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Abstract

This paper examines the illiquidity of corporate bonds and its asset-pricing implications.

Using transaction-level data from 2003 through 2009, we show that the illiquidity in

corporate bonds is substantial, significantly greater than what can be explained by bid-

ask spreads. We establish a strong link between bond illiquidity and bond prices, both in

aggregate and in the cross-section. In aggregate, changes in the market level illiquidity

explain a substantial part of the time variation in yield spreads of high-rated (AAA

through A) bonds, over-shadowing the credit risk component. In the cross-section, the

bond-level illiquidity measure explains individual bond yield spreads with large economic

significance.
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The illiquidity of the US corporate bond market has captured the interest and attention of

researchers, practitioners and policy makers alike. The fact that illiquidity is important in

the pricing of corporate bonds is widely recognized, but the evidence is mostly qualitative

and indirect. In particular, our understanding remains limited with respect to the relative

importance of illiquidity and credit risk in determining corporate bond spreads and how their

importance varies with market conditions. The financial crisis of 2008 has brought renewed

interest and a sense of urgency to this topic when concerns over both illiquidity and credit

risk intensified at the same time and it was not clear which one was the dominating force in

driving up the corporate bond spreads.

The main objective of this paper is to provide a direct assessment on the pricing impact

of illiquidity in corporate bonds, at both the individual bond level and the aggregate level.

Recognizing that a sensible measure of illiquidity is essential to such a task, we first use

transaction-level data of corporate bonds to construct a simple and yet robust measure of

illiquidity, γ, for each individual bond. Aggregating this measure of illiquidity across individual

bonds, we find a substantial level of commonality. In particular, the aggregate illiquidity

comoves in an important way with the aggregate market condition, including market risk as

captured by the CBOE VIX index and credit risk as proxied by a CDS index. Its movement

during the crisis of 2008 is also instructive. The aggregate illiquidity doubled from its pre-

crisis average in August 2007, when the credit problem first broke out, and tripled in March

2008, during the collapse of Bear Stearns. By September 2008, during the Lehman default

and the bailout of AIG, it was five times its pre-crisis average and over 12 standard deviations

away. It peaked in October 2008 and then started a slow but steady decline that coincided

with fund injections by the Federal Reserve and improved market conditions.

Using the aggregate γ measure for corporate bonds, we set out to examine the relative

importance of illiquidity and credit risk in explaining the time variation of aggregate bond

spreads. We find that illiquidity is by far the most important factor in explaining the monthly

changes in the US aggregate yield spreads of high-rated bonds (AAA through A), with an

R-squared ranging from 47% to 60%. Adding an aggregate CDS index as a proxy for aggregate
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credit risk, we find that it also plays an important role, as expected, increasing the R-squared

by 13 to 30 percentage points, but illiquidity remains the dominant force. Despite the signif-

icant positive correlation with the aggregate illiquidity measure γ, the CBOE VIX index has

no additional explanatory power for aggregate bond spreads. We also find that while during

normal times, aggregate illiquidity and aggregate credit risk are equally important in explain-

ing yield spreads of high-rated bonds, with an R-squared of roughly 20% for illiquidity alone

and a combined R-squared of around 40%, illiquidity becomes much more important during

the 2008 crisis, over-shadowing credit risk. This is especially true for AAA-rated bonds, whose

connection to credit risk becomes insignificant when 2008 and 2009 data are included, while

its connection to illiquidity increases significantly. Relating this observation to the discussion

on whether the 2008 crisis was mainly a liquidity or credit crisis, our results suggest that as

far as high-rated corporate bonds are concerned, the sudden increase in illiquidity was the

dominating factor in driving up the yield spreads.

Given that γ is constructed for individual bonds, we further examine the pricing implication

of illiquidity at the bond level. We find that γ explains the cross-sectional variation of bond

yield spreads with large economic significance. Controlling for bond rating categories, we

perform monthly cross-sectional regressions of bond yield spreads on bond illiquidity and

find a positive and significant relation. This relation persists when we control for credit risk

using CDS spreads. Our result indicates that for two bonds in the same rating category, a

two standard deviation difference in their bond illiquidity leads to a difference in their yield

spreads as large as 70 bps. Given that our sample focuses exclusively on investment-grade

bonds, this magnitude of economic significance is rather high. In contrast, other proxies of

illiquidity used in previous analysis such as quoted bid-ask spreads or the % of trading days

are either insignificant in explaining the cross-sectional average yield spreads or show up with

the wrong sign. Moreover, the economic significance of γ remains robust in its magnitude

and statistical significance after controlling for a spectrum of variables related to the bond’s

fundamentals as well as bond characteristics. In particular, other liquidity related variables

such as bond age, issuance size, and average trade size do not change this result in a significant
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way.

Our empirical findings contribute to the existing literature in several important ways. In

evaluating the implication of illiquidity on corporate bond spreads, many studies focus on

the credit component and attribute the unexplained portion in corporate bond spreads to

illiquidity.1 In contrast, our paper uses a direct measure of illiquidity to examine the pricing

impact of illiquidity in corporate bond spreads, both in aggregate and in the cross-section. We

are able to quantify the relative importance of illiquidity and credit and examine the extent

to which it varied over time, including the 2008 crisis.

Several measures of illiquidity have been examined for traded securities in previous work.

One frequently used measure is the effective bid-ask spread, which is analyzed in detail by

Edwards, Harris and Piwowar (2007).2 Although the bid-ask spread is a direct and potentially

important indicator of illiquidity, it does not fully capture many important aspects of liquidity

such as market depth and resilience. Alternatively, relying on theoretical pricing models to

gauge the impact of illiquidity allows for direct estimation of its influence on prices, but suffers

from potential mis-specifications of the pricing model. In constructing a measure of illiquidity,

we take advantage of a salient feature of illiquidity. That is, the lack of liquidity in an asset

gives rise to transitory components in its prices, and thus the magnitude of such transitory

price movements reflects the degree of illiquidity in the market.3 Since transitory price move-

ments lead to negatively serially correlated price changes, the negative of the autocovariance

in relative price changes, which we denote by γ, gives a meaningful measure of illiquidity.

Roll (1984) first considered the simple case when the transitory price movements arise from

bid-ask bounce, in which 2
√

γ simply equals the bid-ask spread. But in more general cases,

γ captures the broader impact of illiquidity on prices, above and beyond the effect of bid-ask

spread. Moreover, it does so without relying on specific bond pricing models.

Indeed, our results show that the lack of liquidity in the corporate bond market is substan-

tially beyond what the bid-ask spread captures. Estimating γ for a broad cross-section of the

most liquid corporate bonds in the U.S. market, we find a median γ of 0.56. In contrast, the

median γ implied by the quoted bid-ask spreads is 0.026, which is only a tiny fraction of the
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estimated γ. Converting these numbers to the γ-implied bid-ask spread, our median estimate

of γ implies a bid-ask spread of 1.50%, significantly larger than the median quoted bid-ask

spread of 0.28% or the estimated bid-ask spread reported by Edwards, Harris and Piwowar

(2007) (see Section IV for more details).

Finally, our paper also adds to the literature that examines the pricing impact of illiquidity

on corporate bond yield spreads. Using illiquidity proxies that include quoted bid-ask spreads

and the % of zero returns, Chen, Lesmond and Wei (2007) find that more illiquid bonds have

higher yield spreads.4 We find that γ is by far more important in explaining corporate bond

spreads in the cross-section. In fact, for our sample of bonds, we do not see a meaningful

connection between bond yield spreads and quoted bid-ask spreads or the % of non-trading

days (either statistically insignificant or with the wrong sign). Using a alternative illiquidity

measure proposed by Campbell, Grossman and Wang (1993), Lin, Wang and Wu (2010) focus

instead on changes in illiquidity as a risk and find that a systematic illiquidity risk is priced

by the cross-section of corporate bond returns. Given the relatively short sample, however,

we find the bond returns to be too noisy to allow for any meaningful test in the space of risk

factors.5 Their results are complementary to ours in the sense that theirs connect risk factors

to risk premiums while ours connect characteristics to prices.

The paper is organized as follows. Section I summarizes the data, and Section II describes

γ and its cross-sectional and time-series properties. In Section III, we investigate the asset-

pricing implications of illiquidity. Section IV compares γ with the effect of bid-ask spreads.

Further properties of γ are provided in Section V. Section VI concludes.

I Data Description and Summary

The main dataset used for this paper is FINRA’s TRACE (Transaction Reporting and Com-

pliance Engine). This dataset is a result of recent regulatory initiatives to increase the price

transparency in secondary corporate bond markets. FINRA, formerly the NASD, is responsi-

ble for operating the reporting and dissemination facility for over-the-counter corporate bond
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trades. On July 1, 2002, the NASD began Phase I of bond transaction reporting, requiring

that transaction information be disseminated for investment grade securities with an initial

issue size of $1 billion or greater. Phase II, implemented on April 14, 2003, expanded reporting

requirements, bringing the number of bonds to approximately 4,650. Phase III, implemented

completely on February 7, 2005, required reporting on approximately 99% of all public trans-

actions. Trade reports are time-stamped and include information on the clean price and par

value traded, although the par value traded is truncated at $1 million for speculative grade

bonds and at $5 million for investment grade bonds.

In our study, we drop the early sample period with only Phase I coverage. We also drop

all of the Phase III only bonds. We sacrifice in these two dimensions in order to maintain a

balanced sample of Phase I and II bonds from April 14, 2003 to June 30, 2009. Of course,

new issuances and retired bonds generate some time variation in the cross-section of bonds in

our sample. After cleaning up the data, we also take out the repeated inter-dealer trades by

deleting trades with the same bond, date, time, price, and volume as the previous trade.6 We

further require the bonds in our sample to have frequent enough trading so that the illiquidity

measure can be constructed from the trading data. Specifically, during its existence in the

TRACE data, a bond must trade on at least 75% of its relevant business days in order to

be included in our sample. To avoid bonds that show up just for several months and then

disappear from TRACE, we require the bonds in our sample to be in existence in the TRACE

data for at least one full year. Finally, we restrict our sample to investment grade bonds as the

junk grade bonds included during Phases I and II were selected primarily for their liquidity

and are unlikely to represent the typical junk grade bonds in TRACE.

Table I summarizes our sample, which consists of frequently traded Phase I and II bonds

from April 2003 to June 2009. There are 1,035 bonds in our full sample, although the total

number of bonds does vary from year to year. The increase in the number of bonds from

2003 to 2004 could be a result of how NASD starts its coverage of Phase III bonds, while

the gradual reduction of number of bonds from 2004 through 2009 is a result of matured or

retired bonds.
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Table I ABOUT HERE

The bonds in our sample are typically large, with a median issuance size of $750 million,

and the representative bonds in our sample are investment grade, with a median rating of 6,

which translates to Moody’s A2. The average maturity is close to 6 years and the average

age is about 4 years. Over time, we see a gradual reduction in maturity and increase in age.

This can be attributed to our sample selection which excludes bonds issued after February 7,

2005, the beginning of Phase III.7

Given our selection criteria, the bonds in our sample are more frequently traded than

a typical bond. The average monthly turnover — the bond’s monthly trading volume as a

percentage of its issuance size — is 7.51%, the average number of trades in a month is 208.

The median trade size is $324,000. For the the whole sample in TRACE, the average monthly

turnover is 3.71%, the average number of trades in a month is 33 and the median trade size

is $65,000. Thus, the bonds in our sample are also relatively more liquid. Given that our

focus is to study the significance of illiquidity for corporate bonds, such a bias in our sample

towards more liquid bonds, although not ideal, will only help to strengthen our results if they

show up for the most liquid bonds.

In addition to the TRACE data, we use CRSP to obtain stock returns for the market and

the respective bond issuers. We use FISD to obtain bond-level information such as issue date,

issuance size, coupon rate, and credit rating, as well as to identify callable, convertible and

putable bonds. We use Bloomberg to collect the quoted bid-ask spreads for the bonds in our

sample, from which we have data for 1,032 out of the 1,035 bonds in our sample.8 We use

Datastream to collect Barclays Bond indices to calculate the default spread and returns on the

aggregate corporate bond market and also to gather CDS spreads. To calculate yield spreads

for individual corporate bonds, we obtain Treasury bond yields from the Federal Reserve,

which publishes constant maturity Treasury rates for a range of maturities. Finally, we obtain

the VIX index from CBOE.
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II Measure of Illiquidity and Its Properties

A Measuring Illiquidity

Although a precise definition of illiquidity and its quantification will depend on a specific

model, two properties are clear. First, illiquidity arises from market frictions, such as costs

and constraints for trading and capital flows; second, its impact to the market is transitory.

Thus, we construct a measure of illiquidity that is motivated by these two properties.

As such, the focus, as well as the contribution, of our paper is mainly empirical. To

facilitate our analysis, however, let us think in terms of the following simple model. Let Pt

denote the clean price — the full value minus accrued interest since the last coupon date —

of a bond at time t, and pt = ln Pt denote the log price. We start by assuming that pt consists

of two components:

pt = ft + ut . (1)

The first component ft represents its fundamental value — the log price in the absence of

frictions, which follows a random walk; the second component ut comes from the impact

of illiquidity, which is transitory (and uncorrelated with the fundamental value).9 In such

a framework, the magnitude of the transitory price component ut characterizes the level of

illiquidity in the market. γ is aimed at extracting the transitory component in the observed

price pt. Specifically, let Δpt = pt − pt−1 be the price change from t − 1 to t. We define the

measure of illiquidity γ by

γ = −Cov (Δpt, Δpt+1) . (2)

With the assumption that the fundamental component ft follows a random walk, γ depends

only on the transitory component ut, and it increases with the magnitude of ut.

Several comments are in order before we proceed with our empirical analysis of γ. First, we

know little about the dynamics of ut, other than its transitory nature. For example, when ut

follows an AR(1) process, we have γ = (1−ρ)σ2/(1+ρ), where σ is the instantaneous volatility

of ut, and 0 ≤ ρ < 1 is its persistence coefficient. In this case, while γ does provide a simple
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gauge of the magnitude of ut, it combines various aspects of ut (e.g., σ and ρ). Second, for the

purpose of measuring illiquidity, other aspects of ut that are not fully captured by γ may also

matter. In other words, γ itself gives only a partial measure of illiquidity. Third, given the

potential richness in the dynamics of ut, γ will in general depend on the horizon over which

we measure price changes. This horizon effect is important because γ measured over different

horizons may capture different aspects of ut or illiquidity. For most of our analysis, we will

use either trade-by-trade prices or end of the day prices in estimating γ. Consequently, our γ

estimate captures more of the high frequency components in transitory price movements.

Table II summarizes the illiquidity measure γ for the bonds in our sample. Focusing first

on Panel A, in which γ is estimated bond-by-bond using either trade-by-trade or daily data,

we see an illiquidity measure of γ that is important both economically and statistically.10 For

the full sample period from 2003 through 2009, the illiquidity measure γ has a cross-sectional

average of 0.63 with a robust t-stat of 19.42 when estimated using trade-by-trade data, and

an average of 1.18 with a robust t-stat of 16.53 using daily data.11 More importantly, the

significant mean estimate of γ is not generated by just a few highly illiquid bonds. Using

trade-by-trade data, the cross-sectional median of γ is 0.34, and 99.81% of the bonds have

a statistically significant γ (t-stat of γ greater than or equal to 1.96); using daily data, the

cross-sectional median of γ is 0.56 and over 98% of the bonds have a statistically significant γ.

Moreover, breaking our full sample by year shows that the illiquidity measure γ is important

and stable across years.12

For each bond, we can further break down its overall illiquidity measure γ to gauge the

relative contribution from trades of various sizes. Specifically, for each bond, we sort its

trades by size into the smallest 30%, middle 40%, and largest 30% and then estimate γsmall,

γmedium and γlarge using prices associated with the corresponding trade sizes. The results are

summarized in Table AII in the Appendix. We find that our overall illiquidity measure is not

driven only by small trades. In particular, we find significant illiquidity across all trade sizes.

For example, using daily data, the cross-sectional means of γsmall, γmedium and γlarge are 1.58,

1.06, and 0.64, respectively, each with very high statistical significance.
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As a comparison to the level of illiquidity for individual bonds, Panel B of Table II reports γ

measured using equal- or issuance-weighted portfolios constructed from the same cross-section

of bonds and for the same sample period. In contrast to its counterpart at the individual bond

level, γ at the portfolio level is slightly negative, rather small in magnitude, and statistically

insignificant. This implies that the transitory component extracted by the γ measure is

idiosyncratic in nature and gets diversified away at the portfolio level. It does not imply,

however, that the illiquidity in corporate bonds lacks a systematic component, which we will

examine later in Section II.C.

Table II ABOUT HERE

Panel C of Table II provides another and perhaps more important gauge of the magnitude

of our estimated γ for individual bonds. Using quoted bid-ask spreads for the same cross-

section of bonds and for the same sample period, we estimate a bid-ask implied γ for each

bond by computing the magnitude of negative autocovariance that would have been generated

by bid-ask bounce. For the full sample period, the cross-sectional mean of the implied γ is

0.034 and the median is 0.026, which are more than one order of magnitude smaller than the

empirically observed γ for individual bonds. As shown later in the paper, not only does the

quoted bid-ask spread fail to capture the overall level of illiquidity, but it also fails to explain

the cross-sectional variation in bond illiquidity and its asset pricing implications.

Although our focus is on extracting the transitory component at the trade-by-trade and

daily frequencies, it is interesting to provide a general picture of γ over varying horizons. Mov-

ing from the trade-by-trade to daily horizon, our results in Table II show that the magnitude

of the illiquidity measure γ becomes larger. Given that the autocovariance at the daily level

cumulatively captures the mean-reversion at the trade-by-trade level, this implies that the

mean-reversion at the trade-by-trade level persists for a few trades before fully dissipating,

which we show in Section A. Moving from the daily to weekly horizon, we find that the

magnitude of γ increases slightly from an average level of 1.18 to 1.21, although its statistical

significance decreases to a robust t-stat of 14.16, and 77.88% of the bonds in our sample
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have a positive and statistically significant γ at this horizon. Extending to the bi-weekly and

monthly horizons, γ starts to decline in both magnitude and statistical significance.13

As mentioned earlier in the section, the transitory component ut might have richer dy-

namics than what can be offered by a simple AR(1) structure for ut. By extending γ over

various horizons, we are able to uncover some of the dynamics. We show in Section V.A that

at the trade-by-trade level ut is by no means a simple AR(1). Likewise, in addition to the

mean-reversion at the daily horizon that is captured in this paper, the transitory component

ut may also have a slow moving mean-reversion component at a longer horizon. To examine

this issue more thoroughly is an interesting topic, but requires time-series data for a longer

sample period than ours.14

B Illiquidity and Bond Characteristics

Our sample includes a broad cross-section of bonds, which allows us to examine the connection

between the illiquidity measure γ and various bond characteristics, some of which are known

to be linked to bond liquidity. The variation in γ and bond characteristics is reported in

Table III. We use daily data to construct yearly estimates of γ for each bond and perform

pooled regressions on various bond characteristics. Reported in square brackets are the t-stats

calculated using standard errors clustered by year.

Table III ABOUT HERE

We find that older bonds on average have higher γ, and the results are robust regardless of

which control variables are used in the regression. On average, a bond that is one-year older

is associated with an increase of 0.19 in its γ, which accounts for more than 15% of the full-

sample average of γ. Given that the age of a bond has been widely used in the fixed-income

market as a proxy for illiquidity, it is important that we establish this connection between

γ and age. Similarly, we find that bonds with smaller issuance tend to have larger γ. We

also find that bonds with longer time to maturity typically have higher γ. We do not find a

significant relation between credit ratings and γ, and this can be attributed to the fact that

our sample includes investment-grade bonds only.
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Given that we have transaction-level data, we can also examine the connection between γ

and bond trading activity. We find that, by far, the most interesting variable is the average

trade size of a bond. In particular, bonds with smaller trade sizes have higher illiquidity

measure γ. We also find that bonds with a larger number of trades are have higher γ and are

less liquid. In other words, more trades do not imply more liquidity, especially if these trades

are of small sizes.

To examine the connection between γ and quoted bid-ask spreads, we use quoted bid-ask

spreads to obtain bid-ask implied γ’s. We find a positive relation between our γ measure

and the γ measure implied by the quoted bid-ask spread. It is interesting to point out,

however, that adding the bid-ask implied γ as an explanatory variable does not alter the

relation between our γ measure and liquidity-related bond characteristics such as age and

size. Overall, we find that the magnitude of illiquidity captured by our γ measure is related

to but goes beyond the information contained in the quoted bid-ask spreads.

Finally, given the extent of CDS activity during our sample period and its close relation

with the corporate bond market, it is also interesting for us to explore the connection between

γ and information from the CDS market. We find two interesting results. First, we find that

whether or not a bond issuer has CDS traded on it does not affect the bond’s liquidity. Given

that our sample includes only investment-grade bonds and over 90% of the bond-years in our

sample have traded CDS, this result is hardly surprising. Second, we find that, within the

CDS sample, bonds with higher CDS spreads have significantly higher γ’s and are therefore

less liquid. This implies that even at the name issuer level, there is a close connection between

credit and liquidity risks. We now move on to the aggregate level to examine whether or not

this liquidity risk has a systematic component and explores its relation with the systematic

credit risk.

C Aggregate Illiquidity and Market Conditions

Next, we examine how the illiquidity of corporate bonds varies over time. Instead of con-

sidering individual bonds, we are more interested in the comovement in their illiquidity. For
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this purpose, we construct an aggregate measure of illiquidity using the bond-level illiquidity

measure. We first construct, with a monthly frequency, a cross-section of γ’s for all individual

bonds using daily data within that month.We then use the cross-sectional median γ as the

aggregate γ measure.15 If the bond-level illiquidity we have documented so far is purely driven

by idiosyncratic reasons, then we would not expect to see any interesting time-series variation

of this aggregate γ measure. In other words, the systematic component of bond illiquidity can

only emerge when many bonds become illiquid around the same time.

Figure 1 ABOUT HERE

From Figure 1, we see that there is indeed a substantial level of commonality in the

bond-level illiquidity, indicating a rather important systematic illiquidity component. More

importantly, this aggregate illiquidity measure comoves strongly with the aggregate market

condition at the time. The 2008 sub-prime crisis is perhaps the most prominent event in our

sample. Before August 2007, the aggregate γ was hovering around an average level of 0.30

with a standard deviation of 0.10. In August 2007, when the credit crisis first broke out, the

aggregate γ doubled to a level of 0.60, and in March 2008, during the collapse of Bear Stearns,

the aggregate γ jumped to a level of 0.90, which tripled the pre-crisis average and was the

all-time high at that point. In September 2008, during the Lehman default and the bailout of

AIG , we see the aggregate γ reaching 1.59, which was over 12 standard deviations away from

its pre-crisis level. The aggregate γ peaked in October 2008 at 3.37, indicating a worsening

liquidity situation after the Lehman/AIG event. After the peak illiquidity in October 2008,

we see a slow but steady improvement of liquidity, which coincided with the funding injection

provided by Fed and the improved condition of the overall market.16

The connection between the aggregate γ and broader market conditions indicates that

although it is constructed using only corporate bond data, the aggregate illiquidity captured

here seems to have a wider reach than this particular market. Indeed, as reported in Table IV,

regressing monthly changes in aggregate γ on contemporaneous changes in the CBOE VIX

index, we obtain a slope coefficient of 0.0468 with a t-stat of 6.45, and the R-squared of
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the OLS regression is over 67%. This result is not driven just by the 2008 sub-prime crisis:

excluding data from 2008 and 2009, the positive relation is still robust: the slope coefficient

is 0.0162 with a t-stat of 2.87 and the R-squared is 33%.

The fact that the aggregate illiquidity measure γ has a close connection with the VIX index

is a rather intriguing result. While one measure is captured from the trading of individual

corporate bonds, to gauge the overall liquidity condition of the market, the other is captured

from the pricing of the S&P 500 index options, often referred to as the “fear gauge” of the

market. Our result seems to indicate that there is a non-trivial interaction between shocks to

market illiquidity and shocks to market risk and/or risk appetite.

Also reported in Table IV are the relation between the aggregate γ and other market-

condition variables. As a proxy for the overall credit risk, we consider an average CDS

index, constructed as the average of five-year CDS spreads covered by CMA Datavision in

Datastream.17 We find a weak positive relation between changes in aggregate γ and changes in

the CDS index. Interestingly, if we exclude 2008 and 2009, the connection between the two is

stronger. We also find that lagged bond returns are negatively related to changes in aggregate

γ, indicating that, on average, negative bond market performance is followed by worsening

liquidity conditions. Putting VIX into these regressions, however, these two variables become

insignificant. The one market condition variable that is significant after controlling for VIX

is the volatility of the Barclays US Investment Grade Corporate Bond Index, but this is only

true if crisis period data is included.

Table IV ABOUT HERE

The analysis above leads to three conclusions. First, there is substantial commonality

in the time variation of corporate bond illiquidity. Second, this time variation is correlated

with overall market conditions. Third, changes in the aggregate γ exhibits strong positive

correlation with changes in VIX.
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III Illiquidity and Bond Yields

After having established the empirical properties of the illiquidity measure γ, we now explore

the connections between illiquidity and corporate bond pricing. In particular, we examine the

extent to which illiquidity affects pricing, in both the time-series and the cross-section.

A Aggregate Illiquidity and Aggregate Bond Yield Spreads

We use the Barclays US Corporate Bond Indices (formerly known as the Lehman Indices)

and the 5-year Treasury Constant Maturity series to measure aggregate bond yield spreads of

various ratings. We regress monthly changes in the aggregate bond yield spreads on monthly

changes in the aggregate illiquidity measure γ and other market-condition variables. The

results are reported in Table V.

Table V ABOUT HERE

We find that the aggregate γ plays an important role in explaining the monthly changes

in the aggregate yield spreads. This is especially true for ratings A and above, where the

aggregate γ is by far the most important variable, explaining over 51% of the monthly variation

in yield spreads for AAA-rated bonds, 47% for AA-rated bonds, and close to 60% for A-rated

bonds. Adding the CDS index as a proxy for credit risk, we find that it also plays an important

role, but illiquidity remains the dominant factor in driving the yield spreads for ratings A and

above. On the other hand, the CBOE VIX index does not have any additional explanatory

power in the presence of the aggregate γ and the CDS index. This implies that despite their

strong correlation, the aggregate γ is far from a mere proxy for VIX. It contains important

information about bond yield spreads while VIX does not provide any additional information.

Overall, our results indicate that both illiquidity, as captured by the aggregate γ, and

credit risk, as captured by the CDS index, are important drivers for high-rated yield spreads.

During normal market conditions, these two components seem to carry equal importance. This

can be seen in Panel B of Table V, where only pre-2008 data are used. During the 2008 crisis,

however, illiquidity becomes a much more important component, over-shadowing the credit
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risk effect. This is especially true for AAA-rated bonds, whose connection to credit risk is no

longer significant when 2008 and 2009 data are included.18 At the same time, its connection

to illiquidity increases rather significantly. In particular, in the univariate regression, the

R-squared doubles from 25% to 52% when 2008 and 2009 are included. Pre-crisis, a one

standard deviation increase in monthly changes in aggregate γ (which is 0.06) results in a

3.5 bps increase in yield spreads for AAA-rated bonds. After including 2008 and 2009, a one

standard deviation increase in monthly changes in aggregate γ (which is 0.27) results in a 24

bps increase in yield spreads.

Applying this observation to the debate of whether the 2008 crisis was a liquidity or credit

crisis, our results seem to indicate that as far as high-rated corporate bonds are concerned,

the sudden increase in aggregate illiquidity was a dominating force in driving up the yield

spreads.

Our results also show that while aggregate illiquidity issue plays an important role in

explaining the monthly changes in yield spreads for high-rated bonds, it is less important for

junk bonds. For such bonds, credit risk is a more important component. This does not mean

that junk bonds are more liquid. In fact, they are generally less liquid. Given the low credit

quality of such bonds, however, they are more sensitive to the overall credit condition than

the overall illiquidity condition. This is also consistent with the findings of Huang and Huang

(2003). Pricing corporate bonds using structural models of default, they find that, for the

low-rated bonds, a large portion of their yield spreads can be explained by credit risk, while

for high-rated bonds, credit risk can explain only a tiny portion of their yield spreads.

B Bond-Level Illiquidity and Individual Bond Yield Spreads

We now examine how bond-level γ can help to explain the cross-section of bond yields. For

this purpose, we focus on the yield spread of individual bonds, which is the difference between

the corporate bond yield and the Treasury bond yield of the same maturity. For Treasury

yields, we use the constant maturity rate published by the Federal Reserve and use linear

interpolation whenever necessary. We perform monthly cross-sectional regressions of the yield
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spreads on the illiquidity measure γ, along with a set of control variables.

The results are reported in Table VI, where the t-stats are calculated using the Fama-

MacBeth standard errors with serial correlation corrected using Newey and West (1987). To

include callable bonds in our analysis, which constitute a large portion of our sample, we use

a callable dummy, which is one if a bond is callable and zero otherwise.19 We exclude all

convertible and putable bonds from our analysis. In addition, we also include rating dummies

for A and Baa. The first column in Table VI shows that (controlling for callability), the

average yield spread of the Aaa and Aa bonds in our sample is 129 bps, relative to which the

A bonds are 61 bps higher, and Baa bonds are 176 bps higher.

Table VI ABOUT HERE

As reported in the second column of Table VI, adding γ to the regression does not bring

much change to the relative yield spreads across ratings. This is to be expected since γ should

capture more of a liquidity effect, and less of a fundamental risk effect, which is reflected in

the differences in ratings. More importantly, we find that the coefficient on γ is 0.17 with

a t-stat of 9.60. This implies that for two bonds in the same rating category, if one bond,

presumably less liquid, has a γ that is higher than the other by 1, the yield spread of this

bond is on average 17 bps higher than the other. To put an increase of 1 in γ in context, the

cross-sectional standard deviation of γ is on average 2.03 in our sample. From this perspective,

the illiquidity measure γ is economically important in explaining the cross-sectional variation

in average bond yield spreads.

To control for the fundamental risk of a bond above and beyond what is captured by the

rating dummies, we use equity volatility estimated using daily equity returns of the bond

issuer. Effectively, this variable is a combination of the issuer’s asset volatility and leverage.

We find this variable to be important in explaining yield spreads. As shown in the third

column of Table VI, the slope coefficient on equity volatility is 0.02 with a t-stat of 3.36. That

is, a ten percentage point increase in the equity volatility of a bond issuer is associated with a

20 bps increase in the bond yield. While adding γ improves the cross-sectional R-squared from
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a time-series average of 19.00% to 30.27%, adding equity volatility improves the R-squared

to 25.97%. Such R-squareds, however, should be interpreted with caution since it is a time-

series average of cross-sectional R-squared, and does not take into account the cross-sectional

correlations in the regression residuals. By contrast, our reported Fama-MacBeth t-stats do

and γ has a stronger statistical significance. It is also interesting to observe that by adding

equity volatility, the magnitudes of the rating dummies decrease significantly. This is to be

expected since both equity volatility and rating dummies are designed to control for the bond’s

fundamental risk.

When used simultaneously to explain the cross-sectional variation in bond yield spreads,

both γ and equity volatility are significant, with the slope coefficients for both remaining

more or less the same as before. This implies a limited interaction between the two variables,

which is to be expected since the equity volatility is designed to pick up the fundamental

information about a bond while γ is to capture its liquidity information. Moreover, the

statistical significance of γ is virtually unchanged.

Taking advantage of the fact that a substantial sub-sample of our bonds have CDS traded

on their issuers, we use CDS spreads as an additional control for the fundamental risk of a

bond. We find a very strong relation between bond yields and CDS yields: the coefficient is

0.69 with a t-stat of 12.94. For the sub-sample of bonds with CDS traded, and controlling for

the CDS spread, we still find a strong cross-sectional relation between γ and bond yields. The

economic significance of the relation is smaller: a cross-sectional difference of γ of 1 translates

to a 12 bps difference in bond yields.

Given that both bond age and bond issuance are known to be linked to liquidity,20 we

add these bond characteristics as controls, and find that the positive connection between γ

and average bond yield spreads remains robust. Further adding the bond trading variables as

controls, we find these variables do not have a strong impact on the positive relation between

the illiquidity measure γ and average yield spreads.

We also examine the relative importance of the quoted bid-ask spreads and γ. As shown

in the last two columns of Table VI, the quoted bid-ask spreads are negatively related average
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yield spreads. Using both the quoted bid-ask spreads and γ, we find a robust result for γ

and a statistically insignificant result for the quoted bid-ask spread. This aspect of our result

is different from that in Chen, Lesmond and Wei (2007), who find a positive and significant

relation between the quoted bid-ask spreads and yield spreads. This discrepancy is mainly

due to the recent crisis period. There is, in fact, a significant relation between quoted bid-ask

spreads and yield spreads before 2008. This, however, does not affect our results for γ, which

remain economically and statistically significant even if only pre-2008 data is used. Chen,

Lesmond and Wei (2007) also use zero return days as a proxy for illiquidity.21 As zero return

days are meant to be a proxy for non-trading while we directly observe trading, we instead

use the % of days with trading. When we include this measure in the regression, it comes in

significant, but with the wrong sign.

IV Illiquidity and Bid-Ask Spread

It is well known that the bid-ask spread can lead to negative autocovariance in price changes.

For example, using a simple specification, Roll (1984) shows that when transactions prices

bounce between bid and ask prices, depending on whether they are sell or buy orders from

customers, their changes exhibit negative autocovariance even when the “underlying value”

follows a random walk. Thus, it is important to ask whether or not the negative autoco-

variances documented in this paper are simply a reflection of bid-ask bounce. Using quoted

bid-ask spreads, we show in Table II that the associated bid-ask bounce can only generate a

tiny fraction of the empirically observed autocovariance in corporate bonds. Quoted spreads,

however, are mostly indicative rather than binding. Moreover, the structure of the corpo-

rate bond market is mostly over-the-counter, making it even more difficult to estimate the

actual bid-ask spreads.22 Thus, a direct examination of how bid-ask spreads contribute to the

illiquidity measure γ is challenging.

We can, however, address this question to certain extent by taking advantage of the results

by Edwards, Harris and Piwowar (2007) (EHP hereafter). Using a more detailed version
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of the TRACE data that includes the side on which the dealer participated, they provide

estimates of effective bid-ask spreads for corporate bonds. To examine the extent to which γ

can be explained by the estimated bid-ask spread, we use γ to compute the implied bid-ask

spreads, and compare them with the estimated bid-ask spreads reported by EHP. The actual

comparison will not be exact, since our sample of bonds is different from theirs. Later in the

section, we will discuss how this could affect our analysis.

It is first instructive to understand the theoretical underpinning of how our estimate of γ

relates to the estimate of bid-ask spreads in EHP. In the Roll (1984) model, the log transaction

price pt takes the form of equation (1), in which p is the sum of the fundamental value (in log)

and a transitory component. Moreover, the transitory component equals to 1
2
s qt in the Roll

model, with s being the percentage bid-ask spread and qt indicating the direction of trade.

Specifically, q is +1 if the transaction is buyer initiated and −1 if it is seller initiated, assuming

that the dealer takes the other side. More specifically, in the Roll model, we have

pt = ft + 1
2
s qt . (3)

If we further assume that qt is i.i.d. over time, the autocovariance in price change then becomes

−(s/2)2, or γ = (s/2)2. Conversely, we have

sRoll = 2
√

γ , (4)

where we call sRoll the implied bid-ask spread.23

EHP use an enriched Roll model, which allows the spreads to depend on trade sizes. In

particular, they assume

pt = ft + 1
2
s(Vt) qt , (5)

where Vt is the size of the trade at time t.24 Since the dataset used by EHP also contains

information about qt, they directly estimate the first difference of equation (5), assuming a

factor model for the increments of ft.
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Table VII ABOUT HERE

Table VII reproduces the results of EHP, who estimate percentage bid-ask spreads for

average trade sizes of $5K, $10K, $20K, $50K, $100K, $200K, $500K and $1M. The cross-

sectional medians of the percentage bid-ask spreads are 1.20%, 1.12%, 96 bps, 66 bps, 48 bps,

34 bps, 20 bps and 12 bps, respectively. To compare with their results, we form trade size

brackets that center around their reported trade sizes. For example, to compare with their

trade size $10K, we calculate γ conditional on trade sizes falling between $7.5K and $15K,

and then calculate the implied bid-ask spread. The results are reported in Table VII, where to

correct for the difference in our respective sample periods, we also report our implied bid-ask

spreads for the period used by EHP. For the EHP sample period, the cross-sectional medians

of our implied percentage bid-ask spreads are 1.80%, 1.77%, 1.53%, 1.22%, 92 bps, 67 bps, 51

bps, and 54 bps, respectively. As we move on to compare our median estimates to those in

EHP, it should be mentioned that this is a simple comparison by magnitudes, not a formal

statistical test.

Overall, our implied spreads are much higher than those estimated by EHP. For small

trades, our median estimates of implied spreads are over 50% higher than those by EHP.

Moving to larger trades, the difference becomes even more substantial. Our median estimates

are close to doubling theirs for the average sizes of $100K and $200K, close to two-and-a-half

times theirs for the average size of $500K, and more than quadrupling theirs for the average

size of $1,000K. In fact, our estimates are biased downward for the trade size group around

$1,000K, since our estimated bid-ask spreads include all trade sizes above $750K, including

trade sizes of $2M, $5M, and $10M, whose median bid-ask spreads are estimated by EHP to

be 6 bps, 2 bps, and 2 bps, respectively. We have to group such trade sizes because in the

publicly available TRACE data, the reported trade size is truncated at $1M for speculative

grade bonds and at $5M for investment grade bonds. Though we only use bonds when they

are investment grade, TRACE continues to truncate some bonds at $1M even after the bond

is upgraded to investment grade.
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In addition to differing in sample periods, which is easy to correct, our sample is also

different from that used in EHP in the composition of the bonds that are used to estimate

the bid-ask spreads. In particular, our selection criteria bias our sample towards highly liquid

bonds. For example, to be included in our sample, the bond has to trade at least 75% of

business days, while the median frequency of days with a trade is only 48% for the bonds used

in EHP. The median average trade sizes is $462K in 2003 and $415K in 2004 for the bonds

used in our sample, compared with $240K for the bonds used in EHP; the median average

number of trades per month is 153 in 2003 and 127 in 2004 for the bonds in our sample,

while the median average number of trades per day is 1.1 for the bonds used in EHP. Given

that more liquid bonds typically have smaller bid-ask spreads, the difference between our

implied bid-ask spreads and EHP’s estimates would have been even more drastic had we been

able to match our sample of bonds to theirs. It is therefore our conclusion that the negative

autocovariance in price changes observed in the bond market is much more substantial than

merely the bid-ask effect. And γ captures more broadly the impact of illiquidity in the market.

Finally, one might be curious as to what is the exact mechanism that drives our estimates

apart from those by EHP. Within the Roll model as specified in equation (4), our estimates

should be identical to theirs. In particular, using equation (3) to identify bid-ask spread s

implies regressing Δpt on Δqt. But using our model specified in equation (1) as a reference,

it is possible that the transitory component ut does not take the simple form of 1
2
s qt. More

specifically, the residual of this regression of Δpt on Δqt might still exhibit a high degree of

negative autocovariance, simply because ut is not fully captured by 1
2
s qt. If that is true, then

γ captures the transitory component more completely: both the bid-ask bounce associated

with 1
2
s qt and the additional mean-reversion that is not related to bid-ask bounce. Overall,

more analysis is needed, possibly with more detailed data as in EHP, in order to fully reconcile

the two sets of results.25
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V Further Analysis of Illiquidity

A Dynamic Properties of Illiquidity

To further examine the dynamic properties of the transitory component in corporate bonds,

we measure the autocovariance of price changes that are separated by a few trades or a few

days:

γτ = −Cov (Δpt, Δpt+τ ) . (6)

The illiquidity measure we have used so far is simply γ1. For τ > 1, γτ measures the extent to

which the mean-reversion persists after the initial price reversal at τ = 1. In Table VIII, we

report the γτ for τ = 1, 2, 3, using trade-by-trade data. Clearly, the initial bounce back is the

strongest while the mean-reversion still persists after skipping a trade. In particular, γ2 is on

average 0.12 with a robust t-stat of 13.76. At the individual bond level, 72% of the bonds have

a statistically significant γ2. After skipping two trades, the amount of residual mean-reversion

dissipates further in magnitude. The cross-sectional average of γ3 is only 0.030, although it is

still statistically significant with a robust t-stat of 10.04. At the individual bond level, fewer

than 14% of the bonds have a statistically significant γ3.

Table VIII ABOUT HERE

The fact that the mean-reversion persists for a few trades before fully dissipating implies

that autocovariance at the daily level is stronger than at the trade-by-trade level as it captures

the effect cumulatively, as shown in Table II. At the daily level, however, the mean-reversion

dissipates rather quickly, with an insignificant γ2 and γ3. For brevity, we omit these results.

B Asymmetry in Price Reversals

One interesting question regarding the mean-reversion captured in our main result is whether

or not the magnitude of mean-reversion is symmetric in the sign of the initial price change.

Specifically, with Δp properly demeaned, let γ− = −Cov (Δpt, Δpt+1|Δpt < 0) be a measure

of mean-reversion conditioning on an initial price change that is negative, and let γ+ be the
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counterpart conditioning on a positive price change. In a simple theory of liquidity based

on costly market participation, Huang and Wang (2009) show that the bounce-back effect

caused by illiquidity is more severe conditioning on an initial price movement that is negative,

predicting a positive difference between γ− and γ+.

We test this hypothesis in Table IX, which shows that indeed there is a positive difference

between γ− and γ+. Using trade-by-trade data, the cross-sectional average of γ−−γ+ is 0.1190

with a robust t-stat of 9.48. Skipping a trade, the asymmetry in γ2 is on average 0.0484 with a

robust t-stat of 10.00. Compared with how γτ dissipates across τ , this measure of asymmetry

does not exhibit the same dissipating pattern. In fact, in the later sample period, the level of

asymmetry for τ = 2 is almost as important for the first-order mean-reversion, with an even

higher statistical significance. Using daily data, the asymmetry is stronger, incorporating

the cumulative effect from the transaction level. The cross-sectional average of γ− − γ+ is

0.23, which is close to 20% of the observed level of mean reversion. Skipping a day, however,

produces no evidence of asymmetry, which is expected since there is very little evidence of

mean-reversion at this level in the first place.

Table IX ABOUT HERE

C Trade Size and Illiquidity

Since γ is based on transaction prices, a natural question is how it is related to the sizes of

these transactions. In particular, are reversals in price changes stronger for trades of larger

or smaller sizes? In order to answer this question, we consider the autocovariance of price

changes conditional on different trade sizes.

For a change in price pt − pt−1, let Vt denote the size of the trade associated with price pt.

The autocovariance of price changes conditional on trade size being in a particular range, say,

R, is defined as

Cov
(
pt − pt−1, pt+1 − pt,

∣∣ Vt ∈ R
)

, (7)

where six brackets of trade sizes are considered in our estimation: ($0, $5K], ($5K, $15K],

($15K, $25K], ($25K, $75K], ($75K, $500K], and ($500K, ∞), respectively. Our choice of
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the number of brackets and their respective cutoffs is influenced by the sample distribution of

trade sizes. In particular, to facilitate the estimation of γ conditional on trade size, we need to

have enough transactions within each bracket for each bond to obtain a reliable conditional γ.

For the same reason, we construct our conditional γ using trade-by-trade data. Otherwise,

the data would be cut too thin at the daily level to provide reliable estimates of conditional γ.

For each bond, we categorize transactions by their time-t trade sizes into their respective

bracket s, with s = 1, 2, . . . , 6, and collect the corresponding pairs of price changes, pt − pt−1

and pt+1 − pt. Grouping such pairs of prices changes for each size bracket s and for each

bond, we can estimate the autocovariance of the price changes, the negative of which is our

conditional γ(s).26

Equipped with the conditional γ, we can now explore the link between trade size and

illiquidity. In particular, does γ(s) vary with s and how? We answer this question by first

controlling for the overall liquidity of the bond. This control is important as we find in

Section II.B that the average trade size of a bond is an important determinant of the cross-

sectional variation of γ. So we first sort all bonds by their unconditional γ into quintiles and

then examine the connection between γ(s) and s within each quintile.

As shown in Panel A of Table X, for each γ quintile, there is a pattern of decreasing

conditional γ with increasing trade size and the relation is monotonic for all γ quintiles. For

example, quintile 1 consists of bonds with the highest γ and therefore the least liquid in our

sample. The mean γ is 2.46 for trade-size bracket 1 (less than $5K) but it decreases to 1.07

for trade-size bracket 6 (greater than $500K). The mean difference in γ between the trade-size

bracket 1 and 6 is 1.28 and has a robust t-stat of 5.86. Likewise, for quintile 5, which consists of

bonds with the lowest γ measure and therefore are the most liquid, the same pattern emerges.

The average value of γ is 0.21 for the smallest trades and then decreases monotonically to

0.02 for the largest trades. The difference between the two is 0.19, with a robust t-stat of

9.29, indicating that the conditional γ between small and large size trades remains significant

even for the most liquid bonds. To check the potential impact of outliers, we also report the

median γ for different trade sizes. Although the magnitudes are slightly smaller, the general
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pattern remains the same.

Table X ABOUT HERE

Overall, our results demonstrate a clear negative relation between trade sizes and γ.27

The interpretation of this result, however, requires caution. It would be simplistic to infer

from this pattern that larger trades face less illiquidity or have less impact on prices. It is

important to realize that both trades sizes and prices are endogenous variables. Their relation

arises from an equilibrium outcome in which traders of different types optimally choose their

trading strategies, taking into account the dynamics of the market including the actions of

their own and others. Non-competitive factors such as negotiation power for large trades can

also contribute to the relation between trade sizes and γ.

VI Conclusions

The main objective of our paper is to gauge the level of illiquidity in the corporate bond market

and to examine its general properties and more importantly its impact on bond valuation.

Using a theoretically motivated measure of illiquidity, i.e., the amount of price reversals as

captured by the negative of autocovariance of prices changes, we show that this illiquidity

measure is both statistically and economically significant for a broad cross-section of corporate

bonds examined in this paper. We demonstrate that the magnitude of the reversals is beyond

what can be explained by bid-ask bounce. We also show that the reversals exhibit significant

asymmetry: price reversals are on average stronger after a price reduction than a price increase.

We find that a bond’s illiquidity is related to several bond characteristics. In particular,

illiquidity increases with a bond’s age and maturity, but decreases with its issuance size. In

addition, we also find that price reversals are inversely related to trade sizes. That is, prices

changes accompanied by small trades exhibit stronger reversals than those accompanied by

large trades.

Furthermore, the illiquidity of individual bonds fluctuates substantially over time. More

interestingly, these time fluctuations display important commonalities. For example, the me-
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dian illiquidity over all bonds, which represents a market-wide illiquidity, increases sharply

during the periods of market turmoil such as the downgrade of Ford and GM to junk status

around May of 2005, the sub-prime market crisis starting in August 2007, and in late 2008

when Lehman filed for bankruptcy. Exploring the relation between changes in the market-

wide illiquidity and other market variables, we find that changes in illiquidity are positively

related to changes in VIX and that this relation is not driven solely by the events in 2008.

We find important pricing implications associated with bond illiquidity. We show that

the variation in aggregate liquidity is the dominant factor in explaining the time variation

in bond indices for different ratings (with an R-squared around 20%), exceeding the credit

factor, for all ratings of A and above. It becomes even more important if the crisis period is

included (with R-squared around 50%). At the individual bond level, we find that γ can help

to explain an important portion of the bond yield spread. For two bonds in the same rating

category, a one-standard-deviation difference in their illiquidity measure would set their yield

spreads apart by 35 bps. This result remains robust in economic and statistical significance,

after controlling for bond fundamental information and bond characteristics including those

commonly related to bond liquidity.

Our results raise several questions concerning the liquidity of corporate bonds. First, what

are the underlying factors giving rise to the high level of illiquidity? This question is partic-

ularly pressing when we contrast the magnitude of the illiquidity measure γ in the corporate

bond market against that in the equity market. Second, what causes the fluctuations in the

overall level of illiquidity in the market? Are these fluctuations merely another manifestation

of more fundamental risks or a reflection of new sources of risks such as a liquidity risk?

Third, does the high level of illiquidity for the corporate bonds indicate any inefficiencies in

the market? If so, what would be the policy remedies? We leave these questions for future

work.
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Notes

1For example, Huang and Huang (2003) find that yield spreads for corporate bonds are too high to be

explained by credit risk and question the economic content of the unexplained portion of yield spreads. Colin-

Dufresne, Goldstein and Martin (2001) find that variables that should in theory determine credit spread

changes in fact have limited explanatory power, and again question the economic content of the unexplained

portion. Longstaff, Mithal and Neis (2005) use CDS as a proxy for credit risk and find that a majority of bond

spreads can be attributed to credit risk and the non-default component is related to bond-specific illiquidity

such as quoted bid-ask spreads. Bao and Pan (2008) document a significant amount of transitory excess

volatility in corporate bond returns and attribute this excess volatility to the illiquidity of corporate bonds.

2See also Bessembinder, Maxwell and Venkataraman (2006) and Goldstein, Hotchkiss and Sirri (2007).

3Niederhoffer and Osborne (1966) are among the first to recognize the relation between negative serial

covariation and illiquidity. More recent theoretical work in establishing this link include Grossman and Miller

(1988), Huang and Wang (2009), and Vayanos and Wang (2009), among others.

4Using nine liquidity proxies including issuance size, age, missing prices, and yield volatility, Houweling,

Mentink and Vorst (2003) reach similar conclusions for euro corporate bonds. de Jong and Driessen (2005)

find that systematic liquidity risk factors for the Treasury bond and equity markets are priced in corporate

bonds, and Downing, Underwood and Xing (2005) address a similar question. Using a proprietary dataset on

institutional holdings of corporate bonds, Nashikkar et al. (2008) and Mahanti, Nashikkar and Subrahmanyam

(2008) propose a measure of latent liquidity and examine its connection with the pricing of corporate bonds

and credit default swaps.

5Adding NAIC to the TRACE data, Lin, Wang and Wu (2010) have a longer sample period. However,

we find the NAIC data to be problematic. For example, a large fraction of transaction prices reported there

cannot be matched with the TRACE data for our sample. In addition, while Lin, Wang and Wu (2010) report

that insurance companies own about one-third of corporate bonds outstanding, Nashikkar et al. (2008) note

that insurance companies are typically buy-and-hold investors and have low portfolio turnover. These issues

make the construction of a reliable illiquidity measure using NAIC data difficult.

6This includes cleaning up withdrawn or corrected trades, dropping trades with special sale conditions or

special prices, and correcting for obviously mis-reported prices.

7We will discuss later the effect, if any, of this sample selection on our results. An alternative treatment

is to include in our sample those newly issued bonds that meet the Phase II criteria, but this is difficult to

implement since the Phase II criteria are not precisely specified by FINRA.

8We follow Chen, Lesmond and Wei (2007) in using the Bloomberg Generic (BGN) bid-ask spread. This

spread is calculated using a proprietary formula which uses quotes provided to Bloomberg by a proprietary
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list of contributors. These quotes are indicative rather than binding.

9Such a separation was considered by Niederhoffer and Osborne (1966), Roll (1984), Grossman and Miller

(1988), among others. It assumes that the fundamental value ft carries no time-varying risk premium. This

is a reasonable assumption over short horizons. It is equivalent to assuming that high frequency variations in

expected returns are ultimately related to market frictions — otherwise, arbitrage forces would have driven

them away. To the extent that illiquidity can be viewed as a manifestation of these frictions, price movements

giving rise to high frequency variations in expected returns should be included in ut. Admittedly, a more

precise separation of ft and ut must rely on a pricing theory incorporating frictions or illiquidity. See, for

example, Huang and Wang (2009) and Vayanos and Wang (2009).

10To be included in our sample, the bond must trade on at least 75% of business days and at least 10

observations of the paired price changes, (Δpt, Δpt−1), are required to calculate γ. In calculating γ using

daily data, price changes may be between prices over multiple days if a bond does not trade during a day. We

limit the difference in days to one week though this criteria rarely binds due to our sample selection criteria.

11The robust t -stats are calculated using standard errors that are corrected for cross-sectional and time-

series correlations. Specifically, the moment condition for estimating γ is γ̂ + Δpi
tΔpi

t−1 = 0 for all bond i

and time t, where Δp is demeaned. We can then correct for cross-sectional and time-series correlations in

Δpi
tΔpi

t−1 using standard errors clustered by bond and day.

12The γ measure could be affected by the presence of persistent small trades, which could be a result of the

way dealers deal bonds to retail traders. We thank the referee for raising this point. Such persistent small

trades will bias γ downward. In other words, the γ measures would have been larger in the absence of such

persistent small trades. Moreover, it will have a larger impact on γ measured using prices associated small

trade sizes. As we discuss in the next paragraph, we find significant illiquidity across all trade sizes.

13At a bi-weekly horizon, the mean gamma is 1.16 with a t -stat of 6.37. 42.18% of the bonds have a significant

gamma. At the monthly horizon, gamma is 0.80 with a t -stat of 2.02 and only 17.09% are significant. In

addition to having fewer observations, Using longer horizons also decreases the signal to noise ratio as the

fundamental volatility starts to build up. See Harris (1990) for the exact small sample moments of the serial

covariance estimator and of the standard variance estimator for price changes generated by the Roll spread

model.

14By using monthly bid prices from 1978 to 1998, Khang and King (2004) report contrarian patterns in

corporate bond returns over horizons of one to six months. Instead of examining autocovariance in bond

returns, their focus is on the cross-sectional effect. Sorting bonds by their past monthly (or bi-monthly up to

6 months) returns, they find that past winners under perform past losers in the next month (or 2-month up

to 6 months). Their result, however, is relatively weak and is significant only in the early half of their sample
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and goes away in the second half of their sample (1988–1998).

15Compared with the cross-sectional mean of γ, the median γ is a more conservative measure and is less

sensitive to those highly illiquid bonds that were most severely affected by the credit market turmoil.

16By focusing only on Phase I and II bonds in TRACE to maintain a reasonably balanced sample, we did

not include bonds that were included only after Phase III, which was fully implemented on February 7, 2005.

Consequently, new bonds issued after that date were excluded from our sample, even though some of them

would have been eligible for Phase II had they been issued earlier. As a result, starting from February 7, 2005,

we have a population of slowly aging bonds. Since γ is positively related to age, it might introduce a slight

overall upward trend in γ. It should be mentioned that the sudden increases in aggregate γ during crises are

too large to be explained by the slow aging process. Finally, to avoid regressing trend on trend, the time-series

regression results presented later in this section are based on regressing changes on changes. We also did a

robustness check by constructing a subsample of bonds with less of the aging effect, and our time-series results

in this section remain the same.

17For robustness, we also consider a CDS index using only the subset of names that correspond to the bonds

in our sample and find similar results.

18We construct the CDS index using all available CDS data from CMA in Datastream. For robustness, we

further construct a CDS index using only CDS’s on the firms in our sample. The results are similar and our

main conclusions in this subsection are robust to both measures of CDS indices.

19In the Appendix, we also report results with callable bonds excluded.

20See, for example, Houweling, Mentink and Vorst (2003) and additional references therein.

21See Bekaert, Harvey and Lundblad (2007) for a discussion of when the zero return measure is appropriate.

22The corporate bond market actually involves different trading platforms, which provide liquidity to differ-

ent clienteles. In such a market, a single bid-ask spread can be too simplistic in capturing the actual spreads

in the market.

23In general, the spread st can be time dependent, dependent on qt and qt can be serially correlated (see,

for example, Rosu (2009) and Obizhaeva and Wang (2009)). It then becomes harder to interpret γ as simply

a reflection of actual bid-ask spreads. Of course, we can still use equation (4) to define an implied spread.

24The model EHP use has an additional feature. It distinguishes customer-dealer trades from dealer-dealer

trades. The spread they estimate is for the customer-dealer trades. Thus, in (5), we simply do not identify

dealer-dealer trades. This decreases our estimate of γ relative to EHP since we are including inter-dealer

trades which have a smaller spread than customer-dealer trades.

25In general, liquidity in the market depends who is trading, why and how. The additional information in

the data used by EHP allows more differentiation of these factors. The TRACE data, however, is more coarse
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and does not allow us to fully identify the source of the different between γ-implied spreads and the estimated

spreads of EHP.

26Specifically, we compute six conditional covariances for each bond, one for each size bracket. The negative

of these conditional covariances is our conditional γ.

27In the Appendix, we consider an alternative method of examining γ by trade size, simply cutting the

data into trade size brackets and calculating γ separately for each bracket. We find a similar negative relation

between trade sizes and γ using this methodology.
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Appendix

A Cross-Sectional Determinants of Yield Spreads

In Table AI, we consider only the subset of non-callable bonds. Within this subset of bonds,

we find similar results to Table VI.

B Gamma by Trade Size

In Table AII, we consider γ calculated using only trades of certain sizes. First, we take all

trades for a particular bond and sort these trades by into the smallest 30% of trade size,

middle 40%, and largest 30%. We then calculate γ using only trades from a given bin to

estimate small trade, medium trade, and large trade γ’s. These results are supplemental

to those presented in Table X, but provide an additional robustness check as these γ’s are

calculated solely with a subset of trades of a given size rather than conditioning on the trade

size at t as in equation (7). Furthermore, the size of trades is now grouped relative to a bond’s

other trades rather than with respect to a fixed cut-off.
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Table AI: Bond Yield Spread and Illiquidity Measure γ, Non-Callable Only

Cons 1.13 0.98 0.12 0.13 0.36 -0.30 -0.55 -0.40 -0.41 -1.01 1.38 0.43 0.59
[3.82] [3.84] [0.63] [0.88] [3.13] [-0.64] [-1.35] [-1.32] [-0.92] [-3.17] [2.20] [2.30] [3.22]

γ 0.17 0.16 0.12 0.12 0.12 0.11 0.11 0.12 0.13 0.09
[8.53] [9.34] [7.41] [5.40] [5.48] [5.16] [4.92] [5.32] [8.22] [8.86]

Equity Vol 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.00
[4.03] [4.17] [0.90] [4.27] [4.14] [4.23] [3.90] [4.21] [4.28] [0.94]

CDS Spread 0.69 0.69
[8.01] [8.15]

Age 0.01 0.02 0.01 0.01 0.01
[0.47] [1.13] [0.56] [0.73] [0.70]

Maturity -0.03 -0.03 -0.03 -0.03 -0.03
[-0.88] [-0.87] [-0.87] [-0.80] [-0.81]

ln(Issuance) 0.10 0.11 0.08 -0.02 0.03
[2.07] [2.38] [1.15] [-0.49] [0.49]

Turnover 0.03
[2.87]

ln(Trd Size) 0.05
[0.64]

ln(#Trades) 0.18
[3.95]

% Days Traded 0.01
[1.99]

Quoted B/A Spread -0.47 -0.53 -0.50
[-0.48] [-0.64] [-0.66]

A Dummy 0.62 0.51 0.22 0.19 0.14 0.31 0.32 0.34 0.33 0.31 0.69 0.28 0.23
[2.97] [3.46] [3.53] [4.06] [4.33] [3.98] [3.69] [4.24] [3.97] [4.16] [2.58] [4.62] [2.15]

BAA Dummy 2.55 2.01 2.13 1.76 0.75 1.79 1.72 1.77 1.76 1.79 2.44 1.71 0.80
[2.65] [2.93] [2.69] [2.88] [2.83] [2.60] [2.56] [2.67] [2.55] [2.60] [2.56] [2.77] [2.46]

Obs 351 348 351 348 306 348 348 348 348 348 347 345 303
R-sqd (%) 22.95 31.61 30.93 38.22 56.75 47.28 48.57 47.88 49.72 47.66 29.86 42.43 60.27

Monthly Fama-MacBeth cross-sectional regression with the bond yield spread as the dependent variable. The t-stats are reported in square
brackets calculated using Fama-MacBeth standard errors with serial correlation corrected using Newey-West. The reported number of
observations are the average number of observations per period. The reported R-squareds are the time-series averages of the cross-sectional
R-squareds. γ is the monthly estimate of illiquidity measure using daily data. Equity Vol is estimated using daily equity returns of the bond
issuer. CDS Spread is the CDS spread of the issuer in %. Age is the time since issuance in years. Maturity is the bond’s time to maturity in
years. Issuance is the bond’s face value issued in millions of dollars. Turnover is the bond’s monthly trading volume as a percentage of its
issuance. Trd Size is the average trade size of the bond in thousands of dollars of face value. #Trades is the bond’s total number of trades
in a month. % Days Traded is the number of days a bond trades in a month divided by days the market is open. Quoted B/A Spread is the
quoted bid-ask spread of a bond from Bloomberg. Callable, convertible and putable bonds are excluded from the regression. The sample
period is from May 2003 through June 2009 except for regressions with CDS information which start in January 2004.

32



Table AII: γ by Trade Size

Panel A: Using Trade-by-Trade Data
Trade Size 2003 2004 2005 2006 2007 2008 2009 Full
Small Mean γ 1.02 0.91 0.72 0.59 0.64 1.28 1.58 0.87

Median γ 0.66 0.50 0.37 0.30 0.36 0.69 0.75 0.48
Per t ≥ 1.96 91.05 90.48 95.57 94.38 91.30 90.49 86.88 99.42
Robust t-stat 12.66 14.03 15.34 13.43 13.64 12.30 9.78 18.55

Medium Mean γ 0.68 0.62 0.55 0.40 0.41 0.86 1.16 0.60
Median γ 0.44 0.36 0.28 0.19 0.20 0.48 0.53 0.32
Per t ≥ 1.96 96.50 95.27 97.80 97.87 97.95 94.61 92.56 99.32
Robust t-stat 12.54 16.49 15.13 15.14 13.86 12.38 8.96 19.14

Large Mean γ 0.31 0.30 0.29 0.20 0.23 0.69 0.90 0.35
Median γ 0.10 0.08 0.07 0.05 0.07 0.25 0.31 0.10
Per t ≥ 1.96 90.59 87.75 90.34 85.71 86.73 84.77 82.72 96.23
Robust t-stat 10.65 12.05 12.46 10.39 10.70 8.46 8.02 14.34

Panel B: Using Daily Data
Trade Size 2003 2004 2005 2006 2007 2008 2009 Full
Small Mean γ 1.45 1.14 1.03 0.82 1.05 3.45 5.23 1.58

Median γ 0.90 0.63 0.51 0.43 0.68 1.93 2.25 0.84
Per t ≥ 1.96 84.76 85.71 89.81 87.84 90.03 87.24 84.11 96.80
Robust t-stat 18.03 17.05 18.41 18.15 18.09 9.95 10.02 14.61

Medium Mean γ 1.00 0.81 0.76 0.50 0.63 2.59 4.21 1.06
Median γ 0.57 0.44 0.34 0.24 0.30 1.14 1.47 0.50
Per t ≥ 1.96 90.09 89.89 94.69 92.64 92.56 88.31 88.14 97.97
Robust t-stat 16.50 19.21 17.77 17.39 15.85 8.85 9.24 17.42

Large Mean γ 0.53 0.46 0.43 0.29 0.38 1.92 3.01 0.64
Median γ 0.16 0.11 0.09 0.06 0.11 0.54 0.78 0.16
Per t ≥ 1.96 70.19 70.04 77.46 77.32 77.00 73.51 77.07 87.67
Robust t-stat 10.24 12.42 13.00 10.60 10.56 5.62 5.99 12.69

γ is calculated using only trades of sizes in the smallest 30%, middle 40%, or largest 30%
for each bond. Per t-stat ≥ 1.96 reports the percentage of bond with statistically significant
γ. Robust t-stat is a test on the cross-sectional mean of γ with standard errors corrected for
cross-sectional and time-series correlations.
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Figure 1: Monthly time-series of aggregate illiquidity. The top panel is for the whole sample,
and the bottom panel focuses on the pre-2008 period.
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Table I: Summary Statistics

Panel A: Bonds in Our Sample

2003 2004 2005 2006 2007 2008 2009
mean med std mean med std mean med std mean med std mean med std mean med std mean med std

#Bonds 744 951 911 748 632 501 373
Issuance 1,013 987 735 930 750 714 930 750 719 909 750 675 909 750 690 918 750 690 972 750 737
Rating 5.36 5.22 2.13 5.55 5.08 2.32 5.67 5.00 2.40 5.38 5.00 2.30 5.33 5.00 2.35 5.71 5.92 2.35 6.60 6.67 2.13
Maturity 7.38 5.21 6.87 7.68 5.16 7.28 7.19 4.62 7.31 6.58 4.36 6.98 6.54 4.27 7.06 6.25 3.75 7.05 6.61 3.66 7.37
Coupon 5.84 6.00 1.63 5.71 6.00 1.69 5.63 5.80 1.67 5.44 5.50 1.65 5.47 5.62 1.65 5.55 5.70 1.65 5.80 5.88 1.60
Age 2.73 1.94 2.68 3.21 2.41 2.91 3.93 3.25 2.90 4.52 3.87 2.71 5.46 4.61 2.83 6.42 5.66 2.93 7.23 6.50 3.03

Turnover 11.83 8.52 9.83 9.47 7.09 7.71 7.51 5.92 5.87 5.83 4.99 3.99 4.87 4.11 3.26 4.70 4.19 2.83 5.98 5.06 4.12
Trd Size 585 462 469 557 415 507 444 331 412 409 306 366 356 267 335 248 180 240 206 134 217
#Trades 248 153 372 187 127 201 209 121 316 151 110 121 148 107 129 219 144 219 408 221 511

Avg Ret 0.52 0.36 0.64 0.40 0.30 0.57 0.00 0.16 0.77 0.38 0.37 0.29 0.44 0.46 0.45 -0.40 0.36 2.89 1.07 0.80 1.83
Volatility 2.49 2.25 1.48 1.72 1.59 0.98 1.62 1.24 1.39 1.28 1.01 1.18 1.39 1.08 1.07 5.61 3.14 8.22 4.94 3.09 5.11
Price 108 109 9 106 106 9 104 103 9 102 101 9 103 101 12 102 102 16 99 102 13

Panel B: All Bonds Reported in TRACE

2003 2004 2005 2006 2007 2008 2009
mean med std mean med std mean med std mean med std mean med std mean med std mean med std

#Bonds 4,161 15,270 23,415 22,627 23,640 23,442 20,167
Issuance 453 250 540 210 50 378 176 30 353 193 31 361 203 25 391 203 17 415 239 26 470
Rating 5.31 5.00 2.62 6.46 6.00 3.26 7.37 7.00 4.00 7.17 6.00 4.26 6.77 6.00 4.20 6.80 6.00 4.36 7.96 6.67 4.74
Maturity 8.51 4.55 10.77 8.34 5.39 8.88 7.86 5.06 8.41 8.01 5.12 8.65 8.08 5.05 8.97 7.84 4.80 8.87 8.04 4.84 8.99
Coupon 6.51 6.75 1.69 5.76 5.85 1.96 5.80 5.70 2.16 5.74 5.62 2.13 5.60 5.55 2.16 5.24 5.50 2.46 5.26 5.55 2.51
Age 4.61 3.75 3.87 3.25 1.82 3.61 3.37 2.00 3.74 3.65 2.44 3.78 3.78 2.84 3.71 3.88 3.16 3.71 4.25 3.64 3.80

Turnover 5.60 3.80 5.67 4.56 2.50 5.53 3.69 2.41 3.88 3.41 2.16 3.81 3.05 1.95 3.39 2.82 1.70 3.20 3.64 2.20 4.09
Trd Size 1,017 532 1,263 534 59 991 477 55 869 509 58 905 487 49 899 386 46 761 321 48 638
#Trades 66 19 185 31 9 85 26 6 89 21 5 55 21 5 66 27 5 99 54 9 185

Avg Ret 0.62 0.37 4.07 0.49 0.28 2.56 0.10 0.21 2.26 0.84 0.53 2.06 0.35 0.45 2.02 -0.89 0.15 6.42 2.69 1.44 7.86
Volatility 2.73 2.36 2.27 1.92 1.67 1.29 2.64 1.93 2.81 2.30 1.74 2.29 2.42 1.95 2.24 9.32 5.80 11.02 9.72 5.86 10.44
Price 109 110 12 105 103 21 100 100 17 99 99 19 100 100 34 92 97 30 84 92 46

#Bonds is the number of bonds. Issuance is the bond’s face value issued in millions of dollars. Rating is a numerical translation of Moody’s rating:
1=Aaa and 21=C. Maturity is the bond’s time to maturity in years. Coupon, reported only for fixed coupon bonds, is the bond’s coupon payment in %.
Age is the time since issuance in years. Turnover is the bond’s monthly trading volume as a percentage of its issuance. Trd Size is the average trade size
of the bond in thousands of dollars of face value. #Trades is the bond’s total number of trades in a month. Med and std are the time-series averages of
the cross-sectional medians and standard deviations. For each bond, we also calculate the time-series mean and standard deviation of its monthly log
returns, whose cross-sectional mean, median and standard deviation are reported under Avg Ret and Volatility. Price is the average market value of the
bond in dollars.
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Table II: Measure of Illiquidity γ = −Cov (pt − pt−1, pt+1 − pt)

Panel A: Individual Bonds
2003 2004 2005 2006 2007 2008 2009 Full

Trade-by-Trade Data
Mean γ 0.64 0.60 0.52 0.40 0.44 1.02 1.35 0.63
Median γ 0.41 0.32 0.25 0.19 0.24 0.57 0.63 0.34
Per t ≥ 1.96 99.46 98.64 99.34 99.87 99.69 98.80 97.98 99.81
Robust t-stat 14.54 16.22 15.98 15.12 14.88 12.58 9.45 19.42

Daily Data
Mean γ 0.99 0.82 0.77 0.57 0.80 3.21 5.40 1.18
Median γ 0.61 0.41 0.34 0.29 0.47 1.36 1.94 0.56
Per t ≥ 1.96 94.62 92.64 95.50 96.26 95.57 95.41 97.59 98.84
Robust t-stat 17.28 17.88 18.21 19.80 14.39 7.16 8.47 16.53

Panel B: Bond Portfolios
2003 2004 2005 2006 2007 2008 2009 Full

Equal-weighted -0.0014 -0.0043 -0.0008 0.0001 0.0023 -0.0112 -0.0301 -0.0050
t-stat -0.29 -1.21 -0.47 0.11 1.31 -0.26 -2.41 -0.71
Issuance-weighted 0.0018 -0.0042 -0.0003 0.0007 0.0034 0.0030 -0.0280 -0.0017
t-stat 0.30 -1.14 -0.11 0.41 1.01 0.06 -1.97 -0.20

Panel C: Implied by Quoted Bid-Ask Spreads
2003 2004 2005 2006 2007 2008 2009 Full

Mean implied γ 0.035 0.031 0.034 0.028 0.031 0.050 0.070 0.034
Median implied γ 0.031 0.025 0.023 0.018 0.021 0.045 0.059 0.026

At the individual bond level, γ is calculated using either trade-by-trade or daily data. Per t-stat ≥ 1.96
reports the percentage of bond with statistically significant γ. Robust t-stat is a test on the cross-sectional
mean of γ with standard errors corrected for cross-sectional and time-series correlations. At the portfolio
level, γ is calculated using daily data and the Newey-West t-stats are reported. Monthly quoted bid-ask
spreads, which we have data for 1,032 out of 1,035 bonds in our sample, are used to calculate the implied
γ.
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Table III: Variation in γ and Bond Characteristics

Cons 2.28 2.02 3.27 0.95 1.13 1.85 1.86
[2.58] [2.37] [2.95] [1.35] [2.64] [2.48] [2.94]

Age 0.19 0.14 0.10 0.17 0.13 0.16 0.08
[2.98] [2.83] [2.29] [3.49] [4.01] [3.23] [2.69]

Maturity 0.05 0.11 0.11 0.11 0.05 0.11 0.13
[2.18] [5.56] [5.74] [5.46] [2.95] [4.88] [2.97]

ln(Issuance) -0.56 -0.46 -0.20 -0.57 -0.35 -0.49 -0.39
[-2.26] [-2.23] [-1.08] [-2.59] [-2.39] [-2.13] [-2.22]

Rating 0.15 0.21 0.24 0.20 0.14 0.22 -0.05
[1.42] [1.44] [1.67] [1.42] [1.38] [1.36] [-0.96]

beta (stock) 2.14
[1.88]

beta (bond) 1.01
[1.79]

Turnover -0.03
[-1.13]

ln(Trd Size) -0.56
[-4.39]

ln(Num Trades) 0.31
[2.89]

Quoted BA γ 23.09
[2.27]

CDS Dummy 0.07
[0.87]

CDS Spread 1.45
[5.26]

Obs 4,261 4,860 4,860 4,860 4,834 4,116 3,721
R-sqd 10.61 7.02 7.71 7.15 13.11 6.53 23.07

Panel regression with γ as the dependent variable. T-stats are reported in square brackets
using standard errors clustered by year. Issuance is the bond’s face value issued in millions
of dollars. Rating is a numerical translation of Moody’s rating: 1=Aaa and 21=C. Age is
the time since issuance in years. Maturity is the bond’s time to maturity in years. Turnover
is the bond’s monthly trading volume as a percentage of its issuance. Trd Size is the average
trade size of the bond in thousands of dollars of face value. #Trades is the bond’s total
number of trades in a month. beta(stock) and beta(bond) are obtained by regressing weekly
bond returns on weekly returns on the CRSP value-weighted index and the Barclays US
bond index. Quoted BA γ is the γ implied by the quoted bid-ask spreads. CDS Dummy
is 1 if the bond has credit default swaps traded on its issuer. CDS Spread is the spread on
the five-year CDS of the bond issuer in %. Data is from 2003 to 2009 except for regressions
with CDS information which start in 2004.
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Table IV: Time Variation in Aggregate γ and Market Variables

Panel A: Full Sample
Cons 0.0003 0.0036 -0.0027 0.0020 0.0061 0.0078 0.0096 0.0014

[0.03] [0.13] [-0.15] [0.07] [0.21] [0.27] [0.40] [0.12]
Δ VIX 0.0468 0.0497

[6.45] [3.58]
Δ Bond Volatility 0.0411 0.0303

[1.82] [2.92]
Δ CDS Index 0.2101 -0.0408

[1.91] [-0.64]
Δ Term Spread 0.3610

[1.01]
Δ Default Spread -0.0038

[-0.04]
Lagged Stock Return -0.0082

[-0.94]
Lagged Bond Return -0.0506 0.0039

[-2.35] [0.17]
Adj R-sqd (%) 67.47 3.31 12.77 6.38 -1.41 0.46 13.57 70.01

Panel B: 2003 - 2007 Only
Cons 0.0012 0.0018 0.0014 0.0050 0.0011 0.0116 0.0029 0.0128

[0.19] [0.21] [0.32] [0.60] [0.19] [1.22] [0.36] [2.42]
Δ VIX 0.0162 0.0108

[2.87] [2.21]
Δ Bond Volatility -0.0038

[-0.43]
Δ CDS Index 0.3640 0.1213

[2.94] [1.51]
Δ Term Spread 0.1204 0.1020

[2.76] [2.87]
Δ Default Spread 0.2362

[1.35]
Lagged Stock Return -0.0103 -0.0068

[-3.27] [-2.74]
Lagged Bond Return -0.0127 -0.0039

[-4.22] [-0.94]
Adj R-sqd (%) 33.11 -1.51 37.76 8.87 10.82 18.00 6.98 55.11

Monthly changes in γ regressed on monthly changes in bond index volatility, VIX, CDS index, term spread,
default spread, and lagged stock and bond returns. The Newey-West t-stats are reported in square brackets.
Regressions with CDS Index do not include 2003 data.
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Table V: Aggregate Bond Yield Spreads and Aggregate Illiquidity

Panel A: Full Sample (2003/05-2009/06)

AAA AAA AA AA A A BAA BAA Junk Junk
Cons 0.001 -0.009 0.014 0.011 0.018 0.014 0.028 0.014 0.049 0.005

[0.05] [-0.45] [0.52] [0.58] [0.61] [0.72] [0.50] [0.76] [0.39] [0.10]
Δγ 0.896 0.671 0.737 0.502 1.074 0.879 0.903 0.561 2.114 0.348

[7.75] [6.18] [5.70] [6.33] [8.55] [7.87] [3.90] [3.27] [4.22] [0.64]
Δ CDS Index 0.140 0.235 0.271 0.519 1.461

[1.62] [3.72] [3.36] [4.27] [3.25]
Δ VIX 0.009 -0.002 -0.006 -0.008 0.055

[0.59] [-0.26] [-0.70] [-0.77] [1.25]
Δ Bond Volatility 0.051 0.020 0.014 -0.027 -0.028

[1.97] [1.71] [1.38] [-1.17] [-0.85]
Δ Term Spread -0.256 -0.221 -0.166 -0.040 -0.537

[-1.56] [-1.34] [-0.83] [-0.20] [-1.11]
Lagged Stock Return -0.020 -0.003 -0.009 -0.016 -0.038

[-1.37] [-0.46] [-1.20] [-2.22] [-1.18]
Lagged Bond Return 0.015 -0.042 -0.037 -0.039 -0.012

[0.77] [-1.65] [-1.47] [-3.11] [-0.28]
Adj R-sqd (%) 51.56 69.91 47.11 80.80 59.86 85.12 28.17 83.39 23.22 85.50

Panel B: Pre-Crisis (2003/05-2007/12)

AAA AAA AA AA A A BAA BAA Junk Junk
Cons 0.010 0.019 0.021 0.027 0.016 0.033 0.011 0.028 -0.003 0.008

[1.19] [1.42] [1.54] [1.88] [1.01] [1.76] [0.63] [1.30] [-0.08] [0.22]
Δγ 0.583 0.348 0.822 0.478 0.966 0.425 1.106 0.404 3.678 -0.063

[3.87] [2.56] [2.99] [2.83] [3.47] [2.20] [3.53] [1.42] [4.67] [-0.10]
Δ CDS Index 0.218 0.340 0.399 0.553 3.025

[2.32] [2.35] [2.50] [2.08] [9.85]
Δ VIX -0.003 0.001 -0.002 -0.003 0.026

[-0.55] [0.11] [-0.21] [-0.30] [1.83]
Δ Bond Volatility 0.011 0.023 0.019 0.025 0.013

[1.18] [1.66] [1.36] [1.45] [0.59]
Δ Term Spread 0.022 -0.058 0.076 0.105 -0.112

[0.24] [-0.43] [0.50] [0.64] [-0.40]
Lagged Stock Return -0.006 -0.002 -0.008 -0.005 -0.002

[-1.03] [-0.37] [-1.09] [-0.72] [-0.20]
Lagged Bond Return 0.005 0.009 0.012 -0.000 0.009

[0.91] [0.84] [1.26] [-0.01] [0.39]
Adj R-sqd (%) 24.93 40.82 19.42 37.74 26.88 45.64 22.44 30.09 29.40 80.25

Monthly changes in yield spreads on Barclay’s Intermediate Term indices regressed on monthly changes in
aggregate γ, bond index volatility, VIX, CDS index, term spread, and lagged stock and bond returns. The
top row indicates the rating index used in the regression. Newey-West t-stats are reported in square brackets.
Regressions with CDS Index do not include 2003 data.
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Table VI: Bond Yield Spread and Illiquidity Measure γ

Cons 1.29 1.13 0.33 0.30 0.56 0.46 0.23 0.58 0.04 -0.00 1.18 0.34 0.62
[3.66] [3.60] [2.31] [2.86] [8.36] [2.43] [1.41] [3.24] [0.16] [-0.02] [2.48] [3.26] [3.62]

γ 0.17 0.16 0.12 0.09 0.10 0.08 0.09 0.09 0.15 0.10
[9.60] [8.75] [6.69] [6.21] [6.22] [5.85] [6.14] [6.30] [10.33] [7.72]

Equity Vol 0.02 0.02 -0.00 0.02 0.02 0.02 0.01 0.02 0.02 -0.00
[3.36] [3.61] [-0.63] [3.69] [3.50] [3.87] [3.16] [3.61] [3.74] [-0.51]

CDS Spread 0.69 0.67
[12.94] [11.08]

Age 0.01 0.02 0.00 0.01 0.01
[0.89] [1.76] [0.45] [1.30] [1.11]

Maturity 0.01 0.01 0.01 0.01 0.01
[0.59] [0.66] [0.61] [0.52] [0.65]

ln(Issuance) -0.02 -0.01 -0.00 -0.08 -0.04
[-1.23] [-0.44] [-0.09] [-3.46] [-1.87]

Turnover 0.02
[2.57]

ln(Trd Size) -0.04
[-0.99]

ln(#Trades) 0.16
[3.41]

% Days Traded 0.01
[3.12]

Quoted B/A Spread 0.48 0.18 0.02
[1.17] [0.47] [0.05]

Call Dummy -0.67 -0.64 -0.17 -0.22 -0.08 -0.26 -0.24 -0.26 -0.23 -0.25 -0.71 -0.24 -0.08
[-1.56] [-1.69] [-1.14] [-1.50] [-0.60] [-2.05] [-1.99] [-2.10] [-1.84] [-2.03] [-1.77] [-1.87] [-0.74]

A Dummy 0.61 0.55 0.35 0.33 0.28 0.35 0.34 0.36 0.38 0.36 0.62 0.35 0.29
[2.38] [2.53] [2.75] [3.00] [2.07] [2.87] [2.78] [3.11] [3.04] [2.93] [2.32] [2.81] [2.01]

BAA Dummy 1.76 1.52 1.44 1.29 0.76 1.25 1.22 1.28 1.29 1.27 1.70 1.23 0.71
[2.81] [3.07] [2.99] [3.19] [2.49] [2.97] [2.89] [3.17] [3.00] [2.96] [2.74] [3.15] [2.47]

Obs 601 594 601 594 529 594 594 594 594 593 586 581 518
R-sqd (%) 19.00 30.27 25.97 35.85 57.60 45.07 45.97 46.19 48.18 45.52 26.14 39.84 60.31

Monthly Fama-MacBeth cross-sectional regression with the bond yield spread as the dependent variable. The t-stats are reported in square brackets
calculated using Fama-MacBeth standard errors with serial correlation corrected using Newey-West. The reported number of observations are the
average number of observations per period. The reported R-squareds are the time-series averages of the cross-sectional R-squareds. γ is the monthly
estimate of illiquidity measure using daily data. Equity Vol is estimated using daily equity returns of the bond issuer. CDS Spread is the CDS spread
of the issuer in %. Age is the time since issuance in years. Maturity is the bond’s time to maturity in years. Issuance is the bond’s face value issued
in millions of dollars. Turnover is the bond’s monthly trading volume as a percentage of its issuance. Trd Size is the average trade size of the bond in
thousands of dollars of face value. #Trades is the bond’s total number of trades in a month. % Days Traded is the number of days a bond trades in
a month divided by days the market is open. Quoted B/A Spread is the quoted bid-ask spread of a bond from Bloomberg. Call Dummy is one if the
bond is callable and zero otherwise. Convertible and putable bonds are excluded from the regression. The sample period is from May 2003 through
June 2009 except for regressions with CDS information which start in January 2004.
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Table VII: Implied and Estimated Bid-Ask Spreads

Full Sample Period EHP Subperiod
γ-Implied γ-Implied EHP Estimated

trade size #bonds Mean Med #bonds Mean Med EHP Size Mean Med
≤ 7,500 1,005 2.20 1.82 858 2.02 1.80 5K 1.50 1.20
(7500, 15K] 1,017 1.96 1.67 922 1.90 1.77 10K 1.42 1.12
(15K, 35K] 1,020 1.78 1.43 933 1.72 1.53 20K 1.24 0.96
(35K, 75K] 1,009 1.56 1.22 861 1.38 1.22 50K 0.92 0.66
(75K, 150K] 962 1.23 0.95 790 1.01 0.92 100K 0.68 0.48
(150K, 350K] 908 0.89 0.75 752 0.71 0.67 200K 0.48 0.34
(350K, 750K] 861 0.72 0.59 649 0.49 0.51 500K 0.28 0.20
> 750K 930 0.77 0.59 835 0.53 0.54 1,000K 0.18 0.12

The bid-ask spreads are calculated using log prices and are reported in percentages. The EHP bid-ask
spread estimates are from Table 4 of (Edwards, Harris and Piwowar 2007), and the EHP subperiod is
Jan. 2003 to Jan. 2005. Our bid-ask spreads are obtained using Roll’s measure: 2

√
γ divided by the

average market value of the bond. The sample of bonds differs from that in EHP, and our selection
criteria biases us toward more liquid bonds with smaller bid-ask spreads.

44



Table VIII: Dynamics of Illiquidity: γτ = −Cov (pt − pt−1, pt+τ − pt+τ−1)

2003 2004 2005 2006 2007 2008 2009 Full
τ = 1 Mean γ 0.641 0.601 0.522 0.396 0.440 1.016 1.350 0.628

Median γ 0.407 0.319 0.250 0.195 0.243 0.568 0.632 0.337
Per t ≥ 1.96 99.46 98.64 99.34 99.87 99.69 98.80 97.98 99.81
Robust t-stat 14.54 16.22 15.98 15.12 14.88 12.58 9.45 19.42

τ = 2 Mean γ 0.081 0.044 0.062 0.026 0.077 0.393 0.645 0.124
Median γ 0.033 0.018 0.021 0.017 0.046 0.198 0.244 0.051
Per t ≥ 1.96 27.25 19.90 33.99 33.47 54.56 78.84 76.83 72.46
Robust t-stat 9.13 7.06 9.01 4.42 9.74 11.09 7.83 13.76

τ = 3 Mean γ 0.013 0.021 0.017 0.025 0.025 0.079 0.128 0.030
Median γ 0.005 0.004 0.003 0.004 0.006 0.017 0.028 0.006
Per t ≥ 1.96 5.10 5.65 6.47 8.40 6.76 11.18 11.34 13.62
Robust t-stat 3.30 4.34 5.55 6.29 5.66 5.73 4.83 10.04

For each bond, its γτ , τ = 1, 2, 3, is calculated using trade-by-trade data. Per t-stat ≥ 1.96 reports the
percentage of bond with statistically significant γ. Robust t-stat is a test on the cross-sectional mean
of γ with standard errors corrected for cross-sectional and time-series correlations.
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Table IX: Asymmetry in γ

Panel A: Using trade-by-trade data
Tau 2003 2004 2005 2006 2007 2008 2009 Full
1 Mean 0.1454 0.0547 0.0012 0.0439 0.0808 0.2474 0.3983 0.1190

Median 0.1370 0.0282 0.0041 0.0285 0.0662 0.1577 0.1978 0.0817
CS t-stat 8.69 3.34 0.10 4.03 5.43 8.57 7.95 11.19
Robust t-stat 6.85 3.09 0.10 3.93 5.27 7.51 6.43 9.48

2 Mean 0.0307 0.0253 0.0336 0.0343 0.0488 0.0604 0.1680 0.0484
Median 0.0145 0.0072 0.0096 0.0168 0.0275 0.0579 0.0648 0.0205
CS t-stat 4.89 4.15 8.11 8.96 11.28 2.88 3.11 11.25
Robust t-stat 4.85 3.71 7.49 7.92 9.42 2.71 3.06 10.00

Panel B: Using daily data
Tau 2003 2004 2005 2006 2007 2008 2009 Full
1 Mean 0.3157 0.1639 0.1059 0.1710 0.2175 0.2991 0.8360 0.2326

Median 0.1983 0.0447 0.0228 0.0553 0.1276 0.2595 0.4160 0.1258
CS t-stat 8.72 3.85 4.62 7.62 6.37 1.35 1.61 6.16
Robust t-stat 8.11 3.64 4.26 7.28 5.97 1.21 1.59 5.59

2 Mean -0.0112 -0.0118 0.0044 -0.0024 -0.0088 0.0874 -0.0097 -0.0030
Median 0.0022 -0.0000 -0.0006 0.0005 -0.0025 0.0325 0.0256 0.0029
CS t-stat -0.97 -0.94 0.45 -0.36 -0.70 1.21 -0.07 -0.27
Robust t-stat -0.90 -0.85 0.39 -0.34 -0.60 0.67 -0.08 -0.17

Asymmetry in γ is measured by the difference between γ− and γ+, where γ− =
−E (Δpt+1Δpt|Δpt < 0), with Δp properly demeaned, measures the price reversal conditioning on
a negative price movement. Likewise, γ+ measures the price reversal conditioning on a positive price
movement. Robust t-stat is a pooled test on the mean of γ− − γ+ with standard errors clustered by
bond and day. CS t-stat is the cross-sectional t-stat.
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Table X: Variation of γ with Trade Size

γ Quint trade size = 1 2 3 4 5 6 1 - 6
1 Mean 2.46 1.93 1.76 1.59 1.24 1.07 1.28

Median 2.08 1.67 1.55 1.43 1.08 0.71 1.20
Robust t-stat 10.71 10.58 10.05 10.22 8.83 5.75 5.86

2 Mean 0.95 0.79 0.69 0.60 0.38 0.24 0.72
Median 0.87 0.72 0.63 0.54 0.36 0.19 0.65
Robust t-stat 9.75 13.29 13.57 14.51 16.27 9.67 7.45

3 Mean 0.53 0.42 0.35 0.29 0.18 0.10 0.44
Median 0.50 0.40 0.34 0.27 0.18 0.09 0.40
Robust t-stat 8.46 10.98 11.09 11.50 13.10 10.73 7.25

4 Mean 0.34 0.26 0.21 0.16 0.09 0.04 0.29
Median 0.31 0.24 0.20 0.16 0.09 0.04 0.27
Robust t-stat 8.05 12.34 13.12 13.49 15.00 10.86 7.20

5 Mean 0.21 0.15 0.11 0.08 0.04 0.02 0.19
Median 0.19 0.15 0.11 0.08 0.04 0.02 0.17
Robust t-stat 10.08 14.34 16.04 15.49 17.64 12.73 9.29

Trade size is categorized into 6 groups with cutoffs of $5K, $15K, $25K, $75K, and $500K. γ =
−Cov(pt − pt−1, pt+1 − pt). γ is calculated conditioning on the trade size associated with pt. Bonds
are sorted by their “unconditional” γ into quintiles, and the variation of γ by trade size is reported
for each quintile group. The trade-by-trade data is used in the calculation.
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Internet Appendix to “The Illiquidity of Corporate
Bonds”∗

In the main paper, the CDS index is constructed using the five-year CDS spreads cov-

ered by CMA Datavision in Datastream. In Tables IA.I and IA.III, we use a CDS index

constructed using only the subset of names in our sample along with a series of other macroe-

conomic variables. The dependent variables in the two tables are the γ index and aggregate

bond yield spreads, respectively.

In Tables IA.II and IA.IV, we regress monthly changes in aggregate γ and monthly

changes in aggregate bond yield spreads, respectively, on macroeconomic variables. The

aggregate γ in these tables is constructed from a subsample of bonds chosen to match the

average age of bonds in our sample in 2009 as closely as possible.

In Table IA.V, we report the dynamic properties of illiquidity using daily data. As

discussed in the text of the paper, mean-reversion at the daily level dissipates rather quickly

with an insignificant γ2 and γ3.

∗Citation format: Bao, Jack, Jun Pan, and Jiang Wang, 20XX, Internet Appendix to “The Illiquidity of
Corporate Bonds,” Journal of Finance [Vol. #], [pages], http://www.afajof.org/IA/[year].asp. Please note:
Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied
by the authors. Any queries (other than missing material) should be directed to the authors of the article.
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Table IA.I: Time Variation in Aggregate γ and Market Variables

Panel A: Full Sample
Cons 0.0003 0.0036 -0.0045 0.0020 0.0061 0.0078 0.0096 -0.0031

[0.03] [0.13] [-0.26] [0.07] [0.21] [0.27] [0.40] [-0.26]
∆ VIX 0.0468 0.0444

[6.45] [3.71]
∆ Bond Volatility 0.0411 0.0311

[1.82] [3.08]
∆ CDS Index 0.7993 0.1526

[2.10] [1.54]
∆ Term Spread 0.3610

[1.01]
∆ Default Spread -0.0038

[-0.04]
Lagged Stock Return -0.0082

[-0.94]
Lagged Bond Return -0.0506 0.0090

[-2.35] [0.34]
Adj R-sqd (%) 67.47 3.31 34.19 6.38 -1.41 0.46 13.57 70.47

Panel B: 2003 - 2007 Only
Cons 0.0012 0.0018 0.0022 0.0050 0.0011 0.0116 0.0029 0.0128

[0.19] [0.21] [0.45] [0.60] [0.19] [1.22] [0.36] [2.54]
∆ VIX 0.0162 0.0098

[2.87] [2.53]
∆ Bond Volatility -0.0038

[-0.43]
∆ CDS Index 0.6195 0.2402

[2.90] [1.83]
∆ Term Spread 0.1204 0.0964

[2.76] [2.51]
∆ Default Spread 0.2362

[1.35]
Lagged Stock Return -0.0103 -0.0069

[-3.27] [-2.85]
Lagged Bond Return -0.0127 -0.0044

[-4.22] [-1.07]
Adj R-sqd (%) 33.11 -1.51 40.67 8.87 10.82 18.00 6.98 56.11

Monthly changes in γ regressed on monthly changes in bond index volatility, VIX, CDS index, term spread,
default spread, and lagged stock and bond returns. The CDS index is constructed based on only the subset
of names in our sample. The Newey-West t-stats are reported in square brackets. Regressions with CDS
Index do not include 2003 data.
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Table IA.II: Time Variation in Aggregate γ and Market Variables

Panel A: Full Sample
Cons -0.0016 0.0012 -0.0041 0.0009 0.0044 0.0057 0.0073 -0.0012

[-0.14] [0.04] [-0.21] [0.03] [0.14] [0.20] [0.29] [-0.09]
∆ VIX 0.0466 0.0487

[5.89] [3.17]
∆ Bond Volatility 0.0480 0.0373

[1.97] [2.96]
∆ CDS Index 0.2183 -0.0164

[2.08] [-0.28]
∆ Term Spread 0.2858

[0.82]
∆ Default Spread -0.0114

[-0.11]
Lagged Stock Return -0.0076

[-0.88]
Lagged Bond Return -0.0461 0.0074

[-2.09] [0.25]
Adj R-sqd (%) 61.19 4.50 12.64 3.07 -1.39 0.10 10.02 64.09

Panel B: 2003 - 2007 Only
Cons -0.0011 -0.0011 0.0010 0.0009 -0.0013 0.0108 0.0000 0.0086

[-0.14] [-0.12] [0.19] [0.08] [-0.21] [1.01] [0.00] [1.31]
∆ VIX 0.0139 0.0095

[2.43] [2.44]
∆ Bond Volatility 0.0065

[0.63]
∆ CDS Index 0.3325 0.0446

[2.59] [0.55]
∆ Term Spread 0.0564

[0.69]
∆ Default Spread 0.2992 0.1622

[1.82] [2.07]
Lagged Stock Return -0.0118 -0.0100

[-3.22] [-2.88]
Lagged Bond Return -0.0068

[-1.20]
Adj R-sqd (%) 19.60 -1.00 25.42 0.08 15.13 19.95 0.20 39.54

Monthly changes in γ regressed on monthly changes in bond index volatility, VIX, CDS index, term spread,
default spread, and lagged stock and bond returns. The γ index is constructed using a subset of bonds
chosen to match the average bond age in 2009 as closely as possible. The Newey-West t-stats are reported
in square brackets. Regressions with CDS Index do not include 2003 data.
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Table IA.III: Aggregate Bond Yield Spreads and Aggregate Illiquidity

Panel A: Full Sample (2003/05-2009/06)

AAA AAA AA AA A A BAA BAA Junk Junk
Cons 0.001 -0.006 0.014 0.017 0.018 0.019 0.028 0.031 0.049 0.049

[0.05] [-0.28] [0.52] [0.94] [0.61] [1.01] [0.50] [1.19] [0.39] [0.98]
∆γ 0.896 0.574 0.737 0.374 1.074 0.690 0.903 0.356 2.114 -0.312

[7.75] [4.03] [5.70] [3.11] [8.55] [5.34] [3.90] [2.52] [4.22] [-0.82]
∆ CDS Index 0.376 0.496 0.732 0.795 2.555

[1.93] [4.90] [5.47] [3.68] [3.90]
∆ VIX 0.009 0.000 -0.007 0.000 0.073

[0.68] [0.00] [-0.89] [0.01] [3.37]
∆ Bond Volatility 0.052 0.021 0.016 -0.024 -0.019

[2.03] [1.62] [1.26] [-1.16] [-0.63]
∆ Term Spread -0.264 -0.255 -0.181 -0.163 -0.834

[-2.26] [-2.10] [-1.56] [-1.03] [-1.96]
Lagged Stock Return -0.021 -0.008 -0.011 -0.035 -0.084

[-2.24] [-1.20] [-1.42] [-3.29] [-4.04]
Lagged Bond Return 0.006 -0.055 -0.054 -0.065 -0.088

[0.28] [-2.26] [-2.20] [-4.92] [-1.91]
Adj R-sqd (%) 51.56 70.90 47.11 81.89 59.86 88.22 28.17 81.28 23.22 84.63

Panel B: Pre-Crisis (2003/05-2007/12)

AAA AAA AA AA A A BAA BAA Junk Junk
Cons 0.010 0.020 0.021 0.029 0.016 0.035 0.011 0.031 -0.003 0.029

[1.19] [1.52] [1.54] [1.97] [1.01] [1.83] [0.63] [1.37] [-0.08] [0.63]
∆γ 0.583 0.329 0.822 0.451 0.966 0.393 1.106 0.342 3.678 -0.141

[3.87] [2.56] [2.99] [2.53] [3.47] [1.96] [3.53] [1.21] [4.67] [-0.19]
∆ CDS Index 0.362 0.559 0.656 0.970 4.409

[2.60] [2.65] [2.70] [2.22] [6.19]
∆ VIX -0.004 0.000 -0.002 -0.005 0.030

[-0.57] [0.04] [-0.27] [-0.40] [2.01]
∆ Bond Volatility 0.011 0.022 0.019 0.024 0.007

[1.11] [1.61] [1.28] [1.37] [0.27]
∆ Term Spread 0.017 -0.065 0.068 0.093 -0.165

[0.19] [-0.47] [0.43] [0.54] [-0.50]
Lagged Stock Return -0.007 -0.004 -0.009 -0.007 -0.018

[-1.39] [-0.69] [-1.59] [-1.10] [-1.64]
Lagged Bond Return 0.004 0.008 0.011 -0.002 -0.000

[0.71] [0.68] [1.01] [-0.14] [-0.01]
Adj R-sqd (%) 24.93 40.79 19.42 37.45 26.88 45.37 22.44 31.09 29.40 71.74

Monthly changes in yield spreads on Barclay’s Intermediate Term indices regressed on monthly changes in
aggregate γ, bond index volatility, VIX, CDS index, term spread, and lagged stock and bond returns. The
CDS index is constructed based on only the subset of names in our sample. The top row indicates the rating
index used in the regression. Newey-West t-stats are reported in square brackets. Regressions with CDS
Index do not include 2003 data.
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Table IA.IV: Aggregate Bond Yield Spreads and Aggregate Illiquidity

Panel A: Full Sample (2003/05-2009/06)

AAA AAA AA AA A A BAA BAA Junk Junk
Cons 0.003 -0.007 0.015 0.012 0.020 0.017 0.030 0.016 0.054 0.007

[0.13] [-0.36] [0.58] [0.70] [0.68] [0.95] [0.53] [0.85] [0.43] [0.14]
∆γ 0.860 0.572 0.707 0.458 1.036 0.802 0.855 0.496 2.084 0.596

[7.58] [5.93] [5.33] [6.16] [7.75] [9.34] [3.68] [3.60] [4.19] [1.25]
∆ CDS Index 0.114 0.214 0.234 0.496 1.434

[1.17] [2.80] [2.37] [3.77] [3.22]
∆ VIX 0.014 0.001 -0.002 -0.004 0.044

[0.98] [0.17] [-0.27] [-0.52] [1.06]
∆ Bond Volatility 0.050 0.018 0.010 -0.028 -0.040

[1.86] [1.43] [0.92] [-1.28] [-1.20]
∆ Term Spread -0.233 -0.201 -0.131 -0.019 -0.502

[-1.39] [-1.25] [-0.68] [-0.10] [-1.10]
Lagged Stock Return -0.021 -0.004 -0.011 -0.018 -0.042

[-1.45] [-0.77] [-1.67] [-2.16] [-1.27]
Lagged Bond Return 0.013 -0.042 -0.039 -0.040 -0.014

[0.71] [-1.66] [-1.50] [-3.19] [-0.30]
Adj R-sqd (%) 51.72 69.28 47.34 81.27 60.74 85.95 27.47 83.40 24.67 86.08

Panel B: Pre-Crisis (2003/05-2007/12)

AAA AAA AA AA A A BAA BAA Junk Junk
Cons 0.011 0.019 0.023 0.029 0.018 0.033 0.014 0.025 0.005 0.002

[1.45] [1.55] [1.62] [2.20] [1.18] [1.92] [0.82] [1.25] [0.11] [0.05]
∆γ 0.621 0.347 0.683 0.326 0.948 0.412 1.180 0.646 3.088 0.404

[3.09] [2.21] [2.07] [1.68] [2.81] [2.02] [3.53] [2.46] [3.41] [0.80]
∆ CDS Index 0.228 0.368 0.413 0.544 2.981

[2.24] [2.19] [2.40] [2.00] [10.41]
∆ VIX -0.003 0.003 -0.001 -0.005 0.022

[-0.46] [0.46] [-0.11] [-0.49] [1.66]
∆ Bond Volatility 0.007 0.019 0.015 0.018 0.010

[0.79] [1.37] [1.10] [1.08] [0.46]
∆ Term Spread 0.029 -0.034 0.087 0.093 -0.153

[0.33] [-0.28] [0.58] [0.53] [-0.54]
Lagged Stock Return -0.005 -0.002 -0.006 -0.002 0.002

[-1.05] [-0.43] [-1.10] [-0.24] [0.16]
Lagged Bond Return 0.006 0.009 0.013 0.002 0.012

[0.87] [0.69] [1.14] [0.14] [0.53]
Adj R-sqd (%) 34.56 43.48 15.73 36.32 31.33 47.01 31.28 34.65 24.54 80.54

Monthly changes in yield spreads on Barclay’s Intermediate Term indices regressed on monthly changes in
aggregate γ, bond index volatility, VIX, CDS index, term spread, and lagged stock and bond returns. The γ
index is constructed using a subset of bonds chosen to match the bond age in 2009 as closely as possible.The
top row indicates the rating index used in the regression. Newey-West t-stats are reported in square brackets.
Regressions with CDS Index do not include 2003 data.
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Table IA.V: Dynamics of Illiquidity, Daily Data: γτ = −Cov (pt − pt−1, pt+τ − pt+τ−1)

2003 2004 2005 2006 2007 2008 2009 Full
τ = 1 Mean γ 0.992 0.825 0.774 0.571 0.800 3.210 5.399 1.177

Median γ 0.607 0.414 0.344 0.289 0.474 1.362 1.939 0.560
Per t ≥ 1.96 94.62 92.64 95.50 96.26 95.57 95.41 97.59 98.84
Robust t-stat 17.28 17.88 18.21 19.80 14.39 7.16 8.47 16.53

τ = 2 Mean γ 0.041 0.023 -0.003 -0.002 -0.018 -0.147 0.076 -0.001
Median Gamma 0.015 0.008 0.004 0.004 0.006 0.034 0.041 0.006
Per t ≥ 1.96 4.71 4.95 3.84 3.48 4.11 4.39 4.55 3.48
Robust t-stat 2.10 1.85 -0.27 -0.34 -0.84 -0.71 0.29 0.05

τ = 3 Mean γ -0.015 -0.009 -0.009 0.011 0.013 0.063 0.041 -0.005
Median γ -0.001 -0.003 0.002 0.001 0.002 0.001 -0.009 -0.002
Per t ≥ 1.96 2.29 2.74 3.29 2.54 2.53 2.79 3.74 2.90
Robust t-stat -0.89 -0.69 -0.86 1.47 0.97 0.73 0.27 -0.46

For each bond, its γτ , τ = 1, 2, 3, is calculated using daily data. Per t-stat ≥ 1.96 reports the percentage
of bond with statistically significant γ. Robust t-stat is a test on the cross-sectional mean of γ with
standard errors corrected for cross-sectional and time-series correlations.
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