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ABSTRACT

Efficient utilization of the sun as a renewable and clean energy source is one of the greatest goals and
challenges of this century due to the increasing demand for energy and its environmental impact.
Photoactive molecules that can store the sun's energy in the form of chemical bonds have been of
interest to harness the sun's energy since the 1970s. However, all of the photoactive systems studied
have problems with degradation making them impractical. Recently, the Grossman Group used
computation to show that nanotemplating of the azobenzene photoactivesystem improves problems
with degradation. We believe that this could be a platform technology for other photoactive systems
like azobenzene. We would like to use high throughput screenings to identify other promising
photoactive molecules. We would like to use Density Functional Theory (DFT) calculations for these
studies, since DFT is the least computationally intense Quantum Mechanical model used on large
chemical systems. For photosystems like azobenzene, nombomadiene, and diruthenium fulvalene,
DFT predictions have been found to match well with experimental predictions, suggesting that DFT
can be used to confidently predict properties of these fuels. However, for dihydroazulene(DHA)
photoactive predictions using different DFT functionals do not match with each other and experiment.
Our analysis suggests that lack of error cancelation due to a drastic change in the conjugation in DHA
as compared to VHF might account for the variation in predictions based on different DFT functionals.
It was also found that the DFT functional, coB97X-D, makes similar predictions as the more
computationally intense post Hartree-Fock methods by including couple cluster terms that better
capture weak interactions.

Thesis Supervisor: Jeffrey C. Grossman
Title: Professor of Materials Science and Engineering
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1. Introduction

1.1 Solar Thermal Fuels

Efficient utilization of the sun as a renewable and clean energy source is one of the greatest

goals and challenges of this century due to the increasing demand for energy and its environmental

impact. Numerous strategies exist to convert sunlight into useful forms of energy, including photo-

catalytic processes, artificial photosynthesis[1][2] photothermal power plants[3] and photovoltaic

applications[4]. An alternative strategy to these is to convert and store the sun's energy directly in the

chemical bonds of metastable photoisomers of suitable molecular systems. The stored energy can then

be released as heat on demand by an external trigger. Ideally both the photisomerization and heat

release reactions reversibly occur in a closed-cycle without changing the chemical composition. The

clear advantage of such an approach is that the same material both converts and stores the sun's energy,

providing a rechargeable fuel that can be safely transported and used on-demand, the materials used

could in principle be cheap, non-toxic and abundant, and the cycle can be repeated thousands of times

without any emission or waste.

Many photoactive molecules that can convert the sun's energy into chemical bonds as shown in

Figure 1.
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Charging

Heat

Discharging

Figure 1. Mechanism for charging and Discharging Solar Thermal FUels

However, these photoactive fuels or Solar Thermal Fuels are not practical to use due to high

degradation rates upon cycling. The Grossman group have using the Quantum Computational method

Density-Functional Theory( DFT), which is further discusses in the Calculations section, to show that

carbon nanotube nanotemplating the azobenzene system improves the cyclability making it a practical

Solar Thermal Fuel[5].Current experimental work underway in the group is bearing out this

computationally driven solution.

There are many other photoactive molecules like azobenzene.We believe that this templating

solution could improve the cyclability of these other systems as well. These photoactive systems were

first studied in the 1980s when it was difficult to use quantum mechanical model to study large
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chemical systems. Screening 100,000 photoactive fuels would have taken 30 years. Today due to

improvements in hardware as well as the advent of methods like DFT, a screening of 100,000 fuels

would take only 2 days.

In order to use DFT modeling to drive the design of these Solar Thermal Fuels, we would like

to understand the limits of this method. For the azobenzene, norbornadiene, tetra-carbonyl-

diruthenium fulvalene, and norbornadiene systems, Density Functional Theory (DFT) modeling

predictions match experimental predictions closely AH [[5][6][7]. However, for the DHA/VHF system,

different DFT functionals give significantly differing predictions about the stored AH, and do not match

with observed experimental properties. This thesis compares the predictions of different DFT models

wit post-Hartree-Fock models of DHA/VHFs energy calculations and experimental calculations. We

aim to discover which DFT functionals best capture the behavior of the DHA/VHF system, and what

enables them to more accurately predict the enthalpy of reaction for the system. This Thesis will give

further insight into when we would expect to trust different DFT calculations on these photosystems;

and which functionals to use for problem systems like DHA/VHF.

1. 2 Previous Studies of DHA-VHF System

1.2.1 Experimental Studies

Dihydroazulene and vinylheptafulvene refers to the chemical structures shown in the reaction shown in

Figure 2, where the R group varies. The photochemistry has been studied for R-groups of H, methyl

(CH 3), cyanide (CN)[8], and Br[9] derivatives.
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70 hv R

C CN

DHA 7 7
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Figure 2. The ring opening DHA to VHF reaction and the thermal back reaction

There are published experimental structures for the CN[1 1] DHA and Br DHA derivatives[12]. Only

one experimental structure was found for a methyl VHF derivative [10]. The ring opening reaction

shown in Figure 2 occurs when DHA is illuminated with light of about 360nm [12] ,[10],[8]. No

experimentally published values have been found for the enthalpy of the reaction'. The thermal back-

reaction was measured to have an activation energy of about 8OkJ/mol(20kcal/mol) for each of these

variants[12]. This back reaction can be facilitated by the addition of Lewis acids [13]. Both [8] and [9]

took Ultra Violet/ Visible (UV/Vis) spectra for the both the CN[8] and Br derivatives of DHA and VHF

while carrying out the ring opening and thermal reactions. They used this data to describe the kinetics

system. The UV/VIS for the thermal back reaction for the CN derivatives for VHF to DHA are

reproduced below in Figure 3. These spectra were used to compare to values found for theHighest

Unoccupied Molecular Orbital (HOMO) Lowest Unoccupied Molecular Orbital (LUMO) gap for VHF

and DHA. As shown in Figure 3, these spectra indicate that DHA has an absorption peak around

1 Reference 6, which is in German, might have something about the thermochemistry, but I have not been able to decipher
the paper. The paper also describes other reactions.
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480nm and VHF has an absorption peak around 400nm [9] . Figure 3 also shows that DHA has an

absorption peak around 360 nm, since we would expect to see an absorption peak at 360nm since the

ring-opening reaction occurs for illumination of DHA with this wavelength of light.

Themal back reaction

lowest energy UV/Vis absorption
10- peak present in VHF
o9-
O~A -
0,7-

0.6-

05-
04-
03
0.2
0.1

0.0 -

200 300 400 -500 600 700 800
nm

lowest energy UV/VIS absorption
peak present in DHA

Figure 3. This Experimental Data and graph is taken from [8]for a kinetics experiment on the
progress of the thermal reaction from VHF to DHA. The black curve is the UV/VIs spectra for the
reactants, VH, and grey curve is the UV/Vis spectra for the final product, DHA. The graphs indicate
that VHF has a peak around 500nm and DHA has an absorption peak around 400nm

1.2.2 Previous Computational Studies

Boggio-Pasqua et al used complete active self consistent space field (CASSF) calculations to calculate

a reaction profile for the DHA/VHF reaction[ 14]. They calculate an enthalpy of reaction of 1 Okcal/mol

(40 kJ/mol) using CASSF calculations. CASSF calculations are a type of Hartree-Fock calculation that

divides molecular orbitals in a molecule into active and inactive orbitals. Boggio-Pasqua et al also uses

B3LYP DFT Functional with a Dunning-Basis Set and finds that DHA is 2 kcal more stable than VHF.

Plaquet et. al calculated the geometries for DHA and VHF using B3LYP and 6-31 G Pople basis set[ 15]
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and used the Time Dependent Hartree-Fock (TDHF) equation to calculate the hyperpolarizability of the

molecule. Placquet et. al suggest that this hyperpolarizability could be used in non linear optical

applications.

2. Calculations

We calculated the enthalpy of the DHA-VHF back reaction by assuming that it's approximately equal

to the difference in the internal energies of DHA and VHF. The internal energies of DHA and VHF

were calculated by carrying out a relaxed structure calculation, which is further described in 2.1, using

Density Functional Theory (DFT) and post Hartree-Fock(HF) methods. Both DFT and post- HF

methods are ways of approximating the Time -Independent Shrddinger, Equation Eq. 1. In the Time-

Independent Schrodinger Equation, H is the Hamiltonian, which describes the energetics of the

system, #i iare the molecular orbitals of the system, and E is the energy associated with this molecular

orbital.

H<, E <p Eq. 1

For one electron systems like Hydrogen, He', Li" etc., assuming a stationary nucleus, Eq. 1 can be

solved exactly. However, the Hamiltonion for a system with more electrons is non separable, and

cannot be solved exactly. For systems like DHA and VHF the Hamiltonian that have many nuclei that

each have many electrons either HF, Post-HF or DFT methods are needed to obtain approximate

solutions to Eq. 1 These methods are further described in Sections 2.3, 2.4, and 2.5 The Gaussian 09

Software Package was used to carry out all calculations[16]. The results were then visualized using

Visual Molecular Dynamics (VMD) Software[ 17].

2.1 Relaxed Structure Calculations

The overall algorithm for solving for the geometry, wavefunctions, and energies associated with this
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geometric and electronic configuration is shown in Figure 4. First an initial geometry is chosen, then

Eq. 1 is solved using either Hartree-Fock or DFT models with a set of chosen basis functions. Then the

electron density, which is the parameter in terms of which the Hamiltonian is written for these models,

is checked against the initial chosen density until the density value converges. Then the position of the

atoms are adjusted iteratively to obtain the lowest, converged energy configuration.

I I
choose basis set, initial geometry

compute/store le- and 2e- integrals

I
7

I

I
choose new

geometry

Geometry Optimiza
Calculation

guess initial electron density

Solve either HF or Kil)p.- Sham secular equations

use new electron density

to Is new electron density similar to old?

4,
yesOptimize Molecular Geometry

no

satisfy opt.criteria?

Output data for opt. g.q9M

Figure 4. Schematic for Geometry Optimization Algorithm

2.2 Single Point (SP) Energy Calculations
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The geometries for calculated relaxed structures might differ from the actual experimental structures,

since the Hamiltonian used in all of these methods cannot exactly capture all the energy contributions

of the system. One way we can assess this error is by carrying out a single point energy calculation for

the experimental structure. For a single point energy calculation, the wave function and charge density,

and energy are calculated for the given experimental geometry. You can imagine that a molecule has a

Potential Energy Surface(PES) as shown in Figure 5, which represents the energy associated with any

arrangement of the atoms, and that the actual experimental geometry of the molecule is a minimum

associated with this system. The model of the molecule is given by another PES, which also has some

minima, which represents the model's prediction of the molecules geometry. Ideally these two minima

are the same. An SP calculation gives us an idea of how far apart these two minima are. SP

Calculations for this system have been started.
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Change in geometry

Figure 5. Single Point Energy Calculation

2.3 Hartree-Fock Methods

For a many-electron system, assuming that you have infinitely heavy point nuclei and cab neglect spin-

orbit interactions, H , the Hamiltonian, is given by Eq. 2. In Eq. 2 h is planck's constant divided by

2n, me is the mass of an electron, Z is the number of protons in the given atom, ri is the distance

between each electron and the nucleus, e is the charge of an electron, and rj is the distance between two

different electrons.

H= 2 Eq. 2
2 me rr
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The first term in Eq.2, 2 sums up the kinetic cncrgies of each of the electrons around a

given nuclei. The second term, E(,,2) sums up the coulombic potential energy terms associated
r,

with each negatively charged electron being a distance ri from a the positively charged nucleus. The

third term e f2 sums over the coulombic repulsive term between each pair of electrons about
r,,

a nucleus. This equation is not separable due to the electron repulsion terms, which makes it impossible

to solve exactly. Hartree-Fock methods solve Eq. 1 and Eq.2 by initially guessing that the ground state

wavefunction Oo about each atom in the system is a product of of basis set functions, like Slater Type

Orbitals, which might be physically close to the actual ground state of the system. In order to account

for spin, Hartree-Fock, also takes into account the spin-orbital operator, or Fock operator. Hartree-Fock

often deals poorly with electron-correlation energy, or the energy associated with the fact that the

behavior of electrons in a chemical system are not independent.

2.4 Post Hartree-Fock methods

Post Hartree-Fock methods improve on Hartree-Fock methods by attempting to take into account

electron correlation energy. These methods use perturbation theory to improve upon the calculated

ground state wavefunction 4m calculated using Hartree Fock. Couple Cluster(CC) Methods use the new

guess, 'F, as shown in Eq.3 to substitute back into the the Time-Independent Shrodinger Equation (Eq.

1) . In Eq. 3 T is the cluster operator defined in Eq. 4, and #i are the orbitals obtained from Hartree-

Fock Methods.

7f= E e qp, (3)
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T=TI+2+...(4)

The cluster operator T is the sum of the singlet operator Ti , the doublet operator T 2 , etc.The

singlet and doublet operators are defined in Eq. 5 and Eq. 6. t" and t". in Eq. 5 and 6 are

constants that are solved for when the guess given in Eq. 4 is substituted back into the Time-

Independent Shrodinger Equations. a and a' are the creation and annihilation operators. These

creation and annihilation operators are analogous to the raising and lowering operators for the harmonic

oscillator that operate on a given harmonic oscillator eigenfunction to give a lower energy

eigenfunction and higher energy eigenfunction respectively. TI and T 2 convert a given orbital

into a linear combination of singly excited and doubly excited Slater determinants.

T , t" a (5)
i a

T2 --114 E tGbaldaaa' (6)
(i , j) (a, b)

Couple Custer Singlet Doublet (CCSD) method is a CC method which includes singlet and doublet

excited states. CCSD includes just the first two terms in Eq. 4. This method generally performs the

best for estimating calculating the correlation energy of a system because it account for electron

correlation in a physical manner.

Moller- Plesset (MP)Methods improve upon the the energy calculation by perturbing the Hamiltonian.

Unlike CC methods, MP methods do not improve on calculation of the wave function. MP2, uses

second order perturbations.

2.5 Density Functional Theory

Density Functional Theory(DFT) simplifies calculation by representing the Hamiltonian in terms of a

functional, which is based purely on the charge density. The Hohenberg-Kohn Theorems justify the use
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of DFT[ 18]. They show that a representation of the Hamiltonian in terms of a charge density functional

exists that can be used to calculate the upper bound of the ground state energy. The Kohn-Sham

Equations,which subsequent functionals discussed build upon, uses the assumption that each electron's

behavior is independent to create such a functional. The Kohn-Sham Equations, Eq. 7, 8, and 9, are

[ V2+V,,#)r= r) (7)
2m2

e ns ') 3V,,,,,,=V+( 1_"_., )d 3 r'+Vxens(') (8)

ns(-) = #,Ji(-)2 (9)

where ns is the charge density as a function of the position, I the position, V the potential and kinetic

energy of the system, and Vxc the exchange energy of the system. Eq. 7 is just a variation of the Time-

Independent Shrodinger Equation or Equation 1 for each separable independent wave function 4f for

each electron, where the first term in the operator h 2 accounts for the kinetic energy of the
2m

electron, and the second term V,,,,(1) takes into account other energy terms in the system. Eq. 8

and Eq. 9 allows for writing the Hamiltonian in Eq.7 in terms of a functional of the charge density. The

main advantage of DFT is that it can be used to model larger systems than Hartree-Fock and Post

Hartree-Fock methods, since calculations do not scale with the number of atoms in the system, but are

dependent on the charge density. DFT however deals poorly with electron correlation energy because

the Kohn-Sham equations used assume that electrons in many body system behave independently.

Electron correlation energy is the energy associated with the correlated behaviors of electrons. In

particular, these methods have difficulty dealing with long range forces like van der Waals attraction

and pi-pi interactions. Both of these are present in our system. However, often error cancelation due to
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similarities in the error involved in calculating the energy of the products and the reactants results in

DFT obtaining fairly accurate calculations of the overall enthalpy of the reaction. DFT is also a lot less

computationally intense than other methods of approximating Eq. 1.

2.6 Error Cancelation

According to Levine ,HF and DFT energy calculations for light atoms can typically be in error by about

1/2%[15,pp. 315]. For Carbon, this is about 5eV. The enthalpy values, that these models try to capture,

however, are of this order. For many-systems, however the initial and final states are similar enough

states that the errors cancel out in the enthalpy calculation. In order to further understand why error

cancelation sometimes works, the error involved in calculating the enthalpy for different types of

organic reactions has been studied. Pieniazek et. al studied the enthalpy of formation for Diels-Alder

reactions[20]. These reactions involve the breaking of double bonds to form another single bond. An

error build up for every time a double bond was broken was identified. Pieniazek et. al attribute this

error to the fact that the electrons in the reactant are in pi bonding orbitals which are not present in the

product. Pieniazek et. al refer to this as the 7r-> -. transition In the DHA/VHF system, the ring-opening

results in a similar change in conjugation. DHA is made of three rings, where many of the p-orbitals on

each of the Cs and Ns can interact. As a result, the bonding orbitals in DHA are fairly delocalized

across the entire molecule. All of the calculations for both DFT and post Hartree-Fock methods for the

charge distribution displayed this conjugated structure. In contrast, in VHF, the ring-opening reaction

breaks the five-membered and results in the seven-membered ring being in a different plane from the

phenyl ring. As a result, the p-orbitals in the seven membered ring cannot overlap with those in the rest

of the molecule as easily. This means that the bonding orbitals that describe bonding in VHF are less

delocalized than those that describe bonding in DHA. As a result, errors involved in predicting energies

for orbitals present in VHF and for those present in DHA might not cancel. This might be why the
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functionals looked at all give significantly different predictions for the enthalpy of the reaction. If this

is the case, we would expect that functionals that handle weaker interactions like pi-pi interactions and

van der Waals interactions will better model the system. This is because pi-pi interactions deal with

bonding between adjacent p-orbitals like those present in the aromatic rings across DHA and in the

phenyl ring in VHF. In molecules like DHA and VHF, which do not have a strong dipole moment, weak

interactions like van der waals interaction often play an important role.Van der waals interactions deal

with attractive interactions due to instantaneous polarization of the wave functions. This instantaneous

polarization of the wave functions would involve excited state molecular orbitals. Since the p-orbitals

involved in DHA can interact more easily with each other than in VHF, the higher energy molecular

orbitals for DHA and VHF, which would be involved in these forces, probably look quite different. As a

result, error for energy terms associated with these states might not cancel out in the enthalpy

calculation.

2.7 DFT Functionals

DFT functionals have been developed in order to better account for correlation energies. These

functionals improve upon the Kohn-Sham equations by changing the Vxcn,(r) term in Eq. 8, which

takes into account the correlation energy, and exchange energy terms. Local Density Approximation

(LDA) type functionals approximate the electron correlation and exchange energies as just functions of

electron density everywhere in space. Generalized Gradient Approximation(GGA)functionals include a

charge gradient term as well. Some Functionals are called meta-GGA functionals, which means that

they include terms beyond the gradient of the charge density. Functionals can also treat spin-up and

spin-down electrons separately. Some Functionals, like B3LYP try to write the exchange or correlation

as a function of a parameter that describes the extent of electron interactions, which is obtained by
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fitting empirical data. Some, like ob97xd also optimized to correct for long- range interactions like

van der Waals forces. The types of corrections added to the functionals are summarized in Table 1.

Table 1 Summary of the Energy Contributions, and Assumptions Part of the DFT Functionals Used

Functional

LSDA

PBE[21]

PBEO[22]

B3LYP

TPSSh[25]

oB97X-D

Correlation
Energy

Uses local
density
corrections

Uses non
local
density
corrections

Non-local
PBE
correction

Non-local
LYP
correlation
correction

Meta GGA
correction
of PKZB
functional(
similar to
PBE
functional)

Local
correlation
corrections

Exchange
Energy

Uses local
density
corrections

Uses non
local
density
corrections

exact HF
exchange
+ non-
local PBE
correction

Exact HF
exchange+
Becke
Exchange

Meta GGA
correction

Exact HF
exchange
+ Local
corrections

Corrections
for long
range forces

None

None

None

None

None

Long-
Range
Corrected
(LC )
Functional

-19-

Description of Principles of Construction

Treats system like a Homogenous Electron
Gas (HEG)

Improves upon HEG model by added non-
local terms, which are parametrized by
"fundamental constants" like a polarization,
which has been optimized for Energy
calculations of a number of systems.

Adds some exact energy from the Hartree
-Fock model to the pbe model to eliminate
the polarization parameter in pbe
optimized using spectral data

Adiabatic Connection Method used in the
Becke exchange term- this method was
optimized for thermochemistry[23]
applications
LYP uses the electron density and a laplacian
of the second order Hartree-Fock Density
Matrix to calculate electron correlation
energy[22, pp. 268]

same basic principle as PBE functional just
adds terms beyond the gradient of the charge
density.

LC Functional to indicate that the coulomb
potential is partitioned such that for large
inter-atomic distances configuration
interaction terms are included[26],[27]



2.6 Basis Sets

The Molecular orbitals,<Di , in the time independent Schrodinger Equation(Eq. 1) , are expressed in

terms of Basis Functions y,, as shown in Eq. 8

<pi= r cXr (8)

These <Di , need to be expressed in terms of basis functions, since the eigenfunctions for the

Schrodinger equation for system are not known. Eventually, for a large number of basis functions, this

expansion should converge to desired molecular orbital. Two types of basis sets were used: 1) the Pople

basis functions and 2) the Dunning basis functions. Terminology used to describe basis functions are

described in the following discussion. Slater Type orbitals and Gaussian Type orbitals are considered

minimal basis sets, since they crudely describe the orbitals. Split valency basis sets use one function for

core orbitals and more functions to describe the behavior of valence orbitals. Double-zeta, triple-zeta,

quadruple, etc. are split valency basis sets that use two, three, four , etc. different functions in the

valence orbital description from those used in the core orbital description. Polarization functions allow

the p,d, etc. angular momentum components to change. Diffuse functions are broad gaussian functions

used to capture the tail end behavior of an orbital. The basis functions used are summarized in Table 2.
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Table 2: Basis Sets Summary

Basis Sets Description

bgp&9 Basis Functions

6-31G -Uses 6 functions to describe core shell orbitals
- triple-zeta basis set, so it uses an extra three
functions to describe valence orbitals

6-31G(dp) -same as 6-31G description with added d and p
polarization functions

6-311G(2d,d,p) -same as 6-31G description with added 2d, d and
p polarization functions

6-311 +G(2dd,p) and 6-311 ++G(2d,d,p) -same as 6-311 G(2d,d,p) description but includes
diffuse functions as well

Dunning Basis Functions

cc-pVDZ A double-zeta type basis set with added
polarization functions.

cc-pVTZ A triple zeta type basis set with added polarization
functions.

aug-cc-pVTZ A triple zeta type basis set with added polarization
functions, and added diffuse functions.

For the pople basis functions, the first number before the dash represents how many functions

are used to describe the core orbitals. The number after the dash describes whether the basis

function is a double-zeta, triple-zeta, etc. functional. The Dunning Basis Set Functions were

optimized for configuration interaction calculations, which is indicated by the cc. The p

indicates that polarization functions are included. VDZ, TDZ, 4DZ, etc. refer to whether the

basis set is a double-zeta, triple-zeta, quadruple-zeta, etc. basis set respectively. The added aug

at the front of the basis set description shows that diffuse functions are included.

All of the results displayed, except for the CCSD and M06 calculations use basis sets for which

the energy had converged. Convergence is assessed based on whether the energy stays the same for the
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addition of more basis functions. Convergence for the B3LYP calculations is shown in Figure 6 as an

example.

Illustration of Convergence for B3LYP Calculations
-94.6500

04 1 1.5 2 2.5 3 3.5 4 45

494.7000

-894.7500

W

-894.8500 V*DHA Energy

494.9000

-894.9500

6-31I G(2ddp)
-95.0000 - 6 ++G(2d.dp)

6-31 +G(2d.dp)
495.0500 ________________________

Increasing Basis Functions Used

Figure 6. Illustrates convergence of energy calculations for DHA for B3LYP All the results for
methods shown use a converged basis set.

3. Results and Discussion

3.1 DHA/VHF Energy Calculations
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B3LYP

CCSD

PBE

TPSSh

-0.05

-0.1

PBEO
-0.15

wB97X-D

-0.2

Figure 7: Shows the enthalpy calculations for each of the DFT methods

Figure 7 shows that all the DFT and post-Hartree- Fock methods used predict significantly different

enthalpies for the DHA/VHF system. B3LYP is the only system that predicts an endothermic back

reaction. It is known that this system acts as a thermoswitch, so this calculated enthalpy must be

inaccurate. This is worrying, since B3LYP is the standard method used by most quantum chemists.

Since B3LYP is a hybrid functional that uses the LYP functional in addition to an empirically fitted

exact exchange, it would be interesting to see how the LYP functional performs. It's interesting to note

that the PBE, PBEO, and TPSSh give such different AH calculations, since both PBEO, and TPSSh are

variants of PBE. Both PBEO, and TPSSh use a different parametrization of the correlation and exchange

energy in terms of a polarization constant, which they claim is universal to all chemical systems[22]

[25] . Tao et, al even claims that these methods should nest within each other for different levels of

calculation[25]. The woB97X-D functional calculations and the CCSD calculations arrive at similar AH .
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This might be due to the fact that the oB97X-D functional partitions the Hamiltonian such that for

certain configurations CC terms are included in the calculation. It will be interesting to note if this trend

holds for larger basis set CCSD calculations on the system.

264.62 vDlference in Energy Contribuions for DHA and VHF
264,60 i

0.5000

O.0 B3LYP

0.3000 wB91X-O

0.2000
* A correlation

0.1000 * A exchange

0.0000

-0.1000

-0.2000

-0.3000
z

-249.300 .249.25ev

Figure 8. Shows the differences in the correlation, exchange, and other energy term contributions to
the internal energy calculations ofDHA and VHF The red bar is the exchange energy, the yellow the
correlation, and the blue is all the other contributions.

Looking at Figure 8, for all of the methods, except TPSSh , the exchange-energy, and other energy

calculations for DHA and VHF seem to be similar. For the TPSSh calculation of the system, the VHF

calculation seems to have significantly more of an exchange energy and significantly less other energy

contributions than the DHA exchange energy contribution and other energy contribution respectively.

The exchange energy difference(264.62eV) and other energy contribution(-264.47 eV ) differences

between VHF and DHA for to TPSSh calculation almost exactly cancel, suggesting that in this system,

perhaps these two energies aren't decoupled in the manner that the Hamiltonian for this model suggests.

If all of the functionals are predicting the same structures for VHF and DHA, you would expect the
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same difference in other energy, since the energy contributions other than the correlation and exchange

energy are the potential and kinetic energies. Each of the functionals seems to have quite different

energy contributions form these terms

3.2 DHA/ VHF Structure Calculations

Table 3: Comparison of DHA Experimental Structure(Shown in Figure 9 with labeled atoms) Bond

Lengths and Angles [22] with Calculated Bond Lengths and angles
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Cl-C8a

Cl - C15

C1 - C16

C2 - C9

Cl-C2

C2-C3

C3-C3a

C4-C3a

C4-C5

C5-C6

C6-C7

C7-C8

C8-C8a

C8a-C3a

C2-C1-C8a

Cl-C2-C3

C2-C3-C3a

C3-C3a-C8a

C4-C3a-C8a

C3a-C4-C5

C4-C5-C6

C5-C6-C7

C6-C7-C8

C7-C8-C8a

C8-C8a-C3a

Cl-C8a-C3a

Experimental
Bond
Lengths(A)

1.57A

1.48

1.48

1.46

1.55

1.35

1.43

1.34

1.44

1.34

1.44

1.34

1.50

1.51

Experimental
Bond Angles

104.320

108.53

113.43

108.72

122.13

124.43

125.75

125.94

125.44

120.73

107.92

103.42

CCSD
(6-31 G)(A)

1.57

1.49

1.50

1.49

1.57

1.36

1.43

1.36

1.47

1.37

1.48

woB97X-D
(Pople
Basis)(A)

1.58

1.47

1.47

1.47

1.54

1.34

1.45

1.35

1.44

1.36

1.45

1.36 1.34

1.53

1.54

103.900

110.14

112.63

108.80

123.08

124.28

125.65

126.04

125.90

120.72

109.50

103.55

1.50

1.51

104.230

109.53

112.84

108.87

123.08

124.31

125.63

126.01

126.05

120.65

108.12

103.37

PBEO
(Pople
Basis)(A)

1.58

1.47

1.47

1.46

1.54

1.35

1.43

1.36

1.43

1.36

1.44

1.34

1.50

1.51

104.410

109.12

110.12

109.17

122.87

124.74

125.85

125.90

126.25

120.87

108.08

103.47 103.49 103.35

PBE
(Dunning
Basis)(A)

1.59

1.47

1.47

1.46

1.55

1.36

1.43

1.37

1.43

1.37

1.43

1.35

1.50

1.51

TPSSh
(Pople
Basis)(A)

1.59

1.48

1.48

1.46

1.55

1.36

1.44

1.37

1.44

1.38

1.44

1.36

1.51

1.52

104.370

108.75

113.67

109.42

123.01

B3LYP
(Pople
Basis)(A)

1.59

1.47

1.47

1.46

1.55

1.35

1.43

1.35

1.43

1.36

104.430

108.91

113.39

109.39

122.84

125.58 125.07

1.44

1.34

1.50

1.51
H

104.190

109.07

113.79

109.19

123.42

125.51

126.20

126.20

126.87

121.73

109.48

103.45

126.16

125.97

126.81

121.58

108.73

126.06

126.00

126.49

121.05

108.50
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Figure 9. Experimental Structure for DHA from [11] Visualized using Cambridge Structural
Database's (CSD's) Mercury Analysis Software

Comparing the values in Table 3 for the bond lengths and angles in DHA in the seven-membered and

five membered rings shows that all the methods used for calculating structure of DHA calculate the

bond length and bond angles to within 0.03A and 1 of the experimentally quoted values, which

suggests that all methods explored calculate the geometry reasonably well.

Table 4: Comparison of Calculated VHF Structures

Method Out of Plane Distortion in VHF (measured by taking the distance between the
two carbons labeled in Figure 10)

CCSD (6-31G) 2.56A

oB97X-D (Pople 2.39A
Basis)

PBEO (Pople Basis) 2.55 A
PBE(Dunning) 2.57A

TPSSh (Pople) 2.56 A
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B3LYP(Pople)

Figure 10. The distance between the two carbons labeled on the
structure calculated for VHF were used to measure the out -of -plane
distortion calculated for VHF for each method as displayed in Table 4

As shown in Table 4, the out-of plane distortion in VHF calculated for all methods, except oB97X-D,

was around 2.55 to 2.57 A. The oB97X-D functional predicted an out-of plane distortion of 2.39 A,

which is significantly smaller. This suggests that this functional predicts a significantly different

geometry from the other functionals. This functional tries to take into account long-range forces such as

van der Waals interactions by including higher order Couple cluster terms for large distances between

atoms. One hypothesis for this smaller distance could be that this functional is accounting for some

interaction between the two CN groups and the seven-membered ring. If this hypothesis is correct, you
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would expect all of the methods to calculate the same distance between the two labeled carbons if the

seven membered ring was replaced with a methyl group. Comparison of the energy contributions to the

enthalpy calculation (Figure 8)shows that calculated potential energy and kinetic energy terms differed

for each of the methods. One explanation for this observation is that the functionals all give different

structure predictions for DHA and VHF. The structure calculations, show that all functionals calculate

structures for DHA that agree reasonably well with experiment. This does not explain the observation

that the potential and kinetic energy contributions to the energy calculation are different for each

method. It seems as though different functionals calculation of the structure of VHF might not agree as

well. Experimental structures for this derivative of VHF have not been found. However, experimental

structures for a methyl derivative of VHF have been found[ 10]. Investigating how calculations for this

structure by the different functionals might give better insight into this observation.

3.3 Visualization of Charge Distribution in DHA and VHF
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Figure 11. VML) Visualization of Charge Distribution in DHA as calculated by each
of the methods
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Figure 12. VMD Visualization of Charge Distribution in VHF as calculated by each of the
methods
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Figures 11 and 12 show that all methods show that the ring opening reaction results in a break in

conjugation. Rather in DHA, the whole structure is conjugated, while In VHF, the out -of-plane

distortion causes the seven membered ring to not interact with the pi orbitals in the phenyl ring and the

CN groups. All of the functionals also show that the strong electron withdrawing CN groups have a

significant effect on the charge distribution. In DHA, the two CN groups attached to the five-membered

ring seem to draw much of the charge, while the CN group on the phenyl ring does not have a large

population of charge concentrated around it. In the VHF structure, all three CN groups seem to have

charge clustered around them. It would be interesting to compare how these calculations compare to

calculations for the Br derivative of the DHA/VHF system, since Br is a less strong electron

withdrawing group.

3.4 DHA/VHF Highest Occupied Molecular Orbital(HOMO) Lowest Unoccupied Molecular Orbital

(LUMO) Gap Calculations

UV/Vis Spectra for DHA and VHF shows that DHA has an absorption peak around 400nm, which

would correspond to about a 3 eV transition, and VHF has an absorption peak around 500nm, which

corresponds to about a 2.5 eV transition. The calculated HOMO LUMO gap for DHA and VHF are

shown in Figures 13 and Figures 14 respectively. The methods predict a gap for VHF and DHA that

varies between 1eV and 5eV and .9eV and 4eV respectively. This variation in predicted HOMO LUMO

gap is large. The oB97X-D DFT functional and the MP2 both overestimate the gap, while the other

methods under estimate the gap. One hypothesis for this could be that perturbative methods

overestimate tend to overestimate the energy for a given eigenstate. MP2 is a perturbative method, and

the oB97X-D DFT functional includes CC terms. Perturbation is used in calculating these CC terms. It
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would be interesting to compare whether CCSD calculations also overestimate the gap. We could also

look at whether these same methods overestimate and underestimate other absorption peaks shown in

Figure 3 for DHA and VHF.

DHA HOMO LUMO Gap

4.5 4.25
U MP2

4
3.54

3.5 a
wB97X-D

3 .......................................................................................

1.91

1.49 -W
a

TPSh

1.92
0 1.67

M06 0
ReYP

0.5

0

Method

Figure 13. Calculated HOMO, L UMO gap for DHA
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VHF HOMO LUMO Gap
4.5

4 3.84 MP2

3.5 3.14
3 U wB97X-D

2.5 - - - - - - - - --.................--------------------------- - ------ ------- --------................................................-

2 1.651.50 * 1.42
1.5 .4 M06

1 0.85 U B3LYP

0.5

0
0 2 4 6 8 10 12 14 16

Method

Figure 14. Calculated HOMO, LUMO gap for VHF

4. Conclusions, Further Discussions and Future Work

We calculated energy eigenvalues for DHA and VHF using the DFT Functionals: B3LYP, PBE, PBEO,

M06, oB97X-D ,and TPSSh and the post -HF methods: CCSD and MP2. Enthalpy calculations

obtained from these energy eigenvalues indicated that all methods except B3LYP predict the correct

sign for the enthalpy of the VHF DHA thermal back reaction. The wB97X-D DFT Functional predicts a

similar enthalpy value as the more computationally intense post Hartree-Fock methods: CCSD and

MP2. HOMO LUMO gap values obtained from these eigenvalues indicated that the post Hartree-Fock

Methods and the oB97X-D Functional overestimate the HOMO LUMO gap, while the other DFT

Functional Methods underestimate the HOMO LUMO gap. We compared the correlation energy,

exchange energy, and kinetic and potential energy contributions to the energy for all of the DFT
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Functionals. This comparison showed that the potential and kinetic energy contributions for each

method differed. We compared the calculated structures for the DFT Functionals and CCSD for DHA

and VHF. Comparison of the calculated DHA structures with the experimental structure showed that all

methods predict the experimental geometry reasonably closely. Comparison of the out of plane distance

for the calculated VHF structures indicated that the oB97X-D Functional predicts a significantly

different geometry from the other methods. We compared the calculated charge distribution for the

B3LYP, PBE, PBEO, oB97X-D ,and TPSSh Functional and CCSD calculations on DHA and VHF.

All of these methods showed the effect of two strong electron withdrawing CN groups on the five-

membered cyclic ring in DHA on the conjugation of the system. Interestingly, all functionals also

showed little effect of the CN group on the phenyl ring on conjugation in DHA. All methods seem to

suggest that the molecular orbitals present in DHA are largely delocalized across the entire molecule. In

contrast, in VHF, all methods showed that the CN group on the phenyl ring affected the conjugation of

the system in some way, and the the molecular orbitals were only delocalized across the phenyl ring

and the two adjacent CN group. We hypothesize that the oB97X-D functional, CCSD , and MP2

methods better account for weak interactions like van der Waals interactions, and pi-pi interactions,

which is why they all give similar predictions, which are closer to experimental values. All of these

conclusions along with other observations, hypotheses that might explain these observations, and

further work that can be carried out to test or gain insight on these hypotheses are summarized in Table

5.

Table 5: Summary of Conclusions Based on the Observations On the Calculations

Observation Hypothesis Further work that would lead further insight on
hypothesis

oB97X-D oB97X-D functional CCSD calculations for a more complete basis
functional and partitions the Hamiltonian that should also predict a similar AH
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CCSD predict
similar AH (Figure
7)
B3LYP gives wrong
sign for enthalpy
calculation (Figure
7)

Each of the
functionals had
showed different
potential and kinetic
energy
contributions to the
energy
calculation(Figure
8)

oB97X-D
functional predicted
a significantly
different out-of
plane distortion
from the other
methods (Table 4)

Large charge
distribution about
the CN groups
attached to the
phenyl ring for all

CC terms are included for
certain distances between
electrons

B3LYP accounts for electron
correlation using both the LYP
functional and an empirically
fitted term. This empirically
fitted term might be designed
for molecules that are quite
different from DHA and VHF

Each of the functionals is
predicting different structures
for DHA

Each of the functionals is
predicting different structures
for VHF

This functional is accounting
for an attractive interaction
between the two CN groups
and the seven-membered ring.

Due to the fact that CN is a
strong electron withdrawing
group, it significantly effects
the conjugation in VHF. This
same CN group does not

Literature search on what systems were used to
fit B3LYP functional

See how LYP functional calculations on the
system compare with other functionals. If this
functional gives a more accurate calculation of
the enthalpy than the empirical fitted term is
probably not suited to this system.

They all seem to predict the experimental
structure according to Table 3

Perform SP calculations to check that the
deviations between calculated structure and
experimental structure are not that large

Table 4 shows that oB97X-D predicts a
different geometry. Find another way to
compare the structure to explain the difference
between the kinetic and potential energy
contributions for the other functionals

Perform Relaxed Structure Calculations and SP
Calculations for the methyl VHF derivative for
which a published experimental structure is
published

Calculate the structures and energies for

T (~~3) A

with each of the methods. If this hypothesis is
correct, you expect the distance between the
analogous carbons as compared in table 4 to be
the same for all methods including oB97X-D.

Carry out calculations on the Br derivative of
the DHA/VHF system. Since Br is a less strong
electron withdrawing group, each of the
methods studied should give closer energy
predictions to each other. Performing
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methods effect the conjugation in DHA calculations on this variant of DHA/VHF has the
visualization of as significantly due to the fact added benefit that much experimental data has
VHF (Figures 11 that there is conjugation also been collected for this system[9].
and 12). Each across the entire molecule. Carry out calculations on the CH 3 derivative of
method shows this Due to the difference in the the DHA/VHF system. Since CH 3 is an even
effect to different conjugation in DHA and VHF, less strong electron withdrawing group than Br,degrees error cancelation does not the calculations for energies for each of the

work so well methods should agree most for this system.

5. Future Work

The most exciting result of this study is that it appears as though the o>B97X-D functional gives very

similar predictions as the more computationally intensive post-HF CCSD and MP2 methods for this

system. CCSD and MP2, and other similar post Hartree-Fock methods are generally considered

superior at modeling weak interactions. It will be interesting to observe if this trend holds once CCSD

calculations have been performed on the system for larger basis sets that include more polarization and

diffuse functions like 6-311++ G(2d,d,p) or aug-cc-pVTZ.It appears as though all methods except

B3LYP predict at least the correct sign for the enthalpy of the VHF DHA thermal back reaction. It

would be interesting to further investigate why B3LYP fails to model this system, as B3LYP is a fairly

standard DFT Functional used for organic molecules. One suggested calculation is to compare B3LYPs

performance with the LYP functionals performance. Another interesting observation is that despite the

fact that PBE, PBEO, and rPSSh are parametrized in a similar manner, all three of these functionals

give quite different predictions for this system. Future work could interrogate why these differences in

the parametrization of the Functionals resulted in quite different predictions. It might be useful also to

obtain experimental measurements for the enthalpy of this system. Another interesting avenue to pursue

would be to conduct this same analysis on the methyl and Br derivatives of the DHA and VHF system,

and compare the conclusions for the analysis of those systems to these ones.
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