld and in cartesian cDordinates, assuming 1/ r small
enough, in the solid.

The intersectiDn Df the sharp interface and the absDrbing bDundary(jDint
pDint) requires special treatment. FDr the hDrizDntal displacement and the
vertical displacement in the sDlid the same absDrbing bDundary fDrmulation as
used fDr heterDgeneous media was applied, with the velocities and densities at
the point of intersectiDn replaced by the average values acrDSS the interface.
The vertical displacement in the liqUid was cDmputed using a first-order one­
sided difference Df the equation for the cDntinuity Df nDrmal stress. AlthDugh
nDt very rigDrDus, this technique seems tD wDrk reasDnably well. As pDinted DUt
by Fuyuki and MatsumotD (1980), the gUided waves are not absDrbed by this
kind of boundary. Owing tD the elliptical particle mDtiDn Df the gUided waves,
there is a cDmponent Df displacement parallel tD the boundary which may pDse
prDblems if the boundary is close to the borehDle. A minimum of tWD
wavelengths of the IDwest frequency guided wave was used as a criterion for the
placement Df the grid boundary frDm the liquid-sDlid sharp interface to aVDid
this prDblem.

NUMERICAL RESULTS

In this section, preliminary results in applying the heterDgeneDus and
sharp interface formulatiDns outlined above tD prDduce synthetic acoustic IDgs
will be discussed. Problems which did nDt arise in previDus wDrk with finite
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difference solutions have been encountered. However, the problems occur late
in the wave train, after the Stoneley wave arrivals, and our solutions appear
reasonable for the earlier phases.

Two basic models will be discussed: 1) a sharp liqUid-solid interface model
corresponding to a mud-filled borehole in a homogeneous rock formation with
sandstone like properties. 2) a velocity gradient model corresponding to a
continuous change in properties between the mud-filled borehole and
formation. which may resemble the combined effects of mud cake, formation.
fracturing and invasion at the wall of the borehole. The dis£lacement source in
each case is computed from equation (3) with ~ = 14.8 x 10 sec-2 and t. = 0.064
msec. The frequency content of the corresponding pressure pulse has a peak
frequency (fpsai<) of 15 kHz with an upper half-power frequency (f +J!) of 20 kHz.
The formation and fluid properties used in these two cases are presented in
Tables 1 and 2, respectively.

Figure 2 is a "snapshot" at 0.4 milliseconds after the source was triggered
for the sharp interface model. Contours of vertical displacement amplitUde are
shown on a cross-section through the borehole. The compressional and shear
head waves and the Stoneley and pseudo-Rayleigh waves can be identified. This
type of plot shows the interactions in the rock and is a useful aid in identifying
effects particularly when depth dependent borehole parameters are used. The
vertical displacement amplitude time series corresponding to a receiver at 2.2
m below the source on the axis of symmetry is shown in Figure 3. The main
features of a borehole acoustic log can be identified.

Figure 4 is a "snapshot" at 0.4 milliseconds after the source was triggered
for the velocity gradient model. The key features are indicated. The vertical
displacement amplitude time series corresponding to a receiver at 2.2 m below
the source is shown in Figure 5. The first arrival in this case'is a "diving wave"
in the gradient and has a larger amplitude than the pure head wave in Figure 3.
This effect was described by Heimberger (1968) for marine refraction profiles.
The later phases in the wave train also differ significantly from the sharp
interface case. A complete analysis of these arrivals will require further study.

Problems appear in both models after the Stoneley/pseudo-Rayleigh (or
gUided) wave packet. In the sharp interface case a high-frequency honey-comb
pattern is evident near the source (Figure 2). The high frequency nature of
thIs energy suggests that it is not real but a result of numerical noise. This
problem has been solved since the flgure was generated.

In the continuous gradient model there is a low frequency drift after the
guided wave packet which appears to be a consequence of numerical instability.
This problem was encountered in marine refraction applications and can be
improved by finer grid meshes whIch unfortunately increase the costs of the
seismograms considerably. Alternate solutions are under investigation.
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Comparison between Finite Di1Ierence and Discrete Wavenumber Synthetic
Microseismograms

To check the results from the Finite Difference Method (FD). it is necessary
to compare them with results from a well established technique like the
Discrete Wavenumber Summation Method (DW) (Cheng and Toksoz. 1981). The
second order sharp interface model shown previously will be used. with the
pressure response (different from the vertical dispiacement shown in Figures 2.
3. 4 and 5) in the center of the borehole presented as a function of time. The
synthetic microseismograms. from the discrete wavenumber summing will be
presented for comparison.

As pointed out by several authors (Kelly et al.. 1976; Alford et al.. 1974;
Alterman & Loewenthal, 1972; Stephen. 1983). the Finite Difference Method is
very sensitive to the grid and time step size. distance to the absorbing
boundary. and that the sharp interface solution will depend on the order of the
Taylor series apprOXimation. Di1Ierent synthetic seismograms will be presented
to illustrate how each different change may affect the final solution. On the
other hand. the discrete wavenumber method is known to be exact (Bouchon
and Aki. 1977); the only errors involved are those associated with the numerical
evaluations of the modified Bessel functions of complex arguments. This type of
numerical error is well understood and controlled.

In Figure 6a the synthetic seismogram calculated by the Discrete
Wavenumber Method is presented. The formation and fiuid properties are
identical to those used in Figure 2. The radius of the borehole is O.lm and the
center frequency of the source is 15 kHz with a bandwidth of 5 kHz. The P and
S wave arrivals. as well as the gUided waves packet. can easily be identified. It is
important to note that in this and sUDsequent comparisons. the DW solution will
be shown in the upper halves of the figures. while the corresponding FD solution
will be shown in the lower halves.

In Figure 6b we present the corresponding synthetic seismogram
calculated using the Finite Di1Ierence Method. There is a very close match of
the two waveforms; the P wave trains are almost identical. the S wave arrivals
are also well matched. and there is a general agreement between the two
microseismograms. including the pseudo-Rayleigh and Stoneley wave packet.
There are some phasing differences in two microseismograms in the guided
wave packet. In the tail end of the FD microseismogram there is some ringing
that is absent from the DW microseismogram. This is believed to be due to the
absence of attenuation in our model and the source generates reverberations
in the liqUid that travel with fluid velocity and are registered late in the record.
In general, the overall agreement between the two methods is qUite good.

Figure 7 shows the effect of reducing the time step. In the previous figure,
the time step was taken to be as large as allowable in equation (5). In this
figure the time step was reduced to half of the previous value. The two figures
are identical except for the slight amplitude difference in the last cycie of the
guided wave packet. It appears that the iargest allowabie time step is adequate
in the generation of synthetic microseismograms. In fact, the largest allowable
time step may be preferred in order to minimize the effects of grid dispersion
(Alford et al .. 1974).
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In Figure 8, the center frequency of the source is lowered to 10,8 kHz,
There is an excellent match between the two rnicroseismograms, with the only
difference being a slight arrival time difference in the Stoneley wave pulses at
about 1.35 msec.

It is clear from Figures 6 and 8 that the frequency content of the signal is
very important in the resolution of the synthetic seismogram, The frequency
content affects the choice of both the grid size and the time step in the FD
solution. The time step is related to the grid size through equation (5), and the
grid size is generally defined by:

Vrnin
f:,z - -1O-f::::max~ (19)

The number 10 in the denominator represents the number of grid points per
wavelength of the shortest wavelength body wave. In the case of a fiuid filled
borehole one must deal with not only P and S wave velocities but also pseudo­
Rayieigh and Stoneley waves which propagate with velocities lower than the
fiuid velocity. The estimation of grid size in equation (19) must be changed
accordingly. A factor of 0.8 is used in this study to reduce the smallest velocity
in the system (aJ or (3) for the grid size calculations. .

Another consideration in the borehole problem is the maximum frequency
f max used in equation (19). Normally f max is taken to be the upper-half-power
frequency of the source. This frequency is used to generate the FD solutions
shown in Figures 2, 6 and 7. In the borehole case, however, this frequency is
not always adequate, Figure 9a shows the frequency spectrum of the DW
synthetic rnicroseismogram shown in Figure 6a. Although the source used in
Figure 6 has an upper-half-power frequency at 20 kHz, there is significant
energy at about 23 kHz. This is due to the excitation of the second mode of the
pseudo-Rayleigh wave (Cheng and Toksoz, 1981; Paillet, 1980). The grid size
used to calculate the waveform in Figure 6b gives a number of grid points per
wavelength that is less than 10. This is refiected in the phasing difference in
the pseudo-Rayleigh wave packets between the FD and DW synthetic
rnicroseismograms shown in Figure 6. For comparison, the frequency spectrum
for the DW synthetic in Figure 8a is shown in Figure 9b. The higher mode of the
pseudo-Rayleigh wave is clearly not excited at this lower frequency, and the
grid spacing used is adequate.

Figure 10 shows the comparison results at an intermediate frequency
(center frequency of 12.33 kHz). The similarity between the FD and DW
solutions is better than the higher frequency solution shown in Figure 6 but not
as good as the lower frequency solution shown in Figure 8, This is a
confirmation of the frequency effect of the higher modes. Owing to the high
cost of generating synthetic rnicroseismograms in a model with many finely
layered annuli using the discrete wavenumber summation method, no
comparison between the heterogeneous formulation and the discrete
wavenumber summation method has been made.

CONCLUSIONS

Synthetic acoustic logs which demonstrate the salient features of observed
logs can be generated by the finite difference method using appropriate
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formulations. The results we have shown are preliminary, and more
comparisons between the finite difference results and those from the discrete
wavenumber summation in simple formations are needed. Further work falls in
three categories:

(1) Fine tuning the finite difference formulations: this includes eliminating the
late arrival noise (sharp interface case) and instability (continuous
gradient case).

(2) Further studies of the interaction of the guided waves with the sharp
interface formulation, This is important in understanding the properties
of the guided waves in a more complex formation.

(3) Applying the finite difference method to vertically varying borehole models
to investigate the effects, in a forward approach, of varying borehole
diameter and variable lithology between the source and receiver.

TABLES

Table 1: Parameters used for the Sharp Interface Formulation

SHARP lJQUlD-SOlJD INTERFACE

(

(

(

(

a= 1.8 Km/sec
(3= 0.0 Km/sec
p= 1.2 gm/cc

a= 4.0 Km/sec
(3= 2.3 Km/sec
p= 2.3 gm/cc

,U S (

Table 2: Parameters used for the Heterogeneous Formulation

lJQUlD-SOlJD INTERFACE

0.0 m 0.1 m 0.2m

a= 1.8 Km/sec ZONE OF a= 4.0 Km/sec
(3= 0.0 Km/sec LINEAR (3= 2.3 Km/sec
p= 1.2 gm/cc GRADIENT p= 2.3 gm/cc

MUD ---> SANDSTONE

4-12

(

(



APPENDlX

The Source

The source is a compressional point source in the water
dependence of the potential of the source is assumed to be:

l"(r,z,t)=-2~Te-,T", T=(t-t.+ R)
ex

and the Fourier transform of the potential is*:
"( )_. *_-j! -<J"/4, iQ(I.-R/a)
'i! r ,Z ,Co> --'t1T t; G)B e ,

where ~ is a pulsewidth parameter
t. is a time shift parameter
R = (r 2 +z 2 )* is the distance between the source

and the observation point
ex is the compressional wave velocity in the

region around the source.
and OJ is angular frequency.

column. The time

(A. 1)

(A. 2)

Since the displacement u is the gradient of the potential. the time
dependence of the displacement is:

iZ(r,z,t) = (A.3)

and the Fourier transform of the displacement is:

iZ(r,z,OJ) =

r
- 2 .R OJ 1/2 f-"- -Q"/4' 'Q(t,-R/a)-rr l)~e ~e

z ex
R

(A.4)

Similarly, the time and frequency de~endence of the pressure field can be

calculated (p =ex2p'i/·iZ =ex2p'i/21" =ex2p E::!L):at2

(A.5)

*The Fourier transform is defined by:

~

F(OJ) = !f(l).-<O'dt f(t) = _l_!F(",).HO'd"'.
2" _
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(A.6) (

The time shift parameter, t., is adjusted automatically by the program to
give a vanishingly small starting value for the displacement at the closest range
(Rmin) to the source. The program sets

R· _ /Til
t. = - ;n + V' f

which yields a value of approximateLy 10-6 for e -W-t
.+

H
/

a
) at t = O. This starts

the finite ditl'erence calculations sufficiently smoothly for stable results.
Similarly, there is no point in continuing the source after it has become less
than approximately 10-6 at the maximum range Rmax' The program ceases to
calculate the source and replaces it with zero when t exceeds t max' given by

R y-t =t +~+ l±.max.. a ~

The peak frequency and bandwidth are determined from the pulsewidth
parameter,~. For a pressure source, from equation (A.6), the peak frequency is
given by

f paa), = O.39v~

with the upper-half-power and the lower-haLf-power frequencies given by
O.528~* and O.266~*, respectively. The bandwidth, defined by the distance
between the two half-power points, is given by O.262~*.
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Figure 1. Outline of the geometry used for finite difference synthetic
acoustic iogs. Co-ordinates and types of boundaries are shown.

4-17



(

(

(

(

"Transmi tted
S

\;
~----r-------

!
_IP Head

Wave

sau RCE '8T~:m-n;p:H+1!+m

Stone ley
and

Pseudo ...
Ray leigh
Wove
Packet

Figure 2. Snapshot of the borehole response 0.4 milliseconds after the
source was triggered for a sharp liquid-solid interface model. The Key wave
types are Identified. This plot shows contours of vertical displacement am­
plitude so that shear waves can be identified in the formation.
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Figure 3. The vertical displacement time series observed at 2.2 m directly
below the source for the sharp liquid-solid interface model. Key wave types
are identified.
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Figure 4. Snapshot at 0.4 millisecond for a model with a linear gradient
between the borehole fluid properties and the rock. Vertical displacement
amplitude has been contoured.
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Figure 5. The time series observed at 2.2 m below the source for the linear
gradient model. Note that the first P wave arrival, the refracted or diving P
wave, has a larger amplitude than the P head wave observed at a sharp in­
terface. Shear wave conversion Is less pronounced for the gradient case
and the refracted shear wave, if it is present,is difficult to identify. The
guided wave packet, corresponding to the Stonely/pseudo-Rayleigh wave
packet for the sharp interface case, is still present, and, indeed, appears to
have larger amplitude arrivals over a longer period. The sources for the two
models are identical.
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Figure 6. (a) Discrete wavenumber (DW) , and (b) finite difference (FD) syn­
thetic seismogram (DW) at 2.2 m. The center frequency of the source is 15
kHz.
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Figure 7. (a) Discrete wavenumber (DW) , and (b) finite difference (FD) syn­
thetic seismogram (DW) at 2.2 m. The center frequency of the source is 15
kHz. The time step used in the finite difference solution here is half that
used in Figure 6b
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thetic seismogram (DW) at 2.2 m. The center frequency of the source is 10.6
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Figure 9. (a) Frequency Spectrum of the DW synthetic seismogram in Fig­
ure 6a. Notice the energy at about 23kHz. (b) Frequency Spectrum of the
DW synthetic seismogram in Figure 8a.
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thetic seismogram (DW) at 2.2 m. The center frequency of the source is
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