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Abstract

Protein-protein interactions (PPIs) play a central role in all biological processes. Akin
to the complete sequencing of genomes, complete descriptions of interactomes is a
fundamental step towards a deeper understanding of biological processes, and has
a vast potential to impact systems biology, genomics, molecular biology and thera-
peutics. PPIs are critical in maintenance of cellular integrity, metabolism, transcrip-
tion/translation, and cell-cell communication.

This thesis develops new methods that significantly advance our efforts at structure-
based approaches to predict PPIs and boost confidence in emerging high-throughput
(HTP) data. The aims of this thesis are, 1) to utilize physicochemical properties
of protein interfaces to better predict the putative interacting regions and increase
coverage of PPI prediction, 2) increase confidence in HTP datasets by identifying
likely experimental errors, and 3) provide residue-level information that gives us in-
sights into structure-function relationships in PPIs. Taken together, these methods
will vastly expand our understanding of macromolecular networks.

In this thesis, I introduce two computational approaches for structure-based protein-
protein interaction prediction: iWRAP and Coev2Net. iWRAP is an interface thread-
ing approach that utilizes biophysical properties specific to protein interfaces to im-
prove PPI prediction. Unlike previous structure-based approaches that use single
structures to make predictions, iWRAP first builds profiles that characterize the hy-
drophobic, electrostatic and structural properties specific to protein interfaces from
multiple interface alignments. Compatibility with these profiles is used to predict the
putative interface region between the two proteins. In addition to improved interface
prediction, iWRAP provides better accuracy and close to 50% increase in coverage on
genome-scale PPI prediction tasks. As an application, we effectively combine iWRAP
with genomic data to identify novel cancer related genes involved in chromatin remod-
eling, nucleosome organization and ribonuclear complex assembly – processes known
to be critical in cancer.

Coev2Net addresses some of the limitations of iWRAP, and provides techniques
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to increase coverage and accuracy even further. Unlike earlier sequence and struc-
ture profiles, Coev2Net explicitly models long-distance correlations at protein inter-
faces. By formulating interface co-evolution as a high-dimensional sampling problem,
we enrich sequence/structure profiles with artificial interacting homologus sequences
for families which do not have known multiple interacting homologs. We build a
spanning-tree based graphical model induced by the simulated sequences as our in-
terface profile. Cross-validation results indicate that this approach is as good as previ-
ous methods at PPI prediction. We show that Coev2Net’s predictions correlate with
experimental observations and experimentally validate some of the high-confidence
predictions. Furthermore, we demonstrate how analysis of the predicted interfaces
together with human genomic variation data can help us understand the role of these
mutations in disease and normal cells.

Thesis Supervisor: Bonnie Berger
Title: Professor of Applied Mathematics
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Glossary

Interactome The whole set of protein-protein interactions in an organism.

Alignment A one to one mapping of characters (amino acids or nucleotides) between

two protein (or DNA) sequences. The mapping respects the ordering of the characters

in the individual sequences. If a character cannot be mapped, it is usually aligned to

a “gap”. A multiple sequence (or structure) alignment (MSA) is an alignment between

multiple sequences (or structures). MSA is usually visualized as a matrix with the

number of rows equal to the number of sequences that are aligned and the number of

columns equal to the alignment length.

Sequence profile The set of distributions (or frequencies) describing the composition

of the columns of a multiple sequence alignment (MSA).

Genotype The genetic makeup of a cell (i.e. the specific genetic sequence), usually

with reference to a particular trait under consideration.

Phenotype The composite of an organism’s observable traits and characteristics.

Homologs Two protein (or DNA) sequences are said to be homologous if they share

an ancestor. Homology is usually determined by sequence similarity between the two

proteins.

Orthologs Two homologous proteins are orthologous if they are present in different

species and resulted from a speciation event.

Non-redundant If two protein sequences have less than a threshold sequence similar-

ity (typically 30-40%), they are said to be non-redundant. Non-redundant databases
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imply that each sequence in the database is different from every other sequence in

the database with respect to the threshold sequence similarity.

Complex Complex refers to a group of proteins involved in an interaction. In struc-

tural bioinformatics and in this thesis, a complex refers to the structure of a binary

protein interaction.

Phylogenetic tree A tree showing the evolutionary relationships (inferred) between

protein sequences (or DNA sequences). It is usually based on sequence similarities

between the sequences.



Chapter 1

Introduction

A genome of an organism encodes for tens of thousands of proteins (proteome) that

make specific interactions with other proteins and bio-molecules. Systematically map-

ping these interactions (the interactome) is a major challenge in post-genomic biol-

ogy. Elucidation of the interactome of a cell is an essential first step in understanding

protein function and cellular behavior. Sustained focus on reconstructing the inter-

actomes of various model organisms in recent years has resulted in a wealth of infor-

mation. Indeed, in this new era of high-throughput (HTP) technologies, molecular

biology is dominated by studies on pathways, complexes or even an entire organism.

A mechanistic understanding of how molecules interact comes only from three

dimensional (3D) structures, as they provide a high resolution picture of the bind-

ing. Such an understanding allows us to design experiments that perturb systems

in an intelligent way. Consequently, knowledge of these atomic details provides us

with a rational way of developing therapies by repairing and/or inhibiting interac-

tions [5]. Despite their invaluable contributions, atomic details of interactions are

beyond the scope of current HTP protein-protein interaction (PPI) detection tech-

niques. Structural-genomics initiatives and advancements in structural biology are

steps in the right direction, but are lagging behind other technologies for PPI de-
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tection. Moreover, the sheer number of interactions to test (e.g. 50 million possible

pairs for an organism with 10000 proteins) makes it an insurmountable task for any

one experimental technique alone.

The thesis aims to bridge this gap between new-era HTP systems biology and

traditional computational molecular biology to give a high-resolution understanding

of the interactome. By developing protein-protein interaction (PPI) prediction tech-

niques based on atomic details of protein 3D structures, the thesis provides a deeper

understanding of structure-function relationships in biological systems. Moreover,

the methods developed in this thesis help overcome the limited and biased sampling

of experimentally verified interactions, ultimately leading to a complete high-quality

mapping of the interactome.

The rest of the chapter is structured as follows. First, in section 1.1, basics

of protein structure, structure determination and computational aspects of protein

structure relevant to the thesis are introduced. Then, in section 1.2, aspects of protein-

protein interactions (PPI), including experimental and computational methods for

PPI prediction are discussed. Finally, I explain how understanding the structure-

function relationship in the context of PPIs will help design better therapies for

human diseases.

1.1 Proteins

The central dogma of molecular biology states that genes in the DNA are transcribed

to mRNA, which are then translated to a sequence of amino acids called proteins

(Figure 1-1). There are 20 different types of amino acids, each differing only in their

side-chains. This difference leads to differences in the physicochemical properties

of the amino-acids, ultimately influencing the function of the protein. Each amino

acid, also called a residue, has a bonded sequence of three atoms, a nitrogen and two
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Figure 1-1: Central dogma of molecular biology. From http://www.lhsc.on.ca

carbons. The same triplet of atoms from each residue of a protein are concatenated

together via a peptide bond to form the backbone of the protein. Each residue has a

side-chain containing 0 to 10 heavy atoms branching out of the middle carbon atom

(Cα). Some examples of amino acids (residues) can be seen in Figure 1-2 [21].

In its most basic form, a protein can be thought of as a linear copolymer formed

by the concatenation of amino acids (primary structure). More generally, protein

structure is described in a hierarchical manner: ranging from a “primary” structure

to a “quaternary” structure. Under physiological conditions, the primary structure

folds to a unique, compact and relatively stable 3-D structure, which determines its

specific biological function. The sequence of the protein is believed to completely

encode its folded structure, which arguably corresponds to the minimum free energy

of the molecule. Furthermore, different regions of the sequence form one of two

local regular structures - alpha helix (α) and beta sheets (β). These locally compact

structures are referred to as secondary structure. The tertiary structure is obtained

by packing such structural elements into one or more compact globular units called

domains. In many proteins several polypeptide chains forming different domains are

brought together to form a quaternary structure (see Figure 1-2) [21].

3
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!
A. Amino Acids

!
B. Hierarchy in protein structure

Figure 1-2: A) Some examples of amino acids. B) Protein structure is described in a hier-
archical manner, ranging from a primary structure to a quaternary structure.
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1.1.1 Protein structure determination

Protein function is determined by its structure. As a result, a lot of effort has been

devoted to determining the 3D structure of proteins [18]. The most popular techniques

for structure determination are X-ray crystallography and NMR spectroscopy [42].

Close to 85% of protein structures deposited in the Protein Data Bank (PDB) are

determined by X-ray crystallography [14]. Although these techniques have given

us invaluable information about protein structure and function, they are laborious

and time consuming. For example, it is not uncommon to take on the order of 6

months to a year to solve a protein’s structure using X-ray crystallography [21, 42, 67].

Furthermore, not all proteins are amenable to crystallography or NMR spectroscopy

(e.g transmembrane proteins) [42].

Since protein structure is encoded in its sequence, it should be possible to com-

putationally predict the 3D structure of a protein just from its sequence, using laws

of physics and chemistry. To overcome limitations of structure determination tech-

niques and to better understand protein folding, structure prediction has remained

one of the most active areas in computational molecular biology [18]. There are three

broad categories into which the various structure prediction methods are divided: 1)

homology modeling, 2) protein threading and 3) ab initio folding. In homology mod-

eling, the structure of a protein is predicted by identifying a homologous protein in

the PDB. It exploits the common rule of thumb that sequences that are similar, fold

in a similar way. Therefore, given the target sequence (for which the structure is to

be determined), a database of solved structures is searched for similar sequences. The

predicted structure is then built using large fragments of these related structures. As

more and more structures are solved, homology modeling will become increasingly

accurate as there is a greater chance of finding a similar sequence in the database.

Depending on sequence similarity, it is sometimes possible to get structures as good

as a medium resolution X-ray crystallographic structure [183]. But usually, as the se-
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quence similarity between a target and the candidate structure goes down, it becomes

an incorrect representation of the actual structure of the target sequence.

For sequences that do not have any clear homologs in the PDB, protein threading

is the method of choice for structure prediction. Compared to homology modeling,

which considers only the sequence similarity between the target and a candidate struc-

ture, protein threading makes use of structural information encoded in the candidate

structure to improve prediction accuracy. The main components of a threading ap-

proach are a template (a simplified representation of the protein 3D structure) and

a scoring function to evaluate an alignment. The goal of a threading algorithm is

to find the best alignment of the target sequence to the template structure in the

space of all possible alignments. Figure 1-3 gives a schematic of the components

of a threading approach. First, a template is constructed from the 3D structure of

the protein. Then, alignments are scored using a scoring function that evaluates the

compatibility of the aligned target residue in the structural environment of the cor-

responding aligned template residue. In Figure 1-3b, regions of the target sequence

aligned to corresponding fragments in the template are indicated by the letters ta and

the alignments are represented as dashed arrows. Computing the optimal alignment

(i.e. best alignment score) is formulated as a combinatorial optimization problem,

and a variety of mathematical techniques are used to solve it [183]. Different thread-

ing programs use different scoring functions. All of them usually include secondary

structure, solvent accessibility and pair-wise interactions in scoring an alignment.

One of the best threading programs used in structural bioinformatics is RAPTOR

[177]. RAPTOR formulates the alignment problem as an integer linear programming

problem (ILP), and uses a branch and bound technique to efficiently solve the ILP

[177]. The methods developed in the thesis use this formulation of RAPTOR for

structure prediction.

Ab initio structure prediction is the most difficult method and does not use any
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A. Template

B. Sequence to structure alignment

Figure 1-3: Schematic of protein threading. A) A protein 3D structure is first reduced to
a simplified representation as a graph, with residues as the nodes and edges
between residues that are physically close in the 3D structure. This simplified
representation is known as the template. B) The target sequence (query) is then
“threaded” onto the template to find the best sequence-structure alignment. This
is usually formulated as an optimization problem, with both sequence and struc-
ture features in the objective function. The dashed lines represent alignment of
the residues of the template to residues of the target sequence [95]

complete structure from the PDB. The main difficulty arises because conformational

search space increases dramatically with respect to protein size. The optimization

problem is usually non-convex and requires techniques based on Monte Carlo methods

and genetic algorithms to tackle the inherent complexity [183].

1.2 Protein-protein interactions

Proteins interact with other proteins and molecules to perform their function. In

this thesis, we are mainly concerned with understanding protein-protein interactions

(PPIs) and using that knowledge to predict PPIs. Our knowledge about the rules
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of association of protein molecules comes mainly from studying structures of protein

complexes. We will look at methods to characterize structural features of interfaces,

their chemical composition and their evolutionary histories. All these aspects of PPIs

are relevant for subsequent chapters in the thesis.

1.2.1 Types of PPIs

Interactions between two proteins (binary PPIs) are usually divided based on the type

of proteins that interact, stability of the proteins and duration of interaction. Inter-

action between two identical protein chains is called a homo-oligomeric complex (or

homo-dimer or homomer), whereas interaction between different proteins is called a

hetero-oligomeric complex (or heteromer). Based on stability, interactions are divided

as obligate and non-obligate complexes [112]. Proteins forming obligate complexes do

not form stable functional structures on their own, whereas proteins in non-obligate

complexes can form stable structures. Many heteromers are non-obligate, while ho-

momers are often obligate [112, 78]. In terms of duration, interactions are divided

as transient or permanent. Transient interactions last for seconds or less, and typ-

ically regulate critical cellular processes by protein phosphorylation or acetylation.

Permanent (stable) interactions have a typical half-life of 12 minutes to 19 hours and

include some of the biggest structures in a cell such as core RNA polymerase, DNA

replication complexes, etc [118]. Permanent complexes can be readily detected by

common experimental techniques such as co-purification and yeast-2-hybrid (Y2H).

Transient interactions are more difficult to detect, requiring some prior knowledge of

the two interacting proteins and the conditions under which they interact [118, 131].

1.2.2 Structural features

The interface between two interacting proteins in a complex can be defined in a variety

of ways. The most popular and simplistic definition is that of a minimum distance –

8



if the distance between any two heavy atoms of two residues on either protein is less

than 5Å, the two residues are said to be interacting and part of the interface. Another

characterization of interface residues is in terms of accessible solvent area (ASA). In

protein complexes, it has been observed that 20-45% of the interface residues have

very low ASA (close to zero), and they tend to be hydrophobic [73]. Sometimes

these residues are also referred to as the “interface core”, with the “interface rim”

consisting of residues that are less than 10Åapart in the 3D structure and having

non-zero ASAs. Interfaces can also be described to reflect shape complementarity

between the interacting proteins, cavities on the surface of the two proteins and

atomic packing. Typically, such representations are based on embedding a 3D grid

on top of the structure and measuring the volumes occupied by each atom. More

generally, techniques such as voronoi diagrams allow for a precise estimation of the

atomic packing [73, 89].

Another popular method of representing an interface is that of a contact map. A

contact map is a 2D representation of the 3D interface, with the aim of representing

only residue-level information. A contact map is a matrix of dimension mxn, where

m and n are the lengths of the two proteins. An entry ij in the contact map is

the minimum distance between any two heavy atoms in residue i in one protein and

residue j in the other. If the minimum distance is greater than 10, a zero is used

instead. For a cleaner visualization and tractable computations, only rows/columns

that have at least one non-zero entry are retained, the rest are discarded (see Fig-

ure 1-4). As can be seen, such a representation allows one to design fast search and

alignment algorithms without having to deal with the more complicated 3D topology.

1.2.3 Physico-chemical features

The physico-chemical features of an interface depend on the relative abundance of

different amino acids at the interface. Amino acids are usually described as non-
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A. Protein-protein complex B. Contact Map

Figure 1-4: A) A binary PPI complex. Red and blue are two proteins, and the interface
residues are highlighted in green. B) A contact map representation of the com-
plex in a. The entries in the map are color-coded ranging from red (low) to
black (10Å). Distances greater than 10Å are not relevant and are indicated by
white.
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polar/polar/charged, or in a more coarse-grained model as hydrophobic/hydrophilic.

The composition of an interface is usually computed by counting interface atoms

or residues, or by weighting their numbers by their buried surface area (BSA). The

advantage of area-based composition is that it accounts for the amino acid size as

well. Quantitatively, interface propensity is calculated as:

pi = log(
fi
f oi

) (1.1)

where pi is the propensity of amino acid of type i at the interface, fi is the number

or area fraction of type i at the interface, and f oi is the corresponding number in a

reference set (can be the whole protein, or its interior, or surface). Interpreting pi is

straightforward: if pi > 0, then the interface is enriched for atoms or residues of type i

compared to the reference set, and pi < 0 implies that the interface is depleted of type

i. Figure 1-5 shows the composition and propensities calculated from a non-redundant

set of protein complexes [178].

Hydrophobicity plays an important role at protein surfaces and interface. Amino

acids containing groups with ‘O’ and ‘N’ in their side chains are polar and hydrophilic,

the rest are non-polar and hydrophobic. Hydrophobic patches enriched for such

residues are frequently found at protein interfaces, indicating that their contribution

to PPIs is significant. It has been argued that capping motifs which bury otherwise-

exposed hydrophobic patches have specifically evolved in certain proteins to prevent

aggregation [24]. The extent of the hydrophobic contribution depends on the type of

interaction and the driving force (i.e long-range electrostatics or short-range desolva-

tion effects). For homo-dimers/obligate complexes, the monomer (protein) molecules

do not exist individually and hence their interfaces tend to be always buried (from the

solvent). Therefore, such interfaces can have large hydrophobic patches. Interactions

in which each participating protein exists as a functional unit by itself cannot admit

large hydrophobic patches on its surface as it would be energetically unfavorable [78].
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A. Interface composition

B. Interface propensities

Figure 1-5: A) Residue composition at the interface in a non-redundant set of protein com-
plexes. B) Residue propensities at the interface in the non-redundant set of
protein complexes. “Core” of the protein refers to interior of the protein. Hy-
drophobic residues have a higher propensity at the core, whereas polar amino
acids are enriched at the interfaces and surfaces. Figures taken from [178]. The
residues are arranged in increasing order of their hydrophobicity (Kyte-Doolittle
scale) from left to right [93].
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Electrostatics also plays an important role in PPIs, as can be seen from Figure 1-

5. Enrichment of polar amino acids indicates that protein interfaces tend to be more

similar to protein surfaces than to protein interiors. One hypothesis for explaining

this apparent anomaly is that desolvation effects are partially compensated in inter-

faces through the formation of networks of ion-pairs and hydrogen bonds, which are

positioned so as to interact favorably with one another. Electrostatics is also known

to play a significant role in the rate of protein-protein association [137]. Computa-

tionally, accounting for electrostatics requires elaborate calculations that are highly

sensitive to the solvent model and local structural environment. The representation

of electrostatics is not accurate enough yet, although it has resulted in a few excellent

models for protein-protein complexes [20, 134]. Such calculations are usually compu-

tationally intensive and left for later stages of structure prediction, with earlier steps

relying on statistical (knowledge) potentials [73].

1.2.4 Evolutionary features

As we have seen in the previous two sections, in order for two proteins to interact,

there has to be structural as well as chemical compatibility at the interface. One

can then argue that nature will try to maintain this compatibility over the course of

evolution of the species. Indeed, evolutionary conservation has been observed at three

levels in PPIs: 1) interface residues are conserved across orthologs in different species,

2) co-evolution of residues at the interface of the interacting proteins (correlated

mutations), and 3) similarity of phylogenetic trees (evolutionary histories) for the

two proteins [83, 79, 164, 72, 80]. Notice that the first two observations are at a

residue-level and hence require multiple interacting proteins from different species

to give any meaningful statistics. This kind of information is usually not available

for all possible protein pairs, and hence these insights have generally not been used

for prediction purposes till now. We will however develop techniques that overcome
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this difficulty. Compared to the first two, similarity between phylogenetic trees is an

indirect evidence for interaction. Correlation between phylogenetic trees could arise

due to a variety of reasons not necessarily related to PPIs. It does not give us any

residue-level insight into the interface compatibility of the two proteins [163, 164].

1.3 Experimental methods for PPI detection

1.3.1 Low throughput screens

Low throughput (LTP) experimental techniques include affinity chromatography,

affinity precipitation, dosage lethality, biochemical assays, synthetic lethality and

structure [151]. Interactions detected by these experiments are usually reliable and

used as gold-standard [35, 168]. However, it is difficult to curate interactions detected

by LTP experiments since one has to manually go though the publication to extract

the interacting pairs. Text mining is still in its infancy, and leads to numerous false

positives and negatives [111]. Moreover, the number of interactions that need to be

identified to map the entire interactome is too large to be done using LTP screens

alone.

1.3.2 High throughput screens

High throughput (HTP) screens have provided the bulk of the interactions that

we know today [151, 133]. These methods are called HTP because thousands of

pairwise interactions can be tested simultaneously. HTP methods include yeast-

2-hybrid (Y2H) [54, 130, 162, 155, 181, 141], mass spectrometry based methods

[88, 64, 31, 48, 58], protein chips [176, 185, 186] and LUMIER assays [12].
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Yeast-2-hybrid method

The two-hybrid system is one of the most widely used HTP screen for PPI detection.

It is based on the observation that gene transcription requires the binding of two

domains of a transcriptional activating protein [51]. These domains are called DNA

binding domain and activator domain (Figure 1-6). The candidate proteins are fused

to one of the two domains. If the two candidate proteins interact, then the DNA

binding domain and activator domain are close enough to interact and result in a

functional transcription complex. This activates expression of the reporter gene,

leading to an observable change in phenotype (e.g. fluorescence).

Mass spectrometry based methods

Mass spectrometry (MS) is an analytical technique to identify the chemical com-

position of proteins and peptides. For PPI detection, two types of MS-based HTP

techniques are popular - tandem affinity purification (TAP-MS) and protein complex

identification (HMS-PCI) [19, 58, 66]. In these techniques, the protein whose interact-

ing partners are sought is called the bait and its interacting partners are called prey.

Both the techniques first fuse short tags to the bait so that they can be extracted

from a mixture of cellular contents (Figure 1-6). If a bait is part of a complex, then

the complex is first extracted and its constituents are separated by gel electrophoresis

and identified by MS.

Protein chips

Protein chips (or microarrays) involve thousands of proteins immobilized on the sur-

face of a microscope slide. Labelled target proteins are then added to the chip and

may bind to some of the proteins on the chip. Unbound proteins are washed away

and the bound ones are detected using a fluorescent dye [185, 186].
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A. Yeast-2-hybrid B. TAP

C. Protein array D. Lumier

Figure 1-6: Schematics of the popular HTP techniques for PPI detection. A) Yeast-2-hybrid
method involves fusing the two candidate proteins (X and Y) to a DNA binding
domain (DBD) and an activator domain (AD) of a transcriptional factor. In-
teraction between the proteins results in a functional transcriptional complex,
ultimately leading to the expression of the reporter gene [5]. B) In the TAP-MS
method, the bait (X) along with its partner proteins are extracted from the cel-
lular contents with the help of a fused tag. The constituents are then separated
and identified using MS [140]. C) Protein chips involve immobilizing prey pro-
teins by fixing them on a chip. The bait protein (X) is fused with a fluorescent
tag to help visually identify the PPIs [140]. D) In a Lumier assay, the bait
protein is fused with a luminescence protein, and the prey is fused with a tag
to help in purification. After extraction of the bait-prey complex from cellular
contents, the interaction is detected by monitoring the luminescence observed
[47].
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Lumier assay

Luminescence based mammalian interactome mapping (LUMIER) is a new technique

developed to detect even transient interactions in signaling networks [12]. In a Lumier

assay, a luciferase-tagged bait protein is screened against a series of flag-tagged prey

proteins; an antibody against flag is used to affinity-purify the prey, and the prey-

associated luminescence on exposure to an appropriate luciferin substrate is monitored

to detect interaction [47]. The technique is known to be more sensitive than previous

approaches, and comparatively easier to quantify dynamic shifts in PPI networks [47].

1.3.3 Limitations of experimental techniques

HTP screens look very promising as they identify thousands of interactions, but they

suffer from high false-positive and false-negative rates [65, 16, 165, 148]. Estimates

on the false discovery rates (FDR) 1 in HTP techniques are still debated as there is

no gold-standard for negative data (i.e. proteins that do not interact) to evaluate

against. Initial estimates computed from re-testing interactions detected by HTP

experiments obtained FDRs in the range 20-40% [130, 155]. More recently, with

improvements in experimental protocols, HTP studies were able to achieve FDRs

between 0 to 11% [22]. Although these values seem reasonable, the more serious

issue is with sensitivity of these assays. Braun et al. evaluated 5 HTP methods

and obtained sensitivities of 21 to 36% [22]. Combining the methods resulted in

a sensitivity of around 59% [22]. The main strategies for improving the FDR and

sensitivity of HTP methods are by repeating screens, using several HTP screens or

combining HTP and computational approaches for PPI prediction [181, 43]. However,

conducting repeated screens or using multiple HTP screens is time-consuming and not

cost-effective [135]. For example, some estimates put the time required for completing

the Drosophilia melanogaster interactome at 1700 person-years, using the current
1expected fraction of false positives amongst the predicted true positives
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experimental protocols [135]. Using a ranked list of interactions to test reduces this

estimate considerably to 385 person-years [135]. Moreover, it has been argued that

limited overlaps of interactions identified using different HTP techniques highlight the

biases of those experiments rather than identify true/false positives [166, 165]. More

importantly, non-physiological conditions in most experimental techniques limit our

ability to translate detected PPIs into in vivo hypotheses.

1.4 Computational methods for PPI prediction

Limitations in experimental techniques combined with the sheer number of inter-

actions to verify has provided much impetus to the development of complementary

computational methods for PPI prediction. These methods usually use a variety

of machine learning, statistical and graph-theory based approaches. Computational

methods for PPI prediction can be roughly divided into three broad categories - in-

direct methods, direct methods and methods based on data-integration.

1.4.1 Indirect methods

Indirect methods for PPI prediction are methods that try to infer physical interaction

between two proteins based on evidence for their functional association. One of

the popular methods for detecting functional association is by correlation of gene

expression profiles (co-expression) [96]. The idea here is that genes showing a high

correlation in their expression patterns under different conditions are more likely to

physically interact than random pairs. On a genomic level, functional association is

usually detected by conservation of gene neighborhood, similar pattern of presence

or absence across multiple genomes or gene fusion [96]. The intuition behind such

approaches is that if the genes are functionally related, they will tend to be inherited

as a unit since the loss of one gene would disrupt the function they are involved
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in. However, such methods are always used as additional sources of evidence since

functional association need not always imply direct physical interaction [5, 96].

1.4.2 Direct methods

Direct methods for PPI prediction usually use the primary sequence or tertiary struc-

ture in a direct way to infer PPIs. Methods that use protein sequence generally con-

sider the physicochemical properties of the constituent residues and/or frequencies

of residue combinations to quantitatively predict PPIs [17, 63, 105, 120, 180]. Most

techniques map the protein sequences onto a multi-dimensional feature space, and use

machine learning based classification algorithms such as support vector machines, lo-

gistic regression, neural networks to quantitatively predict PPIs. The classifiers are

usually trained on a small set of high-confidence interactions and evaluated on a

separate dataset (i.e. cross-validation) [17, 63, 105, 120, 180].

Another popular method for PPI prediction utilizing protein features is based on

the “guilt-by-association” principle. In this method, protein pairs similar to known

interacting pairs are predicted to interact. The “association” could be based on se-

quence similarity or other properties and annotations [96]. Such associations based

on sequence similarity are called “interologs” (Figure 1-7). Predictions made using

this approach quickly break down as the sequence similarity between the query and

known interactors decreases.

Structure-based approaches are becoming increasingly popular as the number of

structures deposited in the PDB is rapidly increasing. In the past 4 years the number

of complexes in SCOPPI, a database of protein interfaces, has grown by 60% [173].

For proteins whose structures are not known, homology models or threading based

models are typically used to first identify the putative interface. Predictions are then

made by evaluating the quality of the interface using a variety of different scoring

functions [3, 56, 103, 143, 123, 7]. As shown in Figure 1-7 , such methods proceed
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by first identifying a suitable template for the proteins of interest by scanning the

structural database. Optimal sequence-structure alignment then gives the predicted

interface, which can be evaluated using either statistical potentials or physics-based

potentials for interaction suitability. For proteins that have a solved structure, the

challenge is to predict the structure of the bound complex, and evaluate its energy to

predict if the two proteins interact. These methods are termed as “docking” methods,

with a lot of popular methods available to the community [41, 146, 174, 171].

1.4.3 Data integration methods

Different experimental and computational methods have their own biases, strengths

and weaknesses. In general, it is natural to expect an interaction to be true if multiple

observations or predictions support it. The data integration methods exploit this

intuition by making a prediction based on other predictions or a number of different

features. The key challenge here is to integrate different sources of information in an

intelligent way by taking into account their individual accuracies. There are many

different methods to do this - Fisher’s, Bayesian, logistic regression, random forests,

etc [96]. One example of such a method, that integrates co-expression, co-localization

and functional similarity using a random forest classifier is shown in Figure 1-7 [143].

Predictions from many of these approaches have been aggregated into a number

of databases/web-services offering predicted PPIs. The STRING database [76] com-

bines experimental datasets (e.g. BioGRID [151]) with computational predictions

based on co-expression, interologs, and text-mining, etc. The entries in this database

correspond to functional interactions, and may not always be directly interpretable

as PPIs. Another database, IntAct [85], focuses more on inferring interactions from

expert curation of data from the literature. Other public services include DOMINO

[29], InterDom [109], and I2D [23]. However, all of these databases suffer from a com-

mon selection bias: often, the proteins that have been selected for PPI experiments
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Figure 1-7: A) Interaction between A and B is transferred to A’ and B’ using orthology
assignments [96]. B) Structure-based prediction of the putative interface using
homology modeling or threading. The candidate proteins are first aligned to
a complex template, and the putative interface is inferred from the structure
and the alignment. c) One example of a data integration method. Multiple
features such as Gene Ontology (GO) annotation similarity, co-expression and
co-localization for a pair of query proteins are input into a random forest classifier
that makes a prediction.
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are usually genes/proteins that have received some attention before and, as such, are

also more likely to have functional genomic data.

1.5 Medical impact

Whole genome sequencing and cancer sequencing projects have given us a lot of bio-

logical insights into what genes and mutations are associated with diseases. However,

this insight has very rarely led to the development of any new therapy to treat such

diseases [170]. One main reason for this lack of translational breakthrough has been

the difficulty in unraveling the complex genotype-to-phenotype relationships among

diseases and their associated genes. Knowledge of PPIs and genome-scale interac-

tome has enabled us to tackle this problem like never before, but there is still a long

way to go. To gain a complete understanding of biology, it is not enough to know

that two proteins interact; it is imperative that we know why and how they interact.

This knowledge will enable us to repair disrupted interactions or inhibit aberrant

interactions that are often common in many diseases. By doing so, we can design

therapies that attack the source of the problem, rather than just treat the symptoms.

The methods developed in this thesis not only enable researchers to know whether

two proteins interact, they also give insights into why and how they interact. The

advantage of this is that experiments can be carried out by mutating the predicted

interface residues to further gain an understanding of interaction specificity. There

is no doubt that such knowledge will become the basis for designing more efficient

drugs and developing new drugs against diseases for which we don’t have any ther-

apies. As an example, Pertuzumab, a drug developed by Genentech is designed to

inhibit interactions of ERBB3 with other proteins by binding to the same interface,

thereby preventing cell division and tumor growth [84].
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1.6 Organization of the thesis

The rest of the thesis is organized as follows: in chapter 2 we take a detailed look at

the structure-based PPI prediction methods, which will set the stage for the methods

developed in this thesis. In chapter 3, I will introduce a novel algorithm for structure-

based PPI prediction that predicts interfaces and PPIs better than previous methods.

In chapter 4, we will look at another PPI prediction method that utilizes evolutionary

insights to overcome some of the limitations of the previous approaches.
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Chapter 2

Struct2Net: structure-based approach

to PPI prediction

2.1 Background

The paucity of interactome coverage (Table 2.1) and errors associated with HTP

techniques has motivated significant research interest in methods for supplement-

ing experimentally determined PPI data with interactions inferred or predicted from

other sources. A wide variety of methods have been proposed including the use of

“interologs”, functional genomic data such as gene expression, cellular localization and

GO annotation (see section 1.4, Figure 1-7).

Organism Number of interactions % of proteins with at least 1 interaction
Mouse 7794 15
Human 65846 57
Fly 24375 46
Yeast 69728 99
Worm 4692 15

Table 2.1: Number of interactions in Biogrid [151] for common eukaryotic organisms.

The use of structure-based approaches to predict interaction has been previously
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proposed. Aloy and Russell suggested the use of structure-based approaches to pre-

dicting PPIs [3]. They have described InterPreTS, a web-server to predict PPIs for

a given protein, using a homology modeling approach [4]. Lu, Lu and Skolnick con-

structed statistical potential functions to evaluate potential PPIs [102] and later de-

scribed MultiProspector, a structure-based prediction algorithm [103]. More recently,

Fukuhara and Kawabata have described HOMCOS [57] a web-server that performs a

similar task, again by homology modeling. Tuncbag et al. have described a method

that utilizes evolutionary constraints at the interfaces along with homology model-

ing to predict PPIs [159]. MODBase is a database of homology models for protein

complexes that have high sequence similarity to known structures [119]. ADAN is

a specialized database for prediction of PPIs mediated by linear motifs and utilizes

position-specific matrices to assess putative interactions [49]. Other sequence-based

methods utilize genetic information and multiple sequence alignments to predict spe-

cific protein-protein interactions [163, 164, 25, 138]. There have been methods to

predict PPIs based on co-occurrence of sequence domains in the candidate proteins

[169]. Other researchers have aimed to understand these domains from a structural

perspective. Prieto and Las Rivas [121] have reviewed publicly available databases

that facilitate analysis of domain-based PPIs: 3did [154], SNAPPI-DB [75], iPfam

[52], PIBASE [37] and PSIBase [61]. While Struct2Net approach has some paral-

lels with these approaches, the goal is significantly different. The domain-interaction

databases are essentially repositories of known structural data, analyzed specifically

from a PPI perspective. Prediction— which is the core goal— is usually beyond the

scope of these approaches.

In this chapter, I describe Struct2Net (Structure-to-Network), a structure-based

method for predicting protein-protein interactions. Struct2Net predicts interactions

by threading each pair of protein sequences onto potential structures in the Protein

Data Bank (PDB). Struct2Net provides PPI predictions that are independent of all
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the non-structure-based approaches and may thus be combined with any of them.

Another key advantage of Struct2Net is that, apart from the PDB data, the predic-

tion algorithm only requires protein sequence data as input. It can thus be applied

to proteins for which no functional data is available provided there is a suitable PDB

structural template available. Struct2Net offers a significant advantage over other ho-

mology modeling approaches. Successful use of homology modeling requires relatively

high sequence similarity between the query and template protein-pairs. In contrast,

a threading-based approach widens the range of proteins for which predictions can

be made. The use of threading also offers an improved performance: Fukuhara and

Kawabata reported that HOMCOS achieves a recall 1 of 80% with a precision 2 of

about 10%; in comparison, Struct2Net achieves a recall of 80% with a precision of

30% .

2.2 Methods overview

The Struct2Net method proceeds in two stages: 1) identification of the putative

interface and 2) computing interaction probability from the predicted interface. The

basic framework of these two stages is common (with some variations) to all the

methods we describe in this thesis.

Predicting the interface

Given any two query proteins, the interface is predicted by threading the sequences

onto templates in a database (see Figure 1-7b). First, the set of complexes in the PDB

is clustered based on their SCOP domains and sequence identities [108]. Then only a

representative complex (chosen randomly) is retained from each cluster, to increase

computational efficiency. The query sequences are then thread onto each complex in

1recall = True Positives/(True Positives+False Negatives)
2precision = True Positives/(True Positives+False Positives)
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Figure 2-1: Struct2Net algorithm. The input to the algorithm are two protein sequences.
The first stage consists of identifying the best complex template for the two
proteins, and alignment of the proteins to the template using DBLRAP (Double
RAPTOR) [177, 143]. In stage 2, a set of scores quantifying the quality of
the alignment and predicted interface are extracted from the sequence-structure
alignment of stage 1 and input into a classifier that predicts the probability of
interaction.
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the template database using RAPTOR [177], and the best template is chosen based

on the alignment score. The alignments to the best template give us the predicted

interface for the two sequences. Using this alignment and the interaction pattern be-

tween the complex’s constituent subunits, we can also calculate the interfacial energy

between our input proteins. The interfacial potential parameters are taken from Lu,

Lu, and Skolnick’s paper[102].

In summary, for any given sequence pair (p and q), the threading-based inter-

face prediction method will generate two alignment scores (Ep, Eq), their associated

z-scores (zp,zq) , and an interfacial energy (Epq) evaluated using the statistical poten-

tial. z-scores measure the significance of the alignment score, with the background

distribution of alignment scores computed by randomizing the residues at the aligned

positions. This vector of scores is then used to represent the predicted interface

(Figure 2-1).

From predicted interface to interaction probability

Struct2Net uses a binary logistic regression to classify whether a set of interface scores

(from above) corresponds to an interaction or not. In binary logistic regression, the

goal is to predict a binary output variable Y , given a set of r predictor variables

X = X1, X2...Xr. For an instance i, suppose yi and xi = xi1, x2i, ...xri are the random

variables corresponding to Y and X respectively. Let θi = P (yi = 1|xi). In this

model, the dependence of θi on xi is expressed by the logit function:

logit(θi) = log(
θi

1− θi
) = α + βTxi = α + β1x1i + β2x2i + ...+ βrxri (2.1)

This can be rewritten as:
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P (yi = 1|xi)

P (yi = 0|xi)
= eα+β

Txi or P (yi = 1|xi) =
eα+β

Txi

1 + eα+βTxi
(2.2)

The parameters β are learned by maximizing the likelihood of a set of “training”

examples under the model. In the context of our problem, yi is the interaction

probability of two proteins p and q. The predictor variables, xi, come from the

first stage. For proteins p and q, the first stage provides their interfacial energy Epq,

their respective alignment scores Ep and Eq, as well as the associated z-scores, zp and

zq. In addition, the sequence lengths of the two proteins, and various functions and

combinations of the existing terms are introduced as predictor variables [143].

The most informative subset of predictor variables are identified using the Akaike

information criterion (AIC). The AIC score is defined as:

AIC = −2log − likelihood+ 2
k

N
(2.3)

where k=number of predictor variables, N=number of instances in the dataset, and

the log-likelihood of the data under the model is computed using Eq 2.2. The subset

of predictor variables with the lowest AIC was chosen as the final model. This model

is the optimal trade-off between complexity of the model (i.e. number of independent

parameters) and prediction accuracy (likelihood).

2.3 Evaluation

To evaluate the algorithm, we need gold-standard positive (interacting) and negative

(i.e. non-interacting) datasets. Unfortunately, there are no standard procedures to

construct such datasets. In order to construct our high-confidence datasets, we require
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that the positive examples either come from a small set of trustworthy protocols, or

from low-throughput experiments, or roughly correspond to co-clustered protein pairs

in the PPI network. For negative examples, we required that the two proteins either

be disconnected in the PPI network or be at least 3 hops away from each other. Using

these criteria, we had a training set of 62,519 pairs and a test set of 15635 pairs (with

a positive:negative ratio of 1:6 approximately, in both sets). We believe that these

datasets provide good evidence of validation [142].

The datasets (both positive and negative) are separated into two groups - one for

training and one for testing. The parameters for the logistic regression are learned

by maximizing the log-likelihood of the training group under the model. The opti-

mized model is then used to predict the probabilities of interaction on the test set.

To evaluate the classifier and model, a probability threshold is varied, and statistics

such as number of true positives predicted, number of true negatives predicted, etc

are calculated for each threshold. The results are displayed using a receiver operator

characteristic curve (ROC) (Figure 2-2). An ideal classifier will display a step func-

tion, with a sensitivity of 100% at zero to 100% specificity values. The area under

the curve (AUC) is usually used to compare different classification algorithms tested

on the same dataset; greater the AUC, better is the classifier.

2.4 Conclusion

Although high-throughput biochemical approaches for discovering PPIs have proven

very successful, the current experimental coverage of the interactome remains inade-

quate and would benefit from computational tools. The Struct2Net algorithm allows

the user to easily query for high-probability structure-based interactions as a poten-

tially high-quality, high-coverage data source for large-scale integrative approaches to

interactome construction. The predicted interactions also include a numeric score,
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Figure 2-2: The prediction algorithm can achieve 60% sensitivity while maintaining 75%
specificity as measured on the test set. Here, sensitivity = (true positives)/ (true
positives + false negatives) and specificity = (true negatives)/ (true negatives
+ false positives). We constructed a training set and test set of positive and
negative examples from yeast and fly, using criteria we have developed to identify
high-confidence positive and negative examples of PPIs [142]. After training the
logistic regression model on the training set, its performance was measured on
the test set.
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allowing users to further filter the data. Struct2Net’s predictions may be used by

themselves or as one of the inputs into a computational framework that combines

them with other sources (e.g., low-quality experimental data or predictions from func-

tional genomic data). For example, Jensen et al. [76], Qi et al. [125] and Srinivasan

et al. [150] have described some general approaches for combining various predictors

of PPI data. Struct2Net’s predicted interaction scores can easily be integrated into

such models.
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Chapter 3

iWRAP: an interface threading

approach for PPI prediction

3.1 Introduction

There has been considerable interest to harness the information provided by structure-

based computational approaches as a potentially high-quality, high-coverage data

source for large-scale integrative approaches to interactome construction [143, 3,

86, 5, 7]. Prieto, Las and Rivas [121] have reviewed publicly available interaction

databases of known structural data that facilitate analysis of PPIs [154, 75, 52]. In

the absence of a solved structure for a pair of protein query sequences, structure-

based approaches typically rely on aligning the query sequences to either sequence

or structure-based templates for solved structures in the Protein Data Bank (PDB)

[14]. Homology modeling and threading-based approaches are the commonly used

techniques for structure-based PPI prediction.

While homology modeling/threading approaches work well and have good overall

accuracy when sequences are somewhat similar to their putative templates, they

perform poorly in the “twilight zone” (< 40%) of sequence identities. In particular,
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they often give inaccurate alignments in the putative interaction regions for sequences

with low similarity and therefore are unable to predict interactions accurately in

such cases. This has been demonstrated previously for the special case of cytokines

[123]. Moreover, it has been observed that functional residues such as those at the

interface are more conserved than non-functional ones, both in sequence [26, 27,

55] and structure [124, 184]. Furthermore, it has been shown just recently that

partial homology models, based only on interface alignments, are good candidates for

templates used in docking studies [92]. Here we capitalize on these observations by

performing threading on only the protein-protein interface after a suitable complex

template is identified.

In this chapter, I introduce the program iWRAP (Interface Weighted RAPtor),

which predicts whether two proteins interact by combining a novel linear programming

approach for interface alignment with a boosting classifier [34] for interaction predic-

tion. iWRAP simultaneously optimizes contacts in query sequences to templates of

protein-protein interfaces, after constraining alignments to only those residues likely

to be involved in the interaction. This approach is in contrast to existing threading

approaches that align each sequence individually to an entire protein structure in the

complex. We recently demonstrated the utility of interface threading on two cytokine

receptor families by implementing LTHREADER [123], where we manually generated

templates specific to this family and aligned each query sequence separately to each

template. The driving hypothesis of iWRAP’s approach is that more accurate predic-

tion of protein-protein interfaces improves predictions of protein-protein interactions.

We show in this chapter for general PPIs that (i) more accurate interface alignments

lead to improved interface contact prediction, which in turn (ii) significantly improves

PPI prediction. Thus, by optimizing the interface alignments after identifying a suit-

able template, iWRAP exploits functional conservation at the interface to predict

PPIs.
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We demonstrate the efficacy of these techniques on two datasets, SCOPPI, a

database that classifies protein complexes in the PDB [173], and the yeast genome.

First, we use SCOPPI as our gold standard database to confirm hypothesis (i): we

show that interface threading, i.e. localized threading, leads to better interface con-

tact prediction over full-complex threaders. For difficult alignment problems and

a range of sequence identity values less than 40%, iWRAP outperforms standard

threading and sequence-based methods , while for easier problems the methods are

comparable (performance measured in terms of interface alignment accuracies and

contact accuracies). Our results on the full yeast genome scan address hypothesis

(ii): we demonstate that our method, which novelly uses boosting [34] 1 to classify

iWRAP’s interface threading scores for PPI prediction, outperforms methods based

on whole-sequence alignments. In particular, we perform a full genome scan of yeast

to predict interactions, and compare iWRAP’s performance on experimental data to

DBLRAP, which has been shown to have the best performance amongst available

structure-based PPI prediction methods [143, 142].

As an application, through mapping of yeast-homologs of human cancer related

genes and their putative interactions to the human genome, we identify interactions

enriched relative to a recent yeast genetic interaction set [32]. We find that these

interacting genes are involved in chromatin remodeling, ribonuclear complex assembly

and nucleosome organization [59]; processes known to be critically involved in cancer.

We focus on yeast cancer related genes and putative interactions since the function

and interactions of yeast genes are much better understood than human genes [97].

Moreover, the malignant behavior of human cells is often caused by dis-regulation

of cell cycle, growth and apoptosis processes that are conserved across eukaryotic

organisms at the level of genes and their interactions [104].

1Boosting is an ensemble technique for classification problems. Instead of learning a single classi-
fier, boosting involves learning many classifiers and combining the results of individual ones for the
final prediction.
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iWRAP’s predictions are made publicly available at its website so that they can

be used for further exploration or systems-level integrative approaches.

3.2 Results

3.2.1 Overview of the threading algorithm

We develop iWRAP, an algorithm for threading query sequence pairs to only the

interface of a suitable complex template (i.e the best template selected based on

statistical significance of the alignment scores). Figure 3-1 is a schematic of iWRAP,

displaying a flowchart of the various stages of the algorithm. In the first stage,

template construction, from alignments of multiple protein-protein interfaces [124],

we construct specific interface profiles (or consensus templates) based on amino acid

propensities, secondary structure and solvent accessibilities for discrete environmental

classes of the interface. The interface profiles are knowledge based propensities that

capture the different biophysical forces (hydrophobic, electrostatics, structure) at the

protein interfaces. Compatibility scores measured using these profiles indicate the

biophysical suitability of the predicted interface. The hydrophobic effect is captured

by the features of amino acids and solvent exposure. The electrostatics is captured by

amino acid propensities. Structural constraints are encoded in secondary structure

compatibilities.

In the second stage, alignment of a query sequence pair to a template, we utilize

a profile-scoring scheme that captures amino acid sequence propensities and pre-

dicted secondary structure for the query sequences. We first identify a suitable tem-

plate using a single domain threader- RAPTOR [177] (also see PPI Prediction: yeast

genome). RAPTOR is used for whole genome scans of pairs of proteins to identify

structures most compatible with each protein sequence. For each protein, we select

ten top-scoring single domain structures with a threading z-score of at least 3 (see
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Figure 3-1: A) Cartoon depicting how iWRAP’s interface threading uses multiple templates
to identify the putative interface region for the two query proteins. All the
templates belong to the same SCOPPI family. B) Overview of the iWRAP’s
interface threading approach for PPI prediction [68].
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Appendix A). We then rank the complex templates composed of these single domains

based on the sum of their single-domain threading z-scores. When only one sequence

of the query pair matches a domain in the complex, we do not discard it. This proce-

dure selects for each query pair at most 10 possible complex templates for threading

of the interface by iWRAP. For each of these selected complex templates, iWRAP

uses a local alignment of the query sequence profile to the interface template profile;

this directly reflects the quality of the interface alignment, without being influenced

by alignments elsewhere in the structure. We select the best interface template us-

ing a z-score that evaluates iWRAP’s interface score with respect to a distribution

obtained by randomizing the interface contacts.

For the third stage, scoring the putative interaction, we begin by integrating stage

2’s interface-specific alignment score into a general threading scoring scheme imple-

mented similar to RAPTOR [177]. This produces an initial contact map, which we

further refine through contact map optimization in the neighborhood of interacting

residues. For the fourth stage, interaction prediction, we extract features of the pre-

dicted interface (e.g. interface energy, z-score, size) to input into a boosting classifier,

which then computes a probability of interaction for the two query proteins. Note

that this stage is employed only for our yeast genome scans, and not for our bench-

marking tests on SCOPPI. See Materials and Methods for a more detailed description

of each of these stages and training and test sets.

Our algorithm builds upon Pulim et al.’s method, LTHREADER [123], where the

authors have shown that supervised construction of the interface templates, along

with a localized scoring scheme based on sequence-specific profiles significantly im-

proves alignment and prediction accuracies for the cytokine family. LTHREADER

independently aligned each sequence to a profile representing one sequence of the in-

terface template using a sliding-window approach. In contrast, iWRAP uses a linear

programming approach (LP) to align pairs of sequences to a two-dimensional (2D)
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profile of a protein-protein interface and utilizes pairwise quasi-chemical scores for

evaluation and optimization. Additionally, LTHREADER focused the alignments on

putative interaction cores determined by predicted secondary structure, while iWRAP

does not make such an assumption; it uses the LP to decide the optimal interface

region. iWRAP further optimizes an objective function based on the Hadamard prod-

uct of 2D contact maps, thereby simultaneously adjusting interface residues of both

interacting proteins. iWRAP rigorously deals with gaps in the alignment, whereas

LTHREADER aligns the entire putative interaction core to the interface profile ignor-

ing gaps altogether. Moreover, interface templates used by iWRAP are constructed

by a fully-automated procedure that uses our recent multiple interface alignment algo-

rithm CMAPi [124], while LTHREADER had to rely on time-consuming manually-

constructed multiple interface alignments. In particular, LTHREADER chose pa-

rameters in its alignment algorithm to reflect the structural and physical constraints

of the two cytokine families it was tested on. Extension of LTHREADER to other

families would require the estimation of those parameters in a principled way. A

detailed description of the nontrivial task of interface template construction from the

CMAPi alignments is provided in Materials and Methods: Template construction. Fi-

nally, the combination of iWRAP’s interface threading with a general single-domain

threader (RAPTOR), the latter of which is used to identify most likely complexes for

pairwise threading, allows PPI prediction on a genomic scale – a feature missing in

LTHREADER.

3.2.2 Interface validation

We evaluate iWRAP on two challenges that one encounters using structural informa-

tion to predict likely protein-protein interactions: sequence-interface alignment and

interface contact prediction. For sequence-interface alignments, we first compare the

performance of iWRAP with that of a full complex threader, DBLRAP [143], a profile-
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SCOPPI Family Seq. ID (%) LTHREADER (%) MUSCLE (%) DBLRAP (%) iWRAP (%)

f.24.1.1_f.25.1.1 10 1 4 14 22

b.47.1.2_g.8.1.1 18 34 24 0 32
b.47.1.2_g.3.15.1 7 2 3 0 8

a.56.1.1_d.133.1.1 5 12 3 30 27
c.81.1.1_d.58.1.5 5 0 7 29 32

a.74.1.1_d.144.1.7 11 16 10 19 26

c.1.12.1_c.49.1.1 12 17 29 24 13
c.55.1.1_d.109.1.1 21 2 19 13 19

a.80.1.1_c.37.1.20 15 3 3 9 27

d.133.1.1_d.87.2.1 11 0 0 15 24

a.137.2.1_b.70.1.1 10 1 4 28 31

d.171.1.1_h.1.8.1 28 28 13 28 19
e.18.1.1_e.19.1.1 6 0 7 21 45

c.2.1.4_c.23.12.1 15 1 20 25 21
b.47.1.2_g.3.2.1 35 12 18 6 21

d.122.1.2_d.14.1.3 12 1 5 15 10
b.6.1.2_f.24.1.1 20 4 27 32 37

Average 14 8 11 18 24

Table 3.1: Comparison of iWRAP with other sequence and structure based techniques on
cross validation tests in SCOPPI. The numbers indicate the alignment accuracies
at the interface, with the true alignments taken as the ones given by CMAPi [124]

based alignment program MUSCLE [45] and our previous algorithm LTHREADER,

in stringent cross-validation on SCOPPI. We then continue to compare the two su-

perior alignment algorithms, iWRAP and DBLRAP, using several additional metrics

that evaluate the absolute quality of the putative interface: Root Mean Square De-

viation (RMSD) of the interface alignments, contact accuracy and interfacial energy

(Definitions in Appendix A). See Materials and Methods for a detailed description of

the training and test set construction. We emphasize that in cross-validation tests,

we restrict ourselves to only difficult alignments (i.e. sequence identity < 40%) be-

cause easier alignments are straightforward to address using conventional threading

techniques or sequence alignment.
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Cross-validation within SCOPPI families.

iWRAP performs better than or competitive to other sequence and structure-based

techniques in terms of average alignment accuracies (Table 3.1). Average alignment

accuracies are calculated by averaging the alignment accuracies computed by thread-

ing the test sequence pair to each template in the training set. iWRAP improves av-

erage alignment accuracies for roughly 80% of the families (in cross-validation tests)

for which we can construct multiple interface alignments and sufficiently large train-

ing and test sets. For the remaining 20% of families, iWRAP gives equivalent or

slightly lower accuracies than DBLRAP. Schematic describing the cross-validation

tests on SCOPPI are shown in Figure 3-2. iWRAP performs much better than tech-

niques based on sequence alone. We compared iWRAP with profile-based alignments

computed using a state-of-the-art alignment program MUSCLE [45]. Profiles for the

sequences were computed by running PSI-BLAST for 5 iterations with an E-value

cutoff of 0.001 against the ‘nr’ protein database [6]. Profile-based alignments, rather

than pairwise alignments, were used as they have been shown to be more accurate

for remote homology detection [44]. iWRAP also performs much better than our

earlier algorithm LTHREADER. To evaluate the additional value of iWRAP scoring

function, we used our new interface profiles along with the threading approach em-

ployed by LTHREADER. Briefly, we first align the secondary structure tags of the

query and template to roughly identify the interaction cores. Then we use predicted

secondary structure and predicted solvent accessibilities in a scoring function similar

to LTHREADER, confining the search space to within 5 residues of the secondary

structure identified as the putative interaction core. In the three cases where iWRAP

performs worse than any of the three previous methods, the overall sequence similarity

is rather high giving these methods a slight advantage. Following on this observation,

for whole genome scans, we combine DBLRAP with iWRAP.

Interfaces predicted by iWRAP are closer to true interfaces than those predicted
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Test complex

Test sequences

Template

Actual interface

Predicted interface

Figure 3-2: Schematic describing the cross-validation testing of iWRAP on the interface
database SCOPPI. Sequences of a test complex belonging to the same family as
the template, but less than 40% identical to it, are threaded onto the template
using an alignment program. The predicted interface (from the threading align-
ment) is then compared with the actual interface (from the known structure) to
compute accuracy. Dashed lines indicate the aligned interface computed using
the alignment program, solid black lines indicate the actual interface mapped
from the true structure.
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by DBLRAP. Below we focus on comparing iWRAP and DBLRAP, since their con-

tact accuracies are much better than that of MUSCLE and LTHREADER. As an

example, Figure 3-3 illustrates the case of the interface formed in the PDB struc-

ture 1upc (Fig 3-3A) between chains A(12-195) and B(375-573). The template used

for threading these two sequences is shown in Fig 3-3B, with the interface residues

highlighted in green. DBLRAP completely misses the correct interface region as a

result of poor alignment of chain B (Fig 3-3C), giving a contact accuracy of 0%. In

contrast, iWRAP produces an initial interface closer to the true one, with a contact

accuracy of 27% (Fig 3-3D). On further refinement of the contact map (see Materials

and Methods: Contact map optimization), iWRAP’s predicted interface (Fig 3-3E)

is much closer to the true interface (Fig 3-3A), with 46% contact accuracy. The

predicted structure of the true interface is shown in Fig 3-3F. It was constructed

by mapping true interface residues (magenta, Fig 3-3A) to the template (Fig 3-3B)

using alignments computed by iWRAP. iWRAP aligns the true interface residues to

the interface of the template and is thus able to correctly identify the interacting

residues. To emphasize the fact that iWRAP is an interface threading approach,

rather than a full-complex approach, the rest of the structure is colored in light-gray.

Additionally, the higher statistical significance of iWRAP’s predicted interface en-

ergy (z-score=2.7), calculated by randomizing the interfacial contacts, as compared

to DBLRAP’s (z-score=-0.1), is further indicative of the improved interface predic-

tion. The higher contact accuracies and associated z-scores enable iWRAP to improve

PPI prediction over DBLRAP.

More generally, iWRAP outperforms other sequence-based and threading methods

at correctly predicting interfacial contacts across all template-query pairs in the test

set, except for a few very small interfaces (see Fig 3-4A). We find that iWRAP

improves over DBLRAP in predicting interfacial contacts when the number of true

contacts is greater than 25-30 (see Fig 3-4A, right of the solid vertical line). Even
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A. True interface B. Template

C. DBLRAP prediction D. iWRAP initial

E. iWRAP final F. Predicted interface
    structure

Figure 3-3: Example of improved contact predictions by iWRAP in within-family cross-
validation. PDB 1upc chains A(12-195) and B(375-573) are threaded to the
template 1qpbAB. A) The true interface computed from the PDB structure
of 1upc has roughly 50 contacts. The interface residues are shown as purple
spheres, chain B is shown in red and chain A in blue. B) The template (1qp-
bAB) used for threading the query sequences; the interface residues are shown
in green. C) The interface residues (yellow spheres) predicted by DBLRAP.
DBLRAP fails to align the interface region of one interacting partner due to
low sequence homology between the query and template (contact accuracy =
0%). D) Initial interface (yellow spheres) predicted by iWRAP after threading
(contact accuracy = 27%). iWRAP uses interface profiles constructed from a
multiple alignment of the interfaces 1mczHG, 1jscAB, 1ozhDC and 1qpbAB; the
profiles are then mapped onto the template 1qpbAB. E) Final interface (yellow
spheres) predicted by iWRAP after contact map optimization. This step refines
the contact map, resulting in contacts closer to the true interface. The final
contact map is closer to the true contact map (contact accuracy = 46%). This
is obtained by overlaying iWRAP predictions (yellow) on the actual structure
of the interface (from A). F) Predicted interface structure obtained by mapping
true interface residues from A onto the template structure in B using iWRAP
alignments. 46
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Figure 3-4: Interface alignment and contact validation. Panels A, B, C and D are cross-
validation results on within SCOPPI family threading. ∆(contact accuracy
|δ|=2) is the difference in contact accuracies (|δ|=2) between iWRAP and
DBLRAP. A) Contact accuracy improvement of iWRAP relative to DBLRAP
as a function of number of true contacts at the interface. B) Contact accuracy
improvement of iWRAP relative to DBLRAP as a function of sequence iden-
tity at the interface. C) iWRAP consistently achieves lower average interface
energies as compared to DBLRAP. D) RMSD comparison between iWRAP and
DBLRAP- better contact prediction by iWRAP does not affect RMSD of the
predicted interface. E) Cross-validation results for interfaces sharing only one
SCOP family (see Cross-validation across SCOPPI families). See Appendix A
for calculation of contact accuracies and interface energy.
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when DBLRAP fails to account for 10% of the contacts, iWRAP can predict 20-30%

of the contacts.

We investigated the variation of contact accuracy with sequence similarity at the

interface for the alignments in the cross-validation set. For sequence identities be-

tween 0.2 and 0.4, iWRAP significantly improves contact prediction (Fig 3-4B, right

of the solid vertical line). However, when the sequence identity between the tem-

plate and query becomes less than 0.15, there is no consistent improvement over

DBLRAP (Fig 3-4B, left of the solid vertical line). We have also observed that other

features of the interface, namely information content and iracc (see Materials and

Methods:Training and test sets), do not significantly influence the contact predic-

tions.

We sought to further investigate iWRAP’s superior performance on medium to

large contact maps (>25 contacts). We hypothesize this improvement is due to the

localized character of our interface profiles. We evaluated the contact density for both

methods on contact maps with greater than 25 contacts, where we presume iWRAP’s

profiles are aiding in its superior performance (Fig 3-4A). Following the contact-map

mining techniques of Hu et al. [69], we characterized each contact by the pattern

of contacts in a 5x5 residue neighborhood around it, where the average density is

the number of contacts divided by 25. We observe that iWRAP contact predictions

have a higher density (0.26) on average than DBLRAP predictions (0.22), on both

the training and test sets. Furthermore, when the interface is small, there are many

feasible alignments for the interface region; this makes it difficult for iWRAP to get

accurate alignments without using restraints from the whole complex. Based on this

analysis, we conclude that size and density are factors in the improved performance

of iWRAP, and thus may be responsible for the decreased performance in the case of

fewer than 20-25 contacts.

iWRAP consistently gives lower interface energies (normalized by the number of
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predicted contacts) as compared to DBLRAP (Fig 3-4C). To predict protein inter-

actions iWRAP and DBLRAP use the residue-level statistical potential developed

by Lu et al. [102] to score putative interactions. The interaction score (energy) is

obtained by summing over all the contacts in the putative interface.

We also evaluated alignments using the conventional metric of interface RMSD

and confirmed that iWRAP alignments have similar or lower RMSD than DBLRAP’s

(Fig 3-4D). Thus iWRAP improvements in alignment and contact accuracy do not af-

fect the RMSD of the predicted interface. Note that while optimizing the parameters,

RMSD was not optimized for the threading alignments.

Cross-validation across SCOPPI families.

In addition to cross-validation tests within the same SCOPPI family we have tested

the ability of iWRAP to accurately predict interfaces when threaded complexes are

from SCOPPI family pairs sharing only one SCOP family (e.g. b.47.1.2_g.3.15.1 and

b.47.1.2_g.68.1.1). For these across-family threading tests, we restricted ourselves

to alignments having a high iracc score (> 0.75, see Materials and Methods:Training

and test sets), thereby ensuring similar binding patterns. Successful threading of

across-family pairs allows us to address PPI predictions when a template complex for

the same SCOPPI family does not exist. However, in such cases, it is possible that

the interaction can be predicted using a similar interface for another PPI. It is known

that despite lack of overall structural similarity some proteins interact with different

protein partner using a very similar interface; for example, interaction mimicry has

been observed in host-pathogen interactions [152].

Most threading methods rely on a template database, which might not be com-

pletely representative and might not have an appropriate template for every query

sequence. While traditional cross-validation strategies do not perform across-family

tests, we do so in order to try to address the problem of the limited number of
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templates available for genome-wide PPI predictions.

For across-family predictions iWRAP predicts the interacting residues more ac-

curately than DBLRAP for 75% of SCOPPI family pairs in the cross-validation test.

Despite the high iracc score (>0.75) for such alignments, the binding patterns might

be relatively different, leading to a poorer overall prediction by DBLRAP. However,

for cases when DBLRAP fails to predict even 10% of contacts, iWRAP can account

for nearly 20-30% of the true contacts (see Fig 3-4E). This suggests that using iWRAP

for PPI prediction with templates of complexes sharing one SCOP family can increase

the coverage of predictions.

3.2.3 PPI Prediction: yeast genome

We have applied iWRAP for genome-scale analysis to predict the yeast interaction

network. In cross-validation tests above, we used templates in the training set to

thread query sequences in the test set. For the yeast genome scan we use a sin-

gle sequence threader, RAPTOR, to identify suitable templates for each sequence in

the query pair using z-score > 3.0. If we do not have an interface template for a

SCOPPI family composed of the SCOP families corresponding to any combination of

these templates, we use DBLRAP to thread the two sequences onto a conventional

full-complex template (see Appendix A for details). Once the putative interface is

determined, we use interface-specific scores to predict the interaction between the pro-

teins (stage 4). See Materials and Methods for a detailed description of the classifier

employed to predict an interaction.

In order to evaluate our predictions, we compute a receiver operating charac-

teric (ROC) curve by varying the probability cutoff for predicting an interaction.

When comparing ROC curves against other homology/structure-based PPI predic-

tors, we find that iWRAP consistently outperforms HOMCOS, Multiprospector and

DBLRAP. Multiprospector reports a sensitivity of 20% at a specificity of 80%, whereas
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Figure 3-5: Results on the yeast genome. Sensitivity vs specificity for iWRAP, Struct2Net
and iWRAP+DBLRAP (combined method). In the combined method,
DBLRAP threading results are boosted and combined with iWRAP predic-
tions. AUCs for the three methods are: 0.734 (iWRAP), 0.680 (Struct2Net)
and 0.762 (combined). All the differences are statistically significant (P < 10−10,
t-test).Here sensitivity = (true positives)/ (true positives + false negatives) and
specificity= (true negatives)/(true negatives + false positives).
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iWRAP achieves a sensitivity of 56% at 80% specificity (see Fig 3-5). HOMCOS re-

ports a recall of 80% with a precision of 10%. In contrast, iWRAP achieves a precision

of 27% at the 80% recall level (see Fig A-2). Struct2Net [143, 142] uses the DBLRAP

threading program for prediction of interactions from structural data. When com-

paring against Struct2Net (only yeast predictions), we find that iWRAP dominates

Struct2Net at all accuracy levels (see Fig 3-5).

Interface threading requires multiple structural data for an interaction, which is

not always available. By using interface threading in conjunction with DBLRAP,

our method, i.e. iWRAP+DBLRAP(boost), achieves a coverage of 13% for the yeast

interactome. This is close to a 50% increase in coverage over previous methods [142],

without any compromise in sensitivity (Fig 3-5). Here, coverage is defined as the

percentage of high-confidence interactions in Biogrid [151] for which a method can

make a prediction. iWRAP makes predictions for 9752 high-confidence interactions

in Biogrid (involving around 3400 proteins), whereas DBLRAP makes predictions

for 5832 interactions (involving around 2700 proteins). 3920 are unique to iWRAP’s

interface threading predictions; this results in close to a 50% increase in coverage

compared to DBLRAP. In addition, iWRAP predicts about 100,000 novel interactions

in the yeast genome; the cutoff (= 0.9) for identifying a positive interaction is chosen

based on the distribution of interaction probabilities. We note that around 60% of

our predictions come from across family threading– that’s not surprising given the

limited template database; it is more likely to have a good match to one sequence of

the query, than to both of them.

To further analyze iWRAP’s performance, we looked at the 640 proteins involved

in the high-confidence interactions from Biogrid uniquely predicted by iWRAP. One

finding from a GO term enrichment analysis using Amigo [28] revealed that this

set was enriched for proteins functioning as structural constituents of the ribosome

(GO: 0003735, P-value < 10e− 6). Additionally, iWRAP makes predictions for pro-
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teins within functional complexes involving nuclear proteins such as the ‘U5 snRNP

complex’ and ‘SAS complex’. Amongst the type of functional complexes that both

iWRAP and DBLRAP predict, we find that iWRAP’s predictions are significantly

enriched for the following complexes (> 6 fold over DBLRAP): ‘Rtt109p/Vps75p com-

plex’ (12 fold over DBLRAP), ‘signal peptidase complex’ (11 fold) and ‘GPI-anchor

transamidase complex’ (9 fold). The full list of such complexes and complexes unique

to iWRAP predictions is given in Appendix A:Genomic Predictions. The annotation

of these complexes, including their memberships, were taken from a manually-curated

dataset compiled by Pu et al. [122]. Finally, we investigated the templates selected

for the unique predictions made by iWRAP. Table 3.2 gives a summary of the most

frequent templates used for predicting these interactions. While DBLRAP selects one

representative complex for each SCOPPI family, multiple templates can be selected

by iWRAP from within a family. This contributes to iWRAP’s improved prediction

accuracy as features for only the most significant interface are considered for PPI

prediction. Furthermore, as noted earlier in cross-validation tests, size of the inter-

face template is correlated with iWRAP’s accuracy: larger interfaces lead to more

confident predictions. From Table 3.2, the average probability computed by iWRAP

for interface templates of size less than 20 contacts (mean=0.20, std.dev=0.13) is

half of the average probability computed for templates greater than 20 (mean=0.40,

std.dev=0.20).

3.2.4 iWRAP predicts novel cancer-related interactions

We demonstrate that iWRAP can be used to identify important targets for experimen-

tal investigation through an application to yeast homologs of human cancer-related

genes. We integrate enrichment and functional analysis to enumerate bona fide candi-

dates for further investigation (Fig 3-6). Recently, a large scale double-mutant study

has revealed a genetic interaction map for yeast [32]. However, the set of interesting
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SCOPPI Family Template Size of Interface Number of interactions Average

in test set Probability

f.17.2.1_f.24.1.1 1m56H30-1m56G14 135 40 0.297
f.17.2.1_f.24.1.1 1qleB1-1qleA17 132 23 0.398
f.17.2.1_f.24.1.1 1v55B2-1v55A2 124 33 0.481
f.17.2.1_f.24.1.1 1fftG27-1fftF52 96 18 0.183
b.40.4.1_d.104.1.1 1asyA68-1asyB205 63 5 0.400
b.40.4.1_d.104.1.1 1b8aB1001-1b8aA104 51 16 0.624
b.40.4.1_d.104.1.1 1g51A1-1g51B1105 46 9 0.667
b.40.4.1_d.104.1.1 1n9wB1-1n9wA111 43 14 0.428
a.56.1.1_d.133.1.1 1jrpE85-1jrpF124 61 8 0.000
c.55.1.1_d.109.1.1 1yagA147-1yagG1 45 8 0.732
c.55.1.1_d.109.1.1 1h1vA147-1h1vG412 32 7 0.281
b.40.2.2_d.19.1.1 1d5mC2-1d5mA4 41 12 0.180
d.185.1.1_f.23.12.1 1bgyM234-1bgyQ1 22 24 0.333
d.185.1.1_f.23.12.1 1bccA233-1bccE1 22 16 0.499
a.39.1.5_c.37.1.9 1dfkZ3-1dfkA6 19 32 0.258
a.39.1.5_c.37.1.9 1dflX4-1dflB5 14 23 0.277
a.80.1.1_c.37.1.20 1sxjA548-1sxjB7 16 18 0.397
a.80.1.1_c.37.1.20 1iqpC233-1iqpD2 15 10 0.100
a.80.1.1_c.37.1.20 1jr3B243-1jr3E1 10 10 0.300
d.185.1.1_f.23.12.1 1kb9A240-1kb9E31 7 6 0.000

Table 3.2: The most frequent templates used by iWRAP for threading sequences involved
in high-confidence interactions in Biogrid unique to iWRAP. Column 2 gives the
total number of pairs threaded using the template, column 3 gives the number
of pairs in the test set and column 4 gives the average predicted probability
of interactions in the test set. A template id ‘1v55B2-1v55A2’ represents the
interface formed by SCOP domains in chain B and chain A in the PDB complex
‘1v55’.

genes for any detailed study of a disease (e.g. cancer) is still large. In contrast to

this approach, we use iWRAP predictions to identify the most important targets for

further study. It has been shown that structure-based scores are one of the most

significant predictors, as compared to co-localization, co-expression and GO term en-

richment, for general PPI prediction [11, 143]. We employ these criteria to prioritize
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and validate our targets (Fig 3-6A). For the set of yeast genes related to cancer iden-

tified in CYGD [62], we first filter the predicted interactions based on co-localization.

iWRAP identifies 727 interactions for the disease genes (out of ~54000 possible inter-

actions). After discarding predictions between proteins that are not co-localized; 301

putative interactions remain for further analysis. We then identify genes enriched for

GO processes, with the genetic interaction set as the background. Note that this is a

much more stringent criterion than using the whole genome as the background; the

latter yields many more putative interacting genes. We used AmiGO [28] to filter

genes based on a p-value cutoff of 0.01 (corrected for multiple hypothesis testing).

The enrichment analysis narrows down the list of candidate genes to 28. Note that we

are using both co-localization and enrichment as filters to select the most important

candidate genes; we treat both of them as equally important. For genes that were sig-

nificantly enriched (~4 fold), we used IsoBase [144] to identify their human funtional

orthologs. To exploit the more comprehensive yeast genome annotation, we carried

out the enrichment on the yeast predictions before mapping them onto the human

genome. We found that these enriched genes are differentially expressed in cancer-

vs-normal tissues [128]. Furthermore, using BLAST we were able to identify similar

proteins (E-value < 10) in a database of cancer-related proteins [71]. We hypothesize

that these novel interactions are directly involved in cancer-related pathways, and

should be investigated further (Fig 3-6B).

Amongst the genes predicted by iWRAP as interacting with known cancer promot-

ing genes, particularly interesting are genes coding for ribosomal proteins associated

with either the small (RPS) or large (RPL) subunit (Fig 3-6B). Mutations in several

of these proteins, including RPS17 and RPL5 identified by iWRAP, have been very

recently implicated in congenital abnormalities and predisposition to cancer, known

as Diamond Blackfan Anemia (DBA) [99]. The expression disregulation of RPS and

RPL genes have also been observed in pancreatic cancer and stromal displasia [33]
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Figure 3-6: iWRAP predicts novel, bona fide interactions. A) Enrichment analysis was car-
ried out to identify high-confidence interactions. Genes filtered by co-localization
and significantly enriched compared to the genetic interaction set were validated
using the Oncomine and HCPIN databases. Number of genes remaining after
each stage are indicated in parantheses. B) The analysis in A reveals a set of
high-confidence genes (green) predicted to be interacting with yeast homologs
of cancer related genes (purple). Human orthologs of genes for which there is
literature providing evidence of implication in cancer have been indicated in
parentheses. Genes interacting with only one “cancer” (purple) gene are in the
outermost circle, whereas those interacting with more are in the innermost circle.
Genes which are not significantly enriched are colored in grey, however, these
predicted interactions could also reveal novel biological insights. The figure was
created using Cytoscape [136]

and in colorectal cancer [94]. In addition, there are two (human DEAD box) heli-

cases DDX23 and DDX55 (Fig 3-6B) in the set of putative interactions. Even though

there is limited research on various human helicases they are believed to be involved in

embryogenesis and cell growth and have recently been shown to be involved in tumori-

genesis [115]. Furthermore, iWRAP predicts an interaction between XPA (RAD14)

and SMARCA5; the latter has been shown to be critical for regulating the genetic

program required for normal differentiation [156].
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3.3 Materials and Methods

3.3.1 Stage 1: Template construction

We utilize the SCOPPI classification of protein-protein interfaces to construct inter-

face profiles. SCOPPI classifies interfaces based on sequence and structural similarity

of the interface [173]. In addition, for each interacting SCOP family pair, SCOPPI

provides a sequence alignment of other interfaces in the same SCOP family pair. Here

we use this classification of interfaces to construct our own multiple interface align-

ments for each SCOP family pair using CMAPi [124]. CMAPi employs a contact-map

representation to efficiently align multiple interfaces and thereby improves alignments,

as compared with SCOPPI and other sequence/structure-based alignment programs,

especially in cases where the sequence identity between aligned structures is low [124].

A contact map is a binary matrix representation of the residue-residue interactions

between two proteins. If the distance between any two heavy atoms of the two

residues is less than 4.5Å, the corresponding entry in the contact map is one, and

zero otherwise.

We construct interface profiles from these interface alignments by computing a

unique set of consensus environment classes, one for each interface alignment position

(see Fig A-1). An environment class is a combination of a secondary structure (SS)

class, an amino acid class and average solvent accessibility (across the alignment at

that position). We use the classification as defined by Rice et al. (1997), which,

briefly, consists of three SS classes, two solvent accessibility classes and seven amino

acid classes. Rice et al. also provide a table, H3P2, which provides amino acid/SS

preferences for these environmental classes. The profiles computed from a multiple

interface alignment represent the environment information at the interface across the

multiple structures in the alignment. Since the consensus contact map constructed

by CMAPi includes all contacts across the aligned complexes, our interface profiles
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Figure 3-7: Schematic of interface threading and contact optimization. For the example
shown in Figure 2, the query proteins are individually aligned to the template
(left) using a local alignment to the interface (dashed lines). For scoring this
alignment, we use the interface profiles computed from the multiple-interface
alignments, predicted secondary structure for the query pair and the single-
domain threading score of RAPTOR. Minimizing this alignment score produces
an initial contact map, ‘iWRAP initial’, which is further refined using Hadamard
product optimization and quasi-chemical pairwise residue potentials to produce
‘iWRAP final’ (right).

are robust to small variations in inter-residue distances.

3.3.2 Stage 2: Aligning query sequences to templates

The goal in this stage is to align query sequence profiles to interface template profiles,

constructed in stage 1. We obtain query sequence profiles from PSIBLAST [6] and

query secondary structure (SS) predictions from PSIPred [77]. Once we identify a

suitable template, we score individual query-template alignments using Rice et al.’s

H3P2 table (see above), which, in the context of single structure alignment, quantifies

the preference of aligning a query sequence/SS profile to a template profile. However,
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since our query SS’s are predicted, we instead use H3P2 scores weighted by the

PSIPred SS probability distribution at a query sequence position.

H3P2score(t, s(t)) =
∑

ss=C,H,E

P (ss)H3P2(s(t), ss, t) (3.1)

Here t is the template position, s(t) is the query sequence position aligned to

template position t, ss is C(coil), H(helix) or E(beta strand), P (ss) is the probability

of a secondary structure class at position s(t) given by PSIPred and H3P2(s(t), ss, t)

is the H3P2 table score of aligning query s(t) having ss to the template position t.

While Eq. 3.1 represents the score for one aligned position, the total alignment score

is calculated by summing over all aligned positions. Note that we utilize only one

state ’C’ to model loops. We currently do not distinguish between coil and other

structural loops such as beta turns or tight turns.

3.3.3 Stage 3: Interface scoring

The goal in this stage is to integrate the interface profile scoring scheme from stage

2 into a general threading approach to obtain a score for a putative interaction. Our

solution employs a LP strategy motivated by that used by RAPTOR for single-domain

threading. We begin by constructing our objective function. For each sequence in the

query pair, in addition to the RAPTOR single-domain threading score, we include

the interface profile score (see stages 1,2 above) of aligning the query sequence, s,

with the interface template profile:

EiWRAP = ERAP − αECMAPi − ωgapGAPRAP (3.2)

ECMAPi =
∑
t

H3P2score(t, s(t)) (3.3)

ERAP = Em + Es + Eg + Ep + Ess (3.4)
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EiWRAP is the interface threading energy function (scoring function); ECMAPi is the

interface profile score; H3P2score is the alignment score from the H3P2 table (see

stage 2, Eq 3.1); and GAPRAP is the total gap (opening+extension) score used by

RAPTOR. ERAP is the threading score employed by RAPTOR. This includes envi-

ronment fitness score Es based on solvent accessibility, secondary structure compat-

ibility score Ess, sequence profile scores calculated from PSI-BLAST Em, an affine

gap penalty Eg and a pairwise within-domain interaction score Ep [177]. To score

an alignment to an interface template position represented by a gap state, we use

the mean negative score in the H3P2 table (i.e. mean of the unfavorable alignment

scores). To take into account possible gaps at the interface, we add a weighted neg-

ative penalty (ωgapGAPRAP ) to the score. Note that parameters α and ωgap are

optimized independently based on our training set, as described in Training and test

sets. To obtain the alignment, the EiWRAP score is minimized independently for each

of the two query sequences using the implementation of RAPTOR, which utilizes an

open-source optimization library (COIN) [101] (Fig 3-7, left).

Contact map optimization

From the independent interface threading above, we produce an initial query contact

map (Fig 3-7, right). We further refine this contact map by incorporating residue-

residue interaction specificity and optimizing similarity of the binding patterns in

query and template. We carry out optimization in the neighborhood of interacting

residues using a residue-residue interaction score [102]. A 10x10 sub-matrix in the

contact map around an interacting pair defines this local neighborhood. For each con-

tact (S1, S2) in the initial contact map, we maximize the Hadamard product between

two matrices: one, a sub-matrix around the predicted contact in the query contact

map (Qcmap) and two, a sub-matrix around the corresponding template contact in

the template contact map (Tcmap). If (T1, T2) is the corresponding template contact,
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then this optimization can be written as:

A = arg max
s1=S1+d1,s2=S2+d2

∑
d1,d2 ε[−5,5]

δ(Qcmap(s1, s2), Tcmap(T1 + d1, T2 + d2)) (3.5)

where ‘A’ represents the set of possible contacts that maximize the Hadamard prod-

uct, δ is the kronecker-delta function and d1, d2 are the sub-matrix indices. This

optimization maximizes (around each contact) the similarity of binding patterns in

the template and query contact maps. For residues aligned to gaps, we allow the

alignment to shift so that the nearest non-gapped position is used in the Hadamard

product optimization. Since each Hadamard optimization is performed independently,

one template contact could be mapped to multiple contacts in the query contact map.

To avoid one to many mappings, for each template contact, we rank the possible pre-

dicted contacts using the quasi-chemical residue-residue interaction scoring potential

of Lu et al. [102] (‘Epwqc’) and choose the top ranking unique one:

optimizedContact = arg min
c εA

Epwqc(c) (3.6)

The final contact map is the set of these optimizedContacts (Fig 3-7, right). Addi-

tionally, the significance of the predicted interaction score is measured by calculating

a z-score with respect to a distribution generated by randomizing the interfacial con-

tacts. The total score (energy) of the interface and the associated z-score are used in

predicting interactions in stage 4.

3.3.4 Stage 4: PPI prediction

The goal in this stage is to predict whether the two query proteins interact based on

the interface score computed in stage 3. Since only a few protein pairs interact in

vivo, the main challenge here is to discriminate true interactions from false ones. To
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achieve this goal, we extract a vector of scores ‘XInterface’ that quantifies the quality

of the predicted interface [143] and feed this vector to a boosting classifier, which

computes a probability ‘p’ of the interaction:

p = f(XInterface) (3.7)

XInterface = {tA, tB, sA, sB, cmap,E, e, zA, zB,

z_e, tZ,E_pi, cmap_pi, piAB}
(3.8)

We extract the following features, i.e. ‘XInterface’, from the putative interface:

template sequence lengths (tA, tB), query sequence lengths (sA, sB), predicted num-

ber of contacts (cmap), total interface energy computed from the pairwise potential

(E =
∑

c ε optimizedContactsEpwqc(c)), normalized interface energy (e), z-scores for the

threading alignments (zA, zB) and z-score for the interface energy (z_e). In addi-

tion, we use the features sum of threading z-scores (tZ), square root of the product

of sequence lengths (piAB), total interface energy normalized by piAB (E_pi) and

number of contacts normalized by piAB (cmap_pi).

We train a boosting classifier on known high-confidence interactions from Biogrid

to learn an accurate function ‘f ’. Our method is based on AdaBoost, which involves

improving the overall classification by appropriately weighting outputs of a series of

rules of thumb, or base classifiers; we use classification trees as the base classifiers [34]

(see Appendix A for details). Using this trained model a probability of interaction is

computed, which indicates iWRAP’s confidence in predicting an interaction between

the query proteins: 1 indicates maximum confidence and 0 indicates no confidence.

Note that this stage is used only for our genome scans, where we have no a priori

knowledge of interaction between the query proteins.
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3.3.5 Training and test sets

For each SCOPPI family (i.e. SCOP family pair), the set of complexes is divided

into a training set and a test set; a leave-one-out cross-validation (LOOC) procedure

is employed to optimize the parameters. A complex in the test set has an interface

sequence identity less than 40% with each of the complexes in the training set. The

complexes from the training set are used in constructing the multiple interface align-

ments with CMAPi, and subsequently the interface profiles. We use the training set

to optimize the two parameters in the scoring function, α and ωgap from Eq 3.2.

The parameters are varied alternatively to maximize the alignment accuracy of the

threading alignments, where CMAPi alignments are used as the gold-standard. At

each iteration, α is varied in intervals of 5, and ωgap is varied in intervals of 0.1. The

parameter value which gives the maximum alignment accuracy is chosen at each it-

eration. After an initial broad sweep for α, the parameters typically converge within

20 iterations.

In addition to LOOC testing within a SCOPPI family, we consider the performance

of iWRAP on complexes having similar binding patterns (as given by an iracc of

greater than 0.75) across families. Interacting residue accuracy (iracc) gives a measure

of similarity in binding patterns between two interfaces: an iracc of one indicates very

similar interfaces, and zero highly dissimilar interfaces [123]. For across-family cross-

validation, we restrict ourselves to SCOPPI family pairs sharing one SCOP family.

Notice that the parameter optimization has been carried out independently for each

SCOPPI family, and hence alignments across SCOPPI family pairs are independent

of the training process.

In order to train the classifier in stage 4 for our genomic scans, we constructed

the set of training examples as in Struct2Net [143, 142]. Briefly, the set of positive

examples was taken as the high-confidence interactions in Biogrid [151]. Any two

proteins separated by at least three edges in the interaction network constructed
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from Biogrid were considered as non-interacting, and included in the negative set.

For our predictions on yeast, the training set consisted of 3500 positive and 16000

negative examples. Our test set had 720 positive and 3000 negative examples.

3.4 Discussion

We introduce the program iWRAP and show that integrating interface profiles into

a localized scoring scheme aids in interfacial contact prediction. We introduce the

use of across-family templates to mitigate the limited number of templates, and also

capture convergently evolved interface motifs. We apply our approach to predict

interacting proteins encoded by the entire yeast genome. Furthermore, by integrating

our predictions in a combined functional and enrichment study of cancer related genes

in yeast, we show that iWRAP can uncover novel, biologically relevant interactions.

While we have optimized the two new parameters (α and ωgap) in our thread-

ing scoring function that measure the biophysical compatibility at the interface (see

Materials and Methods), it would be interesting to see if simultaneously optimizing

the other parameters, already optimized separately in the fold recognition score of

RAPTOR, improves accuracies even further. In particular, we expect the sequence

profile and secondary structure scores to be the most important for very low sequence

identities; as we have shown in Fig 3-4B, the interface profiles may not be sufficient to

pinpoint the exact interaction core in such cases. As noted in Cross-validation within

SCOPPI families, for sparse contacts and small interfaces in long sequences, the lo-

calized nature of iWRAP can miss the interaction core, thus identifying an incorrect

interacting surface. In such cases, a pre-processing step with DBLRAP to roughly

identify the interface region could be beneficial before using the localized threading

algorithm.

In this paper, we have focused on SCOPPI families having more than three com-
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plexes in a binding mode. In addition, we have not considered complexes formed

by domains in the same SCOP family, which rules out homodimers (as handled by

HOMCOS). Combining interface threading with DBLRAP effectively addresses lim-

itations of small number of SCOPPI-derived interface templates. Furthermore, for

families having only one solved complex, we plan to utilize interface profiles computed

from PSI-BLAST as input to our localized algorithm. We believe that an expanded

template database and a full optimization of the scoring function parameters will

improve iWRAP’s predictive abilities even further.

Our program iWRAP makes accurate PPI predictions that are independent of

all the non-structure-based approaches and may thus be combined with any of them.

iWRAP novelly uses physicochemical properties specific to protein interfaces to better

identify interacting regions between the query proteins. iWRAP is designed to handle

template-query pairs having low sequence similarity, making it complementary to

other PPI databases like MODBase [119]. A key advantage of iWRAP is that, apart

from the PDB data used for constructing templates, the prediction algorithm only

requires protein sequence data as input. It can thus be applied to proteins for which

no functional data is available.
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Chapter 4

Coev2Net: a computational

framework for boosting confidence in

HTP PPI datasets

4.1 Background

Despite considerable improvements in HTP techniques, they are still prone to spurious

errors and systematic biases, yielding a significant number of false-positives and false-

negatives [148, 16, 165, 168, 8, 70]. This limits our ability to assess the true quality

and coverage of the “interactome” [166, 182, 43].

Several attempts have been made to characterize the quality of the interactions

obtained from HTP experiments [182, 157, 141, 43, 135, 30, 8, 70]. Experimental

methods aim to limit false discovery by performing multiple iterations of the screen,

which are time-consuming and expensive [135]. Secondary data, such as co-expression,

co-localization, ontology correlation, topological features and orthology information

are often used to further improve confidence in predicted interactions [143, 74]. In

addition to non-trivial correlations between these features (i.e. co-expression need not
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imply interaction), this data is not complete for all proteins. Furthermore, as more

and more genomes are sequenced, only a fraction of proteins will have additional data

to complement any experimental HTP study. Techniques developed from integrating

interactions observed in common across multiple secondary experimental assays of an

initial network are laborious, expensive and time-consuming. Moreover, as suggested

by Venkatesan et al. and Cusick et al. [35], the low overlaps achieved across different

datasets highlight the differences in sampling and biases in experimental techniques

rather than pinpoint the true interactions. Moreover, in many experimental methods,

the confidence of observations is evaluated for that specific technique – they are seldom

generalizable. Thus cost-effective and high-confident strategies are clearly required

to complete the human interactome.

As seen in Chapter 1 and 2, a number of algorithms have been developed to predict

protein interactions by integrating complementary data such as sequence features

and structural features [13, 15, 25, 39, 49, 138, 163, 164, 60, 96]. Also recently,

computational approaches to PPI prediction using structural information have been

gaining much attention due to the rapid growth of the Protein Data Bank (PDB)

[5, 3, 7, 46, 56, 57, 68, 71, 86, 87, 92, 102, 103, 107, 143, 154, 153, 158, 159, 160, 161,

170, 172, 123].

In this chapter, I introduce a general framework to predict, assess and boost confi-

dence in individual interactions inferred from a HTP experiment. Our contribution is

three-fold – 1) we develop a novel computational algorithm to quantitatively predict

interactions, given just the protein sequences; 2) we show how the algorithm can be

used in a general framework to quantify confidence in observed interactions; and 3)

we demonstrate the utility of our structure-based framework in providing biologically

significant additional information about binding sites, which is not provided by any

other HTP method (either computational or experimental). As compared to iWRAP

and DBLRAP, Coev2Net improves accuracy and coverage further by making a pre-
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diction even with limited structural data. Coev2Net samples correlated mutations at

the interface of protein-protein interactions to enrich sequence and structure profiles

for accurate prediction.

We first validate our method on a high-confidence network in the recently investi-

gated human Mitogen Activated Protein Kinase (MAPK) interactome [10, 167]. We

experimentally validate predicted high-confidence interactions for the MAPK interac-

tome using a complementary assay and show that the concordance between prediction

and experimental validation is as good as the overlaps achieved in previous protocols

involving multiple secondary assays [22]. Finally, we show that the interfaces pre-

dicted by our algorithm are enriched for functionally important sites in the context

of signaling networks; and utilize this information to hypothesize a novel regulatory

mechanism involving cross talk between the insulin and stress-response pathways via

interactions between proteins MAPK6, YWHAZ and FOXO3 proteins.

4.2 Results

4.2.1 The Coev2Net framework

We developed Coev2Net (Fig 4-1), a framework for assessing confidence in protein in-

teractions. To quantify confidence in an interactome, we incorporate high-confidence

data sources, namely low throughput interactions and structural information. The

framework gives a confidence score for each interaction, along with a predicted model

of the binding interface for the proteins (Fig 4-1).

Inputs to the framework are a high-confidence network (usually much smaller than

the HTP screen) and the interactions identified from the HTP experiment for which

one wishes to quantify confidence. For every pair of interaction in the HTP screen,

Coev2Net provides a score to assess their likelihood of being co-evolved from interact-

ing homologous sequences (see Methods). To do this, Coev2Net first predicts a likely
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Figure 4-1: Framework for assessing confidence in a HTP PPI screen. Coev2Net, re-trained
on a high-quality PPI network, is able to assign structure-based confidence scores
for HTP PPI networks. Each node represents a protein and each edge the
putative interaction between the two proteins. The thickness of an edge describes
structure-based confidences of putative PPIs.
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interface model for the two proteins, by threading [177] the sequences onto the best-fit

template complex in our library. It then computes the likelihood of co-evolution of the

two proteins (i.e. of the predicted interface) with respect to a probabilistic graphical

model induced by the aligned interfaces of artificial orthologous sequences (Fig 4-2).

By generating artificial sequences, we enrich the interfacial sequence/structure profile

for those protein-pairs with sparse sequence profiles and thus improve protein inter-

face scoring accuracy. These PGM scores are then input into a classifier trained on a

small high-confidence network to compute a score between 0 and 1, representing the

confidence of our method in that interaction (Fig 4-1). High-scoring interactions can

then be investigated further using a secondary experimental assay or taken as true

positives for subsequent analyses. Additionally, since Coev2Net is a structure-based

algorithm, it also produces as output a putative interface for the interacting pair

(Fig 4-2). This information can be analyzed to design site-directed experiments to

further characterize the specificity of the interaction.

4.2.2 Benchmarking Coev2Net

SCOPPI: We first benchmark Coev2Net on SCOPPI [173], a protein complex database.

The database is divided into interacting family pairs for which multiple complexes

have been solved. Rigorous cross-validation tests on the database indicate that

Coev2Net achieves high accuracies, thereby validating our approach of modeling

interface co-evolution as a high-dimensional sampling problem (Fig B-2). For the

cross-validation tests, we considered only those family pairs in SCOPPI that have at

least three non-redundant (sequence id < 50%) complexes. We randomly selected one

as the test complex and used the other complexes within our Coev2Net protocol to

simulate interacting homologs and construct the probabilistic graphical model (Fig 4-

2). Furthermore, Coev2Net also performs well on SCOPPI family pairs not having

more than two non-redundant complexes, indicating Coev2Net’s ability to deal with
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Figure 4-2: Flowchart of Coev2Net. Left: MCMC sampling to generate synthetic homolo-
gous sequences for each complex template. Right: 1) For given query protein
pairs, the best template (from the structural library) is identified by user-defined
protein threading; 2) structural and sequence features are extracted from the
interfacial alignment and residue correlations scored w.r.t. the profile PGM; and
3) a classifier gives the probability of interaction for the query protein pair.
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limitations of both structural and sequence training data (Fig B-2).

4.2.3 MAPK interactome validation

To test the framework’s ability to predict interactions for which there is often no

structural data available and to assign confidence values to interactions, we re-trained

Coev2Net on a high-quality human MAPK PPI network [10] and tested it on another

high-quality MAPK network [167](Fig 4-3A,B,C). Oddly, these two MAPK networks

are almost disjoint with only 6 overlapping interactions out of 4904 total interactions.

We found that the experimentally validated coverage of our method ( 55% with a

probability cutoff of 0.6) is significantly higher than that reported by other predic-

tion methods based on conservation, genomic data, GO annotation and literature

extractions ( 14% to 28%) [135], although each method was evaluated on a different

network.

Moreover, our predicted confidence scores are highly correlated with the experi-

mental observation frequencies of Y2H screens on this network. To assess significance,

we divided our predictions into high confidence and low confidence based on the prob-

ability cutoff of 0.6. To categorize interactions as true positive (TP) or true negative

(TN) in the Y2H screens, we assumed the cutoffs employed in Schwartz et al. (for a

False Discovery Rate FDR < 5%, TP interactions should be observed at least twice

when tested with <5 independent assays, and at least three times when tested with

more assays) [135]. The predicted interactions correlate (P-value < 0.01) with those

deemed likely true positives from an experimental standpoint. Encouragingly, the

percentage of our framework’s predicted TP interactions that are confirmed positive

by the Vinayagam dataset is roughly 52% (294 TP, 571 predicted positive, a two-fold

increase compared to previous methods on Y2H retesting of computational predic-

tions [135]. Alternatively, training Coev2Net on the high confidence network in the

Vinayagam dataset and testing it on the Bandyopadhyay core network yields similar
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results. By predicting only a fraction of interactions with high confidence, Coev2Net

enables us to focus on only the most likely interactions, enabling a more accurate

understanding of the biology.

4.2.4 Experimental validation of predictions

The confidence scores given by our framework can be used to design additional ex-

periments to enhance the quality of the initial interactome. We tested 19 randomly

chosen high confidence interactions (predicted probability > 0.6) using a comple-

mentary assay (LUMIER) [12]. Of the 19 interactions we found that 14 interactions

exhibited luciferase intensity greater than 1.5 times the control (Fig 4-3D). Multi-

ple repeats of the assays allowed for a filtering of the interactions based on variance

observed in the repeats. Interaction pairs for which the repeats were too variable

to confidently confirm the outcome of the experiment (either positive or negative)

were discarded, leaving 11 pairs out of the initial 19 tested. Notably, 10 out of the

11 were confirmed as true positive and one was confirmed as a false positive by the

fold-change in luciferase intensity values. Overlaps achieved by our method compare

favorably with previous approaches in which an initial positive reference set (PRS)

was re-tested experimentally using a LUMIER assay (Table 4.1) [25].

Yeast strains implementation # validated (LUMIER) Y2H PPIs % overlap
Y strain 2m 1 reporter 1mM_3-AT 19 33 57
Y strain 2m 2 reporters 1mM_3-AT 13 22 59
Y strain CEN 1 reporter 1mM_3-AT 17 23 74
MaV CEN 2 reporters 20 mM_3-AT 9 14 64

Our prediction 14 19 74
Our prediction (z > 1.5) 10 11 91

Table 4.1: Comparison of overlaps achieved by Braun et. al. and our method when some of
the initial Y2H interaction pairs are re-tested using LUMIER assay.
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Figure 4-3: A) Overlap of the Vinayagam (blue) and Bandyopadhyay (red) datasets (left).
The study by Bandyopadhyay et al. reveals 2269 interactions with 641 “core”
interactions supported by multiple lines of evidence, whereas the Vinayagam
dataset has 2626 interactions connecting 1126 proteins. Differences in the two
experimental techniques are highlighted by the fact that only 170 nodes and
6 interactions overlap in the two sets. B) Coev2Net predicted high-confidence
network is shown on the right. Edge colors correspond to the dataset they
come from. MAPK6 has the highest degree, and its label is shown explicitly.
C) Comparisons of performance on MAPK network for Coev2Net and previous
Struct2Net (iWRAP+DBLRAP) [143, 142, 68] in terms of sensitivity and speci-
ficity. Coev2Net performs much better than Struct2Net on this dataset (core
network of Bandyopadhyay et al.), and its performance is robust with respect
to the randomness in MCMC sampling. The classifier (Fig 4-2) is trained and
tested via 5-fold cross-validation on the core network. The MCMC procedure
is repeated 5 times to assess robustness of the predictions. ’Baseline’ method
represents a logistic regression classifier with just the alignment features and no
PPI (either Coev2Net or Struct2Net) features. D) Experimental validation of
predicted high-confidence interactions using LUMIER assay. Typically a fold
increase of 1.5 is considered as a true positive.
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4.2.5 Abundance of missense SNPs at predicted interfaces

In addition to the confidence scores, Coev2Net also provides a putative interface for

the interaction. These interfaces can yield novel mechanistic insights into the protein-

protein interaction and provide hypotheses about disease-associated mutations that

occur at the interface. Missense SNPs occurring at the interface can potentially dis-

rupt the interaction between the proteins, leading to abnormal functioning of the

cell. We analyzed the predicted interfaces for existence of PolyPhen2 annotated mis-

sense mutations in dbSNP (build 131) [139]. PolyPhen2 classifies a SNP as “benign”,

“probably damaging”, “possibly damaging” or “unknown” based on various features

including conservation score, monomeric structure score and physicochemical proper-

ties [127, 2]. It does not however account for SNPs occurring in potential interacting

regions. Interestingly, SNPs annotated as damaging by PolyPhen2 are preferentially

observed at the interface as compared to non-interfaces (P = 0.0075, Fisher exact

test, Fig 4-4A). Furthermore, if we take into account the number of interface and

non-interface sites, we find that the predicted interfaces are enriched for damaging

SNPs as compared to the rest of the protein (P < 7e-8, Fisher exact test). The same

analysis with SNPs classified as benign by PolyPhen2 does not show up as highly

significant (P = 0.06). We further analyzed the distribution of the SNPs in terms of

their density at the interface and non-interface. Here again, we find that damaging

SNPs are preferentially located on the interface. We find that the average density of

damaging SNPs at the predicted interfaces is significantly higher than their density

at non-interface positions (Fig 4-4B; P < 1e-10, Mann-Whitney test); a bias also

observed by Wang et al. recently [170]. For benign SNPs, the average density at the

interface is lower than that at non-interfaces (Fig 4-4B; P < 1e-10, Mann-Whitney

test). These analyses show that there is an evolutionary pressure to admit only benign

SNPs at the interface, since any potentially damaging SNP will hinder the interaction.

To investigate the structural distribution of annotated mutations, we analyzed
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Figure 4-4: Predicted interfaces are enriched for SNPs in the Coev2Net predicted high-
confidence MAPK network. A) Relative distribution of PolyPhen annotated
mutations at the interface and non-interface. B) SNP (PolyPhen annotated)
prevalence at the interface and non-interface. C) Somatic mutations character-
ized as “missense” preferentially fall on the interface (bottom). The white circles
represent corresponding means. Error bars represent the 75%-25% data range.
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somatic mutations characterized in cancer to see if there is any preference for their

location on the protein. We analyzed annotated mutations in the coding region de-

posited in the Cosmic database for their predicted location [53]. We only considered

mutations that are annotated as either synonymous, missense or nonsense. Inter-

estingly, for these mutations we find that missense mutations are more prevalent on

average at the PPI interface than synonymous mutations (P < 10e-20, Mann-Whitney

test) (Fig 4-4C). This suggests that these mutations might be responsible for disrup-

tion of protein-protein interactions, and thus aberrant molecular signaling associated

with cancer.

Finally, we looked at the predicted locations for some of the un-annotated mu-

tations in kinases (from the MoKCa database [129]. As an example, we considered

the BRAF protein as it contained the highest number of annotated mutations in

the database. Coev2Net predicts an interaction between BRAF and PAK2, using

the template structure 1G3N (chains E and F). Fig 4-5A shows the predicted in-

terface for this interaction, with the annotated (magenta) and un-annotated (dark

blue) mutations indicated. The presence of these mutations at the interface of the

interacting proteins gives us an added insight into the investigation of such variations.

Further study using this information can provide mechanistic details about how such

mutations disrupt normal cellular signaling.

4.2.6 Novel potential cross-talk regulatory mechanism

Phosphorylation sites have been observed to be enriched at interfaces in solved struc-

tures [110]. This observation has mechanistic implications as the PPI can be used

as an additional regulatory mechanism for phosphorylation, or the interaction could

be a precursor to phosphorylation. An example for such a mechanism is found in

the signaling protein YWHAZ [106]. Its phosphorylation is regulated by its dimer-

ization, which buries the phospho-sites on YWHAZ [175]. Our predictions revealed
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an interesting observation that suggests similar regulatory mechanisms in the MAPK

interactome. Coev2Net predicts an interaction between MAPK6 and YWHAZ. Both

are important signaling proteins, with much known about YWHAZ, including the

experimental observation that MAPK8 regulates phosphorylation at S184 [179]. Rel-

atively less is known about MAPK6’s function and its substrates [81]. However, it is

known that S189 is a phospho-site regulated by PAK1, PAK2 and PAK3 [40, 113, 38].

Interestingly, we found that the phosphorylation sites for both MAPK6 (S189) and

YWHAZ (S184) lie within the predicted interface for the interaction (Fig 4-5B). This

structural observation could imply that the interaction regulates downstream activi-

ties of MAPK6 and YWHAZ by controlling their phosphorylation. The most likely

mechanism is that MAPK6 phosphorylates YWHAZ, thereby preventing its dimer-

ization and regulating downstream activities of YWHAZ. Additionally, Coev2Net

also predicts an interaction between MAPK6 and FOXO3. From a signaling context,

these observations suggest a possible mechanism of cross talk between the MAPK

and insulin pathways.

4.3 Methods

The Coev2Net algorithm can be roughly divided into three distinct stages, 1) pre-

diction of the binding interface, 2) evaluation of the compatibility of the interface

with an interface co-evolution based model (i.e. probabilistic graphical model) and

3) evaluation of the confidence score for the interaction.

Prediction of the putative interface: The two query sequences are threaded against

a template library to search for the best template. We use a top-performing threader

program “RAPTOR” [177, 117] to look for the best template match. Given a set

of potential template matches, the best match is selected based on the z-score of

the alignment. Quality metrics for the alignment, such as the mutation scores and
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Figure 4-5: A) Predicted interface for the interaction between BRAF (light blue) and PAK2
(red surface). Cancer associated mutations that are annotated are shown in
magenta. In dark blue we indicate mutations that are predicted to be associated
with cancer but with no current annotations. Rest of the template structure is
shown in gray. Mutations were taken from MoKCa database [129]. B) Predicted
interface for the interaction between MAPK6 (yellow) and YWHAZ (cyan).
Phosphorylation sites on the proteins are indicated in red (S189 for MAPK6
and S184 for YWHAZ). The template used for the prediction was 1F5Q (chains
A and B).

secondary structure match scores are used as features in the classifier in the third

stage of Coev2Net.

Evaluating the interface: Our intuition behind checking the “interacting propen-

sity” of the predicted interfaces is that interacting proteins exhibit co-evolution at the

interface. This co-evolution has been detected even in residues within 10-12 Angstrom

at the interface [83, 172, 161, 126, 116, 114]. In Coev2Net, a probabilistic graphi-

cal model, pre-computed for each SCOPPI family (Pre-computed PGM), encodes the

most significant pattern of interface correlations exhibited by the interacting members

of the SCOPPI family. This model is computed by formulating interface co-evolution

as a high-dimensional sampling problem. The predicted interface is evaluated by

computing the log-likelihood of the interface residues with respect to this graphical

model. A higher log-likelihood implies that the protein sequences show co-evolution

at the interface, compatible with the model and are hence likely to interact.
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Computing confidence score: Once we have the compatibility scores for the pre-

dicted interface, we use these as features to predict our confidence in the interaction.

A logistic-regression classifier is trained on a high-confidence network, and is used to

predict the confidence score for the interaction. Both alignment features (from stage

1) and interface features (from stage 2) are used as features in the classifier.

4.3.1 Simulating interface co-evolution

Coev2Net simulates the natural process of interface co-evolution which is thought to

be responsible for maintaining physical and chemical compatibility at the interface

between two interacting proteins. We formulate this simulation process as a sampling

problem from a high-dimensional distribution.

Simulation algorithm

Stage 1: Seeding the co-evolution. To overcome sampling issues, we start from

regions in the sequence space that we know are in high-probability interaction regions.

Therefore, we seed the co-evolution with data from known complexes. For a given

SCOPPI family, the set of training complexes are aligned using the alignment program

CMAPi [124]. CMAPi employs a contact map representation to efficiently align

multiple interfaces and thereby improve alignments as compared to other sequence

and structure based techniques [124]. A contact map is a binary matrix representation

of the residue-residue interactions between two proteins. If the distance between any

two heavy atoms of the two residues is less than 4.5 Å(similar to the cutoffs used by

others [103, 172]), the corresponding entry in the contact map is 1, and 0 otherwise.

In the following steps, the aligned interface sequences are used for the initialization

(seed) of co-evolution.

Stage 2: Simulating co-evolution. Similar to the natural process of evolution,

our simulation has a mutation and a selection step for the evolved sequences.
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Mutation. For each pair of aligned seed sequences (full proteins forming the

complex), additional sequences are constructed via random mutations according to

a probability distribution based on paired positions within interfaces of complexes

(Fig B-1). For non-interface residues, the BLOSUM62 matrix is used. Starting

from the aligned seed sequences, mutations are carried out on the aligned sequences,

with each simulated sequence having the same gap structure as the original seed

alignment. We randomly select 5% of interface residues to mutate, and 5% of the

non-interface residues. These numbers were selected based on previous studies on

simulating sequences for homology search [90, 91].

Selection. The new sequences are first aligned to the HMMs representing the

corresponding families [147], and the alignment scores computed. They are then

accepted or rejected in a stochastic manner, based on their joint “fitness” score. If E1

and E2 are the (negative) alignment scores for the two evolved sequences w.r.t the

HMMs, then the following function α is computed and used to select new sequences:

α = (P newΠjp
old
j )/(P oldΠjp

new
j )

P ∝ exp(−E1 − E2)

pj = quniprot, j is not an interface position

= q, otherwise

(4.1)

where quniprot is the amino-acid distribution in Uniprot; q the amino-acid distri-

bution at the interface from a selected non-redundant set of complexes (Fig B-1);

and α the probability of the mutations at the interface being accepted. If α > 1,

the new sequences are accepted automatically. However, to incorporate diversity into

the evolved sequences, we also accept sequences with a certain probability even if

this ratio is low. A random number is drawn uniformly from [0,1], and the new
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sequences are accepted if this number is less than α. Intuitively, α represents how

likely it is the sequences (interface) belong to the co-evolving families, as compared

to a model that considers all positions independent. We show that simulated co-

evolution, viewed through the lens of a high-dimensional sampling problem, leads to

the same co-evolution and selection step (see proof in Appendix B). Along the course

of the simulation, we monitor the sum of the entropies of all the sequence positions,

and only retain sequences at an interval of 10 iterations after this value converges.

These sequences are non-redundant representatives of their respective families, with

the added feature that they are assumed to be interacting.

Stage 3: Correlation graph. A probabilistic graphical model (PGM) is then

constructed for a particular interface alignment, based on correlations at the interface

in sequences simulated by co-evolution. Nodes of the PGM are individual positions in

the two proteins and edges indicate correlations. Once the MCMC has converged, we

select 1000 interacting sequences per training complex as our interacting set. To model

the correlations between residues of the interacting proteins, we use the Sanghavi-

Tan-Willsky algorithm [132] to construct two trees– one for the simulated interacting

proteins and one for background correlations. Briefly, for any two positions i and j

in the simulated sequences, weights w+
ij and w

−
ij are computed as:

w+
ij =

∑
xi,xj

(p(xi, xj)− q(xi, xj))log
p(xi, xj)

p(xi)p(xj)
(4.2)

w−ij =
∑
xi,xj

(q(xi, xj)− p(xi, xj))log
q(xi, xj)

q(xi)q(xj)
(4.3)

where xr represents the amino acid at position r, p is the empirical distribution

computed from the simulated interacting sequences and q is an empirical distribution

computed by randomly pairing the simulated homologs (without regard to whether

they were constructed together). q thus represents the background correlations that

would be expected due to limited sampling and other factors not really important
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for interaction. Using these two sets of weights, two graphs (max-weight spanning

trees) are learned over the set of nodes – one representing correlations important

for interaction, the other background correlations. The maximum-weight spanning

tree problem within STW is solved using NetworkX’s implementation of Kruskal’s

algorithm [1]. Our choice of a tree graphical model is mainly due to the computational

issues; trees are easy for both learning and inference. These PGMs are used to evaluate

the interaction likelihood of the predicted interfaces.

4.4 Discussion

We have proposed a novel structure-based computational approach to identify protein-

protein interactions on a genome-wide scale. Using structural features, we have

demonstrated that our method can not only identify true-interactions better than pre-

vious approaches, but also provide key biological insights that are absent from HTP

experiments. While it has been shown previously for some families that residues

in and around the interface have correlated evolutionary histories, extracting such

robust correlation signals for predictive purposes on a genome scale has remained dif-

ficult due to limited known interacting homologs. In the context of homology search

for only monomers, enriching a multiple sequence alignment with artificial sequences

has proven to be effective in the case of limited homologs [90, 91, 36]. Utilizing a

statistical model for constructing evolutionarily correlated interacting homologs for

a given interacting pair of proteins, we are able to simulate homologous sequences

and predict PPIs from correlations at the interface of these homologs. The excellent

performance of our method helps corroborate the hypothesis of residue-level correla-

tions for a wide variety of protein-protein interactions and provides an efficient way

of using these correlations for predictive purposes.

In contrast to iWRAP and DBLRAP that model the interface using a simple
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contact-based scoring function, Coev2Net captures long-distance correlations that

extend beyond the interacting regions. Improved performance of Coev2Net indicates

the need to move beyond simple descriptions of the interface. Coev2Net also improves

coverage by making it possible to make a prediction even when limited structural data

is available. In particular, iWRAP requires multiple complexes to be available to build

interface profiles, which is not often available. By sampling correlated mutations at

the interface, Coev2Net enriches the sequence and structure profiles for such families,

thereby making it possible to use them as templates for prediction.

As more and more HTP data for mapping the interactome are gathered, there

would be a necessary demand for automatic protocols to evaluate the data quality

and estimate confidence in individual interactions. In particular, transient interac-

tions have been notoriously difficult to elucidate and validate. We have shown that

confidence in protein-protein interactions investigated through high throughput tech-

niques can be quantified and enhanced by our proposed complementary structure-

based PPI prediction algorithm. Our PPI predictions on recent HTP human MAPK

interactomes and further experimental validations have indicated the efficacy of our

predicted confidence scores. Moreover, since our framework requires only the se-

quences of the two candidate proteins, it can be used as a complementary feature to

other methods that rely on additional features [8, 70].

Limited studies have been undertaken to link structural features to genome-wide

interactomes to gain a mechanistic understanding of underlying biological processes.

Our threading-based approach enables us to extend coverage of structure-based stud-

ies further than that possible by homology models. As a result, the predicted struc-

tures are more reliable and provide a sound basis for mechanistic hypotheses. We

provide an anecdotal example by analyzing the distribution of annotated missense

SNPs in our predicted models. In agreement with a recent study [62], we show that

such mutations are enriched at the interfaces. Furthermore, detailed analysis of phos-
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phorylation sites enables us to propose a cross-talk mechanism involving an atypical

kinase, MAPK6. Predictions made by our model for the potential interactors of

MAPK6 provide the basis for further exploration of the role of this relatively less-

studied kinase. These examples show how HTP techniques, in conjunction with our

structure-based framework, can provide insights into transient interactions as well as

static interactions.
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Chapter 5

Conclusions

Protein-protein interactions are critical in a wide-range of biological processes rang-

ing from maintenance of cellular integrity, metabolism, transcription/translation, and

cell-cell communication. Thus elucidating PPIs is a fundamental step towards a

deeper understanding of biology, and has the ability to make a significant impact on

systems biology, genomics and therapeutics. The sheer number of interactions to test

and validate makes it a very hard and expensive task. Although high-throughput

PPI data is rapidly accumulating, building complete and confident datasets requires

multiple replicates of expensive screens. This thesis develops new methods that signif-

icantly advance our efforts at structure-based approaches to better predict PPIs and

boost confidence in emerging high-throughput data with the goal of comprehensive

interactome mapping at lower cost.

Structure-based methods previously simply extended single-structure prediction

methods for PPI prediction. In this thesis we further the state-of-art in PPI prediction

by developing algorithms that utilize the biophysical and evolutionary features specific

to protein interfaces to better predict interactions. This allows us to identify likely

experimental errors in HTP datasets and helps develop novel testable hypothesis by

providing a high-confidence network. In addition, improved accuracy of our interface
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predictions provides mechanistic insights into how and why the interactions are taking

place. This kind of information is not provided by any other HTP method, both

computational and experimental.

In this thesis, I have described three structure-based methods to predict protein-

protein interactions (Figure 5-1). The first method, DBLRAP, is a general, widely

applicable tool that first identifies a suitable template for the two proteins and predicts

their putative interface. It then formulates the PPI prediction problem as a classifi-

cation problem and employs logistic regression to calculate an interaction probability.

Our tests on yeast, fly and human genomes indicate that its predictive capabilities are

better than sequence-only and other structure-based methods [143, 142]. However,

it is known that the template identification and subsequently PPI prediction break

down in the “twilight zone” of sequence identities. Furthermore, Struct2Net can make

a prediction only if both the proteins thread well onto the template – this severely

restricts the coverage of the predictions.

In order to improve coverage and quality of PPI prediction, we developed iWRAP

[68]. Instead of threading two proteins onto a single template, iWRAP first builds

an interface profile by aligning multiple complex templates. It then aligns the two

sequences to this interface profile to predict the putative interface region. Cross-

validation studies on an interface database [173] indicate that iWRAP is more accu-

rate at identifying the true interface than other methods. iWRAP employs a boost-

ing classifier trained on a high quality PPI dataset to predict interaction probability.

While Struct2Net had limitations in coverage, we show that iWRAP can potentially

handle templates in which one protein doesn’t thread that well to the template. We

show that iWRAP does much better than Struct2Net on predicting interactions in

the yeast genome. In the process, we are able to improve accuracy and increase cover-

age by as much as 50% over Struct2Net [68]. We further demonstrate how iWRAP’s

predictions can be utilized to identify key genes involved in cancer. These genes are
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iWRAP Coev2NetDBLRAP

Figure 5-1: Methods introduced in this thesis. DBLRAP predicts the entire structure of
the putative complex from the query sequences. iWRAP uses interface profiles
that characterize biophysical properties of protein interfaces to predict just the
interface residues. Coev2Net scores the predicted interface using a probabilis-
tic graphical model that encodes long-distance correlations (i.e compatibilities)
at the interface. The interface in this case can be obtained from any thread-
ing/alignment method.

candidates for further studies to determine if they can be used as novel therapeutic

targets.

There exist a number of families for which multiple complexes haven’t been solved

yet. In such cases, it is not possible to use iWRAP. Furthermore, iWRAP does not

do well when the interface is small, for example in the case of transient interactions.

To overcome these limitations, we developed Coev2Net – an algorithm that utilizes

long-distance correlations to predict PPIs. The intuition behind Coev2Net is that in-

teracting families of proteins need to co-evolve to maintain the physicochemical com-

patibility at the interface. We formulate this as a high-dimensional sampling problem

and provide a provably exact algorithm to extract artificial interacting homologous

sequences. By enriching the sequence/structure profiles by simulations, we overcome

the limited complex problem of iWRAP. Furthermore, we show that such a procedure

allows one to predict PPIs as well as previous approaches on a gold-standard dataset.
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Additionally, I demonstrated how Coev2Net can be integrated into a computa-

tional framework to assess confidence in binary interactions detected by large-scale

high-throughput experiments. By analyzing two recent non-overlapping human mi-

togen activated protein kinase (MAPK) pathways, we show that Coev2Net can be

used to address the false-positive and false negative issues in HTP datasets. Cor-

relation between Coev2Net’s predicted probabilities and frequency of observation in

multiple repeats indicates that Coev2Net’s score can be used to prune the list of

interactions to test. We confirm this by experimentally validating some of the high-

scoring interactions predicted by Coev2Net. The concordance between our prediction

and experimental validation is as good as the overlaps achieved by previous protocols

that use multiple secondary assays.

Finally, I show how Coev2Net’s predicted interfaces can give us additional mech-

anistic insights that are not given by any other HTP technique. In agreement with a

previous study, we find that missense SNPs annotated as “damaging” are enriched at

the predicted interfaces [170]. Mutations found in tumor samples also follow a similar

trend – they are preferentially found at the interfaces. This provides clues as to the

role of those mutations in disrupting normal regulatory mechanisms. Furthermore,

analysis of the predicted interfaces also aids in constructing hypothesis that, when

verified, can lead to insights into novel regulatory processes.

Computational prediction of PPIs is one of the hardest and one of the most im-

portant problems in molecular biology. Diversity of protein interactions coupled with

lack of high-quality, trustworthy data make it a challenging problem from a compu-

tational standpoint. From a biophysical point of view, PPIs are challenging since the

main drivers of PPIs are very context dependent and different from protein folding

(e.g electrostatics has only a minor role in protein folding). The rules governing pro-

tein association are still a matter of debate and there is no clear consensus, partly due

to the diverse nature of the problem. The results presented in the thesis demonstrate

90



that there is significant added value in modeling protein interfaces separately from

rest of the protein – either by a profile (iWRAP) or a probabilistic graph (Coev2Net).

In addition, the predicted cancer-interactome should help identify targets for further

experiments, which might lead to development of new drugs. Knowledge of the lo-

cation of SNPs will help us better characterize their effect on the phenotype. This

will pave the way for personalized medicine, where individual genotypes are treated

differently based on their predicted phenotype.

To conclude, the PPI prediction problem is far from solved. Although the anal-

ysis of current networks has given us a wealth of information, getting a first draft

of a high-quality “static” interactome is just the beginning. A large fraction of the

interactions are context-dependent, i.e. occur only under a set of conditions/stimuli.

Identifying such interactions and the contexts under which they occur is key to under-

standing cellular behavior. While current computational methods cannot handle this

“dynamic” aspect of protein interactions, I believe ignoring this information could be

harmful in future network analysis. After nearly a decade of work focusing on static

interactomes, I believe it is high time we move on to elucidating the dynamic nature

of these interactomes.
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Appendix A

Appendix:iWRAP

A.1 Evaluation of alignments

Calculation of information content. Besides sequence identity, information con-

tent is another popular metric used to quantify the difficulty of an alignment problem.

The information content for an alignment is calculated by summing the information

content of each column of the alignment. The information content of each column is

calculated as given by the equation:

icj =
∑

i Pijlog(Pij/Qi)

In the above equation, icj is the information content of column j, Pij the frequency

of amino acid i in column j and Qi the background frequency of amino acid i. To get

the frequency of each amino acid in a column, we count the number of occurrences of

that amino acid and divide it by the length of the column. A pseudo-count of 0.01 is

added to all counts to avoid zero count. The background distribution Q is taken as the

interface propensities of the amino acids [50]. This distribution is quite different from

the frequencies of occurrence of individual amino acids in the entire SWISSPROT

[9] database. However, for the purposes of this study, information content calculated

based on this distribution captures the relative hardness of each alignment.
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Calculation of alignment accuracy. For an alignment of a sequence S to a tem-

plate T obtained using a threading approach, the number of correct alignments is

calculated by counting the number of common pairs (t,s) between the threading

alignment and the alignment generated by CMAPi for T and S. The accuracy is

then obtained by normalizing this count by the length of the CMAPi alignment.

Calculation of contact accuracy. Three contact accuracies are calculated for each

predicted contact map. The exact accuracy, i.e., the number of correctly predicted

contacts divided by the total number of true contacts. The two other accuracies allow

for a shift (|δ|) in the predicted contacts. For example, if (s1, s2) are positions of a

true contact, we consider a predicted contact to be correct if it is within (s1±δ, s2±δ).

We only report the contact accuracies with a shift of 2.

Calculation of interface RMSD. For an interface alignment of a sequence S to

a template T obtained using a threading approach, the RMSD is calculated by con-

sidering only the Cα coordinates of the aligned residues. The Biopython module

SuperImposer is used to calculate the minimum RMSD. Average RMSD per family

pair is calculated by averaging the RMSDs for all possible template-sequence align-

ments within a family pair.

Alignment Z score. For a given optimal alignment, a background distribution of

alignment scores is computed by fixing the alignment and randomizing the amino

acids in the query at the aligned positions. Z scores are calculated by calculating the

mean and standard deviation for 1000 such randomizations.

Interface Z score. For a given predicted interface, a background distribution of

contact energies is calculated by randomizing the amino acids at the contacting posi-

tions in the interface. Z scores are calculated by calculating the mean and standard

deviation for 1000 such randomizations.
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A. Interface alignment

Features/Position in alignment 3 4 5 6 7 8 9
Residues VXG PXF DXL YSD HTS SE DLE

Sec. Struct. C C C C H H H
Avg. Solv. Acc. 58 78 59 22 25 99 69

B. Template construction

Figure A-1: Example of an interface template. A) An example of a multiple interface align-
ment from CMAPi (only one core is shown). The upper case letters represent
the contacting residues in the interface, profiles constructed from residues high-
ligted in red are shown in B. B) Interface template encoding the consensus
residues, consensus secondary structure class and average solvent accessibility
at the highlighted (in red) alignment positions in A. “X” represents the gap
state in the alignment.

A.2 Methods

A.2.1 Templates

For each family pair in SCOPPI, the coordinates are obtained from the listed PDB

IDs. In order to exclude interfaces formed due to crystallization, we select interfaces

with more than five contacts. Furthermore, PDB models with resolutions lower than

2.5 Å are selected whenever possible. From an interface made up of two domains,

three templates are constructed. One is the complex template (dimer), which consists

of residue pairs (one on each domain) which have at least one of their heavy atoms

at a distance less than 4.5 Å. Three templates are constructed from an interface in

a PDB [14] file. A “dimer” template is the template describing the interface residues

(see main text). Two additional templates are constructed by extracting the Cα and

Cβ coordinates for individual domains from the PDB entry. In addition to spatial
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coordinates, these two templates have information about solvent accessibilities and

secondary structure, computed using the program DSSP [82]. These are in the form

similar to the templates used by RAPTOR [177].

A.2.2 Multiple Interface Alignment

Unlike profiles used in prediction of single chain protein structure, construction of

profiles for PPI prediction is challenging because interactions between the two pro-

tein sequences complicates their treatment as independent alignments. In addition,

profiles based on sequence alignments alone do not effectively capture the multiple

binding modes exhibited within the same family. As demonstrated in Pulim et al. for

the special case of cytokines [123], profiles based on a contact-map representation and

alignment of interfaces are better suited for PPI prediction. Templates and profiles

are constructed using these multiple interface alignments (see Template Construction

in Main Text) for every family pair having atleast 3 “inter-domain” interfaces. These

consist of domains on two different chains in the PDB file. Since we are interested in

templates for PPI prediction, we consider only inter-domain interfaces. This has the

added advantage of filtering out (dimer) interfaces formed due to crystallization. On

the other hand, true homodimers will be excluded from our analysis.

A.2.3 Genomic Predictions: S.cerevisiae

For genomic predictions, we used a two phase approach to identify templates for

threading. In the first phase, each of the two query proteins is threaded (using

RAPTOR) against the non-redundant database (<40% sequence identity) of proteins

in SCOP1.75 [108]. This database contains around 10000 templates. We then select

the top templates for each query protein by ranking them by z-scores and using a

z-score cutoff of 3.0. At the end of this phase, we end up with 10-15 templates

for each protein. In the second phase, we check to see if we have a dimer with
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the SCOP domains represented by any one of these templates. In case we don’t

find such a template, we look for a dimer template which has one SCOP family

common with one of the templates for the two query proteins. In case of multiple

such dimer templates, we use the template with the highest sequence identity to

the query proteins. This ensures that even for across-family threading, we utilize

structurally similar templates. Our database has around 2000 total dimer templates

(compared to around 2200 non-redundant dimers for Struct2Net).

Once we have the threading alignments for two yeast query proteins using iWRAP,

we extract the following features from the results: template lengths (ltmpa,ltmb),

sequence lengths (lseqa,lseqb), predicted number of contacts (cmap), total interface

energy (total.energy), normalized interface energy (energy), z-scores for the threading

alignments (alnza, alnzb) and z-score for the interface energy (z). In addition, we use

the features sum of threading z-scores (total.z), square root of the product of sequence

lengths (piab), total interface energy normalized by piab (energy_pi) and number of

contacts normalized by piab (cmap_piab). The negative examples are generated as

in Struct2Net [143].

The variable importance plot is shown in Fig A-2. As was observed by Singh

et al. [143], the size of the sequences (piab), total interfacial energy (total.energy),

normalized interfacial energy (energy_pi) are the most significant predictors in our

boosting classifier. In addition, we find that sum of alignment z-scores (total.z) and

the number of predicted contacts are important features which were not used in [143].

For the combined predictor, we used DBLRAP’s threading alignments to extract

features used in Struct2Net, and trained a classifier as above. The two predictions

were combined by using a common cutoff to compute the combined ROC curve.

iWRAP makes predictions for proteins within the following functional complexes:

’cohesin loading factor complex’, ’Bub2p/Bfa1p complex’, ’eIF1/eIF1A/40S complex’,

’Psr1p/Whi2p complex’, ’Rot2p/Gtb1p complex’, ’Reg1p/Glc7p complex’, ’HAT-B
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complex’, ’U5 snRNP complex’, ’ER V-ATPase assembly complex’, ’Bud14p/Glc7p

complex’, ’Polzeta-Rev1p complex’, ’nucleotide-excision repair factor 3 complex’,

’Gip1p/Glc7p complex’, ’protein farnesyltransferase complex’, ’SAS Complex’, ’Reg2p/Glc7p

complex’, ’Car1p/Arg3p complex’, ’CURI complex’, ’GAL3p/GAL80p complex’, ’Fig4p/Vac14p

complex’, ’Nem1p/Spo7p complex’, ’ribonuclease MRP complex’, ’Cox14p/Cox1p/Mss51p

complex’, ’Gcn1p/Gcn20p complex’, ’SF3b complex’ and ’Bni4p/Glc7p complex’.

Furthermore, iWRAP is able to make predictions for binary interactions within the

following functional complexes: ‘smc5p-Smc6p’, ‘Nem1p/Spo7p’, ‘Dig1p/Ste12p/Dig2p’,

‘GPI-anchor transamidase’, ‘i-AAA’, ‘Rot2p/Gtb1p’, ‘ribonuclease MRP’, ‘NatC’,

‘Npa2p-containing subcomplex’, ‘U5 snRNP’ and ‘signal peptidase’.

For functional complexes common to both iWRAP and DBLRAP, the follow-

ing complexes are significantly enriched: ‘Npa2p-containing subcomplex’ (8 fold),

‘alpha-1,6-mannosyltransferase complex(Anp1p/Mnn9p)’ (8 fold), ‘transcription fac-

tor TFIIF complex’ (7 fold), ‘Rad53p/Asf1p complex’ (7 fold), ‘MRX complex’ (7

fold), ‘Dig1p/Ste12p/Dig2p complex’ (6 fold), ‘DNA polymerase delta complex’ (6

fold), ‘Cdc28p/Clb1p complex’ (6 fold), ‘mitochondrial ribosomal large subunit’ (6

fold), ‘NuA4 histone acetyltransferase complex’ (6 fold) and ‘cytoplasmic ribosomal

large subunit’ (6 fold).
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Figure A-2: Precision vs recall for the S.cerevisiae predictions. Here, precision=true posi-
tives/(true positives + false positives) and recall = true positives/(true positives
+ false negatives).
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Appendix B

Appendix:Coev2Net

B.1 Proof of equivalence of simulated co-evolution

and high-dimensional sampling

Our procedure for simulated co-evolution is equivalent to a high-dimensional sampling

problem. We can model evolution as nature drawing samples jointly from a compli-

cated graphical model, which has the two HMMs, one for each family, and edges at

the interface to couple the two HMMs together. In general, calculating the partition

function and profiles (or marginals) is computationally intractable [149]; therefore we

use a Markov Chain Monte Carlo (MCMC) technique to draw sample sequences from

this distribution [100]. If E1 and E2 are the (negative) alignment scores for the two

evolved sequences w.r.t the HMMs, then we assume the form of this distribution to

be:

P eq ∝ exp(−E1 − E2 − Eint)

Eint = −
∑

interface

log(Q(a, b)/q(a)q(b))
(B.1)
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where the interface “energy” term Eint is obtained by summing over all con-

tacts (a, b). ′Q′(′q′) is the pairwise (singleton) distribution shown in Fig B-1. Let

X1
i , X

2
j , i = 1..n, j = 1..m be the amino acids at the interface (< 10 ) of the two in-

teracting proteins (complex) that are in the contact map constructed by CMAPi. At

each iteration of the MCMC, the goal is to construct X1,new
i , X2,new

j from X1,old
i , X2,old

j

by mutating a fraction of the residues. For each contact (i, j) at the interface, we

first randomly select a protein from the pair and fix the corresponding amino acid in

the contact. Let that protein be 1, say. The contacting amino acid in protein 2 (at

position j) is then chosen from the following probability distribution (see Fig B-1):

X2,new
j ∼ Q(.|X1,new

i )

X1,new
i = X1,old

i

(B.2)

where the conditional probabilities are computed from the distributions in Fig B-

1. For non-interface residues, the BLOSUM62 matrix is used (by computing the

conditional probabilities) to mutate residues independently in the two proteins. The

new sequences are then aligned to the HMMs representing their families and are

accepted or rejected using a Metropolis-Hastings criterion based on their alignment

scores and the interface energy Eint.

Metropolis-Hastings criterion:

Since we treat each contact independently while sampling, let us assume for the

sake of simplicity that there is only one contact (a, b). In the simulated sequences,

this is evolved to (a′, b). Because we simulate co-evolution of the contact one residue

at a time, the ratio of transition probabilities will be (old → new over new → old):

J int = Q(a|b)/Q(a′|b) = Q(a, b)/Q(a′, b) (B.3)

102



where Q is the pairwise distribution shown in Fig B-1. For the mutation of non-

interface residues, since the two partners are mutated independently, the ratio of

transition probabilities will just be the product across all non-interface positions:

Jnon−int = Πquniprot(x
old|xnew)/Πquniprot(x

new|xold)

= Πquniprot(x
old)/Πquniprot(x

new)

(B.4)

where quniprot is the Uniprot distribution. The Metropolis-Hastings criterion can

then be written as:

α = P eq(Xnew) ∗ J int ∗ Jnon−int/P eq(Xold)

P eq(Xnew) = P new ∗Q(a′, b)/(q(a′)q(b))

P eq(Xold) = P old ∗Q(a, b)/(q(a)q(b))

P ∝ exp(−E1 − E2)

(B.5)

Note that the pairwise probability terms, Q(a, b) and Q(a′, b), in P eq(Xnew) ∗

J int/P eq(Xold) cancel each other, leaving only the product of singleton probabilities.

Therefore:

α = (P newΠjp
old
j )/(P oldΠjp

new
j )

P ∝ exp(−E1 − E2)

pj = quniprot, j is not an interface position

= q, otherwise

(B.6)

where recall that quniprot is the amino-acid distribution in Uniprot; q the amino-

acid distribution at the interface from a selected non-redundant set of complexes

(Fig B-1). This is exactly our “fitness” score used to select the co-evolved interfaces

in the Selection step. QED
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Note that this MCMC procedure allows us to efficiently compute any pairwise

correlations, even those that are not contact based; a feature not possible without

our sampling-based procedure.

B.2 Datasets

All crystal structures were obtained from the Protein Data Bank (PDB). Singleton

and pairwise amino-acid probabilities at the interface were calculated from a 50% non-

redundant set of complexes downloaded from the 3DComplex database [98]. Here,

two residues were assumed to be interacting if any heavy atom in one residue on one

protein was at a distance of less than 5Å from any heavy atom on the other residue

in the partner protein. The calculated singleton and pairwise probabilities calculated

are shown in the Fig B-1. As one would expect, hydrophobic residues (A, V, L)

are highly represented at the interface, whereas cysteine has the lowest propensity.

Interestingly, Arg, Gly and Glu show up with a high propensity as well, indicating a

preference for ionic and H-bond interactions at interfaces. This is in contrast to the

general composition in globular proteins, where Arg is less frequent than Ala, Glu,

and Gly is found at a much lower frequency .

All the MAPK PPI data was taken from Bandyopadhyay et al. (2010) and

Vinayagam et al. (2011). The negative dataset used in evaluation of the classifier

(PDB-negative) was downloaded from the negatome database [145]. In these datasets,

only the sequences that could be aligned to templates belonging to families for which

we could apply the simulated evolution protocol were considered. Sequences that had

a z-score less than 5 for their alignment were discarded and such alignments were

deemed not confident enough to give an accurate inference. In the Bandyopadhyay

set, we could get predictions for 461 interactions; in the Vinu set, 860 interactions,

and in the negatome (PDB-negative set), 330 non-interactors. The Bandyopadhyay
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A. Singleton probabilities B. Pairwise probabilities

Figure B-1: Singleton (A) and Pairwise (B) probabilities at the interface calculated from a
non-redundant set of complexes in [98]

set was further divided into a 173 “Core” set of interactions, defined by the authors,

and the rest as “non-core”.

B.3 Results

B.3.1 Coev2Net benchmarking

Cross-validation on SCOPPI. For each family in SCOPPI having three or more non-

redundant complexes (< 50% sequence identity), we randomly select one as a Test

Set and the remaining complexes as the Training Set. RAPTOR [177] is used to

align the test sequences to the training templates, and the best alignment (based

on RAPTOR’s z score) selected for evaluation. Because of limited datasets (∼ 45

families that meet our criterion of non-redundancy in SCOPPI and ∼ 300 negative

pairs from the manually curated PDB-negative set (see Datasets)) [145], we use a

5-fold cross-validation to train and test the classifier.

Limited complex families. Additionally, for SCOPPI families that have only two

non-redundant complexes, Coev2Net gives similar results (Fig B-2). To test on these
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families, one complex (of the two) was chosen randomly, and the correlation graph

computed as before, except for the multiple interface alignment stage. The clas-

sifier trained on multiple complex families was used to compute the probability of

interaction of the test complex. As can be seen in Fig B-2, the algorithm is able to

successfully use relevant correlations, even in the absence of multiple complexes for a

given family, to help identify conserved structural features. Note that iWRAP cannot

handle such families as it cannot build interface profiles due to the limited number of

complexes.

B.3.2 Abundance of SNPs

To compute association between PolyPhen annotations (’benign’ and ’damaging’) and

our prediction of the SNP’s location, we calculated the p-value using a 2x2 contin-

gency table. Similarly to calculate association between SNPs and the location, we

computed the p-value using a 2x2 contingency table with one grouping as total num-

ber of interface/non-interface residues and the other grouping as the occurrence/non-

occurence of a SNP at that location. To verify abundance, we first normalized the

occurrence of a SNP at a site by the number of such sites in the protein (a site is

either an interface or a non-interface), and then performed a mann-whitney (paired)

test to compute the p-value for the difference between the mean of the two densities

(for the two types of sites).
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Figure B-2: Cross-validation results on SCOPPI. (left) Results on SCOPPI families having 3
or more complexes. (right) Results on SCOPPI families having only 2 complexes
(1 training and 1 test)
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