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ABSTRACT

Thus study demonstrates the advantages of a recently-developed irregular-grid modeling
technique (Nolte, 1996). This technique can model irregular interfaces more accurately
than a standard regular-grid finite-difference method. I show this by comparison of both
methods for a simple model containing a sloping interface. While the discrete approxi
mation to the sloping interface results in numerical inaccuracies for the finite-difference
method, the irregular-grid technique produces superior results. I then show that the
method can also be applied to a free surface with irregular topography, suggesting that
it may be a valuable alternative to existing finite-difference free-surface algorithms.

INTRODUCTION

It is well known that finite-difference techniques (e.g., Alford et al., 1974; Virieux, 1984,
1986) suffer from inaccuracies in modeling irregular interfaces, due to their discrete
approximation to the model. For example, a dipping interface has to be approximated
by discrete steps. This approximation can result in diffractions from these "stair steps"
(Muir et al., 1992). While these diffractions can often be eliminated by an isotropic
interpolation of the medium parameters across the interface, more severe problems
occur when larger impedance contrasts are present at an interface. Muir et al. (1992)
presented an effective-medium approach to model irregular interfaces. Even though
there is no rigorous theoretical justification for their approach, their numerical results
show that it works well in cases where isotropic interpolation fails. Their method is
limited to interfaces with solid material on either side, and thus cannot be applied to
an irregular free surface.
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Incorporating surface topography into finite-difference modeling codes has been the
subject of various previous investigations (e.g., Jih et al. 1988; Hestholm and Ruud,
1994; Robertsson, 1996). As shown by Robertsson (1995), various methods have dif
ferent shortcomings. For example, grid-distortion techniques (Tessmer et aI., 1992;
Hestholm and Ruud, 1994; Hestholm, 1996) become unstable at steep slopes. Imaging
techniques (Levander, 1988; Robertsson, 1996) appear to be more flexible in handling
irregular topography. However, Robertsson (1996) was forced to use a very fine gridding
in order to avoid the stair-step problems, which he found to be more severe for a free
surface than for a solid-solid interface. Thus an accurate representation of an irregular
free surface is computationally expensive, and alternative modeling schemes are desir
able. One approach could be rectangular variable grid methods (Jastram and Tessmer,
1994; Wang and Schuster, 1996; De Lilla, 1997) combined with Robertsson's free surface
algorithm. This would allow the fine gridding to be restricted to the near-surface region,
while coarser gridding could be used in other parts of the model.

Here, I show an alternative method to incorporate surface topography. An irregular
triangular-grid method is presented in Nolte (1996) which is based on a finite-volume
approximation (e.g., Vinokur, 1989) to the wave equation. This method allows the
grid itself to be distorted so that grid points can be positioned directly on interfaces.
Also, it deals with an irregular free surface the same way as with an irregular solid-solid
interface, which is an advantage over the technique of Muir et al. (1992).

In this paper, I demonstrate the usefulness of this method with two numerical ex
amples. First, I compare the irregular-grid technique for a model containing a sloping
interface with a regular finite-difference code, and. show that the former can model this
case more accurately than the latter. I then present a numerical example that shows
how the technique can be applied to a model with an irregular free surface.

THE MODELING TECHNIQUE

I have described the details of the technique in the previous consortium report (Nolte,
1996) and will thus only review the essentials. As there was an error in the P-SV
formulation in the previous paper, I give the correct P-SV equations in the appendix.
The method essentially amounts to a discrete approximation to the wave equation in
integral form, while the constitutive relation is approximated in finite-difference form.
The model is parameterized on a triangular Delaunay grid and its dual Dirichlet grid
(see the appendix and Figure A-2 for the definition of these terms). As the Delaunay
grid can be irregular, grid points can be placed directly on an interface. In my irregular
grid technique the medium parameters (A, J.L and p) are defined to be constant within
each triangular grid cell (see Figure A-2). Thus, if grid points are positioned exactly
on an interface, the two media will be separated exactly by the interface. In contrast,
finite-difference implementations usually approximate the model parameters in an area
around the grid point itself, which in staggered-grid techniques does not clearly define
the exact position of an interface.
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Irregular Grid Modeling

As stated above, the free surface is treated the same way as any other interface. On
all other model boundaries, I use Higdon's (1986, 1987) absorbing boundary condition.
Refer to Nolte (1996) for details of the implementation of this boundary·condition on
a triangular grid. 80 far, only a first-order absorbing boundary condition has been
implemented.

COMPARISON WITH FINITE DIFFERENCE FOR A DIPPING
INTERFACE

In order to test the performance of the irregular-grid code, I have designed the following
experiment. First, I model a case of a flat interface (Figure la). For this type of
model no stair-step approximation needs to be made, therefore a regular finite-difference
technique should give accurate results. The depth to the interface is 800 m, and the
source is located 120 m above the interface. The P and 8 velocities and densities of
the two layers are given in the figure. A snapshot computed with finite differences
for the model in Figure la is shown in Figure 2a. The snapshot shows the horizontal
component of particle velocity (i.e., the component parallel to the interface) for a point
force source oriented vertically (perpendicular to the interface). The source signal is a
Ricker wavelet with a center frequency of 20 Hz. The snapshot is taken at a time of
0.2 s. Next, I rotate the whole experiment by 30° (Figure Ib), i.e., I rotate the interface,
and the source orientation. The source is. therefore still oriented perpendicular to the
interface. For this model I now compute snapshots of the particle velocity component
parallel to the interface. Thus, with the exception of the effects from the free surface and
(imperfectly) absorbing boundaries, the snapshots computed for the tilted model should
look like those computed for the flat model, but rotated by 30°. Figure 2b shows the
result computed with the finite-difference scheme, while Figure 3b shows the irregular
grid result. In the irregular-grid computation, the grid has been distorted in such a way
that particle-velocity grid points lie exactly on the dipping interfaces. Figure 3a is the
same as Figure 2a. It is shown here again in order to facilitate the comparison.

Comparison of Figure 2b with Figure 2a shows that while the overall appearance
of the snapshots is still similar some noticeable differences are observed particularly in
the region (marked by a circle in Figure 2b where several waves (the direct 8 wave, the
reflected 8 wave, and the P to 8 converted wave) interfere, and where a critical angle for
the reflected 8 is present. The amplitude-versus-angle behavior of the waves reflected
at the sloping interface in no longer modeled accurately. Comparison of Figure 3a with
Figure 3b, on the other hand, shows that the accuracy of the amplitude-versus-angle
behavior for the tilted interface has improved considerably. Figure 3b is more or less a
tilted version of Figure 3a.

This comparison demonstrates that, as expected, the irregular-grid method can
model irregular interfaces more accurately than a standard finite-difference scheme.
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A FREE-SURFACE EXAMPLE

As the irregular-grid technique is able to handle irregular solid-solid interfaces, it can be
applied with confidence to an irregular free surface. This is because, as mentioned above,
the method treats the free surface the same way as any other interface. To demonstrate
this capability, I now apply it to a model with irregular surface topography, where the
grid is computed in such a way that it lines up with the surface.

First, Figure 4 shows an example of such a grid approximating a sloping surface.
Note that only triangles with at least one of their vertices at the free surface are dis
torted. All other triangles are equilateral. For equilateral triangles my modeling scheme
is of second-order accuracy. Otherwise the accuracy is first-order (Nolte, 1996). For the
gridding used in Figure 4 and in the example below the accuracy is therefore second
order everywhere, except on the free surface where it is first-order. Also note that the
grid has been computed in such a way that none of the distorted triangles have angles
greater than 900

• This is desirable, as it facilitates computation of the area elements A
and the polygons 8A (see the appendix for the definition of these terms). The reason
for this is that for triangles with angles::; 900 the circumcenter (the center of the circle
through the vertices, see Figure A-2) is located within that triangle. A triangle with an
obtuse angle, on the other hand, would have its circumcircle outside the triangle, which
can be easily visualized from Figure A-2.

The model with irregular surface topography that is used for the computations below
is shown in Figure 5. The horizontal length of the model is 2 km, the average vertical
length is 1.1 km. The topographic relief is 200 m. A single reflecting interface is located
at an average depth of 800 m (300 m from the bottom). The P and S velocities and the
density are given in the figure.

Figure 6 shows a series of snapshot taken at time intervals of 0.05 s, starting at
a time of 0.1 s. In .this case the source was a vertically oriented point force, and the
snapshots show the vertical component of particle velocity. The most prominent effect
of the irregular surface topography is the presence of scattered surface waves, primarily
from the peak at about a third of the horizontal model length from the left. These
scattered waves can be seen best at the later times. As can be seen, both incident P
waves and S waves cause these scattered waves.

DISCUSSION

The memory requirements of the technique have not been addressed thus far. As stated
in Nolte (1996), the irregular grid requires more memory per grid point then a regular
grid method. The additional quantities that need to be stored for each grid point are
its coordinates and the indices of its neighbors. Also, the total number of stress points
will be larger than the total number of velocity points (the exact ratio of these two
quantities depends on the grid irregularity). On the other hand, the method allows
variable grid-point spacing, so that the spacing can be locally scaled to the medium

8-4

(

(

(

(

(

(



Irregular Grid Modeling

velocity as well as to the amount of detail with which one desires to model particular
areas of a model. For example, for a model in which regions with strongly different
velocities are present, the irregular-grid method would require fewer grid points than a
second-order finite-difference program. Higher-order, finite-difference schemes, on the
other hand, may still require fewer grid points in some cases, but they are even worse
at accurately modeling irregular interfaces.

In many cases a hybrid method might be desirable. For example, the irregular-grid
technique could be used only in the near surface region in order to take advantage of its
accurate irregular-surface modeling capability. At greater depth a finite-difference may
be sufficient and in some cases more efficient. This would suggest a coupling of the two
methods. This can be implemented trivially in the SH case. In the P-SV case some of
the stress points would need to be interpolated in order to couple the irregular-grid to
a regular staggered grid. However, this interpolation can be easily done and is one of
the planned future extensions of the method.

Another potential application area for the technique is the modeling of seismic wave
propagation in the presence of boreholes. This is of particular interest for modeling the
wave fields from downhole sources, for example in single-well or cross-well experiments.
The flexibility in grid geometry allows to parameterize such models on a grid that is
lined up with the borehole wall.

A potential extension of the code to 3-D is easy in principle. Taking the method to 3
D would require tetrahedral instead of triangular Delaunay cells. In practice, one of the
main difficulties is the problem of the grid computation itself, i.e., fitting a tetrahedral
grid to a model in such a way that it lines up with the interfaces and that the grid spacing
is scaled to the medium velocities. However, the development of efficient 3-D gridding
algorithms is an area of extensive research (e.g., the GOCAD Research Program), so
that existing software can be used to perform this task.

There are also alternative ways to do the 3-D implementation. For example, if the
objective is to simulate wave propagation for a model with a borehole it may be desirable
to use prisms instead of tetrahedra as the basic grid cells, i.e., use irregular grids in the
horizontal planes and regular grid spacing in the vertical direction. The details of such
an approach still remain to be worked out, which is another task planned for the future.

CONCLUSIONS

In this paper I have demonstrated the ability of the irregular-grid technique to accurately
model irregular interfaces. A comparison with a finite-difference technique showed that
the irregular-grid method produced superior results, as no stair-step approximation
to interfaces is made. I also showed the applicability of the method to an irregular
free surface. A numerical test showed that surface irregularities gave rise to numerous
scattered waves.
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APPENDIX

A more detailed description of the modeling technique is given in Nolte (1996). Here, I
only give a brief review of the method for the P-SV case and correct some errors of the
earlier paper.

Figure A-I defines some terms used in the equations below. For an area A with
boundary &A the normal to &A, I introduce local coordinates nand s, normal and
tangential to &A, respectively. With ¢> denoting the angle between n and the Cartesian
x direction, the local and Cartesian coordinates are related through:

n = x cos ¢> + z sin ¢>

s = -x sin ¢> + z cos ¢>

x ncos¢> - ssin¢>

z = nsin¢>+scos¢> (A-I)

Using the above definitions I write the wave equation in integral form as

f'r dA &vx

JA P &t

frr dA &vz

JA P &t

= 1 dS(lJnncos¢>-lJnssin¢»
faA

1 ds (IJnn sin¢> + IJns cos ¢».
faA

(A-2)

Here, Vx and V z are the x and z components, respectively, of the particle velocity,
while IJnn and IJns are the normal and tangential stresses on &A.

The constitutive relation (Hooke's law) can be written as

8(Jnn

&t
BUns

&t

( )( &vx &vz ,) (&vz &vx .)
A + 2/L &n cos ¢> + &n sm ¢> + A &s cos ¢> - &s sm ¢>

[( &Vz &VX) (&vz &VX). ]/L -+- cos¢>+ --- sm¢> .
&n &s &s &n

(A-3)

In order to discretize these equations the model is parameterized using Delaunay
and Dirichlet grids (Delaunay, 1934; Dirichlet, 1850) as illustrated in Figure A-2. A De
launay grid is a triangular grid that connects nearest neighbors. This nearest-neighbor
condition means that a circle through the three vertices of any triangle (a so-called
circumcircle) does not enclose any other vertex. The corresponding Dirichlet grid is ob
tained by connecting the centers of the circumcircles (the circumcenters) of neighboring
Delaunay triangles.

I now specify particle velocity at the Delaunay vertices, and use the area enclosed
by the polygon around any particle-velocity point as the area A of Figure A-I while I
use the polygon itself as its boundary &A. I assume that the medium parameters (A, /L,
and p) as well as all stresses are constant within each Delaunay triangle.

The notations used are shown in Figure A-3a and A-3b. In Figure A-3b I have intro
duced the velocities Vi,V2,V3, and V3, for convenience. As can be seen, V3 is the velocity
V[j,k-il, and V2 is V[j,k+ll; Vi is interpolated from Vj, V[j,kl' and V2; V4 is interpolated
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Figure 1: Models used for comparing the irregular-grid method with finite differences.
The P and S velocities (in kms- I ) and densities (in gcm-3 ) are given in the figure.
(a) A flat interface is located at a depth of 800 m. The source is a point force located
120 m above the interface. The source orientation is perpendicular to the interface
as indicated by an arrow in the figure. (b) The experiment is rotated by 30°. The
source orientation is again indicated by an arrow in the picture.
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Irregular Grid Modeling

Figure 2: Snapshots computed with finite differences for (a) the model of Figure 1a and
(b) the model of Figure lb. The snapshots show the component of particle velocity
parallel to the interface at the time of 0.2 s. The waves identified in (a) are the direct
P wave (1), the direct S wave (2), the P-to-S converted wave (3), and the reflected
S wave (4). The region enclosed by the circle in (b) is inaccurately modeled with
finite differences.
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Figure 3: Same as Figure 2, but showing the snapshot computed with the irregular-grid
method (b) for the tilted-interface modeL Note the improved accuracy, particularly
in the region where the finite-differences results were inaccurate (the region circled
in Figure 2b.
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Figure 4: Example of a triangular grid that is lined up with an irregular free surface. All
triangles except those that touch the free surface are equilateral. No angles greater
than 90° are present anywhere in the grid.
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Figure 5: Model with irregular topography. The P and S velocities (in km s-l) and
densities (in g cm-3 ) are given in the figure. The length of the model is 2 km, its
height varies between 1 km and 1.2 km. This model is the input for the snapshots
of Figure 6.
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Figure 6: Snapshots computed for the model in Figure 5. The snapshots show the
vertical component of particle velocity for at time intervals of 0.05 s, starting at 0.1
s. The source is a vertical point force.
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. 6 continued:FIgure ,
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Figure 6, continued:
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A

aA

A-I: Definition of the area A, its boundary 8A, the local coordinates nand s, and the
angle 1> used in the equations in the appendix.
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A-2: Schematic of a Delaunay grid and its dual Dirichlet grid. The circumcircle through
the vertices of any Delaunay triangle does not contain any other triangle vertices.
The circumcenters are the vertices of the Dirichlet grid.
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A-3: Sketch of the terms used in the discrete equations, (a) A particle-velocity point j
with six neighbors k is shown. Stress is integrated over the dashed polygon, A[j,k]

is an area element, and d[j,k] is the distance from point j to neighbor k, (b) Line
segments l[j,k] over which stress is summed; velocity points Vl,V2,V3, and V4 and
lengths e[j,k] used for the computation of tangential velocity differences.
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