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Abstract. In the Joint Replenishment Problem (JRP), the goal is to
coordinate the replenishments of a collection of goods over time so that
continuous demands are satisfied with minimum overall ordering and
holding costs. We consider the case when demand rates are constant. Our
main contribution is the first hardness result for any variant of JRP with
constant demands. When replenishments per commodity are required to
be periodic and the time horizon is infinite (which corresponds to the
so-called general integer model with correction factor), we show that
finding an optimal replenishment policy is at least as hard as integer
factorization. This result provides the first theoretical evidence that the
JRP with constant demands may have no polynomial-time algorithm and
that relaxations and heuristics are called for. We then show that a simple
modification of an algorithm by Wildeman et al. (1997) for the JRP gives
a fully polynomial-time approximation scheme for the general integer
model (without correction factor). We also extend their algorithm to the
finite horizon case, achieving an approximation guarantee asymptotically
equal to

√
9/8.

1 Introduction

In the deterministic Joint Replenishment Problem (JRP) with constant de-
mands, we need to schedule the replenishment times of a collection of commodi-
ties in order to fulfill a constant demand rate per commodity. Each commodity
incurs fixed ordering costs every time it is replenished and linear holding costs
proportional to the amount of the commodity held in storage. Linking all com-
modities, a joint ordering cost is incurred whenever one or more commodities
are ordered. The objective of the JRP is to minimize the sum of ordering and
holding costs.

The JRP is a fundamental problem in inventory management. It is a natural
extension of the classical economic lot-sizing model that considers the optimal
trade-off between ordering costs and holding costs for a single commodity. With
multiple commodities, the JRP adds the possibility of saving resources via co-
ordinated replenishments, a common phenomenon in supply chain management.



For example, in manufacturing supply chains, a suitable replenishment schedule
for raw materials can lead to significant reductions in operational costs. This
reduction comes not only from a good trade-off between ordering and holding
costs, but also from joint replenishment savings, such as those involving trans-
portation and transactional costs.

Since an arbitrary replenishment schedule may be difficult to implement,
it is natural to focus on restricted sets of schedules (often called policies in
this context). The general integer model with correction factor (GICF) assumes
an infinite horizon and constant inter-replenishment time per commodity. The
joint ordering cost in the GICF model is a complicated function of the inter-
replenishment times, so it is often assumed that joint orders are placed peri-
odically, even if some joint orders are empty. This defines the general integer
model (GI). In both cases, the time horizon is infinite.

The existence of a polynomial-time optimal algorithm for the JRP with con-
stant demands remains open for all models, regardless of whether the time hori-
zon is finite or not, whether the ordering points are periodic or not, or whether
the incurred costs are modeled precisely or not. Given the significant amount of
research in this area, it may be a bit surprising that only a few papers mention
the lack of a hardness result for the JRP as an issue (the only recent paper we
could find is [TB01]). Some papers addressing the JRP with constant demands
(e.g. [LY03,MC06]) cite a result by Arkin et al. [AJR89], which proves that the
JRP with variable demands is NP-hard. However, it is not clear how to adapt
this result to the constant demand case. In fact, we believe that the two prob-
lems are completely unrelated from a complexity perspective as their input and
output size are incomparable.

In this paper we present the first hardness result for the JRP with con-
stant demands. We show that finding an optimal policy for the general integer
model with correction factor is at least as hard as integer factorization, un-
der polynomial-time reductions. Although integer factorization is unlikely to be
NP-hard, it is widely believed to be outside P. In fact, this belief supports the
hypothesis that RSA and other cryptographic systems are secure [RSA78].

We also give approximation results. An α-approximation algorithm for a
minimization problem is an algorithm that produces a feasible solution with
cost at most α times the optimal cost. We show that a simple modification of
an algorithm by Wildeman et al. [WFD97] gives polynomial-time approximation
algorithms with ratios very close to or better than the current best approxima-
tions for the JRP with constant demands. We illustrate this in detail for dynamic
policies in the finite horizon case and for GI. For the latter model, this yields
a fully polynomial-time approximation scheme (FPTAS): for every ε > 0, we
provide a (1 + ε)-approximation algorithm with running time polynomial in n
and 1/ε. Here, n is the number of commodities. To the best of our knowledge,
this is the first FPTAS for a model formally known as GI with variable base.

In the remainder of this section we formally describe the JRP models we
consider in this paper, followed by a review of the literature and a summary of
our results.
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Mathematical formulation. For all JRP variants considered in this paper the
input consists of a finite collection I = {1, . . . , n} of commodities with constant
demand rates di ∈ Z+, for i ∈ I. The cost of an order is the sum of the individual
ordering costs Ki of the commodities involved in the order plus the joint ordering
cost K0. The acquired inventory is stored at a holding cost rate of hi per unit of
commodity i and per unit of time. The objective is to find an optimal ordering
schedule in the time horizon [0, T ), where T may be equal to +∞ (the so-called
stationary case).

If T is finite, a schedule S is a finite sequence of joint orders. (An order
is called a joint order even if it consists of one commodity only.) If we place

N joint orders, the total joint ordering cost is Cjoint
ord ≡ NK0. If we replenish

commodity i at times 0 = t1 < t2 < . . . < tni < T , its individual ordering cost is
C indiv

ord (i) ≡ niKi and its individual holding cost is Chold(i) ≡ dihi

2

∑ni

j=1(tj+1 −
tj)

2, where tni+1 = T . The cost C[S] of the schedule S is the sum of the joint

ordering cost Cjoint
ord , the total individual ordering cost C indiv

ord ≡
∑
i∈I C

indiv
ord (i),

and the total holding cost Chold ≡
∑
i∈I Chold(i). The objective of the JRP is

to minimize C[S].

An arbitrary sequence of joint orders is called a dynamic schedule. The struc-
ture of an optimal dynamic schedule for the finite horizon case is not known.
Potentially, it could be exponential in the size of the input. One can avoid this
issue by adding more structure. In the JRP with general integer policies, joint
orders can be placed only at multiples of a base period p (to be determined),
and each commodity i ∈ I is periodically replenished every kip units of time, for
some ki ∈ Z+. The costs are just the time-average version of their counterparts
in the finite horizon case. An accurate mathematical description of this scenario
is the general integer model with correction factor:

min
K0∆(k1, . . . , k|I|)

p
+
∑
i∈I

(
Ki

qi
+

1

2
hidiqi

)
s.t. qi = kip (GI-CF1)

ki ∈ Z+

p > 0,

where ∆(k1, . . . , k|I|)/p is the average number of joint orders actually placed in
a time interval of length p. With a simple counting argument, it is easy to see
that

∆(k1, . . . , k|I|) =

|I|∑
i=1

(−1)i+1
∑

I⊆I:|I|=i

lcm(ki, i ∈ I)−1,

where lcm(·) is the least common multiple of its arguments.

The GICF model is complicated to analyze because of the ∆ term. Ignoring
∆ (i.e. setting the joint ordering cost rate to be K0/p in GI-CF1) defines the
general integer model (GI). Note that this change is equivalent to assuming that
K0 is paid at every multiple of the base period.
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We defined the GI and GICF formulations in the variable base model. Both
formulations have a variant where the base p is restricted. The fixed base version
of the GI formulation requires p to be multiple of some constant B. The fixed
base version of the GICF formulation requires p to be fixed.

Literature Review. We only survey approximation algorithms (see Goyal and
Satir [GS89] and Goyal and Khouja [KG08] for a review of other heuristics). For
none of the models studied here any hardness results are known.

General integer models. A common approach in this case is to solve the
problem for a sequence of values of p and return the best solution found. For in-
stance, Kaspi and Rosenblatt [KR91] approximately solve (GI) for several values
of p and pick the solution with minimum cost. They do not specify the number of
values of p to test, but they choose them to be equispaced in a range [pmin, pmax]
containing any optimal p. For example,

pmin =
K0√

2(K0 +
∑
i∈I Ki)(

∑
i∈I dihi)

, pmax =

√
2
K0 +

∑
i∈I Ki∑

i∈I dihi
(1)

are a lower and an upper bound for any optimal p. Wildeman et al. [WFD97]
transform this idea into a heuristic that converges to an optimal solution. They
exactly solve (GI) for certain values of p determined using a Lipschitz optimiza-
tion procedure. They do not establish a running time guarantee.

A completely different approach uses the rounding of a convex relaxation of
the problem. This was introduced by Roundy [Rou85] for the One Warehouse
Multi Retailer Problem (OWMR). For the JRP, Jackson et al. [JMM85] find a
GI schedule with cost at most

√
9/8 ≈ 1.06 times the optimal cost for dynamic

policies. This approximation is improved to 1√
2 log 2

≈ 1.02 when the base is

variable [MR93]. The constants above have been slightly improved by considering
better relaxations [TB01].

Using another method, Lu and Posner [Pos94] give an FPTAS for the GI
model with fixed base. They note that the objective function is piecewise convex
and the problem reduces to querying only a polynomial number of its break
points.

General integer policies with correction factor (GICF). No progress
has been reported in terms of approximation for this problem, other than the
results inherited from the GI model. The incorporation of the correction factor
leads to a completely different problem, at least in terms of exact solvability. For
example, as the inter-replenishment period goes to 0 the joint ordering cost in
the GI model diverges, in contrast to what happens in the GICF model. Porras
and Dekker [PD08] show that the inclusion of the correction factor significantly
changes the replenishment cycles ki and the joint inter-replenishment period
with respect to those in an optimal GI solution. Moreover, they prove that there
is always a solution under this model that outperforms ordering commodities in-
dependently, thereby neglecting possible savings from joint orders. This desirable
property has not yet been proved for the GI model.
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Finite horizon. Most of the heuristics for the finite horizon case assume
variable demands and run in time Ω(T ) [LRS04,Jon90]. Some of them can be
extended to the constant demand case preserving polynomiality. To our knowl-
edge, the only heuristic with a provable approximation guarantee in this setting
is given by Joneja [Jon90]. Their algorithm is designed for variable demands, but
for constant demands and T =∞, it achieves an approximation ratio of 11/10.

Summary of results. In Sect. 2 we show that finding an optimal solution for the
GICF model in the fixed base case is at least as hard as the integer factoriza-
tion problem. This is the first hardness result for any of the variants of JRP
with constant costs and demands. In Sect. 3 we present, based on [WFD97], a
polynomial-time 9/8-approximation algorithm for the JRP with dynamic poli-
cies and finite horizon. As the time horizon T increases, the ratio converges to
γ ≡

√
9/8. In Sect. 4, we observe that the previous algorithm, extended to the

infinity horizon case, is an FPTAS for the class of GI policies (either variable or
fixed base model). This result is new for the fixed base case.

2 A hardness result for GICF

In this section we prove a hardness result for the JRP in the fixed base GICF.
In contrast to GI-CF1, this model has p as a parameter:

min
K0∆(k1, . . . , k|I|)

p
+
∑
i∈I

Ki

qi
+

1

2
hidiqi

s.t qi = kip (GI-CF2)

ki ∈ Z+

Essentially, we prove that if we are able to solve GI-CF2 in polynomial time,
then we are able to solve the following problem in polynomial time:

Integer-Factorization: Given an integer M , find an integer d with 1 <
d < M such that d divides M , or conclude that M is prime.

Reduction. The reduction uses two commodities. The main idea is to set up the
costs so that commodity 1 has a constant renewal interval of length M in the
optimal solution. Under this assumption, commodity 2 has some incentive to
choose an inter-replenishment time q2 not coprime with M , since this reduces
the joint ordering cost with respect to the case when they are coprime. When
this happens, and as long as q2 < M , we can find a non-trivial divisor of M by
finding the maximum common divisor of M and q, using Euclid’s algorithm.

We initially fix p = 1, 1
2h1d1 = H1, K2 = 0 and 1

2h2d2 = 1 (here H1 is a
constant we will define later), and therefore GI-CF2 reduces to:

min K0

(
1

q1
+

1

q2
− 1

lcm(q1, q2)

)
+
K1

q1
+H1q1 + q2

s.t q1, q2 ∈ Z+ (2)
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Note that, except for the term K0/ lcm(q1, q2), the objective function is the sum
of two functions of the form f(q) = A/q + Bq. We will frequently use that the
minimum of f is equal to 2

√
AB, and is attained at q =

√
A/B.

In order to force a replenishment interval q1 = M in any optimal solution
of Program (2), we make commodity 1 “heavy”. More precisely, we set K1 =
2K0M

3, H1 = 2K0M , so that
√
K1/H1 = M . Note that if q1 = M − 1 or

q1 = M + 1, we get the following relations:

K1

M + 1
+H1(M + 1)−

(
K1

M
+H1M

)
=

H1

M + 1
>
K0M

M
= K0

K1

M − 1
+H1(M − 1)−

(
K1

M
+H1M

)
=

H1

M − 1
> K0,

and therefore

K1

q1
+H1q1 + q2 >

(
K1

M
+H1M

)
+K0 + 1 = K0 + 4K0M

2 + 1 (3)

for q1 = M − 1 or q1 = M + 1. Using that K1/q1 + H1q1 is convex in q1 ∈ R+

with minimum at q1 = M , we obtain that Eq. (3) holds for any integer q1 6= M .
Since K0 + 4K0M

2 + 1 is the objective value of Program (2) when q1 = M and
q2 = 1, we have proven that q1 = M in any optimal solution.

Now, Program (2) reduces to

min
M2

4

(
1

q
− 1

lcm(M, q)

)
+ q

s.t q ∈ Z+, (4)

where we eliminated q1 from the program, renamed q2 as q, and set K0 = M2/4.
Let us define

A(q) =
M2

4q
+ q, B(q) =

M2

4 lcm(M, q)
, F (q) = A(q)−B(q)

so the objective value of Program (4) for a given q is equal to F (q).
Let us assume that M ≥ 6. We now prove that any optimal value q for

Program 4 is in {2, . . . ,M − 1}. First, note that

F (1) =
M2

4
+ 1− M

4
≥ M2 −M

4
≥M and F (M) = M.

Then, note that for q ≥M we have that A(q) ≥ A(M) and B(q) ≤ B(M). They
follow from the facts that A(·) is convex with minimum A(M/2) = M and that
lcm(M, q) ≥ M . Therefore, F (q) ≥ M for q /∈ {2, . . . ,M − 1}. Finally, since for
M ≥ 6:

F (bM/2c) ≤ A (bM/2c)− M

4 bM/2c
≤ A

(
M

2

)
+

1

M/2− 1
− M

2(M − 1)
< M,
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then any q minimizing Program 4 should be in {2, . . . ,M − 1}. The second
inequality follows from an argument similar to the one used to show that q1 = M .
In particular, any such q is either relative prime with M , or it shares a non-trivial
divisor of M . The next lemma shows that the latter is always the case when M
is odd and composite.

Lemma 1. Suppose that M ≥ 6 is an odd composite number. Then every q′ ∈
Z+ minimizing F (·) satisfies gcd(M, q′) 6= 1,M .

Proof. We already proved that gcd(M, q′) 6= M for any q′ minimizing F (·).
Suppose M and q′ are coprimes. Then B(q′) = M

4q′ , and therefore F (q′) ≥
minq∈R{A(q)− M

4q }. Let us define L to be this minimum value, and suppose that
it is achieved at q∗, then it is easy to see that

L = M
√
u, q∗ =

M

2

√
u,

where u = 1− 1
M . To get a contradiction, we will prove that there exists q near

to q∗ such that F (q) < L. To see this, let 3 ≤ p ≤
√
M be any non-trivial divisor

of M and let q ∈ [q∗ − p/2, q∗ + p/2] be any integer divisible by p. Let us write
q = (1 + ε)q∗, where ε may be negative. Using that lcm(M, q) · gcd(M, q) = Mq,
we have that

F (q) =
M2

4q
+ q − M gcd(M, q)

4q
≤ M2

4q
+ q − Mp

4q

and therefore

F (q)− L ≤ M2u

4q
+ q − L− M(p− 1)

4q
. (5)

Using M2u
4q∗ = q∗ we can simplify

M2u

4q
+ q − L =

M2u

4(1 + ε)q∗
+ (1 + ε)q∗ − 2q∗ =

q∗

1 + ε
+ εq∗ − q∗ =

ε2

1 + ε
q∗

which, combined with Eq. 5 and |ε| ≤
∣∣∣ p2q∗ ∣∣∣ ≤ 1√

Mu
= 1√

M−1 gives:

F (q)− L ≤ 1

1 + ε

(
ε2q∗ − M(p− 1)

4q∗

)
≤ 1

1 + ε

(
M
√
u

2(M − 1)
− p− 1

2
√
u

)
Finally, since 1 + ε > 0 and

√
u < 1, we have that

(1 + ε) (F (q)− L) ≤ M
√
u

2(M − 1)
− p− 1

2
√
u
<

M

2(M − 1)
− p− 1

2
,

and it is easy to see that the rightmost expression is negative for M ≥ 3, p ≥
3, which are true by assumption. Hence, F (q) < L, which proves the desired
contradiction. ut
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If 2 is not a divisor of a composite number M ≥ 6, Lemma 1 guarantees
that the greatest common divisor between M and the solution to Program 4 is
always a non-trivial divisor. Since we can check if M is prime in polynomial time
[AKS04], the following result holds:

Theorem 1. Suppose that GI-CF2 is polynomial-time solvable. Then Integer-
Factorization is polynomial-time solvable.

3 Approximation algorithm for finite horizon

In this section we present a dynamic policy for the finite horizon case. Recall
that if we replenish commodity i at times 0 = t1 < t2 < . . . < tni

< T , then
C indiv

ord (i) ≡ niKi and Chold(i) ≡ dihi

2

∑ni

j=1(tj+1− tj)2, where tni+1 = T . We call
the values tj+1 − tj the inter-replenishment lengths.

We temporarily assume that the approximation algorithm has oracle access
to N , the total number of joint orders in some optimal solution for JRP. We
briefly describe how to remove this assumption in Sect. 4. The description of the
algorithm (Alg. 1) is a simple two-step process. In the first step, the algorithm
places joint ordering points at every multiple of T/N , starting at t = 0. In the
second step, each commodity places its orders on a subset of those joint orders in
such a way that the individual ordering and holding costs are minimized. Note
that this can be carried out separately for each commodity. A similar observation
has been used to define an algorithm for GI policies [WFD97].

Algorithm 1

1: Approx-JRP (T, hi, di,Ki,K0)
2: Guess N , the number of joint orders in an optimal solution.
3: Set p = T/N to be the joint inter-replenishment length.
4: Set J = {jp : j = 0, . . . , N − 1}, the set of joint order positions.
5: for i ∈ I do
6: Choose a subset of J to be the orders of commodity i such that
C indiv

ord (i) + Chold(i) is minimal.
7: return the schedule obtained.

Running time. We have to be careful in how to execute the algorithm. The set J
may have Ω(T ) elements, while the input size is proportional to log T . However,
we can explicitly define this set by giving T and N , and it is easy to check that
the size of N is polynomial in the input size.

The same difficulty arises in Step 6, but a similar representation can be
applied to keep the space polynomial: if the individual schedule for some com-
modity i minimizes C indiv

ord (i) + Chold(i), a simple convexity argument implies
that the inter-replenishment lengths can take at most two values and they are
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consecutive multiples of p. Therefore, we can define this individual schedule by
giving the (at most) two inter-replenishment lengths and their frequencies.

It follows that the only step where polynomiality can fail is Step 6. The
following lemma establishes its complexity. The proof is omitted due to lack of
space.

Lemma 2. Suppose that commodity i can be ordered only at multiples of some
fixed period p. Moreover, assume that T is a multiple of p. Then, it is possible
to compute the schedule minimizing Chold(i) +C indiv

ord (i) in polynomial time with
respect to the input size.

Approximation analysis. Given an instance of JRP, let OPT be any optimal
solution having exactly N joint orders, where N is the value guessed by Alg. 1.
For i ∈ I, let ni be the total number of individual orders of commodity i in
OPT and let OPT be the optimal cost. In this section, we may emphasize the
dependency on the schedule by including the schedule in brackets. For example,
we may write C[OPT] = OPT.

If a commodity is ordered exactly m times, it is easy to show that its holding
cost is minimized when the replenishments occur at {jT/m : j = 0, . . . ,m− 1}.
We say that m orders are evenly distributed when they are placed according
to this configuration. This optimality property for the holding cost of evenly
distributed orders is the basis for a lower bound on OPT we use to prove the
approximation guarantee. Our first step in this direction is to define two feasible
solutions for the problem:

– The virtual schedule (or VS) places exactly (1 + βi)ni evenly distributed
orders of commodity i, for every i ∈ I. Each βi is a parameter to be defined.

– The real schedule (or RS) allows joint orders in J = {jp : j = 0, . . . , N − 1}.
For each commodity i we place exactly (1+βi)ni orders, that are obtained by
shifting each individual order in the virtual schedule to the closest point in
J . If there are two closest joint orders, we choose the closest one backwards
in time.

Note that both schedules are not defined algorithmically. The real schedule is
defined from the virtual schedule, and there is a one-to-one correspondence be-
tween their individual orders through the shifting process. We use the term
shifted order to indicate this correspondence.

Loosely speaking, the cost of the real schedule is closely related to the cost
of the schedule output by Alg. 1, while the virtual schedule is related to a lower
bound on OPT. Both are used as a bridge that relates OPT with the cost of
the schedule returned by Alg. 1.

Proposition 1. If βi ≤ 1/8 for every i ∈ I, then Chold[RS] ≤ 9
8Chold[VS].

Proof. Consider any commodity i ∈ I. For simplicity, we omit subindices and
write n instead of ni and β instead of βi. Let q = T/(1 + β)n be the inter-
replenishment length of the commodity in the virtual schedule. Let p = T/N be
the joint inter-replenishment length for the real schedule. Note that q ≥ p/(1+β).
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Suppose first that p ≥ q. In RS, the commodity is replenished in every joint-
order position. Directly evaluating the holding costs gives

Chold[RS](i) =
T 2hd

2N
≤ T 2hd

2n
= (1 + β)Chold[VS](i) ≤ 9

8
Chold[VS](i).

On the other hand, if p < q, let k be the only integer satisfying kp ≤ q <
(k + 1)p. Clearly, the inter-replenishment lengths in the real schedule can only
take the values kp or (k + 1)p. Let a be the number of orders of length kp and
let b the number of orders of length (k + 1)p in the real schedule. We have the
relations:

a+ b = (1 + β)n and a(kp) + b(k + 1)p = q(1 + β)n,

from where we get, in particular, that bp = (1 + β)n(q − kp). Using these three
relations, and evaluating the holding cost, we obtain:

Chold[RS](i)

Chold[VS](i)
=
a(kp)2 + b(k + 1)2p2

q2(1 + β)n
≤ (1 + β)n(kp)2 + b(2k + 1)p2

q2(1 + β)n
.

which can be written after some additional manipulation as

Chold[RS](i)

Chold[VS](i)
≤ (−k2 − k)

(
p

q

)2

+ (2k + 1)
p

q
.

To conclude, note that −k(k + 1)x2 + (2k + 1)x, as a function of x, has

maximum value (2k+1)2

4k(k+1) , which is at most 9/8 when k ≥ 1. ut

The next proposition shows that the individual ordering and holding costs in
RS are within a constant factor of the respective costs in OPT. The proof (not
included due to lack of space) uses Prop. 1 and some simple relations among RS,
VS and OPT.

Proposition 2. Let γ =
√

9/8. Then for every ε > 0 we can choose {βi}i∈I so
that the real schedule satisfies the following properties for T sufficiently large:

– Chold[RS] ≤ (1 + ε)γ · Chold[OPT]
– C indiv

ord [RS] ≤ (1 + ε)γ · C indiv
ord [OPT]

Let S be the schedule returned by Alg. 1. Recall that its output is a schedule S
that minimizes C indiv

ord +Chold restricted to use N evenly distributed joint orders.
This and Prop. 2 give the following inequalities for large T :(
C indiv

ord + Chold

)
[S] ≤

(
C indiv

ord + Chold

)
[RS] ≤ (1 + ε)γ

(
C indiv

ord + Chold

)
[OPT].

Since N is the number of joint orders in OPT, then Cjoint
ord [S] ≤ Cjoint

ord [OPT].
Adding up, we obtain C[S] ≤ (1 + ε)γC[OPT] which is an approximation guar-
antee asymptotically equal to γ for Alg. 1. For small T , a closer look at our
analysis gives an approximation factor of 9/8.

Theorem 2. Alg. 1 is a 9/8-approximation algorithm (
√

9/8 for large T ) for
dynamic policies in the finite horizon case.
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4 GI model

We can easily adapt the algorithm described in Sect. 3 to the GI model with
variable base (see Alg. 2). We now guess p, the optimal joint inter-replenishment
length. Note that Step 5 is simpler, since qi is always one of the two multiples
of p closest to

√
Ki/hi.

Algorithm 2 GI model algorithm

1: Approx-JRP (T, hi, di,Ki,K0)
2: Guess p, the optimal renewal interval in an optimal solution.
3: Set J = {jp : j = 0, . . . , N − 1}, the set of joint order positions.
4: for i ∈ I do
5: Choose qi as a multiple of p such that Ki/qi + hiqi is minimum.
6: return the schedule obtained.

Note that Alg. 2 finds the best value of qi for the optimal p, and there-
fore computes the optimal GI policy. Since GI policies approximate unrestricted
policies by a factor of 1/(

√
2 log 2) ≈ 1.02 [MR93,TB01], our algorithm achieves

these guarantees. The bound in Sect. 3 (≈ 1.06) is slightly worse since we are
not using the powerful machinery available for the stationary case.

From this observation we can obtain a fully polynomial-time approximation
scheme for GI policies by exhaustively searching p in powers of (1 + ε). The
range of search can be [pmin, pmax], which are the values defined in Eq. (1).
The total running time is polynomial in the size of the input and 1

log(1+ε) =

O(1/ε). The only thing we need to prove is that choosing p′ in the range
p ≤ p′ ≤ p(1 + ε) is enough to get a (1 + ε)-approximation. This follows from
the fact that if (p, {ki}i∈I) defines an optimal schedule with value OPT, then
(p/(1 + ε), {ki}i∈I) has cost

K0

p(1 + ε)
+
∑
i∈I

Ki

(1 + ε)kip
+

1

2
hidiki(1 + ε) ≤ (1 + ε)OPT.

Essentially the same idea can be used to remove the guessing assumption in
Alg. 1. We just exhaustively search N in (aproximated) powers of γ.

Finally, Alg. 2 can be extended to the fixed base GI model. The only difference
is that we guess p assuming it is a multiple of the base B. The exhaustive search
in powers of (1 + ε) has to carefully round the values of p to be multiples of B.

Theorem 3. Alg. 2 (properly modified) is an FPTAS in the class of GI policies
and in the class of fixed base GI policies.
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