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ABSTRACT

Synthetic seismograms of elastic wave propagation in a fluid-filled borehole
were generated using both the finite difference technique and the discrete
wavenurmber summation technique. The latter is known to be accurate for both
body and surface (guided) waves. The finite difference grid has absorbing
boundaries on two sides and axes of symmetry on the remaining two sides. A
grid size no less than 10 points per wavelength was used. The far absorbing
boundary was located at a distance of five to 10 radii from the borehole. Two
types of solid-liquid interfaces were investigated: 1) a velocity gradient using
the heterogeneous formulation, and 2) a sharp boundary using a second order
Taylor expansion of the displacements. The results from the finite difference
modeling were compared with the synthetic seismograms generated by the
discrete wavenurnber summation method. No comparisen the heterogeneous
formulation and the discrete wavenumber method has been made. The second
order approximation to the solid-liquid interface produced seismograms that
compared well with the discrete wavenumber seismograms. A detailed
comparison between the seismograms generated by the two methods showed
that the body waves {refracted P and S waves) are identical, while the guided
waves showed a slight difference in both phase and ammplitude. These
differences are believed to be due to the approximations introduced in the
fluid-solid interface, the absorbing boundary at the edge of the grid, and the
grid and time step sizes involved. Owing .to the fact that they are interface
waves, the guided waves, especially the higher modes, are much more sensitive
to the above mentioned approximations.

INTRODUCTION

In order to obtain the best possible interpretation of an acoustic log it is
necessary to fully understand the physics of acoustic and elastic wave
propagation in and around the borehole. Because of the complexity of the wave
equations involved, models of the acoustic logging problern almost always
assume radial symmetry and depth independent elastic properties (e.g.. Biot,
1952, White and Zechman, 1968; Tsang and Rader, 1979; Cheng and Toksgz,
1881). This type of analysis is certainly acceptable for identifying the major
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modes of wave propagation and their ideal properties. The next step in
studying the preoblem is to gain some insight inte the effects of more realistic
structure. How does variable borehole diameter between the source and
receiver affect the logs? How would thin layers and horizental bed boundaries
change the observed waveforms? At the present time only finite difference or
finite element methods applied to the elastic wave equation have the potential
to answer these questions. Stephen (1983) had applied finite difference
methods to seismic wave propagation through the sea floor. This is a
theoretically similar problem {o seismic wave propagation in a borehole. For
this reason, the finite difference method was chosen to address some of the
above mentioned problems.

The first task is to compare finite difference acoustic logs with logs
generated by the discrete wave number approach (Cheng and Toksdz, 1981).
This will provide a useful check on the accuracy of the two methoeds since they
are fundamentally different ways of solving the same problem and the nature of
the numerical approximations in each case is entirely different. This paper will
outline the finite difference method as applied to the acoustic logging problem,
ag well as report the preliminary findings of the comparison between the results
of the finite difference and discrete wavenumber analysis.

THE FINITE DIFFERENCE METHCD

A list of all the papers on the finite difference method in seismology would
be too lengthy to include here. Three groups were "pioneers’ in the work (see
for example Alterman and Karal (1968); Boore (1972); Kelly ef. al. (1976)).
Stephen {1983) has given finite difference formulations for sharp liquid-solid
interfaces and compared the results to the reflectivity method (a discrete wave
number technique) for sea floor models.

The equation to be sclved is the elastic wave equation for perfectly elastic,
isotropic media in the absence of body forces (Aki and Richards, 1980):

PU =Ty 5 (1)

where p is density, i is the displacement vector and 7y is the stress tensor for
iscotropic media, with summation over repeated indices. Anisotropy and
attenuation can be included in the finite difference sclution if necessary. The
stress tensor for isotropic media can be written as .

Tig =[AGij0p +14(63x 07y +64 05p ) Jens (®)

where A and u are Lame's parameters, ¢ is the Kronecker delta, and .

e,,;:%-(u,,‘ﬁu; &) is the strain tensor. Equation (1) will be solved in two-

dimensional cylindrical co-ordinates (r,z) and the parameters {(p,A,u) will be
assumed to be functions of radius r and depth 2z only. A purely compressional
source will be located in a liquid on the axis of symmetry (r=0) and a liquid-
solid interface will be located at a radius, #. A vertical line of pressure
receivers will be located below the source on the axis of symmetry (Figure 1).
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The time dependence of the potential of the impulsive compressional point
gsource ig given by Kelly ef al. (1978):

F)=—Re(t —t,)e ¢ (3)

where i, is a time shift chosen such that f (0)X0 and ¢ governs the pulse width.

Stephen (1983) showed that in order to obtain agreement between finite
difference and discrete wavenumber approaches for liquid-solid interfaces, it
was necessary in the finite difference method to apecifically code the boundary
conditions for the sharp interface and that a code correct to second order in
the space increments gave the best results. The above mentioned paper dealt
with sea floor rmodels. In this paper, the finite difference formulation fer slowly
varying media will be reviewed and the second-order formulation for a sharp
liquid-solid borehole interface will be given.

Formulation for Slowly Varying Media

As outlined by Alterman and Loewenthal (1972) and Kelly ef al. (1978) the
elastic wave equation with the parameters (p,Au}, functions of range and/or
depth can be solved directly by an explicit finite difference method. In terms of
displacements only, equations (1) and (2) become

1 =N+ ) V(T B )+ V2L +VNV -2 )+ T x(V xZ ) +2(V - V)2 (4)

The finite difference formulation of this equation is given in Stephen {1983). It
i3 important to note that there are a number of explicit finite difference
formulations for this equation and stability and accuracy will differ for each
one {Zienkiewicz, 1977). Thus it is important to state precisely which
formulation is used in a particular application. It is necessary to allow for
density variations in the code because of the sharp density conirast at the
berehele wall. The borehole fluid can be considered simply by letting the shear
modulus, i, go to zero. )

For the case of propagation in infinite homegeneous media, this explicit
finite diference formulation is stable only if:

min{ar 82z)
A==y (8)

o*+f

where a=='\/ _'%g_ and ﬁ=\/ ‘g- Kelly etal. (1976) suggested that stability

in heterogeneous media could be expected provided equation (5) held
everywhere on the grid. Experience suggests that this is only the case for
"slowly'' varying media.

The principle cause of inaccuracy in finite difference calculations for
slowly varying media is grid dispersion. If the grid increments (4r . Az) are too
large, low frequencies will travel faster across the grid than high {requencies
causing apparent dispersion. {This result is generally true for compressicnal
waves. For shear waves the dispersion relaticn is more complex and for some
combinations of Peisson's ratic and propagation direction high frequencies will
travel faster than low frequencies (see Bamberger ef ai. (1980)). Estirmates of
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the number of grid points per wavelength which will give acceptable resuilts vary
from ten to fifty and depend on the probiem. This uncertainty makes the
commparison of finite difference results with results of other techniques
extremely important. :

Second COrder Boundary Conditions for a Liquid-Solid Cylindrical Interface

Stephen (1983) showed that it is necessary to represent the liquid-solid
interface specifically in the finite difference code by boundary conditions.
Unfortunately the formulation given by Stephen (1983) was for interfaces
normal to the depth 2z axis and is inappropriate for interfaces normal to the
radius r in cylindrical co-ordinates. The formulation for this case, which is
analogous to a formulation for solid-solid interfaces originally presented by

Ungar and Ilan (1977) is given below.

The wave equation in the homogeneous liquid te the left of the interface
{see Figure 1) is:

1
b= @
1
pl'wt% _P\I(%"P;‘uzl)“}\lwzlz:o (7)

and in the homogeneous solid to the right of the interface is:

1 1
paudi ~(Ap+ig) (112 + ;'U,-z _,._2'”'2) g 2 ~(Ag+pz yw, =0 (8)
1 1
paw —pa(wR+ =wh) ~(Ag+Bug)w —(Ap e Nl + —uf)=0 (9)

The boundary condifions which must hold at the liquid-solid interface are
continuity of nermal stress,

1 1
Ag ('U-rl“';ﬂl)"'?nwzl:(?\z"‘g#z)urz“'?\z( ;,uzmzz) (10}

vanishing of the tangential stress in the seolid,
pa(ul +wk)=0 (11)

and continuity of normal displacement,
wt=y? {12}

The superscripts, 1 and 2, refer to values in the liquid and solid respectively.
The unknowns in the derivation are the horizontal displacement at the
interface, w!"*(# n.l), the vertical displacement in the liquid at the interface,
wl(M mn 1) and the vertical displacement in the solid at the interface, w3(# n,1).
The interface ig at a radius of A=#Ar.
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Additional relationships required in the derivation are the Taylor
expansions:

_Aﬂl_rl-g.-%‘ﬁrzu_‘_}_:ul(M—l,n,l)—‘ul{M.ﬂ,Z) (13)
Aruls é—arzuﬁ.zuz(ﬂi-1,n,l)-—*u.2(M,?1.5) {14)
drwls Lartwd=w (i +1m )~ (H n.0) (15)

and the finite difference expressions for mixed derivatives:

~2Ar Azw L =wl (M -1 n+1 1)-wl(H-1n-11).

—wlHn+il)+wi(Hn-110) (18)

eArAzul =u (M +1n+1 ) —uP(H+1n—-11)

- n+10)+uf(H n-11) ' (17)

AT AzwE =wA (M +1n+1,0)-w* (M +1,n-11)

(M n+1 D +wH(Hn-11), (18)

The finite difference formulation for the horizontal displacement on the
interface, is obtained by sclving equations (6), (8), (10), (12), (13), (14), (16) and
(18) and replacing z and t derivatives with centered finite differences. Hence:

wl¥ (M n l+1)}=2uR(HUn l)—u* (M nl-1)
+o,[wi M n+1l)—wi(M n-11)]
+azwi{Mn+1l)—wi(Mn-11)]
+agul®{H nl)
+a Jur(H+1n,l)—ur?*(H n,l)]
+as[ul?(H.nl)-u (¥ -1n,1)]
+aglul? (M n+1,0)-2ut¥ (M n ) +ul?*(Hn-11)]
+a[wrH(H+1n+1 ) wi(H n+1 ) —wi(H+1n -1 +w{H n-110)]

taglwi{dn+1l)—wi{H-1n+1l)—w(Hn-1)+wl(H-1,n-11)]
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where
At? Ag

17 0rdz (p1+pz)

. S
277 brdz (pr+pg

At2 2
(P;+,0)[M( 2 A-I)

At? 2(Ag+2%ug)

3=

T ArE (py+pa) (1+ BM)
At?

P T~ ot N [

57 Ar? (p1+pz)( 2)
At2 Ua

5= ——— ————
87 Az? {p1+p2)

gz A2 {Agtpg)
" Araz 2(p;+pa)

- AR A1
87 Ar Az 2(p1+pg)

(7\2“"3#2“"?\1)]

In all the formulations presented in this paper d=(u,w)Ar Az At are the
increments in radius, depth and time and m, n. 1 are the indices for radius,
depth and time {i.e. (m,n.l)=(mAr nAz lAL)).

Similarly by solving equations {8), (7) and (13) for the vertical
displacermnent in the liquid at the interface one obtains:

wH{Mmn l+)=2w{# nl)~w(Hnil-1)

+b, [wi{dn+1l)-Rwi (M n ) +w{Hn-11)]

top[ul(M n+1)~ul(Hn-11)]

+hg[ul(M n+1.l)—ul(H

-1+ )~uli{dn-1)+ru(H-1n-11)]

+hJul(Hn+1l+1)Rul(H n+1 l)+u{Mn+1l-1)

—ul(Hn-1l+1)+2u (M n-10)—u (M n-11-1)]

+hs[wl(Hn+1)-Ruwi{Mn )+w {(Mn-11)

~wi{H-1n+1)+2w (H-1n )~wH{H~1n-11)]

+hglut B n+i ) Hn-11)-uw {H~-1n+1, D)+ {(H-1n-11)]
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where
2
Ay

A1

- AE?
71 Az2

_ A2 M (L1 )
T ArAz 2p, ‘M 2M?

- At? A
87 Ardz 2p,

Ar
4Az

__AtE Ay
37 Az? 2p,

A2 A 1
7 AzAr o1 &M

Note that this solution reguires the horizontal component on the interface at
future points in time ((I+1)Af) and it must follow the calculation of the
horizontal components.

The vertical displacement in the solid at the interface is obtained frem
equations (9), {11), (15}, and (17):

w?(H nl+1)=2w?(H n ) —w¥ (M nl-1)
+o[ut?(Mn+10)—uB(Hn-1.1)]
+ep[wir(M+1n ) —wi(H n, )]
+eg[w{(M n+1.0) 2w H n ) +w2{(H n—1.0)]
re Jur(H+in+1, D)= (H n+1,D)-u?(H+1in -1 D) +*(H n-11)]

where

_ AE2 1 {Ap+pg)
cl_ArAzpz Sy M2 ]

At Blg 1
= ——i] =
°e= 0 pp TR

At? ?\a+2!1-2)

Cg= "3

Az? Pz

. = AE? (Ratre,
Y ArAz ng
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Boundary Conditions

In order te minimize the computation time for the problem, it is necessary
to minimize the size of the grid. This is accomplished by the proper selection of
axes of symmetry and absorbing boundaries. If absorbing boundaries were not
used (e.g., the displacement is simply set to zero at some distance from the
source), the grid dimensions would be necessarily large in order to prevent the
reflections [rom these artificial boundaries producing interfersnce at the
receivers.

In the present model the top and left-hand boundaries are selected to be
axes of symmefry, thus placing the compressional point source in the upper left
corner. Exact finite diference formmulation to the elastic wave equation is
possible at axes of symmetry and these are generally preferable to absorbing
boundaries where approximations must be made. The axes of symmetry
formulations can be obtained from the body formulations outlined in the
previous section by either 1) applying symmetry conditions for the
displacements {e.g., for the left-hand boundary, vertical displacements are
symmetrical on either side of the axis and horizontal displacements are
asymmetrical on either side of the axig) or 2) apply 'Hospital’s rule for terms
containing 8/ dr, as outlined by Aiterman and Loewenthal (1972), (e.g., for the

left-hand boundary, L—g—— becomes as r goes ta zero).

8%
dr dz

A special code for the absorbing boundaries follows the formulation of
Clayton and Engquist (1977), as modified by Emerman and Stephen (1983). The
method assumes a parabolic approximation to the elastic wave equation about
an axis normal to the boundary and works best for energy propagatmg at near
normal incidence. The absorbing boundary conditions are applied in cylindrical
coordinates for the liquid and in cartesian coordinates, assuming 1/7 small
encugh, in the solid.

The intersection of the sharp interface and the absorbing boundary(joint
point) requires special treatment. For the horizontal displacement and the
vertical displacement in the selid the same absorbing boundary formulation as
used for heterogeneous media was applied, with the velocities and densities at
the point of intersection replaced by the average values across the interface.
The vertical displacement in the liquid was computed using a first-order one-
sided difference of the equation for the continuity of normal stress. Although
not very rigoreus, this technique seems to work reasonably well. As peinted out
by Fuyuki and Matsumoto (1980), the guided waves are not absorbed by this
kind of boundary. Owing to the elliptical particle motion of the guided waves,
there is a component of displacement parallel to the boundary which may pose
problems if the boundary is close to the borehole. A minimum of two
wavelengths of the lowest frequency guided wave was used as a criterion for the
placement of the grid boundary from the liquid-solid sharp interface to aveid
this problem.

NUMERICAL RESULTS
In this section, preliminary resulls in applying the heterogeneous and

sharp interface formulations cutlined above to produce synthetic acoustic logs
will be discussed. Problems which did not arise in previcus work with finite
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differennce solutions have been enccountered. However, the problems occur late
in the wave train, after the Stoneley wave arrivals, and our solutions appear
reasonable for the earlier phases.

Two basic medels will be discussed: 1) a sharp liquid-sclid interface model
corresponding to a mud-filled borehele in a homogeneous rock formation with
sandstone like properties, 2) a velocity gradient model corresponding to a
continuous change in properties between the mud-filled borehole and
formation. which may resemble the combined effects of mud cake, formation,
fracturing and invasion at the wall of the borehole., The disﬂplacement gource in
each case is computed from equation (3) with ¢ = 14.8 x 10%ec™ and £, = 0.084
msec. The frequency content of the corresponding pressure pulse has a peak
frequency (fpeae) of 15 kHz with an upper half-power frequency (f .y) of 20 kHz.
The formation and fluid properties used in these two cases are presented in
Tables 1 and 2, respectively.

Figure 2 is a ''snapshot” at 0.4 milliseconds after the source was {riggered
for the sharp interface model. Contours of vertical displacement amplitude are
shown on a cross-section through the borehole. The compressional and shear
head waves and the Stoneley and pseudo-Rayleigh waves can be identified. This
type of plot shows the interactions in the rock and is a useful aid in identifving
effects particularly when depth dependent borehele parameters are ugsed. The
vertical displacement amplitude time series corresponding to a receiver at 2.2
m below the source on the axis of symmetry is shown in Figure 3. The main
features of a borehole acoustic log can be identified.

Figure 4 is a '‘snapshot’” at 0.4 milliseconds after the source was triggered
for the velocity gradient model. The key features are indicated. The vertical
‘displacement amplitude time series corresponding to a receiver at 2.2 m below
-the source is shown in Figure 5. The first arrival in this case is a “‘diving wave"”
in the gradient and has a larger amplitude than the pure head wave in Figure 3.
This effect was described by Helmberger (1968) for marine refraction profiles.
The later phases In the wave train also differ significantly from the sharp
interface case. A complete analysis of these arrivals will require further study.

Problems appear in both models after the Stoneley/pseudo-Rayleigh (or
guided) wave packet. In the sharp interface case a high-frequency honey-comb
pattern is evident near the source (Figure 2). The high frequency nature of
this energy suggests that it is not real but a result of numerical neoise. This
problem has been solved since the figure was generated.

In the continucus gradient rmodel there is a low frequency drift after the
guided wave packet which appears to be a consequence of numerical instability.
This preblem was encountered in marine refraction applications and can be
improved by finer grid meshes which unfortunately increase the costs of the
seismograms considerably. Alternate solutions are under investigation.
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Comparisen between Finite Differsnce and Discrete Wavenumber Synthetic
Microseismograms

To check the results from the Finite Difference Method (FD), it is necessary
to compare them with results from a well established technique like the
Discrete Wavenumber Summation Method (DW) (Cheng and Toksdz, 1981). The
second order sharp interface model shown previcusly will be used, with the
pressure response (different from the vertical displacement shown in Figures 2,
3, 4 and 5) in the center of the borehole presented as a function of time. The
synthetic microseismograms. from the discrete wavenumber summing will be
presented for comparison.

As pointed out by several authors (Kelly ef al., 1976: Alford ef al., 1974
Alterman & Loewenthal, 1972; Stephen, 1983), the Finite Difference Method is
very sensitive to the grid and tirne step size, distance to the absorbing
boundary, and that the sharp interface solution will depend on the order of the
Taylor series approximation. Different synthetic seismograms will be presented
to illustrate how each different change may affect the final solution. On the
other hand, the discrete wavenumber method is known te be exact (Bouchon
and Aki, 1977); the only errors involved are those associated with the numerical
evaluaticns of the rnodified Bessel functions of complex arguments. This type of
numerical error is well understood and controlled.

In Figure 8a the synthetic seismogram calculated by the Discrete
Wavenumber Method is presented. The formation and fluid properties are
identical to those used in Figure 2. The radius of the borehole is 0.1m and the
center frequency of the source is 15 kHz with a bandwidth of 5 kHz. The P and
S wave arrivals, as well as the guided waves packet, can easily be identified. It is
important to note that in this and subsequent comparisons, the DW solution will
be shown in the upper halves of the figures, while the corresponding FD solution
will be shown in the lower halves.

- In Figure 6b we present the corresponding synthetic seismogram
calculated using the Finite Difference Method. There is a very close matech of
the two waveforms; the P wave trains are almost identical, the 3 wave arrivals
are also well matched, and there is a general agreement between the two
ticroseismograms, including the pseudo-Rayleigh and Stoneley wave packet.
There are some phasing differences in two microseismograms in the guided
wave packet. In the tail end of the FD microseismogram there is some ringing
that is absent from the DW microseismogram. This is believed to be due to the
absence of attenuation in our model and the source generates reverberations
in the liquid that travel with fuid velocity and are registered late in the record.
In general, the overall agreement between the two methods is quite good.

Figure 7 shows the effect of reducing the time step. In the previous figure,
the time step was taken to be as large as allowable in equation (5). In this
figure the time step was reduced to half of the previous value. The two figures
are identical except for the slight amplitude difference in the last cycle of the
guided wave packet. It appears that the largest allowable time step is adequate
in the generation of synthetic microseismograms. [n fact, the largest allowable
time step may be preferred in order to minimize the effects of grid dispersion
(Alford et al., 1974).
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In Figure B, the center frequency of the source is lowered to 10.8 kH=z.
There is an excellent match between the two microseismograms, with the only
difference being a slight arrival time difference in the Stoneley wave pulses at
about 1.35 msec.

It is clear from Figures 8 and 8 that the frequency content of the signal is
very important in the resolution of the synthetic seismogram. The frequency
content affects the cheoice of both the grid size and the time step in the FD
solution. The time step is related to the grid size through equation (5), and the
grid size is generally defined by:

Vini

" 167 mar (19)

Az

The number 10 in the denominator represents the number of grid points per
wavelength of the shortest wavelength body wave. In the case of a fluid filled
borehole one must deal with not only P and S wave velocities but also pseudo-
Rayleigh and Stoneley waves which propagate with velocities lower than the
fluid velocity. The estimation of grid size in equation (19) must be changed
accordingly. A factor of 0.8 is used in this study to reduce the smallest velocity
in the system (a, or 8) for the grid size calculations.

Another consideration in the borehole problem is the maximum frequency
7 max used in equation (19). Normally f m.. is taken to be the upper-half-power
frequency of the source. This frequency is used to generate the FD scolutions
shown in Figures 2, 8 and 7. In the borehole case, however, this {requency is
not always adequate. Figure 9a shows the frequency spectrum of the DW
synthetic microseismogram shown in Figure 6a. Although the source used in
Figure B8 has an upper-half-power frequency at 20 kHz, there is significant
energy at about 23 kHz. This is due teo the excitation of the second mode of the
pseudo-Rayleigh wave (Cheng and Toksoz, 1981; Paillet, 1980). The grid size
used to calculate the waveform in Figure 8b gives a number of grid points per
wavelength that is less than 10. This is reflected in the phasing difference in
the pseudo-Rayleigh wave packets between the FD and DW synthetic
microseismograms shown in Figure 8. For comparison, the frequency spectrum
for the DW synthetic in Figure 8a is shown in Figure 9b. The higher mode of the
pseudo-Rayleigh wave is clearly not excited at this lower frequency, and the
grid spacing used is adequate.

Figure 10 shows the comparison results at an intermediate frequency
(center frequency of 12.33 kHz). The similarity between the FD and DW
solutions is better than the higher frequency sclution shown in Figure & but not
as good as the lower frequency soluticn shown in Figure 8. This is a
confirmation of the frequency eflect of the higher modes. Owing te the high
cost of generating synthetic microseismograms In a model with many finely
layered annuli using the discrete wavenumber summation method, no
comparison between the heterogenecus {formulation and the discrete
wavenumber summation method has been made.

CONCLUSIONS

Synthetic acoustic logs which demonstrate the salient features of observed
logs can be generated by the finite difference method using appreopriate
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formulations.

(1) Fine tuning the finite difference formulations; this includes eliminating the
late arrival noise (sharp interface case) and instability {(continuous

(=)

The results we

gradient case).

Further studies of the interaction of the guided waves with the sharp
interface formulation. This is important in understanding the properties

have shown are
comparisons between the finite difference results and those from the discrete
wavenumber summation in simple formations are needed. Further work falls in
three categories:

of the guided waves in a more complex formation.

Applying the finite difference methed to vertically varyving borehole models
to investigate the effects, in a forward approach, of varying borehole
diameter and variable lithology between the source and receiver,

Table 1. Parameters used for the Sharp Interface Formulation

Table 2:

Parameters used for the Heterogeneous Formulation

TABLES

SHARP LIQUID-SCLID INTERFACE

0.0m 0lm

o= 1.8 Km/sec | a= 4.0 Kmm/sec

g= 0.0 Km/sec | = 2.3 Km/sec

p=1l2gm/cec p=2.3 gm/cc
MUD SANDSTONE

preliminary, and more

LIQUID-SOLID INTERFACE

00m g.lm c.2m

a=18 Km/see | ZONEOF | a= 4.0 Km/sec

g= 0.0 Km/sec LINEAR f= 2.3 Km/sec

p= 1.2 gm/cc GRADIENT | p=2.3 gm/cc
MUD ——> SANDSTONE

4-12

e

o



APPENDIX

The Socurce

The source is a compressicnal point source in the water column., The time
dependence of the potential of the source is assumed to be:

o(r 2, t)=—26Te <7, T=(t-t,+§) (A.1)

and the Fourier transform of the potential is*:
8(r.z 0)=—i i Hue ~?/ aggtolts R/ ) (A.2)

where £ is a pulsewidth parameter
ty is a time shift parameter
R = (r®+z?)*is the distance between the source
and the observation point
@ is the compressional wave velocity in the
region arcund the source.
and w is angular frequency.

Since the displacement # is the gradient of the potential, the time
dependence of the displacement is:

d(rz.t) = g ;%‘f-[i—zgf"z] 2 ~¢T? (A.3)
R

and the Fourier transform of the displacement is:

r
L _
f G; /2 gh gt at g telts~R/a) (A.4)

b4

d(rz.w) =

Similarly, the time and frequency degendence of the pressure fieid can be

calculated {(p = a®oV2 = a?pV3% = o®p %Eg-—):

plr.zt) = afpa?[3T 2678 e~¢T°, T=(t "ts+§) (A.5)

*The Fourier transform is defined by:

Flw) = [rit)etotat Fl¢) = —zl;ff;'(w)e"‘“‘du.
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plrz.w) = c:tzp‘i(%ﬁi of g w4k el =R/ @) (A.6)

The time shift parameter, f;, is adjusted automatically by the program to
give a vanishingly small starting value for the displacement at the closest range
(Rmin) to the source. The program sets

Bow ,  /TE

£, =

which yields a value of approximately 10~ for ¢ *¢ %™ %) 44 ¢ =0 This starts

the finite difference calculations sufflciently smoothly for stable results.
Similarly, there is no pomt in continuing the source after it has become less
than approximately 107 at the maximum range Fg.,. The program ceases to
calculate the source and replaces it with zero when t exceeds £, given by

Frax \/ 14
t =t + —— _—
max.— s = £

The peak frequency and bandwidth are determined from the pulsewidth
parameter, £. For a pressure source, from equation (A.6), the peak frequency is
given by

S poake = 0.39VE

with the upper-half-power and the lower-haif-power frequencies given by
05285 and 0266.5 respectively. The bandwidth, defined by the dlstance
between the two half—poWer peints, is given by 0.262¢%,
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Figure 1. Outline of the geometry used for finite difference synthetic
acoustic logs. Co-ordinates and types of boundaries are shown.

417



SOURCE 0.5m

Iii

-

r

Staneley E
and E

Pseudo - E

Rayleigh ) &

Wave D

Packet r E
L
t_"ﬁ.’o o]
[
£ AN
z Transmitted
£ y S

N
T

2, S _] _'_h

D
L

oAt

T

IEEREREERRRET SRS i“ﬁ'?‘[’!TTIL
-

o
I
@
oo
[« 18

Transmitted P

(I eI

SEFEENE]

wn
3

Figure 2. Snapshot of the borehole response 0.4 milliseconds after the
source was triggered for a sharp liquid-solid interface model. The Key wave
types are identified. This plot shows contours of vertical displacement am-
plitude so that shear waves can be identified in the formation.
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Figure 3. The vertical displacement time series observed at 2.2 m directly
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Figure 5. The time series observed at 2.2 m below the source for the linear
gradient model. Note that the first P wave arrival, the refracted or diving P
wave, has a larger amplitude than the P head wave observed at a sharp in-
terface. Shear wave conversion is less pronounced for the gradient case
and the refracted shear wave, if it is present,is difficult to identify. The
guided wave packet, corresponding to the Stonely/pseudo-Rayleigh wave
packet for the sharp interface case, is still present, and, indeed. appears to
have larger amplitude arrivals over a longer period. The sources for the two
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Figure 8. (a) Discrete wavenumber (DW), and (b) finite difference (FD) syn-
thetic seismogram (DW) at 2.2 m. The center frequency of the source is 15

kHz.
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Figure 7. (a) Discrete wavenumber (DW), and (b) finite difference (FD) syn-
thetic seisrmogram (DW) at 2.2 m. The center frequency of the source is 15
kHz. The time step used in the finite difference solution here is half that
used in Figure €b
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Figure B. (a) Discrete wavenumber {DW), and (b) finite difference (FD) syn-
thetic seismogram (DW) at 2.2 m. The center frequency of the source is 10.8
kHz.
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Figure 9. (a) Frequency Spectrum of the DW synthetic seismogram in Fig-
ure Ba. Notice the energy at about 23kHz. (b) Frequency Spectrum of the
DW synthetic seismogram in Figure 8a.
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Figure 10. (a) Discrete wavenumber (DW), and (b) finite difference (FD) syn-
thetic seismogram (DW) at 2.2 m. The center frequency of the source is

12.33 kHz.
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