
ARCHIVES
Automated Reaction Mechanism Generation: S E NSTfTUTE

Improving Accuracy and Broadening Scope

b1

Gregory Russell Magoon
B.S. in Chemical Engineering, University of Connecticut, 2006

M.S. in Chemical Engineering Practice, Massachusetts Institute of Technology, 2008

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

@Massachusetts Institute of Technology 2012. All rights reserved.

Author ....

Certified by ....

....................................................................
Department of Chemical Engineering

May 18, 2012

. ............. ..................................................
William H. Green

Professor of Chemical Engineering
Thesis Supervisor

K)

A ccepted by ........ ......... ...........................................................
Patrick S. Doyle

Professor of Chemical Engineering
Chairman, Committee for Graduate Students

1

y
F -





Automated Reaction Mechanism Generation:

Improving Accuracy and Broadening Scope

by

Gregory Russell Magoon

Submitted to the Department of Chemical Engineering on May 18, 2012

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering

Abstract

Chemical kinetic modeling plays an important role in the study of reactive chemical

systems. Thus, an automated means of constructing chemical kinetic models forms a useful tool

in the engineering and science surrounding such systems. This document describes work to

further develop one such tool, known as RMG (Reaction Mechanism Generator). Focus is placed

on improving the accuracy of parameter estimation in the mechanism generation process and

expanding the scope of applicability of the tool. In particular, effort has targeted the generation

and use of explicit three-dimensional molecular structures for chemical species considered

during reaction mechanism generation. This work has resulted in the generation of a software

system integrated with RMG that can automatically generate and use such structures with

quantum chemistry or force field codes to obtain more reliable thermochemistry estimates for

cyclic structures without human intervention. Ultimately, the result of these updates is improved

usefulness and reliability of the software system as a predictive tool.

An application of the tool to the high temperature oxidation of JP-10, a jet fuel often used

in military applications, is described. Using the newly refined RMG system, a detailed chemical

kinetic model was constructed for this system. The resulting model represents a significant

improvement upon existing work for JP- 10 oxidation by capturing detailed chemistry for this

system. Simulations with this model have been found to produce results for ignition delay and

product distribution that compare favorably with experimental results. The successful application
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of the refined RMG software system to this system demonstrates the practical utility of these

updates.

Thesis Supervisor: William H. Green

Title: Professor of Chemical Engineering
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1 Chapter 1: Introduction

1.1 Background

1.1.1 Automated reaction mechanism generation

Detailed chemical kinetic models aim to capture all the relevant chemistry for a system of

interest, including relevant elementary reaction pathways and associated kinetic and

thermodynamic parameters. Detailed chemical kinetic models of reacting systems have been

useful in many applications, including combustion, pyrolysis, and atmospheric chemistry. A

typical detailed chemical kinetic model will consist of hundreds of molecular species and

thousands or tens of thousands of elementary reactions. Once constructed, such a model can be

used to gain fundamental insight into the underlying chemistry of the system or to perform

predictive simulations (e.g. reactive computational fluid dynamics simulations for combustor

design).

The availability of a tool to automate the process of kinetic model generation bypasses

the process of constructing kinetic models by hand, which can be very time-consuming and

error-prone. In an ideal scenario, such a tool is a black box that takes information from the user

regarding reactant structures and conditions of interest (temperature and pressure, and initial

concentrations) and returns a detailed chemical kinetic model containing important

intermediates, products, byproducts, the important reactive steps, and estimates of the relevant

kinetic and thermodynamic parameters As such, automated reaction mechanism generation

software systems can be an extremely useful predictive tool for both engineers and scientists.

1.1.2 RMG

RMG (Reaction Mechanism Generator) is a Java software system for automated reaction

mechanism generation.I It was originally developed by Dr. Jing Song, under the guidance of

Prof. William Green in the Department of Chemical Engineering at the Massachusetts Institute

of Technology.2 To generate a kinetic model for a system of interest, the user specifies reaction

conditions (i.e. temperature, pressure, reactant structures and concentrations) and the program

constructs kinetic models composed of elementary chemical reaction steps, while determining

the associated species concentration trajectories. In this sense, RMG is similar to other
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automated reaction mechanism generation programs such as EXGAS.3 However, several unique

features of RMG distinguish it from similar tools, including the use of a rate-based model

construction algorithm,4 described further below. Additionally, integrated consideration of

pressure dependence has been incorporated into RMG.5 Other recent RMG development efforts

have focused on data collaboration with the PrIMe community and expanding flexibility of atom

types beyond carbon, hydrogen, and oxygen.6 Previous applications of RMG include the (steam-

cracking) pyrolysis of n-hexane 7 and the chemistry of various hexadiene8 and butanol9 isomers in

diffusion flames.

1.1.3 Rate-based model construction algorithm

RMG uses a version of the rate-based model-construction algorithm described by Susnow

et al.4 In this algorithm, the model is partitioned into a "core" and an "edge", with the initial

reactants serving as seed to the core. The edge consists of products of reactions amongst core

species. At each iteration of the algorithm, the core is simulated and when flux to an edge species

is found to exceed a user-defined numerical tolerance, that species is moved into the core. This

process repeats until the core can be simulated to a target time or conversion without flux

thresholds being exceeded for any of the edge species.

1.1.4 Parameter estimation in automated reaction mechanism generation

The RMG software system brings together a number of components, including routines

for reaction enumeration and cheminformatics, ODE solvers for model simulation, general

program structure and logic, and parameter estimation routines. RMG's parameter estimation

routines are particularly important in the process of mechanism generation; not only are the

resulting kinetic and thermodynamic parameters directly reflected in the resulting detailed

chemical kinetic model, but also they affect the mechanism generation process itself, influencing

which species will be incorporated and which pathways are explored. Moreover, these estimation

routines present a clear opportunity for improvement as the scope and accuracy of these routines

is one of the biggest obstacles to black-box automated reaction mechanism generation.

Obviously these parameter estimates should be as accurate as possible, but practical

considerations suggest that uncertainties on the order of a factor of ten in rate coefficients and

equilibrium constants are a reasonable goal. This level of accuracy should be sufficient to

produce a model that is "in the right ballpark" and sensitivity analysis can be used to determine
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where further effort should be placed for parameter refinement. (In most cases, only a small

fraction of the parameters must be estimated accurately for accurate modeling and it is sufficient

to use rough estimates for the remainder.)

Originally, RMG used Benson's group additivity method to estimate thermodynamic

values used during mechanism generation. Benson's group additivity method works very well

when appropriate group values are available. However, accuracy can severely suffer when

groups are chosen that are not the best for the system at hand or will not work at all if such

groups are not available, limiting the scope of thermodynamic parameter estimation. In

particular, for cyclic species, special ad hoc ring corrections must be applied. It would be

impractical to exhaustively include such specialized ring corrections for all the cases that could

arise. As a result of such shortcomings, a more general means of estimating thermodynamic

properties "on-the-fly" is desired. This would enable RMG to handle a broader range of

compounds, including species with interesting ring structures.

Similarly, kinetic parameters are estimated in RMG using "rate-libraries" which

enumerate rules for estimating kinetic parameters, such as activation energy, based on the nature

of the groups involved in reaction. Each of RMG's reaction families has its own rate library. In

certain cases, kinetic parameters estimates will be based on experimental values from carefully-

studied reactions. In other cases, however, parameters must be estimated for unstudied reactions,

and values must be extrapolated from well-studied cases. As with the original thermochemistry

estimates, kinetic parameters are currently estimated using groups based on molecular

connectivity. First order ring-effects for reactions such as intramolecular hydrogen abstraction

are taken into account by considering the size of the cycle formed in the transition state.

1.2 Overview

This chapter, Chapter 1, introduces automated reaction mechanism generation, its

implementation through RMG, its uses, and the importance of parameter estimation.

Chapter 2 provides a discussion of connectivity-based thermodynamic parameter estimation

in RMG. Different approaches for accounting for non-nearest neighbor steric effects in branched

hydrocarbons are discussed and the implementation of one such approach in RMG is described.

Chapter 3 describes an evaluation of various tools for three-dimensional molecular structure

generation. The selection and testing of one such tool, RDKit, is described.
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Chapter 4 describes the implementation of a software framework within RMG, termed the

QMTP system, for performing on-the-fly thermochemistry estimates using explicit three-

dimensional structures.

Chapter 5 follows with a description of some of the practical considerations and

implementation details associated with the QMTP system.

Chapter 6 presents a discussion of the application of RMG (with QMTP system features) to

the case of JP-10 combustion and work on development of a comprehensive, validated JP-10

combustion model is described.

Chapter 7 presents high-level ab initio calculations performed on disproportionation systems

towards improving intra-molecular disproportionation estimates.

Chapter 8 discusses opportunities for obtaining further insights and improvements,

summarizes the main contributions of this work, and presents concluding remarks.
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2 Chapter 2: Connectivity-based thermodynamic parameter

estimation

2.1 Introduction

Accurate estimation of ideal-gas thermochemical parameters is a key consideration in

many engineering applications. Thermodynamic parameters (enthalpy of formation, entropy, and

heat capacity as a function of temperature) are particularly important in kinetic modeling. Over

the years, many approaches have been developed to estimate thermodynamic quantities in a

manner that is accurate, general, and fast or "inexpensive" (using as few human or computer

resources as possible). The often competing nature of these aims leads to a wide range of viable

methodologies that are each, in some sense, near-optimal for a given application.

In the case of kinetic modeling for gas kinetic applications (covering pyrolytic and

combustion systems), accurate thermodynamic parameters (with errors on the order of kcal/mol)

covering a wide temperature range (typically at least 300 K - 1500 K) must be estimated for

hundreds of chemical species. Frequently, these chemical species can be branched or cyclic (both

aromatic and non-aromatic) and can also include radical sites (unpaired electrons). The process

of automatically building kinetic models using a software system such as RMG (Reaction

Mechanism Generator)' is even more demanding, as tens or hundreds of thousands of chemical

species are enumerated in the process of determining which are suitable for inclusion in the final

kinetic model, and thermodynamic parameters must be estimated for these species as well. These

needs call for fast, general thermodynamic estimation procedures with reasonable accuracy.

Traditionally, group additivity approaches, such as the method designed by Benson,' 0 have been

used. These approaches require group values obtained through regression analysis of "known"

target property values (e.g. standard heat of formation at 298.15 K) for a representative set of

molecules. These pre-computed group values may then be extended to estimate properties for

molecules outside the training set. Despite the long history of these methods, they continue to be

an active area of research." These approaches are not without limitations, as will be described

later, but often perform satisfactorily for a wide range of molecular species.

Originally, RMG was implemented using the Benson group additivity scheme based on

1976 parameter values. However, the implementation did not consider steric effects present in
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branched alkanes. In this chapter, two competing approaches to account for such steric effects

are evaluated, with focus on highly-branched alkanes, particularly those related to 2,2,4,4,6,8,8-

heptamethylnonane, which serves as a benchmark for the cetane scale for diesel fuels in addition

to being a primary reference fuel component. The implementation of suitable steric corrections in

RMG is then discussed, including a description of an approach for implementing bond-centered

groups within an atom-centered group framework (as used by RMG). The chapter closes with a

discussion of connectivity-based approaches in the context of other estimation approaches

discussed in this thesis as well as opportunities for further refinement.

2.2 Evaluation of connectivity-based approaches to account for

steric effects

Steric effects arising from non-nearest neighbor effects require special considerations in

these approaches. These effects are particularly pronounced in highly branched alkanes. The

Benson group additivity approach'0 and the "methyl repulsion" group additivity approach of

Domalski and Hearing12 are two of the most popular approaches for obtaining quick

connectivity-based estimates using group additivity while taking these non-nearest-neighbor

effects into account. The Benson and "methyl repulsion" methods are similar in principle, but

differ in their approach to treating non-nearest neighbor steric effects, as well as in the raw group

values.

The Benson group additivity approach has a long history, being first proposed and

parametrized, including destabilizing non-nearest neighbor "gauche interactions", in 1958;13 it

was then extended in 1969.'1 The values from their 1976 update are amongst the most widely

used, and included the introduction of new non-nearest-neighbor effects in the form of

destabilizing "1,5-interactions." 5 Cohen and Benson later updated Benson's gauche interaction

counting scheme and updated the group values in 1992.16

In the Benson scheme, gauche interactions are 1,4-interactions in branched species; the

gauche interaction counting schemes of the 1976 and 1992 Benson approaches are summarized

in Table 1. Examples of gauche and 1,5-interactions, are illustrated in Figure 1 and Figure 2. The

1976 and 1992 alkane group values are reproduced in Table 2.
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Table 1. Comparison of Benson gauche counting schemes. Adapted from Cohen and Benson.16

Benson (1976) gauche counting scheme

C, atom group Cb atom group # gauche
interactions

P P, S, T, or Q 0

5 S (trans/gauche) 0/1

S T (gauche/syn) 1/2

S Q 2

T T (trans/cis) 2/3*

T Q 4

Qi Q 6
'T-T -will have 5 i ti:he inteLmN. or%

P=primary; S=secondary;

Revised Benson (1992) gauche counting scheme

C, atom group C4 atom group #gauche
interactions

P P, S, T, or Q 0

S S 0

S T 1

S Q 2

T T 3

T Q 5

QQ 8

T=tertiary; Q=quaternary

H3 C

Figure 1. Example illustrating two gauche or 1,4-interactions

R R' R R

Figure 2. Example branched alkanes with two and one 1,5-interactions, respectively.

Table 2. Benson group additivity group values for alkanes from 1976 and 1992. Adapted from Cohen and

Benson.10

Group AAH ,298 (kcal/mol) AAH ,298 (kcal/mol)

(1976 values) (1992 values)
C-(C)(H)3 = P -10.2 -10.00

C- (C) 2(H)2 = S -4.93 -5.00

C-(C) 3 (H) = T -1.90 -2.40

C-(C4 = Q 0.50 -0.10

gauche (1,4) correction = G 0.80 0.80
1,5-correction = F 1.5 1.60
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In 1988, Domalski and Hearing attempted to address limitations in Benson's 1976 approach,

particularly with regard to steric effects in branched hydrocarbons. 12 They proposed the "methyl

repulsion" method. The name is somewhat of a misnomer as, in this approach, methyl ligands

actually provide a stabilizing effect relative to larger ligands. Rather than applying post hoc

steric corrections as in the Benson approach, the "methyl repulsion" method appears to

incorporate the steric effects in the raw group values, which take the degree of the carbon center

(i.e. primary, secondary, tertiary, or quarternary) into account; stabilizing corrections are then

added when the substituent is small (i.e. methyl). The Domalski and Hearing approach, with its

"methyl repulsion" method of accounting for steric effects in branched hydrocarbons is widely

used; it is, for example, the recommended approach for estimating heat of formation in the latest

Perry's Chemical Engineer's Handbook, 8' ed. Alkane group values for Domalski and

Hearing's "methyl repulsion" method are summarized in Table 3.

Table 3. Gas-phase heat of formation group values in Domalski and Hearing's "methyl repulsion" method.

Adapted from Domalski and Hearing.18

Group AAH ,298 (kcal/mol)

C-(H) 3(C) -10.10
C-(H)2(C)2 -4.931
C-(H)(C)3 -0.280
-CH 3 corr (tertiary) -0.540

C-(C)4 +4.589
-CH 3 corr (quaternary) -1.090
-CH 3 corr (tert/quat) -0.430
-CH 3 corr (quat/quat) -0.153

A comparison of the raw group values between Benson and "methyl repulsion" methods shows

that the most significant difference is for quaternary carbons, which likely arises mainly from the

different approach to steric corrections.

The appropriate interpretation of the "tertiary", "quaternary", "tert/quat", and "quat/quat"

is not immediately obvious for certain molecules. In particular, the questions arise: 1) Should a

methyl on a tertiary carbon always use the "tertiary" value or use the "tert/quat" value if a

quaternary carbon is nearby? and 2) Do the "tert/quat" and "quat/quat" designations refer to

quaternary carbons directly adjacent, or are carbons one spot removed considered as well? The

table format and text of Domalski and Hearing12 seem to imply that methyls on a tertiary carbon

should always use the "tertiary" value and that "tert/quat" and "quat/quat" refer to tertiary or
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quaternary carbons directly bonded to a quaternary carbon. However, careful examination of the

estimated values and a worked example for 2,2,4,4-tetramethylpentane suggests an alternative

counting scheme, wherein methyls on a ternary carbon can use the "tert/quat" value if a

quaternary carbon is nearby and "tert/quat" and "quat/quat" can refer to carbons either

immediately adjacent or one spot removed. In the text that follows, the counting scheme

suggested by the tables/text will be termed A, while a counting scheme in the spirit of the

treatment implied by the alkane estimates and example in Domalski and Hearing' 2 will be termed

B.

The heat of formation for 2,2,4,4,6,8,8-heptamethylnonane presents an interesting case

study for these alternative approaches to treating steric effects.

2.2.1 Heat of formation for 2,2,4,4,6,8,8-heptamethyinonane

2,2,4,4,6,8,8-heptamethylnonane (otherwise known as isocetane, and henceforth referred to

as HMN) is a highly-branched alkane, most widely known for its role as a primary reference fuel

component and benchmark for the cetane scale for diesel fuels. There have been recent efforts to

construct detailed chemical kinetic models for HMN combustion.19 The structure of this highly

branched hydrocarbon is shown in Figure 3.

Figure 3. Structure of 2,2,4,4,6,8,8-heptamethylnonane (HMN)

Several approaches were used to estimate the standard heat of formation of HMN at 298.15 K, as

shown in Table 4. In addition to using the previously-discussed Benson and "methyl-repulsion"

methods, we found an estimate published by DIPPR20 , reportedly based on Benson group

additivity (though the value suggests that older group values were used or some modifications

were applied). Additionally, we have included an estimate2' from the program Thergas (which

uses a group additivity approach, likely based on the "methyl repulsion" method). We also

estimated the heat of formation by applying the "2C" correlation from Somayajulu and

Zwolinski, a connectivity-based approach for acyclic alkanes, which takes non-local connectivity

effects into account.22 Additionally, the MM4 force field of Allinger et al.23 was applied to the
23

problem. The MM4 approach has been found to reliably reproduce alkane heats of formation.
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A conformation search with the MM4 program with default parameters (2000 "pushes")

identified 76 distinct low-energy conformations. The minimum energy MM4 conformation was

used as a reference onto which corrections were applied. A B3LYP/CBSB7-optimized version of

this conformation is shown in Figure 4. MM2 rotor scans in Chem3D (part of the

ChemBioOffice suite) suggested that one of the (non-methyl) rotors had a barrier that was below

5 kcal/mol, prompting a "TOR" correction of +0.5715 kcal/mol. Following the recommended
24approach of Allinger et al., contributions from the higher energy conformations were taken into

account; through this, we estimated a "POP" contribution of +0.4098 kcal/mol. (Note that for

some of the conformations, MM4 did not include contributions from low frequency vibrational

modes; we expect that the error introduced by this is very probably less than 0.25 kcal/mol, and

likely much less, so we did not make an effort to correct for it.) For the approach labeled CBS-

QB3-BAC, we first applied the CBS-QB3 method2 5 in Gaussian03 26 to the minimum energy

conformation from the MM4 conformation search; for this relatively large C16H34 molecule, the

calculation is quite computationally demanding. We then applied an atomization scheme with

bond-additivity corrections, as determined by Sabbe et al.27 to arrive at the final value.

Figure 4. Minimum energy configuration for HMN from MM4 search, subsequently optimized with

B3LYP/CBSB7
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Table 4. Estimates for standard heat of formation of HMN

Method/Source AHr,298
(kcal/mol)

Benson group additivity (1992 rev.; no steric corrections) -107.7

"methyl repulsion" method (A/B) -101.5/-94.7

DIPPR estimate20  -98.8

Thergas estimate21 -96.3

TRC Web Thermo Tables2 9 -90.6 ± 3.1

Benson group additivity (1992 rev.) -93.3

Somayajulu and Zwolinski correlation 22  -93.7

MM4 -93.5

CBS-QB3-BAC -93.2

The fact that the last four approaches give results that agree within about 0.5 kcal/mol provides a

strong indication that they all offer a reliable estimate of the true value. More specifically, based

on these four results, -93.5±1.0 kcal/mol seems to be a reasonable estimate for the true heat of

formation. The difference in Benson values in the table also illustrates the significant magnitude

(over 10 kcal/mol) that the destabilizing steric effects have in this molecule. The results suggest

that the Benson method is significantly more accurate than the "methyl repulsion" (A) method in

this case. It is also noted that the value from the curated and critically evaluated

Thermodynamics Research Center (TRC) Web Thermo Tables (WTT) overlaps with the

suggested estimate, given the uncertainties; the source of the TRC WTT estimate is not clear,

however. Furthermore, the heat of formation for HMN used in the combustion mechanism by

Oehlschlaeger et al. is -99.0 kcal/mol;19a,29 this coincides most closely with the DIPPR estimate

in Table 4, though it is more than 5 kcal/mol lower than both the central value of the estimate

suggested here and the TRC WTT value.

Although the agreement of the last four approaches appears to provide strong validation

for these values and the Benson approach, we were not aware of an experimental value for the

heat of formation for HMN for comparison, and we decided to seek further validation from two

structurally similar molecules with experimental data for heat of formation: 2,2,4,6,6-

pentamethylheptane and 2,2,4,4,6-pentamethylheptane. These are shown in Figure 5, below:
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Figure 5. Structures of 2,2,4,6,6-pentamethylheptane and 2,2,4,4,6-pentamethylheptane

Results of application of various approaches, along with experimental data from Desai3o and

TRC recommended values (which are apparently based on both experiment and a Somayajulu-

based estimate)31, are shown in Table 5.

Table 5. Estimates for standard heat of formation of structural analogs for HMN

Method/Source AH ,298 (kcal/mol)

2,2,4,6,6- 2,2,4,4,6-
pentamethylheptane pentamethylheptane

"methyl repulsion" method (A/B) -78.7/-74.7 -78.2/-73.3

Benson group additivity (1992 rev.) -74.6 -72.2

Somayajulu and Zwolinski correlation 22  -74.9 -72.15

experiment30  -75.45 -72.1

TRC3' -75.4 -71.6

In addition to matching closely with the experimental values, the Benson estimates capture both

the direction and most of the magnitude of the difference in heat of formation between 2,2,4,6,6-

pentamethylheptane and 2,2,4,4,6-pentamethylheptane.

Although the "methyl repulsion" (A) method also captures the relative instability of

2,2,4,4,6-pentamethylheptane, it significantly underestimates the magnitude of this difference.

The "methyl repulsion" (B) method appears to be somewhat better, though still not as good as

the Benson approach, at capturing this difference.

It is noted that the differences between Benson and "methyl repulsion" (A) approaches

for these three molecules are of the right direction and magnitude to suggest that large portions

of the apparent errors in the "methyl repulsion" approach may be due to the lack of destabilizing

1,5-interactions. It is therefore hypothesized that a refined version of the "methyl repulsion"

approach, reparametrized with an additional "group" for 1,5-interactions, may produce

significantly improved results, assuming the "A" counting scheme is used.
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Without such reparametrization, however, it would appear that counting scheme B is

more appropriate than counting scheme A. A summary of the methyl group counts for these

alternative counting schemes is included in Table 6.

Table 6. Methyl correction group counts used in "methyl repulsion" counting schemes A and B, for cases

where the two schemes differ

Scheme A Scheme B

Molecule -CH3 -CH3 -CH3 -CH3 -CH3 -CH3 -CH3 -CH3
(tert) (quat) (quat/tert) (quat/quat) (tert) (quat) (quat/tert) (quat/quat)

2,2,4,4,6,8,8-
heptamethylnonane 1 8 0 0 0 0 4 5

2,2,4,6,6-
pentamethylheptane 1 6 0 0 0 0 7 0

2,2,4,4,6-
pentamethylheptane 2 5 0 0 0 0 2 5

2,2,3-
trimethylbutane 2 0 3 0 0 0 5 0

2,2,3,4-
tetramethylpentane 3 0 3 0 0 0 6 0

2,3,3,4-
tetramethylpentane 4 0 2 0 0 0 6 0

2,2,4,4-
tetramethylpentane 0 6 0 0 0 0 0 6

2.2.2 Benson vs. "methyl repulsion" approach for other branched alkanes

Although a comprehensive comparison between the Benson and "methyl repulsion"

methods is beyond the scope of this work, a comparison of a few cases where the "methyl

repulsion" method did better than the original 1976 Benson approach is warranted, as such cases

provided a key original motivation for the use of the "methyl repulsion" approach.

Table 7 shows estimates for the 16 branched alkanes considered in Appendix C of Domalski and

Hearing 2 , where they argued that the "methyl repulsion" approach outperformed Benson's 1976

parametrization in accuracy.

Table 7. Comparison of heat of formation estimates for 16 branched alkanes. (Values reported as A/B when

the "methyl repulsion" counting approaches A and B differ; Table 6 includes the differing group counts for

these cases)

Standard heat of formation at 298.15 K Error (experiment - estimate)
(kcal/mol) (kcal/mol)

Molecule experiment Benson Benson "methyl Benson Benson "methyl
(1976) (1992) repulsion" (1976) (1992) repulsion"

2-methylpropane -32.1 -32.5 -32.4 -32.2 0.4 0.3 0.1
2,2-dimethylpropane -40.2 -40.3 -40.1 -40.2 0.1 -0.1 0.0

2-methylbutane -36.7 -36.6 -36.6 -36.6 -0.1 -0.1 -0.1
3-methylpentane -41.1 -40.8 -40.8 -41.0 -0.4 -0.3 -0.1
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2,2-dimethylbutane -43.5 -43.6 -43.5 -44.0 0.1 0.0 0.5
2,3-dimethylbutane -42.6 -43.0 -42.4 -43.1 0.4 -0.2 0.5

3-ethylpentane -45.3 -44.9 -45.0 -45.4 -0.4 -0.3 0.1
2,2,3-trimethylbutane -48.9 -48.4 -48.5 -48.6/-48.3 -0.5 -0.4 -0.3/-0.5

3,3-diethylpentane -55.5 -53.6 -53.7 -55.5 -1.9 -1.8 0.0
2,2,3,3-tetramethylbutane -53.9 -55.4 -53.8 -52.3 1.5 -0.1 -1.6

2,2,3,3-tetramethylpentane -56.6 -58.7 -57.2 -57.1 2.2 0.6 0.5
2,2,3,4-tetramethylpentane -56.6 -58.2 -56.9 -59.5/-59.2 1.6 0.3 2.9/2.5
2,3,3,4-tetramethylpentane -56.4 -59.7 -56.9 -59.6/-59.2 3.3 0.5 3.2/2.7
2,2,4,4-tetramethylpentane -57.8 -58.9 -58.8 -62.9/-57.3 1.2 1.0 5.11-0.5

3,3-dimethylpentane -48.1 -47.0 -46.9 -47.9 -1.1 -1.2 -0.2
3-ethyl-3-methylpentane -51.4 -50.3 -50.3 -51.7 -1.1 -1.1 0.3

Root-mean-squared error 1.33 0.72 1.74/1.06
The table shows that four of the five largest errors from the 1976 Benson approach (2,2,3,3-

tetramethylbutane, 2,2,3,3-tetramethylpentane, 2,2,3,4-tetramethylpentane, and 2,3,3,4-

tetramethylpentane) are significantly mitigated when the updated group values and gauche

counting scheme of the 1992 Benson approach are used. In fact, the root-mean-squared deviation

between estimate and experimental values for these 16 molecules is lower with the 1992 Benson

approach than with the "methyl repulsion" approaches. Even so, the "methyl repulsion" approach

still outperforms the 1992 Benson approach in several cases, most notably 3,3-diethylpentane,

3,3-dimethylpentane, and 3-ethyl-3-methylpentane. The fact that the "methyl repulsion"

approach outperforms the Benson approach in these cases with ethyl branching suggests that the

general principle of treating methyl differently than larger ligands (e.g. ethyl) has a solid

empirical basis. As mentioned earlier, further improvement on the "methyl repulsion" approach

may be possible by reparametrizing with the inclusion of 1,5-repulsion effects.

Although further study is needed, the results for HMN and other branched molecules

discussed here provide evidence that the Benson method (with the updated 1992 group values

and gauche counting scheme) is at least comparable in accuracy to "methyl repulsion" (B) for

estimating the heat of formation of branched alkanes.

Additionally, based on these findings, we suggest that when using the "methyl repulsion"

method, care should be taken to implement appropriate methyl corrections, using an approach

like counting scheme B. Alternatively, with counting scheme A, a refinement to the "methyl

repulsion" method that considers 1,5-corrections may be appropriate.

2.3 Implementation of connectivity-based steric corrections in RMG

In order to account for the destabilizing effects of branching in RMG, the Benson approach

to steric effects has been implemented in RMG in "15_" and "Gauche_" group databases to

26



supplement the existing "Group_", "Radical_" and "Ring_" group databases. Some of the

practical considerations associated with this implementation are discussed here.

Firstly, the gauche and 1,5 corrections are only applied to acyclic compounds, as these

interactions will not be correctly counted in strained (cyclic) molecules and also, some of the

interactions may already be taken into account in the ring-corrections. In any case, alternative

approaches newly implemented in RMG, as discussed in later chapters, are suitable for cyclic

molecule thermochemistry estimation.

Also, it has been noted that consistency between group values is important;32 that is, all

group values should be fitted simultaneously, and trying to piece together group values from

multiple sources can produce unexpected results or inaccuracies. Investigation suggested that

RMG's existing group values were based on Benson's 1976 parametrization. Although it was

found above that the 1992 parametrization was slightly more reliable for alkanes, applying such

corrections to the 1976 values would produce inconsistencies. Therefore, group values and group

counting were implemented in RMG based on the 1976 parametrization. (The alternative of

reparametrizing all group values is discussed later.)

Additionally, as shown in Table 1, some of the 1976 gauche counting scheme relies on

information (i.e. trans, gauche, syn, and cis configurations) not available through connectivity-

based representation of the molecule. In these cases, we have RMG count based on the most

stable configuration (with the lowest count of gauche interactions); in these cases, the counting

scheme used also agrees with the 1992 counting scheme. On the other hand, some of the more

complicated gauche counting, such as the TTT case which should have 5 gauche interactions,

does follow from connectivity and is taken into account in the RMG implementation. The

implemented counting scheme for alkanes is shown in Table 8.
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Table 8. Gauche counting scheme for alkanes implemented in RMG

C. atom group Cb atom group # gauche
interactions

P P, S, T, or Q 0

S S 0

S T 1

S Q 2

T T 2*

T Q 4

Q Q 6
*TTT will have 5 gauche inLeracLions

Finally, we need to implement these corrections within the atom-centered group

framework used by RMG. The 1,5-corrections are readily implemented in RMG's atom-centered

framework by using the middle ("3") carbon atom as the group center. The gauche corrections,

on the other hand, are basically bond-centered corrections, and mapping these to the atom-

centered framework is not as straightforward. The distinction between atom-centered groups and

bond-centered groups is visually summarized by example in Figure 5.

Bond-centered group Atom-centered group
Figure 5. Bond-centered and atom-centered group example

An approach was developed to perform this mapping, and is visually summarized in Figure 6.

Figure 6. Diagram summarizing the mapping of bond-centered groups to atom-centered groups by combining

all bonds values around a given center into a group value for that center

The basic idea of the approach is to create an atom-centered group for each possible combination

of bond-centered groups. In the case of alkane gauche corrections, each such bond group will be
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counted twice in a given molecule (once for each atom in the bond). Thus, in order to avoid

double-counting, the total of all the bond group values for each bond-group combination should

be divided by two. Using this approach, the ten* possible alkane bond groups were mapped to

70 different atom-centered gauche groups. It should be possible to extend this approach for

mapping bond-centered groups to atom-centered groups for other bond-centered schemes (such

as the bond-centered approach for polycyclic aromatic hydrocarbon thermochemistry estimation

from Yu et al.3 3 ).

Although the previous discussion has focused on alkanes, steric effects due to branching

can also be important in alkenes and ethers. Benson's 1976 parametrization includes gauche

corrections for alkenes and ethers as well as 1,5-interactions for ethers. For each ether 1,5-

interactions, a 3.5 kcal/mol destabilizing correction is added to the enthalpy of formation. Each

ether gauche correction is worth 0.5 kcal/mol. Because the ether corrections may be readily

localized by using a (atom-centered) group centered on the oxygen, the corrections are not

double-counted and the sum of the two bond increments is not divided by two. For alkenes, a

destabilizing correction of 0.5 kcal/mol per gauche interaction is used and the counting scheme

discussed in Benson et al. (1969),'1 (including neglecting the single gauche correction for

"secondary" Cs) was applied. As in the ether case, the alkene gauche groups will not be double-

counted and the division by two is not applied.

2.4 Concluding remarks

As described above, fast routines for steric corrections for branched hydrocarbons and

ethers have been implemented in RMG's atom-centered group framework. There are still

opportunities for improvement on the existing framework, however. Firstly, there may be

opportunities to refine the groups used in these steric corrections, as discussed previously. Also,

there is the opportunity to improve upon the group values. As discussed previously, we have

decided to use older Benson parameters based on practical considerations. Ideally, one could

* - with n =4, k =2 (4th triangular number)
k

( n+k-1) =2n)
? = withn=

k=0
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produce a utility that would be able to quickly train a self-consistent and up-to-date set of group

values, given an arbitrary group counting scheme and training set. The main limiting step for

implementing such an approach is the creation of a curated set of training data that is accurate

and comprehensive in terms of terms of both the groups that are covered and the available

thermodynamic property data (i.e. data is available for enthalpy, entropy, and heat capacity at the

necessary temperature). Finally, there is the opportunity to expand the scope of the groups to

consider heteroatoms and other types of interactions not considered here. This would require the

acquisition of a large amount of data (either from the literature or through computational means)

for compounds with the groups of interest. In general, however, the degree of improvement from

many of the above approaches is seen to be rather small, and there is, in some sense, a point of

diminishing returns. There are likely some areas of "low-hanging fruit" (which could become

apparent from further use of these methods and application to new areas) that could provide

opportunities for significant improvement for connectivity-based approaches.

Taking a step back from focusing on connectivity-based approaches, we now consider the

problem of thermochemistry estimation more generally. As the examples above demonstrate,

group additivity can produce quite reliable estimates in many cases; however, in some cases, the

approach is ill-suited to the task at hand. Two noteworthy limitations of group additivity

procedure are: 1) it relies on a connectivity based molecule representation and 2) it requires

availability of accurate group values to cover molecules of interest.

Although the fact that group additivity relies on a connectivity-based representation of a

molecule may also be interpreted as a strength of the method, it also limits the application to

structures without significant steric effects (outside the previously discussed branching

considerations); in particular, group additivity will produce quite inaccurate results for cyclic

species, unless ad hoc ring corrections are applied. Appropriate corrections, are not, in general,

available, and accurate application of group additivity approaches is limited to simple (e.g.

cyclopentane) or well-studied (e.g. adamantane) ring structures.

The fact that group additivity requires accurate pre-computed group values is not typically a

significant issue for the well-studied classes of molecules involving only carbon, hydrogen,

and/or oxygen. However, as soon as heteroatoms (e.g. sulfur, silicon, nitrogen, and halogens) are

added to the set of target molecules, the limited availability of appropriate group values can

become a significant issue.
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An approach that, to a large extent, bypasses these two limitations is to generate explicit

three-dimensional molecular structures and perform on-the-fly force field or quantum mechanics

calculations on them to obtain the desired thermodynamic quantities.

Broadbelt and co-workers first introduced this approach in 1994." However, use of their

approach has been limited by factors including robustness and speed.35 We have developed a

next-generation system within RMG that attempts to circumvent some of these limitations. In

addition to making extensive use of open-source tools, the approach takes advantage of recent

developments from several fields, including progress in three-dimensional geometry embedding,

force fields, and chemical structure representation, along with enhanced robustness of quantum

chemistry codes, and improvements in computer speed and disk storage capabilities. This

approach will be more completely described in later chapters.

It should be noted, however, that this is not the only approach that can be imagined for

addressing the limitations of connectivity-based approaches. For example, the shortcomings of

these methods for cyclic molecules may be partially addressed by expanding the scope of the ad

hoc ring corrections to encompass all the ring templates needed for a particular set of molecules.

However, the set of such molecules that will be considered, will not, in general, be known in

advance, particularly in the context of automated reaction mechanism generation. Also, this

somewhat defeats the purpose of these group-based approaches, which is to extrapolate to new

compounds based on known values for reference compounds. In the existing implementation, the

ability to extrapolate for such ring compounds is fairly limited (including only cases with acyclic

ligands bound to the ring template), such that the amount of work to obtain the ring correction is

likely to be comparable to the effort to obtain an accurate estimate for the compound of interest

through other means. Even so, opportunities for expanding the scope of extrapolation may be

possible by adjusting the implementation of ring corrections. In the existing approach, a

maximum of one ring correction is applied to a given molecule, regardless of the number of rings

that are present (though some ring corrections, such as adamantine, may encompass multiple

cycles). One can imagine an alternative approach wherein multiple ring corrections can be

applied to the same molecule. This approach is likely to work fairly well for cases where the

rings are largely independent (e.g. cyclopentylcyclopentane), but its performance for fused rings

(e.g. bicyclo[3.3.0]octane) is likely to produce less reliable estimates. Such an approach still has

a good chance at being more reliable than the current group-addivity approach, and doesn't
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suffer from the speed limitations of the alternative ("QMTP") approach to be discussed; Nick

Vandewiele of Ghent University is currently investigating the feasibility of this approach.36
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3 Chapter 3: Generation of explicit 3D structures from

connectivity representations

3.1 Introduction

A critical part of the process of performing on-the-fly quantum mechanics or force field

calculations is getting some reasonable initial guess for the three-dimensional structure.

Converting connectivity representations to three-dimensional structures has been the subject of

considerable investigation, often in the context of studying protein or pharmaceutical compound

structure. A number of different approaches exist, and many of these have been considered in

this investigation for use in automated reaction mechanism generation.

3.2 Background

Three-dimensional structure generation procedures tend to fall into two general

categories: rule-based approaches and numerical approaches. 37

Rule-based approaches make use of heuristics and pre-computed ring templates to

construct an initial guess for the geometry. In such an approach, chemical structure knowledge of

experts is implemented as rules within a computer program; the program may then be used to

analyze a compound's connectivity, including factors such as the presence of functional groups

and rings, and return a three-dimensional structure. Such methods are relatively fast but are

limited in terms of their ability to handle a wide range of species. The program will only handle

species for which rules have been programmed.38 This can limit, for instance, the types of rings

that may be handled by the program. Examples of codes that use these approaches include Frog38

and CORINA39.

An alternative to rule-based approaches is to use distance geometry, a numerical

technique. Examples of programs implementing distance geometry methods include Key3D, 40

Balloon, 41 RDKit,42 and smi23d.43 Distance geometry refers to the use of specified distance

bounds between points to "embed" those points in n-dimensional space. 4 In the context of

chemical structure conversion, distance geometry methods apply this technique to atoms in a

molecule in order to produce reasonable atom coordinates in three dimensional space. This

embedding is often followed by an energy minimization using a force field to refine the
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structure. One of the main advantages of these methods is their flexibility; they do not, for

instance, need to be preprogrammed with ring structures.

There are several distinct distance geometry approaches. Partial metrization is one of the

more common methods for chemical structure conversion. Partial metrization refers to

smoothing of some of the distance bounds using the triangle inequality.45 Various other

metrization schemes also exist.45

A relatively recent distance geometry variant is the Stochastic Proximity Embedding

(SPE) algorithm introduced by Agrafiotis.46 The general idea of the algorithm is to repeatedly

choose two points at random and update their distance to more closely match the desired

distance. This algorithm has been applied to chemical structure conversion (and conformational

sampling)47 and has been found to be faster and more effective at probing conformational space

than typical distance geometry techniques.48 However, this approach is protected by patent 9 and

no tools that implement this approach are presently publicly available (though there have been

indications that such a tool might be forthcoming50).

3.3 Preliminary screening

Due to the large amount of existing research in this area and the complexities of

implementing a fast and robust structure conversion utility, it was decided that the most

straightforward approach would be integration of an existing third-party tool. In addition to the

method that is used, there were other factors to consider, such as availability (including

platform/operating system considerations) and robust handling of various molecular species that

can arise in automated reaction mechanism generation, including radicals. A number of software

packages were considered, and these are summarized in Table 9.

Table 9. Software packages considered for generating initial three-dimensional molecular structure

Name URL

RDKit http://rdkit.org

Marvin/Clean3D http://www.chemaxon.com/marvin/index.html

BUILD3D http://sourceforge.net/projects/xdrawchem/files/build3d/

Balloon http://web.abo.fi/-mivainio/balloon/index.php

smi23d http://www.chembiogrid.org/cheminfo/smi23d/
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FROG (Free http://bioserv.rpbs.jussieu.fr/Frog.html

Online druG 3D

conformation

generator)

Vconf http://www.verachem.com/vconf.html

DGEOM95 http://www.ccl.net/chemistry/resources/messages/1995/03/09.00 8 -

dir/index.html

Rubicon http://www.daylight.com/dayhtml/doc/rubicon/index.html

Key3D http://www.immd.co.jp/en/product 2.html

PRODRG http://davapc1.bioch.dundee.ac.uk/programs/prodrg/

Converter http://www.accelrys.com/products/insight/protein modules.html

Corina http://www.molecular-networks.com/products/corina

Concord http://www.tripos.com/index.php?family=modules,SimplePage,sybyl concord

1CM http://www.molsoft.com/chemistry.html

HyperChem http://www.hyper.com/

Omega http://www.eyesopen.com/-products/applications/omega.html

dgsol http://www-unix.mcs.anl.gov/-more/dgsol/

In addition to the utilities in the table above, some additional utilities were found in the literature,

but were not found to be readily available; these include: MOLBUL,5 ChemDBS-3D,
3,137,15 375 1,53 51,54 55

WIZARD,37'5 ' COBRA, 5 1 5 3 AIMB, 7 , s MOLGEO,5  , STRFIT, Alchemy 2000,

Chem-X, 37 , 53 and Alcogen.53 Of the software utilities investigated, RDKit and smi23d were the

most promising on the basis of method and availability, as they both provided implementations

of the distance geometry method and both were open-source codes under active development at

the time of the evaluation. However, testing showed that smi23d suffered from limitations in

radical handling capabilities; in particular, the version tested added hydrogens to radical sites to

form saturated three-dimensional structures. So, ultimately, RDKit was chosen for its ability to

handle radicals, its open-source nature, and its use of flexible distance geometry methods. (It

should be noted that since the time of this evaluation, the OpenBabel cheminformatics toolkit5 6

has been endowed with three-dimensional structure creation capabilities via the "--gen3d"
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option; although not considered here, this feature could also prove useful for generating three-

dimensional structures in the context of automated reaction mechanism generation.)

3.4 RDKit testing

Performance tests of RDKit gave generally quite satisfactory results. RDKit was tested

with several thousand species from the PrIMe database. The tests suggested that the program

worked as expected for most cases, including some "tricky" cases for which a rule-based

approach might encounter difficulty. For example, the RDKit-based approach produces the

desired structure for a challenging helical polycyclic aromatic hydrocarbon, as shown in Figure

7, whereas a typical rule-based approach would produce a nonsensical planar geometry for this

case.

Figure 7. Three dimensional structure for a helical polycyclic aromatic hydrocarbon (octahelicene) obtained

with RDKit-based approach (including UFF refinement)

For problematic cases that arose during this initial testing, bug reports were submitted to Greg

Landrum, the primary developer of RDKit, via the RDKit bug tracker on Sourceforge.net. 57

Similar issues arose sporadically in later application of RDKit in the context of automated

reaction mechanism generation and similar bug reports were warranted. In all cases, RDKit

developer Greg Landrum promptly addressed the issues and included the fixes in subsequent

(typically quarterly) releases of the RDKit program.

More recently, systematic testing of open-source three-dimensional molecular structure

generation utilities has been performed by an independent group of researchers; the researchers

concluded that RDKit was one of the best tools considered in their analysis, providing post hoc

support to the choice of this tool for integration with RMG.
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3.5 Summary

The availability of explicit three-dimensional molecular structures is a key component of

efforts to implement on-the-fly force field or quantum mechanics calculations in automated

reaction mechanism generation. A large amount of research has been done in the area of three

dimensional structure generation, and distance geometry methods offer a relatively flexible and

robust approach to the problem. An investigation uncovered many utilities that are available to

generate three-dimensional structures using connectivity representations as inputs. Evaluation of

the available utilities found that the open-source cheminformatics toolkit, RDKit, met the

robustness, accuracy, speed, and availability needs of our intended application, and it was

decided that RMG would be interfaced with this utility to quickly and reliably obtain three-

dimensional structures for molecular species considered during automated reaction mechanism

generation. Such integration is discussed in greater detail in the next chapter.
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4 Chapter 4: Design and implementation of explicit-3D-

geometry-based on-the-fly species thermochemistry

4.1 Background

The estimation of thermochemical parameters (enthalpy, entropy, and heat capacity) is a

key component of automated reaction mechanism generation programs like RMG. Such

thermochemical parameters affect reaction equilibrium constants, kinetic parameter estimates,

and thermal effects, influencing both the mechanism generation process and the behavior of the

final resulting model. The scale of the problem is significant, as parameters must be estimated

for tens or hundreds of thousands of chemical species in the process of generating a typical

detailed chemical kinetic model with hundreds of species.

Traditionally, automated reaction mechanism generation software relies on a group

additivity approach, such as the approach developed by Benson1 0 , 13, 15-16, for estimating required

thermodynamic quantities (enthalpy, entropy, and head capacity). This process is very fast and

usually quite accurate. However, the approach relies on the availability of appropriate

parameters. For many classes of compounds, including acyclic species with C, H, and 0, the

Benson approach can provide accurate results with a relatively small number of parameters.

However, when cyclic species are considered, specialized ring corrections are required; these

corrections are not as extensible and ad hoc ring corrections specific to a particular polycycle are

often required; examples include specific "norbornadiene" and "quadricyclane" ring corrections

applied to species with these particular polycyclic structures. Therefore, an approach that

bypasses the need for specialized parameters, such as ad hoc ring corrections, is highly desirable.

One approach to enhance the generality of the thermodynamics parameter estimation

process and reduce the need for specialized parametrization is to utilize explicit three-

dimensional molecular structure representations (rather than connectivity-based molecular

structure representations). Explicit three-dimensional molecular structures can be used with

quantum mechanics or force field calculations to obtain estimates of the desired thermodynamics

quantities. A proof-of-principle for on-the-fly quantum calculations in automated reaction

mechanism generation was developed by Broadbelt et al. in 1994.34 The system described here

extends the general approach of Broadbelt et al., incorporating recent developments in several
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fields, to make on-the-fly quantum and force field calculations more suitable for routine use in

automated reaction mechanism generation. We here refer to this as the quantum mechanics

thermodynamic property (QMTP) system.

4.2 Design and implementation of the QMTP system

4.2.1 Design overview

An overview of the QMTP system is shown in Figure 8. The workflow starts by

estimating a three-dimensional molecular structure using RDKit, followed by calls to an outside

program to perform quantum mechanics or force field calculations to refine that geometry and

compute its enthalpy and vibrational frequencies; the results of the calculation are then read and

used to calculate the desired thermodynamic properties using standard statistical mechanical

relationships within the framework of the rigid rotor/harmonic oscillator approximation. 59
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Figure 8. Overview of QMTP system.

The overview shows that the QMTP system leverages the large body of existing work in relevant

areas of cheminformatics and computational chemistry. In particular, system was designed to

make extensive use of free and open-source modules, when possible, to mitigate licensing issues

and avoid limiting operation to one platform or operating system.
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4.2.2 Three-dimensional geometry structure generation

As discussed in the previous chapter, RDKit was chosen to serve as a third party utility

for conversion of connectivity representations into three-dimensional molecular structures due to

its ability to handle radicals, its open-source nature, and its use of flexible distance geometry

methods. Once the tool for three-dimensional structure generation was chosen, several other

aspects of the "OD->3D" conversion process needed to be considered. One issue is obtaining an

appropriate reference conformation of the molecule for performing the calculations; ideally, we

would use the global minimum energy conformation of the molecule; the force field structure

refinement will produce a local minimum, which may or may not also be the global minimum. A

number of different approaches exist to search for global energy minima, but the distance

geometry methods previously described also offer a simple and straightforward means for

conformational exploration.45 With such an approach, different random seeds are used to

initialize the distance geometry algorithm; after each of the resulting structures are refined with a

force field, the structure with the lowest force field energy following force field refinement

represents the most stable conformation identified. As the number of random seeds (iterations)

increases, it becomes more likely that the global minimum energy conformation will be

identified.4 4 Unfortunately, with this approach there is no way to tell how many iterations will be

required to reach the global minimum, nor will it be obvious that the global minimum has been

obtained once it is enumerated (this issue is shared by most conformational search approaches,

with the exception of deterministic global optimization using branch-and-bound approaches 60).

We have chosen here to use a heuristic for the number of embeddings (max[1, 5 x(Natoms- 3 )]) that

scales linearly with the number of atoms in the molecule; this was chosen to avoid potentially

burdensome computational cost associated with exponential scaling, while still accounting for

the generally greater conformational flexibility of larger molecules. It is noted that this will not

guarantee that the global minimum has been identified, though we expect that this will produce a

reasonable low-lying minimum for most of the cases where this approach would be applied (for

purposes of automated reaction mechanism generation for decomposition of small- or medium-

sized molecules).

Another consideration is the design of the interface between the programs involved in the

process. To implement the "OD->3D" structure conversion, a Python script was constructed to

provide an interface between RMG and the RDKit program. After RMG creates a "two-
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dimensional" MDL MOL file with the appropriate connectivity, RDKit is instructed to read the

structure into memory, perform the three-dimensional embedding (a number of times, as

discussed above), refine the three-dimensional coordinates using the UFF force field, and write

out a MOL file with the three-dimensional coordinates for the UFF-refined structure with the

lowest UFF energy, along with a MOL file for the corresponding unrefined structure (the use of

this unrefined structure will become apparent in the next section).

4.2.3 Format conversion and output parsing

The OpenBabel command-line utility5 6 is used extensively throughout the QMTP system

to create input files and convert between various formats. Python code based on version 1.0 of

the cclib libaries61 is used to parse output files.

4.2.4 Calculation method

With the exception of the MM4 method discussed below, the initial incarnation of the

system has been designed around using the semi-empirical PM3 method62, as implemented in

Gaussian03 26 and MOPAC20096 . The PM3 method was chosen for its relative speed compared

to other quantum mechanics-based calculations, for its accuracy relative to similar semi-

empirical methods (e.g. AM1), and for its wide availability in popular computer codes. Despite

the focus on this method for the initial implementation, and for the discussion in this paper, it is

noted that the framework described here can be readily extended to use additional methods

and/or quantum mechanics programs. It is expected that as computer hardware improves and as

electronic structure calculation/force field methods are further developed, it will become

practical to perform on-the-fly calculations using more accurate and robust methods with the

QMTP system during automated reaction mechanism generation.

4.2.5 Failure checking and recovery

Although the codes used to perform quantum mechanics or force field calculations are

relatively robust, they are not error proof. When calculations of this nature are performed

manually, troubleshooting is often required. We have incorporated automated troubleshooting

into the design for the QMTP system, since to automatically generate large kinetic models,

QMTP must successfully return a sensible estimate of the thermochemistry for every molecule

considered.
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MOPAC with UFF-refined geometry

5 keyword permutations each
MOPAC with "crude" geometry

Gaussian03 with UFF-refined geometry UM
18 keyword permutations each

Gaussian03 with "crude" geometry - j

lost resort estimate based on group additivity

Figure 11. Sequence of input file adjustments currently implemented in QMTP system for PM3 calculations

The QMTP system employs several approaches for checking and dealing with calculation

failures of various types. The QMTP system has been programmed with a list of alternative

inputs to provide to the quantum mechanics/force field program for cases in which the initial

default inputs do not produce a successful result; this is depicted schematically in Figure 9.

For each calculation, the QMTP system will check whether the calculation has completed

without an obvious (explicit) error from the called program. Assuming this passes, the QMTP

system will also confirm that there are no imaginary frequencies, which would indicate that a

saddle point (rather than a minimum) had been obtained. If requested by the user, the QMTP

system can also check that the apparent connectivity of the optimized structure matches the

desired connectivity (this is discussed further below). These checks are summarized

schematically in Figure 10. If all these checks pass, the key results from the output file are parsed

and used to compute the desired thermochemical properties. On the other hand, if any of these

checks fail, the next input combination in the list will be attempted. The process is repeated until

a successful result is obtained or all of the programmed input combinations have been attempted.

(In the latter case, the QMTP system will print a warning to the user and fall back to the

conventional group-additivity based estimates for the molecule.)

The different input combinations include variations on keywords to adjust the geometry

optimization algorithm, change the how the Hessian is guessed or updated, or change the self-

consistent field (SCF) algorithm; other variations in input include attempts to use initial guess

geometry, or even try an alternative program implementing the same method. This is

schematically depicted in Figure 11. The diagram shows how the QMTP system will start with

MOPAC, trying five different keyword combinations using the UFF refined geometry. If all

these five attempts fail, the QMTP system will retry the same keyword combinations using the
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"crude", unrefined geometry from RDKit. If these five new attempts also fail, the QMTP system

will move on to trying 18 different keyword combinations with Gaussian03, first with the UFF-

refined geometry, and then with the unrefined geometry, should the initial 18 attempts fail. The

result is up to 46 different input combinations that are attempted for each molecule.

The different input combinations used have been designed with the goal of increasing the

robustness of the system and avoiding the need to fall back to alternative, less reliable estimation

procedures. In particular, the default list of keyword combinations that have been programmed

into the QMTP system has been developed by manually investigating cases that fail all earlier

attempts and trying to find a combination of keywords that would produce a successful result. In

the process of investigating such cases, it was also found that the UFF-refined geometry was

sometimes unreasonable in some fashion (e.g. by the introduction of a spurious symmetry to the

molecule); however, the corresponding "crude", unrefined coordinates from RDKit's distance

geometry routine were more reasonable and readily processed using the default list of keywords.

Thus, in addition to storing the UFF-refined coordinates, the QMTP system also stores the

corresponding crude, unrefined coordinates. These coordinates may then be used to provide the

initial guess geometry, should the initial attempts with the UFF-refined geometry prove to be

unsuccessful.

One might imagine the possibility for more sophisticated troubleshooting approaches that

attempt to diagnose the actual problem with failed jobs and adapt the input keywords

accordingly, or do extensive cross-checking between thermochemistry computed using different

methods. Although this might reduce the time needed to obtain a successful result in many cases,

the extra layers of complication in developing the appropriate checks and logic were outside the

scope of the present study.

4.2.6 Storage of results and use of modified InChi and InChlKey

Advances in disk storage capabilities have made it practical to store a library of

calculation input and output files for hundreds of thousands of molecular species. As the time to

read to the calculation results is much smaller than the time to actually perform the calculation, it

is efficient to store the calculation results between runs so that they may be reused without time-

consuming recalculation. To do this, a unique and consistent shorthand notation for each

molecule is desired so that results for a particular molecule will be recognized from run to run,

44



regardless of atom numbering differences or other representation discrepancies between the runs.

Recent developments in chemical structure representation, have produced such a unique

chemical identifier, known as the InChI (International Chemical Identifier). 64 We have found that

the InChI (with some adjustments described below) is well-suited for labeling of stored quantum

chemistry results (at least to the extent that atomic connectivity is unambiguous), as it does not

encode electron position or bond type, so, for example, different resonance forms are "correctly"

represented by the same InChI. However, as the InChI can be quite long and includes characters

such as "/", it is not well-suited for file names for the stored results. Even so, a hash of the InChI,

known as the InChIKey, has more desirable properties for filenames, being only 25 characters in

length and consisting only of upper-case letters and a single hyphen ("65 Consequently, input

and output files for calculations performed by the QMTP system are named using a version of

the InChIKey, so they may be readily retrieved during later runs, obviating the need to re-

perform the calculation. The stored results are kept in a folder that may be preserved between

runs so that a library of hundreds of thousands of results can be accumulated.

As there is a non-zero (though very small) chance for the InChI strings for two molecules

in the library mapping to the same InChIKey (an "InChIKey collision"), the QMTP system

places the InChI as the molecule name in the input file for the calculation so that it can be

checked.

As alluded to above, a couple of special considerations are applied to the InChI/InChIKey

strings. Firstly, it is noted that the recently-introduced "standard" InChI employs an option that

does not localize tautomeric hydrogen atoms in certain species, and is therefore not well suited to

representing species in the gas phase. Consequently, we use a "non-standard" InChI with the

"Fixedll" layer that localizes such tautomeric hydrogen atoms. Additionally, no versions of

InChI that we are aware of currently allow for representing the electron spin multiplicity of the

species. In order to represent this, we here employ a modified version of the InChI/InChIKey

wherein an additional "multn" layer/string is appended to the InChI/InChIKey for species with

multiplicity of three of higher. This is best illustrated by example; as shown below, CH2 singlet

and CH2 triplet would be represented by InChI and InChIKey as shown in Table 10.

Table 10. Illustrative examples of modified InChI/InChIKey system to distinguish molecules with different

electron spin multiplicities.

Modifed InChI Modified InChIKey (vi.02beta)
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CH2 (singlet) InChI=1/CH2/hlH2 HZVOZRGWRWCICA-UHFFFAOYAZ

CH2 (triplet) InChI=1/CH2/hlH2/mult3 HZVOZRGWRWCICA-UHFFFAOYAZmu1t3

4.2.7 Connectivity checking

Ideally, the initial guess geometry and optimized geometry will correspond to the

intended target molecule. However, it is recognized that there is no inherent guarantee for this in

the process described above. It can be imagined that in certain cases, the optimizer will converge

to a potential energy surface minimum corresponding to an entirely different molecule than the

intended species. The consequence would be non-representative (and thus unreliable and likely

inaccurate) thermochemical properties being computed for the molecule of interest. In the QMTP

system, we have implemented optional (though recommended) connectivity checking safeguard

features to guard against this. The options associated with this feature and process is described in

further detail below.

When the "CheckConnectivity" option is set to "confirm", the QMTP system will attempt

to perceive connectivity (using methods described in greater detail below) for calculation results

that are otherwise successful; when there appears to be a connectivity mismatch, the calculation

will be treated as a failure, similar to jobs with imaginary frequencies or other sorts of errors, and

input is adjusted until either a successful result, including an apparent connectivity match with

the target molecule, is obtained or all of the various attempt options have been exhausted (in

which case, the QMTP system will fall back to the group additivity estimation approach). This is

shown schematically in the optional portion of Figure 10. Connectivity checking may also be

limited to only providing a warning to the user (without retrying with alternative keywords,

geometries, etc.) by setting the "CheckConnectivity" option to "check" or turned off completely

(no attempt at connectivity perception) with the "off' option.

Connectivity checking has been implemented with two alternative approaches to

connectivity perception. The primary approach is to use the OpenBabel's 5 6 built-in connectivity

perception algorithm on the final optimized geometry. This produces a .MOL file with

connectivity information for the optimized geometry. For added robustness and greater flexibility

(as well as for the ability to process MM4 results), a backup connectivity perception approach

(which is used in cases where the primary check fails due to OpenBabel crash or due to
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connectivity mismatch) has been implemented via our MoleCoor utility.66 The MoleCoor utility

perceives connectivity using an algorithm described elsewhere. 67 The idea of the algorithm is to

consider two atoms to be bonded when the distance between them falls below the sum of their

covalent radii plus a pre-set tolerance, while also being above a minimum threshold (0.40 A).
(The lower bound prevents atoms that are abnormally close to each other from being considered

to be bonded.) In our approach, the tolerance has been set somewhat loosely at 0.50 A to
accommodate apparent 0-0 bonding in a strained peroxide test case (apparently not recognized

by OpenBabel's algorithm); the edge case is depicted in Figure 12. This backup connectivity

perception process also produces a .MOL file with connectivity information.

Figure 12. Edge case with strained 0-0 bond considered in determining appropriate threshold for

connectivity perception; the double bond is a key source of the strain; the 0-0 bond length is approximately

1.84 A, necessitating a threshold of at least 0.48 A for the bond to be recognized using the algorithm

considered here

In either case, processing this .MOL file through the InChI utility produces an InChI

string, which, following removal of stereochemical layers, may be directly compared to the

InChI of the target molecule based on RMG's internal connectivity-based representation of the

species. An InChI mismatch corresponds to an apparent connectivity mismatch, while an InChI

match corresponds to an apparent connectivity match. When operating in the "confirm" mode, in

cases where both the primary and backup checks fail, the calculation result is assessed to be a

failure, and fallback procedures are followed as described previously.
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An example illustrating how this connectivity checking process can help to ensure

reliable thermochemical parameter estimation, while maintaining robustness, is shown in Figure

13. The figure shows how the initial attempt using the UFF-refined initial guess geometry can

converge to a structure that does not correspond to the desired cyclopentyne target molecule.

However, in this case, the "crude" initial guess geometry is much more reasonable and will

readily converge to a structure corresponding to cyclopentyne.* Without connectivity checking,

the results from the incorrect structure would be used, while with CheckConnectivity=confirm,

the results that are used will be based on the structure with the desired connectivity.

target molecule:
cyclopentyne UFF-refined final PM3-optimized geometry

initia I guess geometry

"'crude"
initial guess geometry final PM3-optimized geometry

Figure 13. PM3 optimization results for different initial guess geometries for cyclopentyne.

It should be noted, however, that connectivity is not always clear-cut, and ambiguous

cases can arise. It is quite possible that connectivity checking approach used here could indicate

false positive or false negative matches. Even so, we have made a reasonable attempt to make the

connectivity checking process reliable and robust, and our experience thus far suggests that the

use of the "CheckConnectivity=confirm" option is superior to alternatives.

* In this particular case, the QMTP approach is also able to successfully converge even the UFF-refined geometry to

the cyclopentyne target molecule using one of the four backup MOPAC2009 keyword variants.
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4.2.8 External symmetry number and chirality calculation

The symmetry number for molecular rotation (also known as the external symmetry

number) and chirality are key factors in the entropy of a molecular species, and these

contributions can affect the equilibrium constants for reactions by factors often two or greater.

Information about the point group of the molecular structure is sufficient to determine both the

symmetry number and chirality corrections. Consequently, we make use of the open-source

SYMMETRY program68 by passing it the optimized three-dimensional geometry as well as a

tolerance to allow small deviations from exact symmetry; SYMMETRY then calculates the point

group and returns the result to RMG. The symmetry number is determined from the point group

based on published relationships. 59 A chirality contribution of +R In 2 is included for point

groups that lack a superposable mirror image (i.e. point groups lacking Uh, ad, a, and S,

symmetry elements), effectively assuming a racemic mixture of mirror image enantiomers.

4.2.9 Force field and rotor scan capabilities

An interface with the MM4 force field software69 has also been implemented in RMG's

QMTP system. MM4 force field calculations are much less computationally demanding than

semi-empirical electronic structure calculations, and these methods have been found to produce

highly reliable thermodynamic property estimates for classes of molecules for which they have

been parametrized (e.g. alkanes 23, alkenes7 0 , and conjugated hydrocarbons71 ).

As alluded to above, the default behavior is to compute thermochemical properties within

the framework of the rigid rotor/harmonic oscillator approximation. However, the speed of the

MM4 calculations allows us to gather additional information about the potential energy surfaces

of molecules with rotors to better account for conformational flexibility without an inordinate

amount of added computational cost. In particular, we have implemented rotor scan capabilities

when using the MM4 force field. In this approach, a relaxed scan of each rotor is performed in 5'

increments; each rotor is considered independently, so that each scan gives a one-dimensional

profile of energy and moment of inertia for the mode of interest. Rotor symmetry number is

estimated based on connectivity. This information is provided to a Python-language code based

on CanTherm v1.07 to compute the desired thermochemical quantities using a separable

hindered rotor treatment (and also accounting for variation in the moment of inertia with the

rotor angle).

49



Scope of QMTP calculations

Although on-the-fly PM3 calculations based on explicit three-dimensional geometries are

expected to be useful in many cases, it is recognized that there are many cases where alternative

approaches, such as the original method based on group additivity, are still desirable. For

example, we expect that the traditional group additivity approach to be more reliable (and much

faster) than the QMTP approach for acyclic hydrocarbons. Therefore, we have implemented a

switch that will further restrict calls to the QMTP estimation routines to cyclic species, for which

the traditional group additivity based estimates are expected to be inaccurate. Also, the user may

wish to specify "known" thermochemistry parameters for a set of molecular species. Therefore,

the QMTP methods will only be called for molecules without user-specified thermodynamic

parameters.

Also, it is recognized that many methods, including the previously-discussed PM3 and

MM4, may be less accurate and/or less robust for treating radical systems with unpaired

electrons. Consequently, we have implemented an option where the user can specify the

maximum number of radical sites that a molecule can have for it to be directly processed by the

QMTP system. So, if a user sets this option to zero, only closed shell molecules are directly

processed by the QMTP system. In other cases (monoradicals, biradicals, etc.) hydrogen bond

increments (HBI) 73 are applied to QMTP results for the saturated, closed-shell parent molecule.

(It is noted that the HBI adjustments applied are the same that are used for conventional group

additivity-based estimates for radicals.)

For routine use for systems with only carbon, hydrogen, and oxygen, we currently

suggest settings that use QMTP only for cyclic species and closed-shell species (applying HBI

corrections for radicals).

It should be noted however, that the approach of using generic HBI corrections does not

always achieve a desirable level of accuracy. In particular, it has been found that the use of the

generic "C=CCJ=C" radical correction in 1,3-cyclopentadien-2-yl underestimates the HBI by a

significant amount, resulting in a result (79.4 kcal/mol) that differs from a CBS-QB3-based

result (95.9 kcal/mol) by over 16 kcal/mol. In this case, the error most likely due to the fact that

the allenic resonance form of this radical is severely strained by the presence of a ring, in

contrast to the unstrained acyclic molecules such as 1,3-butadien-2-yl, which would have been

used to determine this particular radical correction. The alternative for these cases would be
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either to apply more specific ring HBI corrections, such as those published in the literature for

particular cyclic radicals (e.g. Ref. 74), or use the QMTP system to directly perform calculations

on monoradicals. In the case of 1,3-cyclopentadien-2-yl, the latter approach using PM3 produces

an enthalpy of formation at 298.15 K of 86.4 kcal/mol, which is in closer agreement with the

CBS-QB3 value, though still deviates by about 9.5 kcal/mol.

4.3 Testing of the QMTP system

In addition to extensive testing during the development of the QMTP system (including

development of a library of keywords for failure recovery) several additional tests were

performed on the current version of the system, to more formally characterize the accuracy,

robustness, and speed of the system, as well as its influence on kinetic models.

4.3.1 Accuracy of estimates

In addition to informal comparisons to ensure accuracy, the QMTP system was tested on

a challenging test set of polycyclic hydrocarbons from Osmont et al., who had compiled

experimental values for standard enthalpy of formation at 298.15 K for 47 molecules.75 The

QMTP system (with PM3 and with the MM4 approach with separable hindered rotor treatment)

was applied to 43 of these molecules (four of the molecules had two geometric isomers; in these

cases, the QMTP result was applied to the isomer with the lower enthalpy of formation.)

Table 11. Accuracy of RMG estimation approaches, using experimental enthalpy of formation values

compiled by Osmont et al. as reference. Two molecules with three-membered rings failed the attempts with

the MM4 approach and were excluded from averaging. N=43, with the exception of the MM4 case.

Mean abs. error Root-mean-squared

(kcal/mol) error

(kcal/mol)

Original RMG group-additivity approach 40.0 55.8

QMTP system with PM3 approach 7.0 10.6

QMTP system with MM4 approach 29.6 53.1

Results of the comparison are shown in Table 11. The results show that the error in the

PM3 approach is, on average, more than a factor of five lower than the original RMG approach

based on group additivity. However, the MM4 approach, on average, does noticeably worse than
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the PM3 approach. A closer analysis of the results from the MM4 approach shows that the

largest errors are concentrated in species with three-membered rings, for which the MM4 force

field currently lacks parameters. 76

Table 12. Accuracy of RMG estimation approaches, using experimental enthalpy of formation values

compiled by Osmont et al. as reference for a subset of molecules without three-membered rings. N=23

Mean abs. error Root-mean-squared

(kcal/mol) error

(kcal/mol)

Original RMG group-additivity approach 22.8 40.9

QMTP system with PM3 approach 8.4 12.9

QMTP system with MM4 approach 1.3 3.0

Comparison on the subset of molecules without three-membered rings produces results

that are much more favorable with the MM4 approach, as shown in Table 12. In fact, the MM4

approach significantly outperforms the PM3 approach on this subset.

4.3.2 Effect on kinetic models

To assess the influence of the use of QMTP estimates on an actual detailed chemical

kinetic model, we took an existing combustion model, JP-10 combustion mechanism version

0.1977 and re-generated thermodynamic properties for the species using two approaches. The first

approach ("no QMTP") is the traditional approach used by RMG with use of group additivity in

most cases and with results taken from built-in default and GRI-Mech 3.0 thermodynamic

libraries for selected compounds where estimation is not required. The second approach

("QMTP") relies on the QMTP system described here for cyclic and polycyclic compounds;

cyclic radical thermochemistry is computed using hydrogen bond increment corrections to the

saturated molecule as computed using the QMTP system, and the CheckConnectivity option is

set at "confirm" to ensure that all estimates obtained via QMTP correspond to the desired

molecule; as with the first approach, results for selected molecules can be taken from the built-in

default and GRI-Mech 3.0 thermodynamic libraries. The mechanism includes a number of

polycyclic compounds, including JP-10 itself, for which the estimates obtained by the two

approaches are likely to disagree significantly.
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Figure 14, below, shows the time to maximum modeled CH concentration (used here as a

proxy for ignition delay) versus shock tube results from Davidson et al.78 at 45 different

conditions.
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Figure 14. Parity plot showing the time to maximum modeled CH mole fraction (used here as a proxy for the

modeled ignition delay) versus experimental ignition delay from shock tube data from Davidson et al.78

The plot shows that the use of the QMTP thermochemistry (which should, in general, be more

reliable) has a significant effect, sometimes changing the time to maximum CH concentration by

more than 70%.

It should be emphasized that the underlying mechanism and kinetic parameters are the

same in both approaches; the effect of using the QMTP approach should be even more

pronounced when considering its use in the context of the entire RMG mechanism generation

approach. Because detailed chemical kinetic models generated by RMG using the QMTP

approach will involve different thermochemistry estimates for core species and potential

intermediates, the actual species and reactions that are important enough to be included in the

mechanism will differ. Also, even if the same reaction appears in both models, the kinetic
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parameter estimates themselves can be affected through equilibrium and Evans-Polanyi-type

considerations (and also potential energy surface effects when obtaining pressure-dependent

kinetic estimates via Master Equation calculations).

4.3.3 Robustness and speed

To test the performance of the QMTP system in a mechanism generation setting, RMG

was run for 120 hours (5 days) with the QMTP system turned on to use PM3 results for cyclic

molecules; the CheckConnectivity option was set to "confirm". The system that was considered

involved high-temperature oxidation of the polycyclic molecule, JP-10.

Over this 120 hour period, RMG used the QMTP system to successfully obtain PM3

results for 22,277 cyclic molecules (22,244 with the primary MOPAC approach and 53 with

Gaussian03), in addition to performing traditional mechanism generation functions (e.g.

simulating the time evolution of the model, generating reactions, and estimating kinetic

parameters). An additional 20 cyclic species were attempted using QMTP but failed all attempts;

for all 20 of these cases, the failure of QMTP was due to an apparent connectivity mismatch

from the intended species, and without the connectivity checking option turned on, these would

have been considered successes. This corresponds to a success rate of greater than 99.9% and

demonstrates the robustness of this approach. Graphs for the 20 failures are shown in Figure 15;

many of these structures appear to highly strained and there may not exist minima on the PM3

potential energy surface that have the desired connectivity. Among the successful results were 7

molecular species for which results from initial attempts failed the connectivity check but later

attempts were able to produce a result with the desired connectivity. An additional 6 cases failed

the primary connectivity check, but the backup connectivity check suggested that the molecule

had the desired connectivity, and the attempt was considered a success.

§ In order to avoid an apparent bug specific to the Linux version of Gaussian03 used here, four of the Gaussian03

keyword alternatives involving the use of "opt=calcall" (corresponding to eight of the 36 Gaussian03 attempt

options) were removed from the programmed keyword list. It is not expected that the removal of 8 attempts has a

significant effect on the results.
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Figure 15. Twenty species that failed all QMTP attempts in JP-10 high-temperature oxidation test run. All

failed due to apparent connectivity mismatch between the desired molecule and the PM3-optimized geometry.

Figure 16 shows the number of species (on a logarithmic scale) that first succeeded at

each of the attempts. The plot shows that in the vast majority of cases, the first MOPAC attempt

was able to produce a successful result. However, the number of cases where the backup

attempts proved to be useful still number in the hundreds; the results demonstrate the utility of

using the alternative "crude" geometry, as well as the alternative PM3 implementation offered by

Gaussian03. Even so, these backup attempts reach a point of diminishing returns, and the graph

shows that many of the later attempts did not prove to be useful in this particular test run.
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Figure 16. Distribution of outcomes for QMTP system in JP-10 high-temperature oxidation test run. Each bin

on the abscissa corresponds to a particular "attempt" by the QMTP system to perform PM3 calculations with

various choices of input keywords, initial guess geometries, and PM3 implementations. The first five attempts

correspond to the use of the MOPAC implementation of PM3 with the UFF-refined initial guess geometry;

the next five use the MOPAC implementation with the "crude" (non-UFF-refined) initial guess geometry; the

next 14 correspond to the use of the Gaussian03 implementation of PM3 with UFF-refined geometry; the final

14 attempts correspond to the use of the Gaussian03 implementation with the "crude" geometry.

4.4 Opportunities for improvement and applying the approach to

other areas

4.4.1 Selective use of more accurate methods

As shown in Table 12, MM4 is significantly more accurate than PM3 for certain types of

molecules. Similarly, in some situations it would be better to run a DFT or high-level quantum

chemistry calculation rather than relying on PM3 or MM4. It would be easy to modify QMTP to
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use these other types of calculations - the challenge is writing the logic which would decide

which type of calculation to perform for each molecule.

4.4.2 Improvements to treating conformational flexibility

As discussed previously, the typical treatment is to assume harmonic behavior for all

internal modes; we have implemented rotor scan methods with the MM4 force field that account

for conformational flexibility at a higher level (separable hindered rotor treatment), but even this

approach may not achieve a sufficient level of accuracy for certain molecules/applications, and

some examples of this appear in the literature.79 There is opportunity for improvement of this

treatment, particularly when using the relatively computationally inexpensive MM4 approach.

One of the more promising approaches is the recently introduced multi-structural method of

Truhlar and coworkers80; this method is reportedly able to account for conformational flexibility

via both rotation about bonds as well as other modes such as ring inversion, and obeys desired

statistical mechanical limits (e.g. high temperature heat capacity). Implementation of this

approach within the QMTP system for use with MM4 calculations would seem to be the next

logical step for improving treatment of conformational flexibility. A key aspect of such an

implementation would be accurate and robust enumeration of all the minima on the molecule's

potential energy surface, without double counting equivalent conformations. Toward this end, we

have developed and implemented a novel conformational equivalence algorithm, designed for

this particular application, in the MoleCoor utility.66 These opportunities are discussed further in

Chapter 8.

4.4.3 Polarizability estimates

In addition to being used in estimation of thermodynamic parameters, on-the-fly quantum

mechanics calculations can produce estimates of polarizability, with the appropriate keyword

choices. Such polarizability estimates can, for example, be incorporated into approaches to

estimate transport properties estimation, and, in fact, an RMG script using the QMTP framework

has been created and applied to produce polarizability estimates as part of a post-processing

transport property estimation step. With additional software development, it should be possible

to integrate on-the-fly polarizability estimates directly into RMG's transport property estimation

routines.
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4.4.4 Solvation property estimation

The availability of explicit three-dimensional molecular structures also presents the

opportunity for more accurate treatments of solvation properties. Such properties are highly

dependent on volumetric and surface area properties of the molecules; a number of volumetric

and surface area metrics have been developed that can be quickly computed based on explicit

three-dimensional structures.81 Alternatively, the three-dimensional molecular structures could

serve as the starting point for more advanced (quantum mechanical) treatments of solvation, such

as polarizable continuum model (PCM) calculations.82 Work on treatment of liquid-phase

systems and solvation effect parameter estimation is currently underway through separate RMG

development efforts in the Green Group.

4.4.5 Standalone thermodynamic property estimation

Although "black box" ab initio methods have enabled reasonably straightforward

estimation of thermodynamic properties for a wide range of compounds, the application of these

methods requires some initial training and mistakes can easily creep into calculation results.

Also, the amount of "human time" associated with input file construction, job monitoring, result

analysis, and troubleshooting is non-trivial. As such, a more automated approach for setting up

and performing calculations and analyzing the results is highly desirable. The QMTP system

described previously is well-suited to this level of automation, as it performs all necessary steps,
from generation of an initial guess three-dimensional structure, to construction of calculation

input file, to troubleshooting, to processing the calculation results into the desired

thermodynamic property estimates, without human intervention. In fact, the QMTP features

have recently been incorporated into a standalone thermodynamic property estimation tool

distributed with RMG. Though this tool currently uses the same PM3 and MM4 methods as used

by RMG, it should be possible to extend this to use other, more accurate and time-consuming ab

initio methods, such as the popular CBS-QB3 2 5 or Gaussian-n 83 composite methods.

4.4.6 Kinetic parameter estimation

Currently, the results from the QMTP system affect kinetic parameters somewhat

indirectly through the properties of reactants and products. It could be possible to further

improve certain kinetic parameter estimates using information that may be obtained from on-the-
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fly calculations using explicit three-dimensional geometries for species minima. For example, a

scheme for kinetic parameter estimation for intramolecular disproportionation reactions based on

ring strain of stable molecules has been proposed by Herbinet et al.84

One can imagine even more direct means of using on-the-fly calculations with explicit

three-dimensional geometries to obtain kinetic parameters. In particular, there are opportunities

to adapt the approach to locate first-order saddle points; calculations using saddle-points could

be used to produce kinetic parameter estimates within the framework of transition-state theory

(TST). If realized, these types of capabilities could be particularly useful for reactions with cyclic

transition states (e.g. intramolecular hydrogen abstraction) for which the existing connectivity-

based estimates can be unreliable. Such opportunities are discussed further in Chapter 7 and

Chapter 8.

4.5 Summary

A system for performing on-the-fly quantum mechanics or force field calculations in the

context of automated reaction mechanism generation has been described. Testing has

demonstrated the impact, accuracy, and robustness of the system, which make it suitable for

routine use during mechanism generation. The system is particularly useful for obtaining more-

reliable thermochemical parameters for cyclic species (for which alternative automated group

additivity-based approaches are prone to significant error). Possible avenues for further

improvements and alternative applications have also been described.
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5 Chapter 5: Practical considerations of explicit-3D-

geometry-based on-the-fly species thermochemistry

5.1 Introduction

The previous chapter provided a general overview of the design and implementation of the

QMTP system as well as some general testing results. This chapter extends the discussion of the

QMTP system with focus on various practical considerations and provides additional

implementation details.

5.2 Source code and dependencies

The bulk of the QMTP system is implemented in the QMTP class within the Java

implementation of RMG; created as an analog to the GATP group-additivity class, it is located in

the jing.chem package. A QMData class has also been created as a data structure for in-memory

storage of calculation results. A molFile class has been introduced to allow creation of pointers

to MOL files stored on disk. Several python scripts (and batch script files for Windows

operation) used to interface the QMTP Java class with modules are located in the /scripts folder

of the RMG distribution.

5.2.1 Modules

As mentioned in the previous chapter, the QMTP system leverages several modules,

some of them developed by third-parties and distributed with permissive licensing. A brief

description of each of these, how they are used by the QMTP system, and how they are

integrated with RMG follows.

e cclib: A modified version of cclib v1.0 is used by the QMTP system for parsing desired

data from Gaussian, MOPAC, and/or MM4 files. (Further details about modifications are

described later.) The cclib license allows modification and redistribution with RMG (in

the /source/cclib folder), so no additional action by the user is required to obtain this

module.

* MoleCoor: MoleCoor is a python program developed by the author. It is used by the

QMTP system for connectivity perception in three-dimensional molecular structures, for
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MM4 input file creation, and for parsing of geometries from MM4 output during

connectivity checking. It is distributed as a submodule within RMG in the

/source/MoleCoor folder, and no additional action by the user is required to obtain this

module.

" CanTherm: CanTherm is a python package developed within the Green Group. It is used

by the QMTP system when using the MM4 feature for calculating desired

thermodynamic quantities based on one-dimensional rotor scans; it can also be used to

analyze the force constant matrix from MM4 calculations for more reliable frequencies

when using harmonic oscillator treatment. CanTherm has been modified by the author to

implement desired functionality and this is distributed with RMG in the

/source/CanTherm directory; the modifications are described in greater detail later.

* OpenBabel: The OpenBabel package is used by the QMTP system during generation of

Gaussian03 and MOPAC2009 input files; it also provides primary connectivity

perception functionality. OpenBabel is free, open-source software distributed separately;

it must be installed by the user.

" InChI: InChI software (vi.02 beta) is needed to determine the InChI and InChIKey for

unique representation of molecules, which is important in the file names and file titles

used by the QMTP system. InChI may also be used elsewhere in RMG and is not solely a

dependency of the QMTP system. InChI software is (freely) distributed separately and

the InChI binary must be placed in RMG's /bin directory.

" SYMMETRY: The SYMMETRY package is used for point group calculation. This is an

open-source academic code freely available on the Internet. The compiled binary must be

placed in RMG's bin directory.

" RDKit: As discussed previously, RDKit provides the QMTP system with the

functionality to convert connectivity representations into explicit three-dimensional

molecular structures. RDKit is free, open-source software distributed separately; it must

be installed by the user. RDKit also has its own dependencies, including, for example,

NumPy and Python.

" Gaussian03, MM4, and/or MOPAC2009: As discussed previously, Gaussian03 and

MOPAC2009 are used to perform PM3 calculations while the MM4 software package

provides capabilities for performing calculations with the MM4 force field. These
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programs are distributed separately and must be installed by the user, including the

setting of appropriate environment variables. Unlike the other modules, Gaussian03 and

MM4 are not freely available. An alternative, which is free for not-for-profit academic

use, is MOPAC2009.

5.2.1.1 Modifications to cclib

Several modifications were made to eclib v1.0. The original version parsed some portions

of Gaussian03 output files. Modifications included the addition of molecular mass, rotational

symmetry number, and rotational constants from Gaussian03 output. Additionally, functionality

for parsing MOPAC output files and MM4 output files was added. In these cases, parsing

capabilities were added for atomic numbers, molecular mass, Cartesian coordinates, energy,

vibrational frequencies, rotational constants, and the number of atoms. Additionally, steric

energy parsing capability was added for the case of MM4 output parsing. Finally, a bug in orbital

symmetry parsing and HOMO determination for triplet oxygen atom PM3 results from

Gaussian03 was addressed.

5.2.1.2 Modifications to CanTherm

A number of modifications were made to the CanTherm software. Several of these are

relevant to the QMTP system. In particular, functionality for working with MM4 cases,

including, for example, the ability to read in MM4 rotor scan output and MM4 force constant

matrix output, was added. The output was also adjusted to allow easier parsing by the QMTP

system in RMG. Additionally, code was added to consider the variation in reduced moment of

inertia with rotor angle, and this variation was incorporated into the solution of the Schrodinger

equation by fitting the inverse of the reduced moment of inertia to a Fourier series in the dihedral

angle. Appendix I includes a derivation of the matrix formulation for the kinetic energy term for

the Hamiltonian for this approach with variable moment of inertia.

5.3 RMG input file considerations

Various QMTP options were mentioned in the previous chapter's discussion of the QMTP

system. These options are selected using RMG's main input file, condition. txt. If the user desires
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to use the QMTP system features, they must include a QMTP block in the input file, as in the

example below, following the temperature and pressure and preceding the InitialStatus block:

ThermoMethod: QM Gaussian03

QMForCyclicsOnly: on

MaxRadNumForQM: 0

CheckConnectivity: confirm

The second field in the first line chooses the program/method to use. Options include "MOPAC",

"GaussianO3", or "both" (the default if this field is omitted). The "both" option requests that

RMG first try to use MOPAC and if all MOPAC attempts for a particular species are

unsuccessful, then it will try Gaussian03. In all three cases, these will use PM3 calculations. Two

other (more experimental) options are "MM4" and "MM4hr"; the former uses MM4 with the

rigid-rotor, harmonic oscillator (RRHO) approximation, while the latter does one-dimensional

rotor scans to treat rotor modes in a separable manner. The next line determines whether RMG

will use the QMTP approach for all species or just cyclic ones. It is often desireable to run with

this option on, as the QM calculations can be time-consuming and may be less accurate than

group-additivity for acyclic species, whereas they are more likely to improve accuracy for cyclic

species. Then, the user must specify the maximum radical number for species that will be fed to

the QM/force field program. For molecules with more radicals than the value specified here,

QM/force field calculations will be performed on the saturated molecule (with added hydrogens)

and hydrogen bond increment (HBI) corrections will be applied. Finally, the user must specify an

option for connectivity checking. Options here are "off', "check", and "confirm". As mentioned

in the previous chapter, the "check" option only uses connectivity checking to determine whether

to print a warning to the user; the "confirm" option uses connectivity checking to determine

whether a given calculation should be considered successful and used to compute

thermochemistry.

An example condition file using the QMTP system is included in the RMG distribution

under /examples/RMG/cyclopropane_QM/.
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5.4 Symmetry and chirality statistical effects

5.4.1 External symmetry number and chirality

As discussed previously, the QMTP system makes use of the SYMMETRY program for

point group calculation. Typically, the optimized molecular structure that should have a given

symmetry will not have exactly this symmetry due to rounding of the Cartesian coordinates and

the fact that the optimizer typically won't converge to the exact optimum. The SYMMETRY

program is able to take these deviations from perfect symmetry into account, and the user can

specify thresholds that the program uses in the process of testing for symmetry elements. The

current implementation of symmetry number estimation is performed first using a primary/initial

criterion at the built-in default of 0.05 and a final criterion at 0.02. In a small fraction of cases,

this will not result in a recognized point group. In these cases, fallback approaches are applied

until a recognized point group is obtained. The first fallbacks apply looser final and/or primary

thresholds, while the last resort approach requires exact symmetry (final threshold of 0.0) and

will most likely result in identification of the C1 point group. In cases where the last resort

approach is used, a warning is printed to the user, indicating that the symmetry may be

underestimated. The values used are summarized in Table 13.

Table 13. Thresholds used by QMTP system when invoking SYMMETRY for point group calculation

Attempt # Primary threshold Final threshold

(built-in default: 0.05) (built-in default: 0.0001)

I default 0.2

2 default 0.1

3 0.2 0.1

Last resort default 0.0

The point groups recognized by SYMMETRY and the QMTP system (and the associated

chirality and external symmetry number corrections to entropy) are summarized in Table 14.

64



Table 14. Point groups recognized by SYMMETRY and the QMTP system, and associated chirality and

external symmetry number corrections to entropy; n=2-8, m=4, 6, or 8; based partly on point group to

symmetry number conversion tables in the literature59

Point group ASsym ASchiral Point group ASsm ASchiral

R R R R

C1 0 +1n2 T -ln12 +1n2

Cs 0 0 Th -In12 0

Ci 0 0 Td - In 12 0

Cn -Inn +1n2 0 -In24 +1n2

Dn -ln2n +ln2 Oh -In24 0

Cnv -Inn 0 Cinfv 0 0

Cnh -Inn 0 Dinfh -In2 0

Dnh -In2n 0 I -In60 +n2

Dnd -ln2n 0 Ih -1n60 0

Sm m 0 Kh 0 0

2

In addition to determining statistical corrections, the point group is also used to determine

linearity, which affects which formulas are used to compute rotational contributions to

thermodynamic quantities. The C, ("Cinfv")and Doeh ("Dinfh") point groups correspond to

linear arrangements of atoms.

5.4.1.1 Special considerations for radicals

As discussed in the previous chapter, the currently recommended approach to compute

thermochemistry for radicals is to first compute thermochemistry for the molecule with the

radical sites saturated with hydrogens and then apply hydrogen bond increments (HBI). We want

to correct the entropy for radical species using the external symmetry number for the radical.

However, we don't explicitly have this number available as we don't have an explicit optimized

molecular structure for the radical. To partially address this complicating factor, the currently-

implemented approach is to compute the symmetry number effects due to removal of hydrogens

as a perturbation to the three-dimensional structure symmetry number based on the relative

65



group-additivity symmetry number for saturated and unsaturated (radical) molecules, as shown

in the expression below.

a graph
3D totrad Eq. 1

ext,rad = ext,sat graph
tot,sat

An implicit assumption here is that the internal symmetry numbers for the radical and saturated

molecule are the same. This is not guaranteed to be the case, particularly if the radical site is

located on a rotor atom. Ideally, the full expression below should be used:
graph

3D tot,rad intsat Eq. 2Cext,rad = ext,sat graph '
tot,sat intrad

At this time, this refinement hasn't been implemented, though estimating the ratio on the right

may be possible using graph-based methods, possibly using some of the same functionality used

to estimate rotor symmetry number (discussed next).

5.4.2 Rotor symmetry number

When performing calculations with MM4 hindered rotor capabilities, rotor (or "internal")

symmetry effects must be considered for accurate computation of partition function and entropy.

In principle, RMG's graph-based total symmetry number, including the product of internal and

external symmetry numbers could be used, in conjunction with the external symmetry number

from the three-dimensional structure, could be used to compute the net internal symmetry

number for all rotors. However, colleagues in the Green Group have found that the graph-based

total symmetry number estimation approach currently used by RMG for cyclic species is

unreliable. Therefore an alternative approach was desired, particularly in view of the fact that the

main use of the QMTP system, at least initially, would be for cyclic species.

Toward this end, a graph-based approach was developed for non-radical species that

appears to work for all cases considered thus far. The approach is implemented in ChemGraph.

calculateRotorSymmetryNumber(Node pjnodel, Node p_node2). First, a "fragment" rotor

symmetry number is calculated for each node in the rotor using

ChemGraph.calculateRotorFragmentSymmetryNumber(pnodei). The rotor fragment symmetry

number code is based off of the existing calculateAtomSymmetryNumber code, as the idea is

similar, but it must be adjusted to handle incomplete fragments, triple bonds, and aromatic

structures. This function returns an integer, either 1, 2, or 3. With the rotor fragment symmetry
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numbers calculated, the rotor symmetry number is calculated by combining the two fragment

symmetry numbers as shown in Table 15 to determine the overall rotor symmetry number.

Table 15. Determination of overall rotor symmetry number from rotor fragment symmetry numbers

Larger rotor Smaller rotor Overall rotor Example

fragment fragment symmetry

symmetry symmetry number

number number

3 3 3 Ethane

3 2 6 Toluene

3 1 3 Methanol

2 2 2 Biphenyl

2 1 2 Phenol

1 1 1 hydrogen peroxide

5.5 Directories created and used by the QMTP system

5.5.1 Description of directories and their contents

Several subdirectories are created and/or used by the QMTP system within the RMG

working directory. A description of each follows:

* /2Dmolfiles: The /2Dmolfiles folder is used to store connectivity representations in MOL

file format as created by RMG. Files are stored according to [modified InChIKey].mol.

The Cartesian coordinates for all atoms are all zero. These files serve as the inputs to the

three-dimensional molecular structure generation performed using RDKit. As the

generation of these files is quite fast, the folder is cleared at the start of a new run.

* /3Dmolfiles: The /3Dmolfiles folder is used to store three-dimensional molecular structure

representations in MOL file format. For each molecule, two files are stored. One of the

files is the UFF-refined molecular geometry with minimum UFF energy among all the

embeddings tested; this file is named according to [modified InChIKey].mol. The other

file is the corresponding "crude" or raw molecular geometry (without UFF refinement);
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this file is named according to [modified InChIKey].cmol. The Cartesian coordinates for

all atoms in these files are, in general, non-zero. These files provide the initial guess

geometries which will be included in input files for on-the-fly quantum/force-field

calculations. As the generation of these files is relatively fast, the folder is cleared at the

start of a new run.

e InChI: The QMTP system makes extensive use of RMG's InChI interface, and thus uses

the lInChI folder in the working directory.

e /QMfiles: The /QMfiles directory stores a number of files used in on-the-fly quantum or

force-field calculations. The time involved in generation of each of the output files is on

the order or seconds, so storage of these results can result in significant time savings

between (and within) runs; therefore, unlike the /2Dmolfiles and /3Dmolfiles directories,

the contents of this directory are left intact between runs. The files include:

o [modified InChIKey].gjf Gaussian03 input file

o [modified InChIKey].log Gaussian03 output file

o [modified InChIKey].mop: MOPAC2009 input file

o [modified InChIKey].out and [modified InChIKey].arc: MOPAC2009 output files

o [modified InChIKey].com: MM4 script file

o [modified InChIKey].comi: MM4 rotor scan script file

o [modified InChIKeyJ.mm4: MM4 input file

o [modified InChIKeyl.mm4roti: MM4 rotor scan input file

o [modified InChIKey].mm4out and [modified InChIKey].mm4opt: MM4 output

files

o [modified InChIKey].mm4rotouti and [modified InChIKey].mm4rotopti: MM4

rotor scan output files

o [modified InChIKey].finat: MM4 force constant matrix output (when using

CanTherm for post-processing)

o [modified InChIKey].can: CanTherm input file (with MM4)

o [modified InChIKey]. rotinfo: CanTherm rotor input file (with MM4 rotor scans)

o [modified InChIKey].canout: CanTherm output file (with MM4)

o [modified InChIKey].xyz: XYZ format file containing Cartesian coordinates; used

as an intermediate file format in connectivity checking with MM4 jobs
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o [modified InChIKey].symm: SYMMETRY input file

o [modified InChIKey].mol: MOL file for optimized geometry with connectivity

perceived (for connectivity checking)

o [modified InChIKey].hold: (empty) hold file to prevent other processes from

trying to perform calculations for the same molecule at the same time; allows

simultaneous RMG runs to perform PM3 calculations using the same /QMfiles

directory (discussed further below)

5.5.2 Managing QMfiles library

As mentioned previously, the contents of the /QMfiles directory are preserved from run to

run. There is a significant time savings when a result can be read in from disk, without first

having to compute the result. On a Linux system, a softlink may be created in the working

directory of an RMG job to point to a centralized /QMfiles library that collects calculation results

from jobs:

in -s /home/gmagoon/JP10_2011/QMfiles/ QMfiles

Effort has been made to name working files with distinct file names based on InChIKey to avoid

file conflicts when multiple jobs are using the same /QMfiles library. Even with this file naming

approach, however, it was found that the system could still crash in cases where multiple RMG

runs were simultaneously considering the same species. To address this, the QMTP system now

creates an empty "hold" file which will prevent other jobs from beginning calculations on the

same species until the job finishes and the hold file is removed. If a pre-existing hold file is

found, a check is performed every 60 seconds to monitor the existence of this file, and

calculations are started when the file is found to have been removed.
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6 Chapter 6: Application of explicit-3D-geometry-based on-

the-f ly species thermochemistry to JP-1 0 oxidation

6.1 Background

In order to test, debug, and apply the new RMG QMTP capabilities described in previous

chapters, the RMG software package was applied to study the high-temperature oxidation of the

jet fuel, JP-10.

JP-10 is an important military fuel that finds application in air-breathing propulsion. 85 It is

composed essentially entirely of exo-tetrahydrodicyclopentadiene. Other names for this molecule

include (exo-)THDCPD, exo-tricyclo[5.2. 1.0 2,6]decane, or simply tricyclodecane. The molecular

structure for this species is shown in Figure 17.
H

Figure 17. Molecular structure of exo-tetrahydrodicyclopentadiene, the primary constituent of JP-10

In the discussion that follows, this primary component of JP-10 fuel will be referred to as JP-10

for the sake of simplicity and brevity.

One the main advantages of JP- 10 as a fuel is its high volumetric energy density; it also

offers low freezing point and good heat transfer properties.85-86 A number of ongoing research

efforts are focused on the development of propulsion technologies (including ramjet, scramjet

and pulse detonation engines) that burn JP-10 fuel.78'84 ,86a,87

Despite the relative simplicity of the composition of JP-10, its decomposition chemistry is

quite complex. Several experimental and computational studies focusing on JP-10 have been
78,84,88conducted to characterize JP-10 pyrolysis and combustion chemistry. However, many

important aspects of its decomposition behavior, particularly initial decomposition steps in the

presence of oxygen, are not well-characterized in the existing literature.

In particular, there is a comprehensive pyrolysis mechanism developed by Herbinet et al.,84

but it lacks oxidation chemistry; furthermore, the mechanism is not presently available to outside

researchers. There is also a rough combustion model from Li et al.;87f however, this mechanism
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includes a significant number of non-elementary reactions such as JP-10 <-+ C2H2+ 2 C2H4 +

C4H6, which the authors refer to as "highly speculative"; also, besides JP-10, this model does not

include any species larger than C5 . Thus, when this work began, the biggest gap in modeling was

related to the initial decomposition steps to C5 in the presence of oxygen.

6.2 Mechanism development

Several iterations of mechanism generation using RMG were performed. In each case,

various post-processing steps were performed on the raw mechanism generated by RMG. The

mechanisms obtained are summarized in Table 16, and a more detailed discussion is provided in

the subsequent sections.

Table 16. Summary of mechanism generation progress, with statistics of key raw mechanisms from each

generation

Improvements from Example
previous generation rnechanism

version

Core Additional Additional
reactions (edge) (edge)

species reactions
considered considered

First generation N/A

Second
generation

Third
generation

e improved rate
parameter
estimates

e improved
chemistry library,
particularly for C5

chemistry
e considered

longer residence
times

e comprehensive
pressure-
dependence

e consideration of
a wider range of
conditions during
mechanism
generation

* improvements to
chemistry library,
particularly
aromatics

317

370

~7.7k

~4.8k

vO.19

vO.21

vO.30

25k

56k

61k

1.26m

2.16m

1.34m263 ~9.5k
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Fourth e refinements to vO.50az 166 ~3.2k 15k 0.43m
generation chemistry library

e completed RMG
run

Comprehensive e incorporates CombPryl 930 -13.8k N/A N/A
(combustion chemistry vO.53
and pyrolysis) generated by
mechanism RMG under

pyrolysis
conditions

6.2.1 1 s generation mechanisms: capturing initial decomposition to C5

The nominal conditions chosen for development of the first generation JP-10 combustion

mechanism using RMG were T = 1500 K, P = 1 bar, and equivalence ratio (in air) = 1.0, which

are relevant to high-temperature JP-10 oxidation applications. Triradicals and higher multiplicity

radicals were forbidden from being included in the mechanism, along with species with more

than ten carbon atoms or more than two oxygen atoms.

Additionally, several modifications were made to the set of reaction families considered

by RMG. The "1, 3_Insertion_CO2" reaction family was "turned off', as it was expected that this

reaction family would not be important at our (high temperature) conditions and turning it off

significantly reduces the number of species that must be considered, hence speeding mechanism

generation and reducing memory requirements. On the other hand, the "Intra_R_AddExocyclic"

and "Intra_R_AddEndocyclic" families were "turned on" (they had been "turned off' by

default), corresponding to intramolecular radical addition to a double bond with the resulting

radical exocyclic and endocyclic to the formed ring, respectively; these reactions are expected to

be important for the JP-10 system as it involves a significant number of radical rings; these are

intramolecular analogs to "RAdditionMultipleBond" and the reverse reactions involve ring-

opening by beta-scission.

Finally, a new "IntraDisproportionation" reaction family for intramolecular

disproportionation was implemented and "turned on" for mechanism generation. The expected

importance of intramolecular disproportionation in the JP-10 system was first described by

Herbinet et al.84 A first order approximation of the Herbinet kinetic parameter estimation scheme

was implemented in the RMG database for this reaction family. The family is implemented for

transition state ring sizes ranging from 4 to 8 (3 to 7 non-hydrogen atoms), and reference cycle
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activation energies were taken from Herbinet et al.84 ; A and n parameter estimates were taken

from Equation 1 of Warth et al.3 with Anint = -1. Further details and discussion concerning this

reaction family are provided in the next chapter.

A combustion core mechanism based on the Leeds methane combustion mechanism89

was used as a seed mechanism for mechanism generation. A goal reaction time of 0.001 s was

specified, as well as a mechanism generation tolerance of 0.15.

Before terminating due to memory limitations, RMG performed mechanism generation

through JP-10 conversions as high as 98.5% and reaction times as long as 11 microseconds. At

this point the mechanism consisted of 316 species and 7,704 reactions. In constructing this

mechanism, RMG had considered, but not included, 1,264,644 additional reactions and 25,352

additional chemical species.

As described previously, inclusion of triradicals (such as CH) and other high multiplicity

radicals was forbidden in the automatic mechanism generation. Instead, CH chemistry (based on

the Leeds methane oxidation mechanism) was manually added to the RMG-generated model for

ignition modeling. Thermochemical data in the RMG-generated model were updated with values

from GRI-Mech 3.090 for selected species appearing in both mechanisms. Additionally, two

cyclopentadienyl decomposition reactions from a hexadiene mechanism compiled by Sharma et

al.8'91 were incorporated to supplement RMG's treatement of these chemistries. Finally, since

the mechanism generated automatically by RMG exhibited accumulation of cyc-C 5H4 (c), the

reaction cyc-C5H4 <-* HCCCH + HCCH, was manually added to the mechanism with an

estimated reverse rate constant of 1x10 13 mol/cm 3 -s.

The RMG mechanism with these modifications constitutes mechanism "vO. 10", which is

described and analyzed elsewhere.92 Including a total of 317 species and 7715 reactions, this

mechanism also includes hundreds of species larger than C5, demonstrating that it is significantly

more comprehensive than the Li et al. mechanism8 7fin terms of capturing initial decomposition

chemistry. (The mechanism of Li et al. contains 36 species, which are all C5 or smaller, with the

exception of JP-10 itself, and 174 reactions.) Carbon and oxygen flux diagrams based on

simulations with the vO. 10 model (created using Dr. Richard West's RMG-Visualizer) are shown

in Figure 18 and Figure 19, respectively, illustrating some of the chemistry detail captured in this

RMG-based model.
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Figure 18. A carbon flux diagram (created using RMG-Visualizer) based on RMG JP-10 model vO.10 (arrow

thickness based on flux magnitude, with darker, thicker arrows corresponding to higher flux)
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H2CO

Figure 19. An oxygen flux diagram (created using RMG-Visualizer) based on RMG JP-10 model vO.10

(arrow thickness based on flux magnitude, with darker, thicker arrows corresponding to higher flux)

The progression from the RMG-generated mechanism to the final mechanism in this first-

generation series (called "vO. 19") is illustrated in Figure 20.

+CH chemistry, GRI-Mech 3.0
themochemishy for small molecules.
andtwo cyclopentadienyl reactions
from Sharma incorporated
-added C 5H4 deconiposition reaction

RIG va.10
1-

-three new species. dozens ofnew/modified
reactions added for C. dienistryfrom Sharna.
B a cskay. and Roy references
-presire-dependent ketene ratesfixed

vOL 5

'thernodynani
.H atom thermC
+ketenereaction

parametersfor

mnechanism niechanIIism1 m1chan-IIism mlechanism

c parameters adjusted for three cyc-CS/C,5 species andketenyl
updated
parameters replaced with pressue-dependent network-c p aramteters
eight other sensitiverea ctions refined using liter ature values

Figure 20. Development of first generation mechanism series from raw RMG mechanism. (some intermediate

mechanisms omitted for clarity and brevity)
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Mechanism refinements focused on capturing important aspects of cyclic C5 and ketene

chemistry, using experimental ignition delay data (primarily shock tube data from Davidson et

al.78) and sensitivity analysis as a guide.

Thermochemical parameters for ketenyl, cyclopentadienyl, methylcyclopentadienyl and

fulvene were refined (see Table 17) to use more reliable values from the literature (as parameter

estimation error was judged to be potentially significant for these species, based on sensitivity

analysis and typical errors associated with the estimation techniques originally used in RMG).

Hydrogen atom thermochemical properties were also updated by using NASA coefficient values

from GRI-Mech version 3.0.

Table 17. Thermodynamic parameters updated in refinement of first-generation RMG JP-10 mechanism

Species Original Updated Source of updated

G0 1500K G0 1500K parameters

(kcal/mol) (kcal/mol)

ketenyl (HCCO) -63.30 -63.26 Ref 90

H atom (H) 4.906 4.908 Ref 90

cyclopentadienyl (C5H5) -71.0 -68.9 Ref 91

1-methylcyclopentadienyl (C6H7) -109.3 -109.7 Ref "

fulvene (C6H6) -91.9 -97.1 Ref91

Additionally, sensitivity analysis suggested that kinetic parameter values for the ketene

reaction H + HCCO *-* H2 CCO were critical and pressure-dependent network calculations were

performed using high-pressure limit rates from the literature and the pressure-dependent network

calculation features of RMG. To obtain high pressure limit rates as input to the pressure-

dependent network calculations, the H + CHCO = CH2 CO high-pressure rate coefficient was

taken from the H+CHCO+CH 2+CO rate from Baulch9 3 ; the CH2 (s) + CO = CH 2CO high

pressure rate coefficient was taken as the kmf in GRI-Mech for CH 2 + CO (+M) 4 CH 2CO

(+M).94 CH2 was assumed to be singlet, as the literature suggests about 92% goes to singlet at

room temperature in H+CHCO*CH2+CO.95 These calculations produced Chebyshev fits for

k(T,P) that were used to replace existing kinetic parameter estimates for the reactions H + HCCO

<-+ H2CCO and H + HCCO <-* CH2 (s) + CO and to add the reaction CH2 (s) + CO + H2CCO

(where "(s)" indicates a singlet state).
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Additionally, RMG' s original parameter estimates for eight other reactions, which

sensitivity analysis suggested were important, were replaced with more reliable values from the

literature. Reaction parameters for C5 chemistry were also incorporated from work by Sharma et

al.', Bacskay et al. 96, Roy97, and Moskaleva and Lin and were used to either replace earlier

estimates with more reliable values or to incorporate additional reaction pathways that had not

been originally included. The inclusion of several of these new pathways necessitated the

addition of the following three species that were not previously present in the mechanism:

CH2CHCHCH, CH2CHCHCCH2, and CH2CHCH2CCH. Overall, in addition to the three new

species, the refinements in the first-generation series of mechanisms since vO. 10, added with the

assistance of Ben Ruiz-Yi, included the addition of 24 new reactions and updates to the

parameters to 24 other reactions.

This series of mechanisms was found to reproduce experimental ignition delay

measurements, particularly those from Davidson et al.78, well. A parity plot showing modeled

ignition delay versus experimental ignition delay from Davidson et al. appears in Figure 48. (It

should be noted that the some of the model simulation results presented here and later in the

chapter come from simulations performed by Luwi Oluwole at Aerodyne Research, Inc.) The

plot shows significant improvement in the progression from vO. 10 to vO. 19, particularly for the

four outlying points in vO. 10, which correspond to fuel rich conditions.
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Figure 21. Parity plot of modeled ignition delay compared to experimental ignition delay from the results of

Davidson et al." for selected first-generation RMG-generated mechanisms

However, this mechanism series relied heavily on the cyc-C5H 4 +-* HCCCH + HCCH reaction

and associated kinetic parameter estimates; when this reaction was removed or when ab initio

parameter estimates (obtained by Jorge Aguilera-Iparraguirre) were used, the ability of the model

to reproduce the Davidson et al. data suffered substantially. Furthermore, mechanisms in this

series suffered from unrealistic kinetic parameter estimates in some cases, which could exceed a

reasonable collision limit value for reverse rate coefficients, leading to very stiff chemistry and

preventing straightforward flame simulations with the model. To work around these issues,

another round of mechanism generation was performed using the latest RMG source code and

refinements to RMG's reaction libraries based on the findings during refinement of the 1st

generation mechanism. This next round is described in the next section.
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6.2.2 2 nd generation mechanisms: avoiding suspicious cyclic C5

decomposition routes

The first generation series of mechanisms from vO. 10 to vO. 19 was based on manual

refinement of results of a single round of automated reaction mechanism generation with RMG

performed in Fall 2009. In order to address the various shortcomings of this earlier mechanism

series and improve the accuracy and comprehensiveness of the mechanism generation process,

new rounds of automated reaction mechanism generation were begun. In these new rounds,

experiences from the first generation, findings from quantum chemistry to improve the reaction

chemistry and parameter values used by RMG in the mechanism generation process. Also, the

QMTP system was set up on a Linux cluster with greater memory capacity to facilitate the

generation of larger mechanisms; a personal laptop had been used for the first generation RMG

mechanism. Finally, the latest updates to the RMG source code and core database were

incorporated. Source code modifications included a fix to produce more reasonable kinetic

parameter estimates that will not exceed the collision limit for the reverse reaction; as mentioned

previously, in the first generation mechanism series, some reverse rate coefficients, computed

according to the principles of thermodynamic consistence, were unrealistically high, particularly

at low temperatures, leading to numerical difficulties in attempts to perform flame simulations.

Database modifications included the addition of a new reaction family, "1,2-Biradtoalkene".

The development, implementation, and use of the "1,2-Biradtoalkene" family was

aimed at more accurately modeling the behavior of biradicals, which were common in our earlier

mechanism generation efforts and are expected to be important for the JP-10 system; in

particular, this reaction family aims to capture the "relaxation" of hydrocarbons with adjacent

biradical sites to alkenes. The relaxation is treated as a first-order decay process, with the rate

coefficient assumed to be k = 1/, where:

log 10r(s)= -8.0+0.2m+0.3n Eq. 3

with m = number of alkyl substituents and n = number of aryl/vinyl substituents; this correlation,

as well as the justification for treatment of alkene triplets as 1,2-biradicals, comes from work by

Caldwell and coworkers in the literature.99 Each non-hydrogen substituent provides a slow-down

effect. To extrapolate to other groups not explicitly considered in the cited literature, rough

assignments to "m-slowdown" or "n-slowdown" were made based on the argument in the

literature9a that the slowdown effect is mainly related to number of hydrogens and mass of
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substituents, rather than electronic stabilization/polar effects. Thus, "Cs" and "Os" RMG atom

types were assigned to the "m-slowdown" group whereas "Cd", "Ct", "Cb", "CO" atom types

were assigned to the "n-slowdown" group, while "H" provides no slowdown. Note, however,

that this will not correctly account for the large mass of extended groups like large alkyl chains;

still, the effect is relatively small, and the resulting estimate should still be within an order or

magnitude or so of what we would obtain if m-slowdown and n-slowdown groups had been

assigned differently).

Many modifications to the custom JP- 10 reaction and thermodynamics databases were

also incorporated into the newest mechanism generation attempts. These modifications include

the incorporation of the refined chemistry that had been manually applied in the process of

developing vO. 19 from the raw RMG base mechanism. Also, additional quantum calculations for

cyc-C 5 chemistry were performed and the results were incorporated into the custom JP-10

reaction database. The reactions investigated and the associated rate parameters obtained via

CBS-QB3 calculations and CanTherm are summarized in Figure 22, Figure 23, and Table 18.

Intramolecular hydrogen migration and beta-scission ring opening pathways on the C5H5

potential energy surface (R1-R5) were investigated by the author and a pathway for breakup of

the C5 ring on the C5H7 potential energy surface (R6-R8) were studied by Jorge Aguilera-

Iparraguirre.
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Figure 22. Intramolecular hydrogen migration and beta-scission ring opening pathways on the C5H5 potential

energy surface investigated with CBS-QB3 quantum calculations

R6 R7 R8 'H2C

Figure 23. Breakup of the cyc-C5 ring on the C5H7 potential energy surface investigated with CBS-QB3
quantum calculations

Table 18. Reaction rate parameters for cyclic-C5 chemistry based on CBS-QB3 quantum calculations

R1

R2

R3

R4

R5

R6

R7

R8

2.52x1 07

5.82x10'

8.78x1011

9.66x101

6.70x1 011

1.108x10 9

8.68x1 012

4.72x1 0i

1.87

1.88

0.77

0.65

0.70

1.55

0.48

0.81

E (kcal/mol)

55.0

24.67

33.44

42.43

41.82

2.28

43.11

24.35
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One round of mechanism generation was performed using essentially the same conditions

used to develop the first generation of RMG mechanisms (a slight change was made for the

pressure, which was modified slightly from 1 bar to 1 atm). To avoid job suspension limitations,

this job was run with a walltime limit of 5 days. With subsequent post-processing (analogous to

that used in the generation of mechanism vO.10; e.g. manual addition of CH chemistry) this was

named vO.20. After the job terminated due to the walltime limitation, mechanism generation was

started again, now with many more pre-computed PM3 calculations available, allowing

mechanism generation to generate a larger model before hitting the 5 day wall-time limit. With

postprocessing, this was named vO.21. Details on the generated mechanisms and the mechanism

generation process are shown in Table 19 and Table 20, below.

Table 19. Second generation raw RMG-generated mechanism size comparison

Mecansm Coe pecies CoeRatos Edge Species Edge Reactions

0.10 (raw) 316 7,704 25,352 1,264,644

0.20 (raw) 343 7,583 54,766 1,653,616

0.21 (raw) 369 4,829 56,364 2,159,290

Table 20. Second generation mechanism development statistics

Mechanism Maximum JP-10 Mxmum Aromatic cycCH

conversion reaction time species included?

considered during considered during 1 included?

mechanism mechanism

generation generation

0.10 98.5% 11 ps no Yes

0.20 100.0% 364.5 ps phenyl No
(C6 H5)

0.21 100.0% 133.6 ps benzyl No
(C7H7)

Simulated ignition delay results (based on the strongest CH peak) compared to the Davidson et

al. shock tube data are shown in Figure 2, below.
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Figure 24. Parity plot comparing results of second-generation mechanism versions to Davidson et al.

experiments

As shown in Table 20, mechanisms vO.20 and vO.21 include aromatic radical species, which had

not appeared in first-generation mechanisms. This was promising, given emerging experimental

evidence from Aerodyne, as well as published research, pointing to the significant fraction of

aromatic products arising from JP-10 decomposition. Closer investigation of mechanism vO.20

suggested that phenyl radical was accumulating in the products. In addition to including aromatic

radicals, the new mechanisms were noteworthy in that they were able to produce reasonable

ignition delay predictions without including the speculative C5H4 decomposition kinetics that

had been used in the first generation series of mechanisms.

In parallel with automated reaction mechanism generation efforts with vO.21, the effects

of manually perturbing the vO.20 mechanism, particularly the small-molecule chemistry, were

explored. Changes are summarized in Figure 25 below, and ignition delay simulation results are

shown in Figure 26.
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Figure 25. Summary of manual perturbations to mechanism vO.20.
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Figure 26. Parity plot comparing results of perturbed vO.20 to Davidson et al. experiments.

Relative to the reference vO.20b, the most noteworthy effect appears to be due to the

modification going to vO.20f, which seems to noticeably improve agreement for most of the

datapoints. As noted in Figure 25, this corresponds to the removal of the HCO decomposition

reaction: HCO (+M) *-+ H + CO (+M). Upon closer investigation of the parameters for this
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reaction, we found that an alternative rate coefficient from GRI-Mech was significantly different.

A comparison of the high-pressure limit for this reaction is shown in Figure 5, below, showing

that the GRI-Mech rate coefficient is nearly an order of magnitude lower than the Leeds rate

coefficient at sufficiently high temperatures.
k LilL
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108

106
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104 - GRI [-l5ch

500 1000 1500 200 20M

Figure 27. Comparison of high-pressure rate coefficients for HCO (+M) H + CO (+M) from Leeds and
GRI-Mech

As we expect the GRI-Mech rate to be more reliable for this reaction, we decided to switch to

using GRI-Mech parameters for this reaction in future mechanism development efforts. The

effect of this change should be intermediate between leaving the reaction unperturbed (0.20b)

and eliminating it completely (vO.20f)

These second-generation mechanisms demonstrated several noteworthy improvements over

previous mechanism generation efforts in the first-generation series, including:

e reasonable ignition delay predictions with mechanisms that do not include cyc-C 5H4 and
associated ad hoc decomposition reaction

* more physically-reasonable reaction rates at low temperature

e automatically incorporated "seeds" of aromatic chemistry (i.e. inclusion of benzyl and
phenyl radicals)

e consideration of longer reaction times and higher JP-10 conversions during mechanism
generation

The new mechanisms also had some limitations. In particular, simulated ignition delay

predictions do not match the data of Davidson et al. as closely. Also, despite the promising

appearance of "seeds" of aromatic chemistry in these mechanism development efforts, the

aromatic chemistry were still not adequately captured (e.g. results exhibited accumulation of
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aromatic radicals and most key aromatic species are still not included). Analysis of these

limitations was used to guide further refinements to the mechanism generation process.

6.2.3 3 rd generation mechanism: capturing multiple reaction conditions,

pressure-dependence, and aromatic chemistry

The next round of mechanism generation efforts focused on performing mechanism at

multiple reaction conditions, incorporating pressure-dependence more comprehensively, and

modeling aromatic chemistry more completely.

There were substantial updates to the reaction libraries used by RMG for this round of

mechanism generation, focused mainly on capturing aromatic chemistry from the literature. A

description of the libraries that have been used in these mechanism generation efforts follows.

The "JP1Orxnlib" and "JP1Oseedmech" were developed by the author, while the others were

developed by Nick Vandewiele, a visitor to the group from Ghent University.

* "JPlOrxnlib" and "JPlOseedmech": The main JP-10 reaction library, "JP1Orxnlib",

which had previously included chemistry from multiple sources, including Herbinet et al.,
Bacskay, and our own calculations, was updated to include new aromatic and cyclic C5

chemistry. The reactions and kinetics consider chemistry related to compounds including

benzene, phenol, cyclopentadiene, benzyne, styrene, phenylacetylene, toluene, fulvene,

and methylcyclopentadiene, from a compilation (from multiple literature references) by

Sharma et al.8 and from work by Sharma and Green91 . Some of the newly-incorporated

pressure-dependent chemistry was included in a separate seed mechanism,

"JP1Oseedmech" as it couldn't be included in the main reaction library due to a current

RMG functionality limitation related to PLOG format kinetic parameters.

"Sabbe": The "Sabbe" library was a newly created library with chemistry for

cyclopentene, cyclohexadiene, and cyclopentadiene taken from Sabbe et al.100

"chae": The "chae" library was a newly created library with decalin chemistry taken

from work by Chae and Violi.101

S"fascella": The "fascella" library was a newly created library incorporating

cyclopentadienyl and indene chemistry as reported by Fascella et al.102
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- "kislovB": The "kislovB" library was a newly created library with kinetic pathways and

parameters involving benzene, toluene, and indene chemistry as reported by Kislov and

Mebel.'03

- "kislovCPD": The "kislovCPD" library was a newly created library with kinetic pathways

and parameters involving cyclopentadienyl, cyclopentadiene, and indene chemistry as

reported by Kislov and Mebel.' 04

- "murakami": The "murakami" library was created to include the global reaction pathway

cyclopentadienyl + cyclopentadienyl <-+ naphthalene + 2H with kinetic parameters from

Murakami et al. 0 5

- "wang": The "wang" library was a newly created library with kinetic parameters and

reactions from Wang et al.io6 The library includes chemistry for cyclopentadiene and

cyclopentadienyl.

At this stage, connectivity checking had been implemented in the QMTP system, but was

set to "check" due to its experimental nature at the time. Pressure dependence calculation

features of RMG were also turned on (in the form of Modified Strong Collision calculations,

which had been implemented in RMG by Josh Allen); with the exception of a few reactions from

the literature, the previous mechanism generations used the high-pressure limit for reaction

coefficients, which is only a function of temperature; pressure-dependent effects were expected

to be particularly important in this JP-10 system for modeling the chemistry of smaller species

(C5 and lower), especially at higher temperatures and lower pressures.

Also, this third generation mechanism generation effort made use of functionality

implemented in RMG by the author to generate models valid at multiple conditions. This feature

will consider a number of separate reaction systems simultaneously at each iteration. The

reaction systems are each simulated until either a edge flux tolerance is exceeded or the target

time/conversion is exceeded. As the edge species that will be brought into the core can be

different for each reaction system, depending on the conditions, the core model can grow by

more than one species at each iteration of the rate-based model generation algorithm. In this

case, three temperatures (1250 K, 1500 K, and 2000 K), two pressures (1 atm and 10 atm), and

three sets of initial concentrations (roughly corresponding to equivalence ratios of 0.5, 1.0 and

2.0 in air) were combinatorially combined to produce a total of 18 reaction systems that were

considered during mechanism generation. Earlier test runs of this system with pressure-
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dependent mechanism generation suggested that tolerances on the order of 0.15 used previously

resulted in extensive (possibly overly so) and very large pressure-dependent networks, which

became extremely computationally demanding. Therefore, a slightly looser mechanism

generation tolerance (0.20) was used as a practical consideration to mitigate this issue, allowing

more timely exploration of the relevant chemistry by RMG. An intermediate version of the RMG

results was extracted after approximately five weeks of walltime.

Postprocessing and mechanism refinement is summarized in Figure 28. Initial

postprocessing was similar to that used in generation of earlier mechanisms (e.g. addition of CH

chemistry), and the resulting mechanism ("v0.30alpha"**) exhibited significant stiffness; further

postprocessing was perfomed to produce a more reliable mechanism. First, the stiffness issues

were addressed by fixing units errors in PLOG expressions that had been part of new

"JP1Oseedmech" library additions; one error was the result of a conversion error in the Arrhenius

prefactor introduced during transcription from the literature and another was the result of an error

in the RMG source code related to the activation barrier units. The resulting mechanism

("v0.30beta"t) still exhibited poor ignition delay prediction when tested at the Davidson et al.

conditions. Global sensitivity analysis on ignition delay predictions for this model was

performed by Luwi Oluwole using the RS-HDMR (Random Sampling-High Dimensional Model

Representation) method' 07 at the Davidson et al. conditions with starting temperature 1527K at

1.15 atm; the eleven reactions determined through this analysis to be responsible for greater than

0.5% of the variation in ignition delay are summarized in Table 21. (It is noted that a glossary is

provided in Appendix II, containing structures for species with ambiguous names in this table or

in similar tables elsewhere in this chapter.)

Table 21. Results of RS-HDMR ignition delay sensitivity analysis of the vO.30beta mechanism at Davidson et

al. conditions with starting temperature 1527K at 1.15 atm

Reaction Fraction of variation in

ignition delay

0 2+H=OH+O 67.7%

C5H 5 _A+0 2 (+m)=C 5H5 0+O(+m) 6.7%

** RMGjp10_v0_30_cheminchi.inp

4 RMG-jp10Ov030_cheminchifixedPLOG2.inp
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cyclopentadienyl+H(+m)=cyclopentadiene(+m) 5.2%

H+ CH2CHCH2 (+m)= CH 2CHCH3 (+m) 1.9%

CH 3+OH=CH 2(s)+H 20 0.9%

C2H2+O=HCCO+H 0.9%

C2H3+CH 3= CH2CHCH2+H 0.9%

H20+H=H2+OH 0.8%

HCO+m=H+CO+m 0.8%

CH 3+O=CH 2O+H 0.7%

C2H 2 +CH3(+m)= CH2CHCH 2 (+m) 0.6%

It should be noted that by this point, we had also switched to using alternative ignition delay

metrics based on the maximum dT/dt or on the maximum product of the mole fractions YC2H Y02

(as a proxy for excited CH). In the case of the RS-HDMR analysis above, the maximum in dT/dt

was used to identify ignition.

Closer investigation of these reactions identified several opportunities for model

refinement. A more reliable parameter set for the top reaction was found to have been published

by Hong et al.108 for the top reaction 02+ H <-+ OH + 0 and their results (with a rate coefficient

roughly 10% lower at 1500 K) were incorporated into the model. Additionally, the kinetic

parameters for CH3 + OH <-+ CH 2(S) + H20, the fifth reaction in the above table, were refined

based on work by Jasper et al. 109; their variant of Troe form for the rate coefficient of this

reaction was re-fitted to Chebyshev form using RMG-Py for the case of Ar bath gas, and these

refined kinetic parameters were incorporated into the model. Finally, related to the second

reaction in the above table, the thermodynamic parameters for the two vinylic cyclic C5H5

radicals in the model were refined based on CBS-QB3 calculations; one of these changes

involved a correction of about 16 kcal/mol in standard heat of formation at 298.15 K, and this

was the case related to unreliable hydrogen bond increment values discussed in Chapter 4.

Simulations (of a version of vO.30 that had been merged with Nick Vandiewiele's pyrolysis

model**) by Luwi Oluwole showed that these thermochemistry refinements, in particular,

produced a significant improvement in ignition delay predictions when compared to the

* ; vO.40g (or vO.41; CombustionPyrolysis-vO_30_vl_00_gasfixedPLOG2mod3 .inp) vs. vO.40f

(CombustionPyrolysis vO_30_vl00_gas-fixedPLOG2mod2.inp)
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Davidson et al. dataset. It should be noted however, that, at this point, the pressure-dependent

network calculations were still based on the original thermochemistry values. The result of all

these changes represents our "vO.30" model.

In parallel with these efforts, Nick Vandewiele, visitor from Ghent University, worked to

generate a comprehensive, detailed JP-10 pyrolysis mechanism. By turning off pressure-

dependence calculations and a number of reaction families specific to oxygen, he was able to

speedily generate a very large pyrolysis mechanism (here termed "Pyrolysis vi.00") validated

against his flow reactor data; the model was also generated without the use of the QMTP

functionality. The Pyrolysis v1.00 model was merged with our vO.30 model using the

Mechanism Merge utility of the Reaction Workbench of CHEMKIN-MFC to produce a merged

vO.41 model. In this merge, the combustion mechanism was treated as master and the pyrolysis

mechanism was treated as donor such that the master kinetic and thermodynamic parameter

values are used in cases of conflict. A summary of the number of species and reactions

associated with the mechanism merge appears in Table 22. Model development is summarized in

Figure 28.

Table 22. Summary statistics for third-generation mechanism merge (master and donor values do not sum to
merged value due to mechanism overlap)

Mechanism Number of species Number of reactions

vO.30 (master) 263 9502

Pyrolysis v1.00 (donor) 838 11122

vO.41 (merged mechanism) 1018 19909
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Figure 28. Summary of development of third-generation of RMG mechanisms (some intermediate versions

and test versions omitted for clarity and brevity)

The vO.41 model was then compared with shock tube pyrolysis speciation data from

Aerodyne Research, Inc. A significant fraction of the most predominant species from experiment

(as identified by GC/MS) also appeared in the merged mechanism. Many of the species profiles

agreed fairly well with the experimental results; the largest discrepancies involved cyclopentene,

which was significantly overpredicted by the model, and propyne, which was significantly

underpredicted by the model. To gain further insight into these discrepancies, sensitivity analysis

for final cyclopentene and propyne mole fraction was performed at the 1290 K shock tube

condition. The results for the most sensitive reactions are summarized in Table 23 and Table 24.

Table 23. Cyclopentene (C5H8) sensitivity analysis results for vO.41 mechanism at shock tube pyrolysis

conditions of 1290 K

Reaction (d ln yyi~t
Sensitivity coefficient 1I "l""n "

cyclopentene+H=C 5H7 _A+H 2  -0.168

JP-10+H=JP1OR8+H 2  0.160

JP-10+H=JP10R6+H2  0.156

JP-10(+M)=C 10H16 _A(+M) -0.152

JP-10(+M)=CioH 16 _B(+M) -0.088
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C5H7_.B+CH4=cyclopentene+CH3 -0.085

cyclopentene+H= C5H7_C +H2 -0.085

BR2=CioHi6_A -0.084

H+ CH 2CHCH 2(+M)=CH 2CHCH3(+M) -0.084

JP-10(+M)=C 10Hi 6_C(+M) -0.081

Table 24. Propyne (C3H4) sensitivity analysis results for vO.41 mechanism at shock tube pyrolysis conditions

of 1290 K

Reaction ('d in Ypye
Sensitivity coefficient d Id"A)

JP-10(+M)=MA110(+M) 0.254

H+ CH2CHCH 2 (+M)= CH 2CHCH3 (+M) -0.234

toluene+H 2CCCH=benzyl+H 2CCCH 2  0.213

C5H4CH3+H 2CCCH=fulvene+ H3CCCH 0.194

C7HsA=toluene -0.181

H+H 2CCCH=H3CCCH 0.178

H2CCHCHCCH2=H 3CCCH +C2H2  0.109

C7HsB+CH3=benzyl+CH 4  0.099

C7H8_C= C7H8 D= 0.092

H+ H2CCHCH2=H2+ H2CCCH2  0.085

The cyclopentene sensitivity analysis results, particularly second through fifth top reactions, are

suggestive of an interesting tradeoff; the signs of the sensitivity coefficients suggest that

bimolecular pathways leading to C10H 15 radicals tend to promote formation of cyclopentene,

while unimolecular pathways involving ring-opening of JP-10 on the CioH16 potential energy

surface tend to inhibit cyclopentene formation. More generally, these sensitivity results point to

the important role of the initial decomposition reactions, along with their associated kinetic

parameters, in determining product distribution; JP- 10 and initial decomposition products appear

quite high on the ranked lists for both cyclopentene and propyne, despite the fact that these

species are several elementary steps removed from the parent JP-10 molecule.
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6.2.4 4t" generation mechanisms: refinement of chemistry based on

experimental comparisons and creation of a new comprehensive

(pyrolysis+combustion) mechanism

Several refinements to the JP-10 system kinetic and thermodynamic libraries were made,

mainly based on experience with third generation mechanism development and attempts to refine

C5 chemistry (based on findings with the merged model, vO.41). Also, with the connectivity

checking feature of the QMTP system now well tested, connectivity checking was set to

"confirm". A new library ("Robinson") had been developed by Nick Vandewiele for modeling

indene formation based on the kinetic parameters for C5H5 + C5H5 <-+ indenyl + CH 3 used by

Robinson and Lindstedt110 ; this library was incorporated as a reaction library used during

mechanism generation for these newest mechanism generation efforts to supplement the libraries

discussed in the previous section. Refinements to the source code included work to improve

aromaticity perception with the assistance of Nick Vandewiele.

As with the third-generation combustion mechanisms, the fourth generation combustion

mechanisms were generated with pressure dependence turned on and at multiple conditions (as

described previously). Several approaches were used for setting the mechanism enlargement

thresholds and target criterion. In one approach, a mechanism was generated using a goal JP-10

conversion of 95% and a mechanism enlargement threshold of 0.20. This run (termed

"0.50a_S1"; "S 1"= Stage 1) completed (for all 18 reaction systems), resulting in a raw

mechanism with 154 species and 2740 reactions. The resulting set of 154 species was

subsequently turned into a bare seed mechanism (no reactions) that was used in a new

mechanism generation run with a goal JP- 10 conversion of 99.9% and a looser mechanism

enlargement threshold of 0.50. This run (termed "0.50az") completed (for all 18 reaction

systems) resulting in a raw mechanism with 165 species and 3188 reactions.

Subsequent post-processing is summarized in Figure 29.
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Figure 29. Summary of development of fourth-generation of RMG mechanisms (some intermediate versions

and test versions omitted for clarity and brevity); in this case, unlike previous generations, the RMG

combustion mechanism is the product of a two-stage approach, wherein a set of species generated using an

earlier mechanism generation run was used as a seed for a new mechanism generation run

As in previous generations, initial post-processing included incorporation of CH chemistry.

Additionally, in an attempt to address the apparent overprediction of cyclopentene identified in

vO.41, a reaction, cyc-C 5Hs *-+ cyc-C 5H6 + H2 was incorporated with forward kinetic parameters

from experimental work by Lewis et al.; 11 the reaction was treated reversibly here to maintain

thermodynamic consistency. Also, since an ad hoc ring correction for cyclopentene

thermochemistry was available, the thermochemistry block for cyclopentene based on PM3 was

replaced with "exact" group-additivity-based values; this had the effect of raising the Gibbs free

energy of cyclopentene by about 4 kcal/mol at 1500 K.

The Pyrolysis vl.00 model was merged with our vO.50az model using the Mechanism

Merge utility of the Reaction Workbench of CHEMKIN-MFC to produce a merged "CombPyrl

vO.50az" model. As in the merge described previously, the combustion mechanism was treated

as master and the pyrolysis mechanism was treated as donor such that the master kinetic and

thermodynamic parameter values are used in cases of conflict. A summary of the number of

species and reactions associated with the mechanism merge appears in Table 25.
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Table 25. Summary statistics for a fourth-generation mechanism merge (master and donor values do not sum

to merged value due to mechanism overlap)

Mechanism Number of species Number of reactions

vO.50az (master) 168 3203

Pyrolysis v1.00 (donor) 838 11122

CombPyrl vO.50az (merged mechanism) 930 13633
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Further testing of the CombPyrl vO.50az mechanism in collaboration with Nathan Yee

suggested that the model exhibited accumulation of significant amounts of naphthalene, 2,4-

cyclopentadien-1-one (C5H40), and 2-cyclopenten-1-one (C5H60) under approximately

stoichiometric combustion conditions. Therefore, working with Nathan Yee, additional pathways

were researched and added to the reaction model to form the "CombPyrl vO.50azna"

mechanism; this process also involved the addition of four new species. In particular, oxygen-

mediated pathways from naphthalene to indenyl were incorporated, using kinetic parameters

from Mati et al.,'1 2 a three-parameter fit from the kinetics.nist.gov database, and parameter

estimates based on work by Frank et al."3 For 2,4-cyclopentadien- 1-one, the reaction C5H40 +

2 C2H2 + CO was added, with kinetic parameters from Emdee et al.1 4 Finally, decomposition of

2-cyclopentene- 1-one was modeled by adding a rapid equilibration reaction between 2-

cyclopenten- 1-one and 3-cyclopenten- 1-one (effectively assuming that the two isomers are in

rapid equilibrium under the conditions of interest); then, 3-cyclopenten-1-one depletion was

modeled using a reaction decomposing this species into 1,3-butadiene and carbon monoxide with

kinetic parameters obtained by a three-parameter fit to literature parameters for the reaction in

the kinetics.nist.gov database.

A comparison of simulations results using CombPyrl vO.50azna with shock tube

pyrolysis data from Aerodyne exhibited a significant underprediction of 1-buten-3-yne (C4H4)

and, to a lesser extent, 1,3-butadiyne (C4H2 ); these large discrepancies had not been observed in

simulations using the vO.41 model. Therefore, C4H4, C4 H3 , and C4H5 chemistry was extracted

from vO.30/vO.41 and merged into the CombPyrl 0.50azna model. In conjunction with removal

of duplicate reactions (one due to a CHEMKIN merge bug and three others that were effective

duplicates arising as an artifact from merging pressure-dependent and non-pressure-dependent

mechanisms), these updates defined the CombPyrl vO.53 model.



6.2.4.1 Ignition delay

The CombPyrl vO.53 mechanism represents the most advanced JP-10 model considered

here. Luwi Oluwole performed simulations with the mechanism to model the behavior of JP- 10

ignition at conditions considered experimentally by Davidson et al.,78 Colket and Spadaccini,87b

and Mikolaitis et al.87a A comparison of simulation results with experimental data is shown in

Figure 30.
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Figure 30. Parity plot of simulated ignition delay (as determined by the highest peak in the product of the

mole fractions for C2H and 02) using CombPyrl 0.53 model versus experimental ignition delay results from

Davidson et al.,78 Colket and Spadaccini,87b and Mikolaitis et al.87 ; the inner dotted lines correspond to a

discrepancy of a factor of two and the outer dotted lines correspond to a discrepancy of a factor of four

The results show that at the majority of experimental conditions, the modeled ignition delay is

within a factor of four of the experimental value, and often within a factor of two. The

exceptions are a single condition in the Colket and Spadaccini dataset, where the modeled

ignition delay is noticeably longer than the experimental value, and the conditions for the

Mikolaitis et al. dataset at higher temperature, where the modeled ignition delay is significantly

faster than the experimental value; this is particularly true at the four highest temperatures (with
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only one CH peak from experiment). (It should be noted that Mikolaitis et al. observed two CH

emission peaks at intermediate temperatures, and in these cases, the shorter ignition time is

plotted in the figure above). The Mikolaitis dataset is also at higher pressures (above 10 atm)

than the other datasets so this could be a factor in the apparent diminished performance of the

model at these conditions. Considering smaller discrepancies, it is interesting to note that the

points lying just above the parity line in the plot, including three Davidson points and most of the

Colket and Spadaccini dataset tend to be associated with elevated pressures (generally above 4

atm) and reduced temperatures (below 1400 K).

Global sensitivity analysis on ignition delay predictions for this model was performed by

Luwi Oluwole using the RS-HDMR method at the Davidson et al. conditions with starting

temperature 1527K at 1.15 atm (with assistance from Nathan Yee); the eleven reactions

determined through this analysis to be responsible for greater than 0.5% of the variation in

ignition delay are summarized in Table 26.

Table 26. Results of RS-HDMR ignition delay sensitivity analysis of the CombPyrl vO.53 mechanism at

Davidson et al. conditions with starting temperature 1527K at 1.15 atm

Reaction Fraction of variation in

ignition delay

0 2+H=OH+O 69.3%

H2CCCHO+O(+M)=H 2CCCH+0 2 (+M) 5.7%

C2H2+O=HCCO+H 3.8%

H+H 2CCCH= H3CCCH 1.5%

C2H2+H2CCCH= HCCHCHCCH 2  1.4%

cyclopentadienyl+H(+M)=cyclopentadiene(+M) 1.4%

H2 0+H=H2+OH 1.4%

0 2+HCCO=2 CO+OH 1.3%

H+CH 3(+M)=CH 4(+M) 0.7%

JP-10(+M)=C 1 0H16 _A(+M) 0.7%

HCO+M=H+CO+M 0.5%
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The RS-HDMR sensitivity analysis results again demonstrate the important role of rate

parameters for 02+ H <-+ OH + 0; in this case, however, the refinements based on work by

Hong et al.108 have been used in the model. The sensitivity analysis also points to the importance

of kinetic parameters for propargyl and ketenyl chemistry. Additionally, reactions involving

hydrogen addition to cyclopentadienyl and chemically-activated ring opening of JP-10 also

appear on the list.

6.2.4.2 Pyrolysis speciation

Although the model was not specifically designed to be applied to pyrolysis conditions,

comparison against experimental pyrolysis data can also provide indications of model strengths

and limitations. Shock tube data was acquired by Aerodyne Research, Inc., particularly David

Lewis and Robin Edwards, at a number of shock temperatures. The mixture was modeled as an

isobaric, adiabatic batch reactor at 7 atm starting with 0.8 mole percent JP-10 in argon with 0.5

millisecond residence time; initial temperature was determined based on shock speed

measurements determined at the time of the experiment; the products were collected and later

analyzed with two GC/MS instruments, one with a column designed to separate the heavier

(C5+) components and one with a column designed to separate lighter components. The results

for the identified peaks were then compared with the final composition of the model simulation;

a comparison of experimental results with simulated results for modeled species with non-zero

concentration is shown in Figure 31, Figure 32, Figure 33, and Figure 34.
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Figure 31. Comparison of experimental shock tube pyrolysis results with simulations based on CombPyrl

vO.53 for cyclic species.

99



T (K00
1200 1S00 1400 1500 16001100

T (K)
1200 ( 1300 1400 1500

---

1600

styrene

1000
1.E-02

1.E-03

1.E-04

.01.E-05

't1.E-06

E1.E-07

1.E-08 -

1.E-09

T (K)
1100 1200 1300 1400 1500 1600

--- - -- -- ---

t luene 1 odel

+ tyluene xperient

1000 1100 1200(300 1400
1.E-02 - -

1.E-03 - - -r
+'phenylacetylene model

1.E-04 --
+ phenylac tylenelexperir ent

.1.E-05 - -

1.E-06
0
E 1.E-07

1.E-08 -

1.E-09

1!500 1600

T (K)
1000 1100 1200 1300

1. E-02
--naphthalene model

1.E-03
naphthaene expe m

1.E-04
C
U 4

a 1.E-06

E1.E-07

1.E-08

1.E-09

1400 1500 1600

C

0-

E

1000

1.E-02

1.E-03

1.E-04

1.E-05

1.E-06

1.E-07

1.E-08

1.E-09

T (K)
1100 1200 1300 14C

ir-idene rihodel

Sidene experimsnt

-T

Figure 32. Comparison of experimental shock tube pyrolysis results with simulations based on CombPyrl

vO.53 for aromatic species.

100

1000
1.E-02

1.E-03

1.E-04
C
0-r1.E-05

41.E-06

E1.E-07

1.E-08

1.E-09

-.+6-bnzene model

-b Pzene xper iment

---------

1000
1.E-02

1.E-03

1.E-04
0

1.E-05

1.E-06

E 1.E-07

1.E-08 -

1.E-09

1100

+4

00 1500 1600

17-



T (K)
1200 1300 1400 1500 1600

2

3

4

5

6

7

8

9

1.E-0

1.E-0

1.E-0

.2 1.E-0
4 .-

1.E-0

0
E 1.E-0

1.E-02

1.E-0

1.E-04

1.E-05

1.E-06

.2 1. E-07

,1. E-06

0 1. E-07E -

1. E-08

1.E-09

1600

-'-propylene model

pr6pylene experi ment

1000
1.E-02

1.E-03

1.E-04
0

1.E-05

1.E-06

E 1.E-07

1.E-08

1.E-09

C
0

EE.

1000
1.E-02

1.E-03

1.E-04

1.E-5

1.E-06

1E-07

.E-08

1.E-09

T (K)
1100 1200 1300 1400 1500 1600

1100

+acetylene model- ---------- -- - -
+ acetyleneexperiment- --- --- ----(K)

1500 1600
T (K)

1200 1300 1400

- - -

#'-propyne mo el

+ propyne experiment
- - -

T (K)
1000 1100 1200 1300 1400 1500 1600

1.E-02

1.E-03 - ---- -

1.E-04 - --

0

- 1.E-05 --- --a-enem-

1.E-06

E1.E-07
+a lene experiment1. E-08-

1 .E -0 9 ---------------------- --------

Figure 33. Comparison of experimental shock tube pyrolysis results with simulations based on CombPyrl

vO.53 for C2 -C 3 species.

101

1000 1100

---- - - -- -- - ---- ----

-*-ethylene model

- ethylene exp riment

T (K)
1000 1100 1200 1300 1400 1500

------- - ---- -----

-- ----- ------------ --- ----- - --- --



T (K)
1000 1100 1200 1300 1400 1500 1600

- -+-t--------

butern 3yne experrent
- - - - - I - - -

T (K)
1100 1200 1300 1400 1500

--1,-butadiyne model

3-butaiyne eperim nt -

1600

T (K)
1000 1100 1200 1300 1400 1500 1600

C
02

U

E

1.E-02

1.E-03

1.E-04

1.E-05

1.E-06

1.E-07

1.E-08

1.E-09

I

100
1.E-02

1.E-03

1.E-04

.2 1.E-05

1.E-06

01.E-07E
1.E-08

1.E-09

0*j, butadiene miodel

S1,3 butadiene experinent

- T ---- - -- -- ----

T (K)
1100 1200 1300 1400 1500 1

1,4-pe tadiene mode

+ 1,4-pehtadiene experiment

600

Figure 34. Comparison of experimental shock tube pyrolysis results with simulations based on CombPyrl

vO.53 for C4 -C 5 species.

The comparison plots for cyclic species in Figure 31 show significantly higher

experimental JP-10 concentration than predicted by the model at higher shock temperatures; this

discrepancy has been attributed by the David Lewis (designer of the experimental shock tube

apparatus) to a region of relatively cool, unreacted mixture near the walls of the shock tube. The

second panel in this figure shows modelled results for cyclopentylcyclopentenes (three modelled

species lumped together) with a species nominally identified via mass spectrum as 3-

cyclopentylcyclopentene; the comparison is quite favorable, with the model capturing the

presence of these species at intermediate and low temperatures and agreeing essentially

quantitatively within the scatter of the experimental results. The model also captures the

qualitative trend in cyclopentadiene results with temperature, with the highest concentrations at

intermediate temperatures. Cyclopentene is apparently overpredicted by the model (though the

results here represent an improvement over earlier model versions which exhibited more
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substantial overprediction). On the other hand, 4-ethylene cyclopentene is apparently

underpredicted by the model. Experimental results for 1,3,5-norcartriene and 3-ethenyl

cyclopentene are more limited, but appear to coincide with simulated results within roughly an

order of magnitude.

Comparison plots for aromatic species in Figure 32 show that model and experiment tend

to agree on a general trend to higher aromatic content at higher temperatures. The most

noteworthy discrepancies include an apparent overprediction of naphthalene and toluene at high

temperatures. On the other hand, indene appears to captured well by the model.

Comparison plots for C2-C3 species are shown in Figure 33; the results include ethylene,

which appears to be captured quite well by the model, with quantitative agreement (given the

scatter in experimental results). Comparison plots for C4 -C5 species are shown in Figure 34. The

model seems to tend to underpredict the C4 species, but captures the temperature trends for these

species well.

Overall, comparison is fairly good considering the uncertainties in both experimental

results and in model parameters. The model appears to capture many of the qualitative trends

from experiment, and predicted mole fractions are often within an order of magnitude of

experimental results.

To obtain insight into the key chemistry, sensitivity analysis was performed, with

assistance from Nathan Yee, for select species at either 1198 K or 1540 K. The results for the

five most sensitive reactions are presented in Table 27 through Table 37.

Table 27. Cyclopentene (C5H8 ) sensitivity analysis results for CombPyrl vO.53 mechanism at shock tube

pyrolysis conditions of 1198 K

Reaction'dny
Sensitivity coefficient jJ

d In Aj

JP-10+H=JP10R8+H2  0.503

JP-10+H=JP10R5+H 2  -0.237

JP- 1 0(+M)=MA1 1 0(+M) 0.206

C10H15.A=C 10Hi 5 _B -0.183

JP-10=BR3 0.150
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Table 28. Propyne (C3H4) sensitivity analysis results for CombPyrl vO.53 mechanism at shock tube pyrolysis

conditions of 1198 K

Reaction 'd In Ypropyne
Sensitivity coefficient I " d ""

d In Ai

JP- 1 0(+M)=MA1 1 0(+M) 0.879

CH 2CHCHCHCH3+H2CCCH=CH2CHCHCHCH2+H2CCCH2  0.650

CH 2CHCH2 +H2CCCH=2 H2CCCH2  -0.273

CH 2CHCH 2+CH 2CHCHCHCH2= 0.216

H2CCCH2+ CH 2CHCH 2CHCH 2

2 CH 2CHCH2= CH 2CHCH 3+ H2CCCH2  0.203

Table 29. Styrene sensitivity analysis results for CombPyrl vO.53 mechanism at shock tube pyrolysis

conditions of 1198 K

Reaction (d In Ystyrene
Sensitivity coefficient **"*d In Ai

JP-10(+M)=MA1 10 (+M) 1.418

CsHsA+H=styrene+H 0.926

CH2CHCHCHCH3+H2CCCH=CH 2CHCHCHCH2+H2CCCH2  0.725

cyclopentadienyl+H 2CCCH= C8H8_B 0.724

C8HB=C8H 8_A 0.695

Table 30. Benzene sensitivity analysis results for CombPyrl vO.53 mechanism at shock tube pyrolysis

conditions of 1540 K

Reaction Sd inYbenzene

Sensitivity coefficient dn A )
d In Aj

JP-10(+M)= C1oH16 _C (+M) 0.186

JP-10(+M)=MA1 10(+M) -0.086

JP-10+H=JP10R6+H 2  -0.080

C7H10+ CH 2CHCH2=C 10H15 _A 0.078

C5H7_A+ CH 2CHCHCHCH 2= C10H 15 _A -0.077
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Table 31. Toluene sensitivity analysis results for CombPyrl vO.53 mechanism at shock tube pyrolysis

conditions of 1540 K

Reaction (dilny
Sensitivity coefficient Ytouene

d In A.

JP- 1 0(+M)=C 1oH16 A(+M) 0.809

JP-10=BR3 -0.207

C9 H 13+CH 3(+M)= C 10H16 _A (+M) -0.169

CioH16 _E= C 10H 16 .A 0.121

JP- 1 0(+M)=MA 11 0(+M) -0.097

Table 32. Cyclopentadiene (C5H6) sensitivity analysis results for CombPyrl vO.53 mechanism at shock tube

pyrolysis conditions of 1540 K

Reaction 'd in y
Sensitivity coefficient cyclopentadiene

d in A.

cyclopentadiene+H=cyclopentadieny1+H2 -0.362

JP-10(+M)= C1 0H 16 _A (+M) -0.330

2 cyclopentadienyl=naphthalene+2 H -0.249

JP- 10+H=JP1 0R6+H 2  0.135

JP-10(+M)= C10H16 _C (+M) -0.105

Table 33. Naphthalene sensitivity analysis results for CombPyrl vO.53 mechanism at shock tube pyrolysis

conditions of 1540 K

Reaction 'd~ in yni
Sensitivity coefficient " Iaptaiene

d In A,

2 cyclopentadienyl=naphthalene+2 H 0.397

cyclopentadiene+H=cyclopentadienyl+H2 0.249

C2H2+H2CCCH=HCCHCHCCH2  -0.147

cyclopentadiene+H(+M)=C 5H7 _C(+M) 0.142

JP-10(+M)= C1 0H 16 _A (+M) -0.129
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Table 34. Allene (H2CCCH2) sensitivity analysis results for CombPyrl vO.53 mechanism at shock tube

pyrolysis conditions of 1540 K

Reaction(iiYaen
Sensitivity coefficient d nyanene.

(d In A,

JP-10(+M)= CioH 16 _A (+M) -0.333

C2H3+CH 3= CH 2CHCH 2+H -0.223

CH 2CCH2+H(+M)= CH 2CHCH2 (+M) 0.116

JP-10(+M)=MA1 10(+M) 0.114

CH 2CHCH2 +H2 CCCH=2 CH2 CCH2  0.111

Table 35. 1-buten-3-yne (HCCCHCH2) sensitivity analysis results for CombPyrl vO.53 mechanism at shock

tube pyrolysis conditions of 1540 K

Reaction (d in Ybtn~
Sensitivity coefficient d d-uten-3-yne

d In Ai

HCCHCHCH2+CH 3= CH 2CHCHCHCH 3  0.368

CioH 15 _C(+M)=JP10R5(+M) 0.286

JP10R5(+M)=C 10H15 _B(+M) -0.281

JP-10+H=JP10R5+H 2  0.237

HCCCHCH 2+H(+M)= HCCHCHCH2 (+M) 0.172

Table 36. 1,3-butadiyne (HCCCCH) sensitivity analysis results for CombPyrl vO.53 mechanism at shock tube

pyrolysis conditions of 1540 K

Reaction Sensitivity coefficient 'd inY,3-utadiyne

d in A)

C10H15 _C (+M)=JP10R5(+M) 0.386

JP10R5(+M)=CioH 15 _B(+M) -0.374

JP-10+H=JP10R5+H 2  0.294

HCCCHCH+CH 4= HCCCHCH2+CH 3  0.290

H+ HCCCHCH2=H 2+HCCCCH2 0.240
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Table 37. Propylene (CH 2CHCH 3) sensitivity analysis results for CombPyrl vO.53 mechanism at shock tube

pyrolysis conditions of 1540 K

Reaction (d in Ypropyene

Sensitivity coefficient * d *""
d In A.

JP-10(+M)= CioH 16 _A (+M) -0.278

C2H3+CH 3= CH 2CHCH2+H -0.231

H+ CH 2CHCH3=H 2+ CH 2CHCH2  -0.174

JP-10(+M)= C10H16 _C (+M) 0.160

H+ CH2 CHCH2 (+M)= CH 2CHCH 3 (+M) 0.105

The three sensitivity analyses at low temperature point to the important role of the kinetic

parameters for the unimolecular decomposition reaction, JP10 <-* MA 110 in determining product

distribution. The sensitivity results also point to an interesting interplay between bimolecular

channels in determining the concentration of cyclopentene; in particular, the signs of the

sensitivity coefficients for the top two reactions suggest that abstraction of hydrogen from JP-10

to form JPOR8 tends to promote cyclopentene formation, whereas hydrogen abstraction at an

alternative site to form JP1OR5 tends to inhibit cyclopentene formation.

Sensitivity analyses at the high temperature conditions provide similar insight in the role

of kinetic parameters in the model. For example, the sensitivity analyses for I-buten-3-yne

suggest an important role for the pathway JP-10 <-+ JP-10R5 <-+ CioH 15 _C in forming this species

in the model. Looking at sensitivity coefficients for the reaction JP-10 <-+ CioH 16 _A suggests that

this pathway tends to promote formation of toluene at the expense of cyclopentadiene,

naphthalene, allene, and propylene. Similarly, results suggest that JP-10 +-+ MA 110 tends to

promote formation of allene and styrene at the expense of toluene and benzene; results suggest

that JP-10 <-+ CjoH 16_C tends to promote formation of propylene and benzene at the expense of

cyclopentadiene. These branching effects are evident at downstream steps, as well, with kinetic

parameters for two competing decomposition pathways for CloH 15_A affecting the amount of

benzene formed; the sensitivity coefficients suggest that the pathway involving loss of three

carbons tends to promote benzene formation whereas the pathway involving loss of five carbons

tends to inhibit it. The sensitivity results also confirm the important role of the kinetic parameters
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for the global reaction 2 cyclopentadienyl <-+ naphthalene+2 H from Murakami et al.105 in

determining naphthalene composition.

In addition to providing insight into the complex underlying chemistry of the model,

these results point to the most promising routes to further mechanism refinement. As many of

these sensitivity analyses correspond to species that are notably underpredicted or overpredicted

at the conditions considered, the kinetic parameters for the most-highly ranked reactions can be

more closely scrutinized and refined as necessary to either refine the current model or begin a

new iteration of mechanism generation.

Generally speaking, the sensitivity analyses point to the important role of initial

decomposition reactions in determining the product distribution; the results suggest that it is

important to accurately capture both the absolute rates and the relative rates (branching ratios)

among these initial decomposition reactions. Refinement of the associated kinetic parameters

presents a clear opportunity for further model improvement. Efforts in this direction are

presented in Chapter 7.

6.2.4.3 Flux analysis

As another approach to mechanism analysis, flux diagrams can be constructed and

analyzed at conditions of interest. With the assistance of Nathan Yee and Josh Allen, flux

diagrams were produced using a tool related to the "Generate Flux Diagram" utility on the

rmg.mit.edu website; the CombPyrl vO.53 mechanism was simulated with isothermal, isobaric

conditions for a stoichiometric mixture of JP-10 in air at 1 atm and 1600 K; the tool creates

diagrams with arrow thickness and direction corresponding to flux magnitude and direction,

respectively, and with circle thickness around species indicating concentration on a logarithmic

scale.
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Figure 35. Flux diagram at t=10~6 s, generated using a tool related to rmg.mit.edu's "Generate Flux

Diagram". Diagram was constructed using the CombPyrl vO.53 model for an isothermal, isobaric batch

reactor with a stoichiometric mixture of JP-10 and air at 1 atm and 1600 K

Kr
I'-I

Figure 36. Flux diagram at t=10-7 s, generated using a tool related to rmg.mit.edu's "Generate Flux

Diagram". Diagram was constructed using the CombPyrl vO.53 model for an isothermal, isobaric batch

reactor with a stoichiometric mixture of JP-10 and air at 1 atm and 1600 K. The pathway highlighted in

orange is the bimolecular pathway discussed in the text.
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Figure 37. Flux diagram at t=10-5 s, generated using a tool related to rmg.mit.edu's "Generate Flux

Diagram". Diagram was constructed using the CombPyrl v0.53 model for an isothermal, isobaric batch

reactor with a stoichiometric mixture of JP-10 and air at 1 atm and 1600 K
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Figure 38. Flux diagram at t=10-3 s, generated using a tool related to rmg.mit.edu's "Generate Flux

Diagram". Diagram was constructed using the CombPyrl vO.53 model for an isothermal, isobaric batch

reactor with a stoichiometric mixture of JP-10 and air at 1 atm and 1600 K

Results at early time, corresponding to 10-16 s, are shown in Figure 35, and illustrate a

number of initial decomposition steps to various Cio species.

Advancing to 10-7 s, Figure 36 shows many more active pathways. The flux analysis

suggests that under these conditions, the main decomposition pathways appear to be

unimolecular routes of the type considered by Herbinet et al. and discussed further in Chapter 7.
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However, some bimolecular routes also appear in the diagram. Under intermediate- or high-

temperature conditions (avoiding low-temperature peroxide chemistry), chemical intuition leads

us to suspect the importance of the main (lower) pathway shown in Figure 39 as a key

bimolecular route for the initial decomposition of JP-10.

H

-H
H H

C
-HH

----- Z JCH'
H ring opening

by beta-scission

Figure 39. Selected bimolecular-mediated pathways for initial JP-10 decomposition; (the expected main

pathway is depicted with large arrows)

In the scheme presented, a hydrogen is first abstracted from JP-10 at the site shown above; this

site is preferred for energetic reasons as the resulting radical is the most stable among the six

possible CioH15 radicals formed by hydrogen abstraction according to DFT 15, our CBS-QB3

calculations, and a combined CBS-QB3/G3MP2B3 analysis1 16; the site is also favored by

statistical considerations as there are four hydrogens (two of one variety and two of another) that

can be abstracted to produce the radical. 1 This radical can lose another hydrogen to form a

CioH 14 alkene, which was observed as a minor product in flow reactor experiments by Nick

Vandewiele. A more energetically favorable pathway appears to be unimolecular ring-opening

by beta-scission; this pathway alleviates a significant source of ring-strain in the carbon

framework of JP-10. The model captures this lower route, which is significant enough at the

conditions considered here to appear toward the left of Figure 36. This route should play an even

larger role at conditions with higher initial oxygen concentration or lower temperature. Indeed, a

flux diagram (Figure 40) was generated for conditions suspected to be more conducive to

bimolecular pathways (a temperature of 1300 K, twice the stoichiometric ratio of oxygen, and a

" There is one other "JP- 10 radical" that can be formed by abstraction of four possible hydrogens, but this radical

does not appear to be favored by energetic considerations.
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pressure of 5 atm), which suggests a more critical role for this pathway (and similar bimolecular

pathways).

/ \

Figure 40. Flux diagram at t=10 7 s, generated using a tool related to rmg.mit.edu's "Generate Flux

Diagram". Diagram was constructed using the CombPyrl vO.53 model for an isothermal, isobaric batch

reactor with JP-10 and twice the stoichiometric amount of oxygen, and nitrogen gas at 5 atm and 1300 K. The

pathway highlighted in orange is the bimolecular pathway discussed in the text.

Advancing still further to 10-5 s at the originally considered conditions, Figure 37 shows

that JP-10 is now essentially entirely gone, while a significant quantity of 02 remains; this

underscores the importance of pyrolysis chemistry in the initial decomposition of JP-10, even

under oxidative conditions. Finally, advancing to 10-3 s, as shown in Figure 38, the diagram

suggests significant oxygen depletion and the dominance of small molecule chemistry.

6.3 Model strengths, limitations, and next steps

In terms of comparing the model results with experimental results, the level of agreement

is generally quite favorable, taking into consideration the uncertainties in both experimental

results and in model parameters.

For ignition delay comparisons the level of agreement over a wide range of conditions is

within a factor of four for most of the points, with a significant fraction of these lying within a

factor of two.

The CombPyrl vO.53 model considers a number of important species that have been

omitted from earlier JP-10 combustion models, including benzene, naphthalene, toluene, indene,

and cyclopentylcyclopentenes. Even so, the pyrolysis speciation data also points to several
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species with chemistry that is not considered by the model; this includes species such as xylene,

2-butene, 1,3,5-cycloheptatriene. One opportunity for further refinement in new generations of

mechanism creation is the inclusion of chemistry for such species. It is possible that such

refinements could improve predictions for other species as well; for example, it is possible that

modeling xylene chemistry could account for the apparent overprediction of toluene at high

temperatures by the CombPyrl vO.53 model. The incorporation of appropriate chemistry from the

literature through seed mechanisms or reaction libraries during the mechanism generation

process could assist in the capturing of this chemistry. Additionally, changing mechanism

generation parameters, particularly the tolerance for model enlargement, could allow automated

consideration of some of these minor products. Of course, there are challenges involved,

including the added computational expense of generating larger models; also, the resulting model

would be more computationally expensive to simulate and analyze.

Another opportunity for refinement is conversion of the pyrolysis mechanism to a pressure

dependent version. In addition to providing more reliable parameter estimates, this would also

avoid effective duplicate reactions that can arise from merging pressure-dependent and non-

pressure-dependent mechanisms. At present, the main obstacle is computational cost and the

most straightforward remedy may simply be to allow for longer wall-time. Alternatively, this

bottleneck could motivate future efforts to speed up the mechanism generation code.

It is also noted that the mechanism generation efforts described here have focused on high-

temperature oxidation (1250 K and above); low-temperature oxidation would involve peroxide

chemistry where uncertainties in parameter estimates can have a greater impact and the large

number of additional species to consider creates added informatics burdens. While capturing this

low-temperature oxidation chemistry would certainly be useful, the added challenges associated

with this chemistry likely place an adequate low-temperature chemistry treatment out of reach of

automated reaction mechanism generation efforts in the near term.

In terms of reaction kinetics and chemistry, it is the opinion of the author that the initial

decomposition steps of JP- 10 represent the biggest potential source of error and uncertainty in

the model; analysis of the model has demonstrated the important role of these initial

decomposition steps in determining product distribution from JP- 10 decomposition. Efforts to

investigate these initial decomposition processes are discussed in the following chapter, along

with additional opportunities to better characterize this chemistry through further research. The
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pathway to C10H 16_C is a good example of opportunities for improvement in this area; it would

seem that the kinetic parameter estimation scheme currently used by RMG would not take into

account the apparently significant ring strain and steric effects involved in producing this

molecule by intramolecular disproportionation in BR2, and it is possible that the rate coefficient

for this reaction is significantly overestimated.

In terms of methodology, the approach of iterative refinement demonstrated here offers a

general framework that can be continued to produce new generations of JP-10 combustion

models. Key features of this approach include 1) identification of mechanism limitations from

earlier generations (e.g. by sensitivity analysis and comparison of model simulations with

experiment), 2) a targeted effort to address these limitations through updates to the RMG input

files, software, and/or database, and 3) regeneration of mechanism with RMG, incorporating

these updates.

6.4 Conclusions

Several iterations of JP-10 combustion mechanism generation were performed using RMG,

progressively incorporating more reliable chemistry and methods. The ability to generate a

comprehensive, state-of-the-art model for JP-10 oxidation through utilization of the QMTP

features of RMG demonstrates that the system described in previous chapters provide a practical

and useful addition to the RMG utility, expanding the scope of mechanism generation without

any substantial drawbacks.
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7 Chapter 7: Towards on-the-fly kinetic parameter

estimation for improving intra-molecular

disproportionation estimates

7.1 Introduction I motivation

Herbinet et al. investigated the suspected important role of biradicals in the initial phases

of JP-10 decomposition. 84 In particular, they looked at the behavior of biradicals formed by

carbon-carbon bond homolysis in JP-10. They discussed how these biradicals can participate in

intramolecular disproportionation reactions (in which one radical site in the molecule abstracts a

hydrogen from the carbon adjacent to a second radical site to form a carbon-carbon double bond)

and identified the important role of these intramolecular disproportionation reactions in pyrolytic

decomposition of JP-10. Two of the reactions considered by Herbinet et al. are Reaction 1 and

Reaction 2, shown below. (The BR/MA notation of Herbinet et al. is followed.)

H H---C

H H 'C, [ 
'

BR1. O MA1010
(Reaction 1)

This chapter is based heavily on material published in collaboration with Piotr Piecuch and Jesse Lutz of

Michigan State University in the International Journal of Chemical Kinetics. (Magoon, G. R.; Aguilera-Iparraguirre,

J.; Green, W. H.; Lutz, J. J.; Piecuch, P.; Wong, H.-W.; Oluwole, 0. 0., Detailed chemical kinetic modeling of JP-

10 (exo-tetrahydrodicyclopentadiene) high-temperature oxidation: Exploring the role of biradical species in initial

decomposition steps. Int J Chem Kinet 2012, 44 (3), 179-193.) Permission has been obtained from the publisher for

reuse of this material in this thesis.
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-C

--- H

BR1 M~ll
He

(Reaction 2)

Two pathways through Reaction 1 were identified by Herbinet et al. and the pathway shown,

with a five-membered ring transition state, was proposed to have the lowest activation energy.

Herbinet et al. proposed the scheme shown below for estimating the activation energy for these

intramolecular disproportionation reactions,

E, = Eae - SEref cycle + SEsubpolycycle Eq. 4

In Equation 1, Ea is the activation energy and Ea,,ef is the activation energy for a reference n-

alkdiyl intramolecular disproportionation with the transition state with the same ring size. The

two SE terms refer to the ring strain energy for the reference cycle and the sub-polycycle

characteristic of the actual transition state. Using this approach to estimate the barriers, Herbinet

et al. estimated rate constant expressions for Reaction 1 (with five-membered ring transition

state) and Reaction 2 (with [3.2.1] bicyclic ring transition state) as shown below.

( TX 1\1.O -7.
7 5 kcal/mol

k,(T) = 1.9x1 13s e RT Eq. 5

=0 -19.85 kcal/mol

k2 (T) = 1.9x1 s- e RT Eq. 6

However, the intramolecular disproportionation family in RMG has been implemented using a

first-order approximation of the Herbinet et al. scheme due to challenges in implementing the

full Herbinet et al. scheme within the current RMG framework:

E = Earef Eq. 7
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As described previously, a preliminary detailed JP-10 combustion mechanism was

developed using RMG.879 This initial (vO.10) mechanism was refined to the vO.19 mechanism,

considered here; refinements include the addition of important cyclic-C5 chemistry, as well as

updates to thermodynamic and kinetic parameters based on ab initio calculations or the

published literature; the refined (vO.19) mechanism includes 320 species reacting through 7740

elementary steps. With the exception of four BRI pathways (where the estimates of Herbinet et

al. were used), kinetic parameter estimates in the mechanism series from vO.10 to vO.19 for this

reaction class were estimated on-the-fly by RMG, which, as discussed previously, uses a first-

order approximation of the estimation scheme employed by Herbinet et al. where only the first

term in their estimation procedure is retained.

In collaboration with Luwi Oluwole of Aerodyne Research, Inc., sensitivity analysis was

performed with software based on SENKIN 1 7 for a constant-pressure adiabatic ignition

simulation with a stoichiometric JP-10/air mixture starting at 1500 K and 1 atm, using the refined

(vO. 19) mechanism. Following the approach used by Davidson et al. in their experiments, 78

ignition was modeled in our calculations as the time to peak CH composition. Sensitivity

coefficients for each reaction were computed using the expression below.

= a ln k,

When these sensitivity metrics were ranked, it was found that kinetic parameters for multiple

intramolecular disproportionation reactions (including Reaction 1) appear amongst the top 2.5%

(top 200) of all reactions in this large mechanism.tm This suggests that ignition delay can be

sensitive to the kinetic parameter estimates for these intramolecular disproportionation reactions.

The kinetic parameters for these intramolecular disproportionation reactions are also likely to be

m Note that yCH in this equation is the rate of change in the CH mass fraction and r refers to the ignition time for

the unperturbed system. The partial derivative is evaluated holding the thermochemistry constant, i.e. both the

forward and reverse rate coefficients of reaction i are adjusted by the same amount so the equilibrium constant is not

changed by the perturbation.
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quite important in other aspects of the model besides ignition delay, such as speciation. For

example, sensitivity analysis on a more recent JP-10 mechanism versions (vO.41) has suggested

that the cyclopentene concentration for shock tube pyrolysis conditions of 1290 K is quite

sensitive to these intramolecular disproportionation reactions; in particular, two unimolecular

reactions of JP-10 involving chemically-activated paths involving intra-molecular

disproportionation as a component are ranked 4 1h and 5 th in terms of sensitivity coefficient; in

fact, the results suggest that cyclopentene formation may be significantly impacted by a

competition between hydrogen abstraction from the JP-10 fuel precursor and unimolecular

reactions to relieve strain in the JP- 10 fuel precursor, with the former favoring formation of

cyclopentene and the latter inhibiting it. Therefore, it will be important in future mechanism

development to more accurately estimate activation energies for these reactions, particularly in

view of relatively small amount of research that has been performed in this area.

It was initially envisioned that the RMG framework could be adjusted to allow activation

energy estimation procedures like the full approach of Herbinet et al. for intramolecular

disproportionation to be implemented in RMG. Plans were constructed to design and implement

a variation of the Herbinet et al. approach using the availability three-dimensional molecular

geometries and on-the-fly calculations based on them made possible by separate efforts to

improve RMG's thermochemical parameter estimates discussed previously. The proposed

variant of the Herbinet et al. approach is summarized below.

Ea =Earef - SEref cycle + SEpoycyce -SEsaturated reactant Eq. 9

The first two terms on the right hand side are identical to the Herbinet et al. expression.

However, to make the approach more amenable to implementation in RMG, the third term in the

Herbinet et al. expression involving the strain energy of the sub-polycycle has been replaced

here by the difference between the strain energy of the (full) polycycle associated with the

transition state and the strain energy of the saturated reactant. This adjustment avoids the need

for RMG to identify a sub-polycycle (which could be difficult to implement and potentially

ambiguous even when analyzed by a human), while allowing potential contributions from side-

rings and ligands to be taken into account. In this approach, RMG could determine the relevant

polycycle by making the breaking and forming bonds in the transition state into full bonds and

changing the transferred hydrogen into a saturated carbon. The reference cycle could be

determined either by the ring size identified by RMG's current group matching approach or via
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an approach based on SSSR (smallest set of smallest rings). The relevant species in the above

expressions for Reaction 2 are shown in Table 38 below to illustrate by example.

Table 38. Species discussed in the text in the context of activation barrier estimation for the example case of

Reaction 2
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It was envisioned that strain energy could be approximated via heats of formation as shown

below.

SE~ A ,298,i(MM4 or PM3)- AH ,298,I(GA) Eq. 10

Care would need to be taken to ensure that the group-additivity-based estimate for heat of

formation in the expression above does not include ring corrections. Under this plan,
intramolecular disproportionation would become the first test case (a proof of principle) in using

three-dimensional structure representations to improve on-the-fly kinetic parameter estimation

during automated reaction mechanism generation, which might ultimately be extended to other

reaction classes with similar steric and three-dimensional considerations, such as intramolecular

hydrogen migration.

However, before implementing such an approach for intramolecular disproportionation,

focus was placed on investigating this reaction class using high-level ab initio methods, given

the limited amount of existing work in this area in the literature. In particular, as the Herbinet et

al. JP-10 intramolecular disproportionation estimates are not directly based on experiment or ab

initio electronic structure calculations, independent estimates based directly on ab initio

electronic structure calculations are desirable. The present chapter presents an initial attempt in

this direction, based on work performed in collaboration with Piotr Piecuch and Jesse J. Lutz of

the Department of Chemistry at Michigan State University.

7.2 Methodology

Investigation of the CloH 16 system focused on Reaction 1 proceeding through a five-

membered ring transition state, as considered by Herbinet et al. In order to validate the approach

used for the CioH 16 system and obtain additional insights, two smaller, simpler systems were

studied as well, namely, a C6H12 system, depicted in Reaction 3, and a C3H8 system, depicted in

Reaction 4.

CH2 (Reaction 3)
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CH 3 ' + H 3 CCH2 - CH4 + H 2 C=CH 2 (Reaction4)

It should be noted that the C3H8 system (Reaction 4) is, unlike the others, a bimolecular reaction,

and is the smallest possible alkyl disproportionation reaction.

Due to the biradical nature of the species and reactions of interest, special ab initio

methodologies were required to accurately treat the systems considered here. Reactions 1, 3, and

4 were examined using the following three electronic structure methods : (i) the complete-active-

space self-consistent-field (CASSCF) approach, 18 which is a multi-reference approach that

considers non-dynamical many-electron correlation effects, while neglecting dynamical electron

correlation (ii) the second-order multi-configurational quasi-degenerate perturbation theory

(MCQDPT)," which is one of several different commonly-used approaches for applying

second-order perturbation theory to CASSCF to account for dynamical electron correlation, and

(iii) the completely renormalized (CR) coupled-cluster (CC) method abbreviated CR-CC(2,3),12 0

which can provide an accurate, balanced description of both non-dynamical and dynamical

correlation effects for chemical reaction pathways involving single bond breaking and biradicals

while using a single-reference framework'""-'. Density functional theory (DFT) UB3LYP

calculations12 were also performed for comparison.

CASSCF, MCQDPT, and CR-CC(2,3) calculations used the 6-31 1G(d,p) basis set,' 23

whereas UB3LYP calculations used the CBSB7 basis set.25 UB3LYP calculations were carried

out using Gaussian0912 4 and CASSCF, MCQDPT, and CR-CC(2,3) calculations were performed

using GAMESS.12s In particular, the CR-CC(2,3) calculations used the routines developed at

Michigan State University 120a, 126 that form part of the GAMESS distribution. MacMolPlt127 was

used for visualization. All calculations were performed on the singlet potential energy surfaces.

CR-CC(2,3) calculations were performed using the frozen-core treatment wherein ls carbon

atom electrons are not considered for excitations.

As is typical for these sorts of analyses, each transition state was found as a saddle point

on the potential energy surface of the indicated method, with one, and only one, imaginary

frequency, and each minimum was identified as a stationary point with real frequencies only.

Intrinsic reaction coordinate (IRC) calculations were performed with the same method as that

used to determine transition states to confirm that each saddle point is connected to appropriate

minima. The saddle points, minima, and IRCs obtained in CASSCF optimizations were used in
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the subsequent single-point calculations at the higher MCQDPT and CR-CC(2,3) levels to

examine the reliability of the CASSCF reaction profiles (this essentially constitutes a manual

implementation of the established IRCMax method 128). The idea behind this approach is that the

lower-level (CASSCF in this case) calculations should provide a reasonable reaction path,

though the details of the energetics, particularly the location of the energy maximum along the

reaction coordinate and the height of this barrier, will vary as higher-level methods are applied.

Earlier applications and benchmark studies suggest that the MCQDPT and CR-CC(2,3) methods

are capable of providing the results in the chemical (approximately 1 kcal/mol) accuracy range

for the activation energies (see, for example, Refs. 118,121f,129) provided a large enough basis set

is used. We did not use such large basis sets in this work to avoid excessive computational cost.

Although the 6-311G(d,p) basis set used here has triple zeta plus polarization quality, it lacks

higher angular momentum (f and higher) and diffuse functions, so, based on the earlier studies,
such as those presented in Ref. 121f our collaborators at Michigan State University estimate that

the errors resulting from these MCQDPT and CR-CC(2,3) calculations are on the order of about

2-3 kcal/mol, or so.

A four-electron, four-orbital active space (abbreviated "(4,4)") was used in CASSCF and

MCQDPT calculations, and the active orbitals were chosen to be those of chemical significance

for the intramolecular disproportionation process. The active orbitals for a representative

example, corresponding to one of the transition states for Reaction 3 designated in the next

section as TS3A, are plotted in Figure 41. The figure shows that the molecular orbitals in the

active space used in CASSCF(4,4) calculations correspond to the partially occupied molecular

orbitals associated with breaking/forming bonds. The lowest energy molecular orbital is shown

in the upper left and is associated with the C-H bond breakage that takes place during

intramolecular disproportionation. The next lowest energy molecular orbital in the top right

includes the p orbitals associated with the radical sites. The lower left panel depicts the

corresponding anti-bonding orbital. Finally, the bottom right panel shows the highest energy

orbital in the active space, which is the anti-bonding orbital corresponding to the lowest energy

orbital in the active space. Such active space considerations necessitate extra care when

performing the calculations; in particular, the converged orbitals for each calculation must be

checked to confirm that they correspond to the desired active space; situations frequently arise
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where this is not the case on the initial attempt, and the calculation procedure must be adjusted,

for example, by intelligent interchange of orbitals.

Figure 41. CASSCF(4,4) active orbitals for transition state TS3A of Reaction 3

7.3 Results and Discussion

7.3.1 Intramolecular disproportionation

7.3.1.1 C3HA System

The first system considered, C3H8, corresponding to Reaction 4, involves methyl + ethyl

disproportionation, and is the smallest possible alkyl disproportionation reaction. In addition to

calculating single-point CR-CC(2,3) and MCQDPT energies along the CASSCF(4,4) IRC

pathways, the C3H8 system is small enough to enable us to explore the CR-CC(2,3) and

MCQDPT potential energy surfaces with numerical energy gradients. This system has recently

been studied by Mousavipour and Homayoon130 and by Zhu et al.13 1 The results of the

CASSCF(4,4) calculations and the potential energy surface scans along the CASSCF(4,4)-

optimized IRC leading to the methyl + ethyl reactants obtained with the higher level

MCQDPT(4,4) and CR-CC(2,3) approaches are shown in Figure 3. The various single-point
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energies calculated at the saddle-point and reactant geometries obtained with CASSCF(4,4) are

shown in Table 39.

Table 39. Total electronic energies at the saddle-point (SP) and reactant (R) geometries obtained in the

CASSCF(4,4)/6-311G(d,p) geometry optimizations, reported in Hartree,a the corresponding apparent barrier

heights (ABH, in kcal/mol; calculated in each case as the difference between the appropriate energies at the

SP and R geometries found with CASSCF(4,4)), and the IRC barrier heights (IBH, in kcal/mol; calculated in

each case as the energy difference between the highest-energy point along the CASSCF(4,4) IRC available,

different for each method, and the corresponding energy at the CASSCF(4,4)-optimized R geometry),

characterizing the CASSCF(4,4)/6-311G(d,p)-optimized reaction pathway representing Reaction 4.

CASSCF(4,4) MCQDPT(4,4)//CASSCF(4,4) CR-CC(2,3)//CASSCF(4,4)

SP R ABH=IBH SP R ABH IBH SP R ABH IBH

-0.192740 -0.200490 4.9 -0.630532 -0.624321 -3.9 0 -0.682549 -0.680137 -1.5 1.0

a Each electronic energy E is reported as (E+ 118) Hartree.

E-ER
(kcal/molI

4

2

0

-4 -3-

-+- CASSCF(4,4) -2

-- MCQDPT(4,4)

-*- CR-CC(2,3)

intrinsic reaction coordinate (amu1I2-bohr) -6

Figure 42. Energy profiles for Reaction 4 along the CASSCF(4,4) IRC, calculated at different levels of theory.

In each case, the points correspond to selected structures on the relevant CASSCF(4,4)-optimized IRC, with

the abscissa indicating the approximate intrinsic reaction coordinate relative to the saddle point. The energies

E characterizing the profile are reported relative to the energy (ER) of a non-interacting complex

representing radical reactants identified by following the CASSCF(4,4) IRC.

As shown in Figure 42, the CASSCF(4,4) calculations show a clear barrier (of about 5

kcal/mol), while the CR-CC(2,3) single-point energy calculations along the CASSCF(4,4) IRC
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show only a small barrier (under 1 kcal/mol), well within the intrinsic error of the method,

shifted towards the reactant side. The analogous single-point MCQDPT calculations do not show

any barrier along the CASSCF(4,4) path. Also, our own calculations with UB3LYP confirmed

the findings of Zhu et al., who observed the existence of a stable complex and a saddle point

using that method.13 1 Thus, this system shows four qualitatively different potential energy

surfaces as the method is varied between CASSCF(4,4), CR-CC(2,3), MCQDPT(4,4) and

UB3LYP. Due to the small size of the system, we could afford to search for a saddle-point using

numerical gradients of CR-CC(2,3) and MCQDPT(4,4); our efforts to find a saddle point using

these two approaches were unsuccessful, suggesting that this reaction is barrierless at these

higher levels of theory. This indicates a need to include both dynamical and non-dynamical

electron correlation effects in order to obtain reliable reaction path energetics. The CR-CC(2,3)

and MCQDPT methods describe both types of electron correlation effects in an accurate manner,

eliminating the barrier on the CASSCF(4,4) potential energy surface, which includes relevant

non-dynamical correlations through multi-reference considerations, but neglects dynamical

correlation effects.

7.3.1.2 C6H12 System

The second system, which is associated with the cyclohexane ring opening and can be

regarded as an intermediate between the previously discussed C3 H8 case and JP-10, is the C6H 2

system corresponding to Reaction 3. The C6HI2 system is still sufficiently small to allow

relatively rapid exploration of the MCQDPT(4,4) potential energy surface with numerical energy

gradients. Three saddle points were found for Reaction 3 (hexamethylene<-+1-hexene) using

CASSCF(4,4). These saddle points, labeled as TS3A, TS3B, and TS3C, are shown in Figure 4.

TS3A TS3B d TS3C

Figure 43. CASSCF(4,4) saddle points for Reaction 3

Similar saddle points were found with UB3LYP; two of these saddle points (associated with

saddle points TS3A and TS3B) were considered by Sirjean et al.132 The results of the
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CASSCF(4,4) calculations and the potential energy surface scans along the CASSCF(4,4)-

optimized IRCs leading from saddle point to the biradical reactants obtained with the higher-

level MCQDPT(4,4) and CR-CC(2,3) approaches are shown in Figure 44. The various single-

point energies calculated at the saddle-point and reactant geometries obtained with CASSCF(4,4)

are shown in Table 40.

Table 40. Total electronic energies at the CASSCF(4,4)/6-311G(d,p)-optimized saddle points (SP) and

biradical reactant minima (BR), reported in Hartree,a the corresponding apparent barrier heights (ABH, in

kcal/mol; calculated in each case as the difference between the appropriate energies at the SP and BR

geometries found with CASSCF(4,4)), and the IRC barrier heights (IBH, in kcal/mol; calculated in each case

as the energy difference between the highest-energy point along the CASSCF(4,4) IRC available, different for

each method, and the corresponding energy at the CASSCF(4,4)-optimized BR geometry), characterizing the

three CASSCF(4,4)/6-311G(d,p) optimized reaction pathways representing Reaction 3. N/C=not calculated in

this work

IRC CASSCF(4,4) MCQDPT(4,4)//CASSCF(4,4) CR-CC(2,3)//CASSCF(4,4)

SP BR ABH=IBH SP BR ABH IBH SP BR ABH IBH

TS3A -0.161615 -0.167792 3.9 -1.042388 -1.032588 -6.1 0 -1.133733 -1.125251 -5.3 0

TS3B -0.158028 -0.165924 5.0 -1.038881 -1.031050 -4.9 0 -1.131023 -1.123573 -4.7 N/C

TS3C -0.155247 -0.167922 8.0 -1.040458 -1.033069 -4.6 0.3 -1.131659 -1.125778 -3.7 0.4

a V 711'
Eac electronic energy
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(b) TS3B
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-+- CASSCF(4,4)

-U- MCQDPT(4,4)
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Figure 44. Energy profiles for Reaction 3 along the CASSCF(4,4) IRCs passing through the (a) TS3A, (b)

TS3B, and (c) TS3C saddle points, calculated at different levels of theory. In each case, the points correspond

to selected structures on the relevant CASSCF(4,4)-optimized IRC, with the abscissa indicating the

approximate intrinsic reaction coordinate relative to the saddle point. The energies E characterizing each

profile are reported relative to the corresponding IRC-connected biradical minimum (EBR), which

corresponds to the terminal point at the left.

127



The single-point energy calculations at the selected structures along the CASSCF(4,4) IRCs

corresponding to the transition states TS3A, TS3B, and TS3C found with CASSCF(4,4) and

UB3LYP suggest no barriers or negligible barriers at the MCQDPT(4,4) and CR-CC(2,3) theory

levels. In fact, efforts to refine the CASSCF(4,4) saddle-point geometries to corresponding

MCQDPT minima (with numerical gradients) were unsuccessful, suggesting that these are not

valid saddle points at the MCQDPT level of theory. Although we were unable to perform similar

saddle-point searches with the CR-CC(2,3) method, the similarity of the MCQDPT and CR-

CC(2,3) results strongly suggests that the transition states found with CASSCF(4,4) aren't valid

saddle points at the CR-CC(2,3) level either. This again demonstrates that lower-order methods,

such as CASSCF, which neglects dynamical correlations, and UB3LYP, which has known

difficulties in describing multi-reference phenomena and biradical energetics, cannot be used to

obtain reliable reaction path energetics. Appropriate dynamical and non-dynamical correlation

effects, as considered by MCQDPT and CR-CC(2,3) approaches, must be taken into account in

order to obtain reasonable results. The absence of clear barriers in the reaction profiles obtained

by performing single-point MCQDPT(4,4) and CR-CC(2,3) calculations along the CASSCF(4,4)

IRC pathways suggests that the CBS-QB3 barrier (based on B3LYP geometries) of 3.85

kcal/mol used by Herbinet et al. (apparently based on the aforementioned study from Sirjean et

al.) may be too high.

Our efforts to optimize the corresponding biradical reactant minima (found at either

CASSCF(4,4) or UB3LYP levels) to a stable MCQDPT(4,4) minimum energy configuration

were unsuccessful as well. However, explorations of the C6H12 system by Kiefer et al.133 with

CASPT2(2,2) produced a viable saddle point (more akin to the biradical reactants than the

previously-discussed CASSCF(4,4) and UB3LYP TS3 geometries); this geometry was readily

re-optimized in this work to a saddle point at the MCQDPT(4,4) level of theory in this study.

The MCQDPT-optimized saddle point geometry is shown in Figure 45.
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Figure 45. MCQDPT(4,4) saddle point for Reaction 3

The molecular geometry exhibits significant biradical character, with a substantial separation

(about 3.26 A) between the atoms that will become bonded in product; without reaction path

following, this geometry might be mistaken as a saddle point only for rotation about a single

bond. (The ZPE-uncorrected barrier was found to be 2.6 kcal/mol at the MCQDPT(4,4) level.)

These results underscore the lack of reliability of CASSCF(4,4) and UB3LYP geometries for this

type of reaction system.

7.3.1.3 CiOH 16 System

As in the case of the C6HI2 system discussed in the previous subsection, three saddle

points, labeled TS1A, TS1B, and TS1C, were found for Reaction 1 using CASSCF(4,4), as

shown in Figure 46.

TS1A TS1B TS1C

Figure 46. CASSCF(4,4) saddle points for Reaction 1
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IRC calculations were performed to confirm that each saddle point connects the minima that

correspond to the desired reactant and product species. Similar saddle-point geometries, with

similar IRCs, were found using UB3LYP. Higher level MCQDPT and CR-CC(2,3) single-point

calculations that describe the dynamical as well as non-dynamical correlation effects were

performed at selected points along the CASSCF(4,4) IRC, and results are shown in Figure 47

and Table 41.

Table 41. Total electronic energies at the CASSCF(4,4)/6-311G(d,p)-optimized saddle points (SP) and

biradical reactant minima (BR), reported in Hartree,a the corresponding apparent barrier heights (ABH, in

kcal/mol; calculated in each case as the difference between the appropriate energies at the SP and R

geometries found with CASSCF(4,4)), and the IRC barrier heights (IBH, in kcal/mol; calculated in each case

as the energy difference between the highest-energy point along the CASSCF(4,4) IRC available, different for

each method, and the corresponding energy at the CASSCF(4,4)-optimized BR geometry), characterizing the

three CASSCF(4,4)/6-311G(d,p) optimized reaction pathways representing Reaction 1.

IRC CASSCF(4,4) MCQDPT(4,4)//CASSCF(4,4) CR-CC(2,3)//CASSCF(4,4)

SP BR ABH=IBH SP BR ABH IBH SP BR ABH IBH

TS1A -0.963522 -1.015185 32.4 -2.434862 -2.453652 11.8 14.6 -2.566955 -2.592631 16.1 17.0

TS1B -1.000906 -1.014091 8.3 -2.468157 -2.459969 -5.1 0.5 -2.601343 -2.594176 -4.5 0.4

TS1C -0.980512 -1.012022 19.8 -2.448613 -2.452571 2.5 9.6 -2.581793 -2.591074 5.8 9.1

a Each electronic energy E is reported as (E+387) Hartree.

In analogy to the previously discussed C3H8 and C6H12 systems, the potential energy surface

scans along the CASSCF(4,4)-optimized IRCs obtained with the higher-level MCQDPT(4,4) and

CR-CC(2,3) approaches suggest that the CASSCF calculations do not provide a reliable

description of pathway energetics characterizing Reaction 1. This is particularly evident in the

case of the reaction pathway corresponding to transition state TS 1 B, where CASSCF(4,4)

predicts the existence of the clear activation barrier on the order of 8 kcal/mol; however, this

barrier nearly disappears in the MCQDPT(4,4) and CR-CC(2,3) calculations, mimicking the

behavior we have seen with all three transition states for the C6H12 case. The results suggest that

the neglect of dynamical correlations by the CASSCF(4,4) calculations produces an unphysical

barrier in the potential energy surface in this case, whereas the inclusion of dynamical correlation

by MCQDPT(4,4) and CR-CC(2,3) methods (in addition to non-dynamical correlation) does not

produce such a barrier.
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Work by collaborators at Michigan State University has found that the inclusion of more

active orbitals and more active electrons in the CASSCF calculations lowers the apparent TS I B

barrier, which, according to their analysis, reinforces the above observations. They found, for

example, that the apparent TS lB barriers with CASSCF(6,6) and CASSCF(8,8) calculations are

6.6 and 5.3 kcal/mol, as opposed to about 8 kcal/mol obtained in the CASSCF(4,4) calculations.

For the remaining two pathways, which correspond to transition states TS lA and TS IC, the

barriers obtained in the CASSCF(4,4) calculations survive the inclusion of dynamical correlation

effects with MCQDPT(4,4) and CR-CC(2,3) methods, but the barriers are significantly reduced.

We were unable to perform saddle-point optimizations using MCQDPT and CR-CC(2,3)

approaches due to prohibitive costs of such calculations without analytic gradients. However, the

shift in the maximum in the each of the energy profiles in Figures 7 (a) and 7 (c) suggests that

the inclusion of dynamical correlation effects via MCQDPT or CR-CC(2,3) may tend to shift the

saddle-points TS 1 A and TS 1 C toward the corresponding biradical reactant minima.

Although there are some differences between barrier heights resulting from the MCQDPT

and CR-CC(2,3) calculations for the pathways involving the TS1A and TS1C transition states,

collaborators at Michigan State University found that these differences become smaller as the

active space employed in the MCQDPT calculations is expanded. The apparent barrier height

corresponding to the transition state TS1A obtained via MCQDPT(8,8) calculations, for

example, was found to be 13.1 kcal/mol, closer to the CR-CC(2,3) result of 16.1 kcal/mol than

the MCQDPT(4,4) result of 11.8 kcal/mol. Likewise, a 6.1 kcal/mol apparent barrier height for

TS1C was found using MCQDPT(8,8), significantly closer to the CR-CC(2,3) result of 5.8

kcal/mol than the MCQDPT(4,4) result of 2.5 kcal/mol. Noticing the similarity of results

obtained with the MCQDPT and CR-CC(2,3) approaches for this reaction, the Michigan State

University collaborators interpreted this as providing further confirmation that the CASSCF

approach is unreliable for the energetics of Reaction 1.

It should be noted that the above results do not consider zero-point energy (ZPE) effects, but

these considerations should not have a material impact on the conclusions presented here.

CASSCF(4,4) calculations for each of the saddle-points suggest that ZPE effects should lower

the barriers by approximately 1.0 kcal/mol. It should also be noted that the biradical that each of

the three saddle points connects to is a different CASSCF(4,4) minimum; the biradical minimum

associated with TS 1 A has lowest energy at CASSCF(4,4) level, whereas the biradical minimum
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associated with TS1B has the lowest energy at MCQDPT(4,4) and CR-CC(2,3) levels.

Calculations using a CASSCF(4,4) geometry for JP-10 also enabled estimation of 0 K bond

energy associated with carbon-carbon bond breaking to form the BRi biradical associated with

TS1A, producing values of 59, 75, and 81 kcal/mol for CASSCF(4,4),

MCQDPT(4,4)//CASSCF(4,4), and CR-CC(2,3)//CASSCF(4,4), respectively (all with

CASSCF(4,4) ZPE); these values are lower than the 0 K bond dissociation energy in ethane of

about 88 kcal/mol.134
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Figure 47. Energy profiles for Reaction 1 along the CASSCF(4,4) IRCs passing through the (a) TS1A, (b)

TS1B, and (c) TS1C saddle points, calculated at different levels of theory. In each case, the points correspond

to selected structures on the relevant CASSCF(4,4)-optimized IRC, with the abscissa indicating the

approximate intrinsic reaction coordinate relative to the saddle point. The energies E characterizing each

profile are reported relative to the corresponding IRC-connected biradical minimum (EBR), which

corresponds to the terminal point at the left.
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7.3.1.4 Discussion / Kinetic modeling of the C10H16 system

Overall, the above three systems illustrate interesting method-dependent phenomena in

the potential energy surfaces of disproportionation reactions, with a strong indication toward the

need to use higher-level quantum chemistry approaches, such as MCQDPT or CR-CC(2,3), that

account for appropriate dynamical and non-dynamical correlation effects. In the case of the

disproportionation reactions examined here, results clearly show that the inclusion of dynamical

electron correlation on top of non-dynamical correlation reduces or eliminates the reaction

barriers along paths determined using lower-order (CASSCF) calculations.

To ascertain the influence of lower intramolecular disproportionation barriers on

combustion behavior of JP-10, the activation energies of all intramolecular disproportionation

reactions in the mechanism were dropped by 7.75 kcal/mol (the activation energy for Reaction 1

from the Herbinet approach) to a minimum of 0.0 kcal/mol. The resulting mechanism was

labeled vO.19b, and ignition simulations were performed using the isobaric simulation feature in

SENKIN with ignition determined by the point with highest CH mole fraction. 117a Ignition delay

results for the unperturbed vO. 19 and the perturbed vO. 19b mechanisms were compared to

experimental values of Davidson et al.,78 as shown in Figure 48.
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Figure 48. Parity plot comparing ignition delay from unperturbed and perturbed mechanisms (vO.19 and

vO.19b, respectively) to experimental results of Davidson et al.78

The results suggest that the activation energy perturbation has its biggest effect on the

conditions with the longest ignition delay. In particular, for such conditions, the activation

energy reduction appears to further delay ignition. One possible explanation for this is that the

faster termination reaction of the biradical is depleting the (bi)radical pool, hence delaying the

onset of ignition. The importance of these reactions at conditions with longer ignition delay is

supported by sensitivity analysis, which shows, for example, that Reaction 1 increases from an

importance rank of 171 out of 7740 reactions (again, computed based on the sensitivity metric

defined by Equation 5, discussed previously) at conditions corresponding to the point at the far

left (1671 K, 1.05 atm, 0.20 mole % JP-10, 2.99 mole %, 02; remainder Ar) to a rank of 130 at

the conditions corresponding to the point at the far right (1352 K, 8.69 atm, 0.20 mole % JP-10,

2.78 mole %, 02; remainder Ar).
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7.3.2 Ring-opening pathways with concerted hydrogen transfer

7.3.2.1 Background

The possibility of concerted reactions leading directly from ring to alkene, bypassing

biradical intermediate, was also considered. There appears to be limited discussion of these

pathways in the literature. An investigation of C4H8 by Ventura et al.135 found that

tetramethylene was not a stable molecule (i.e. there was no minimum on the potential energy

surface) when using the MR-AQCC approach,136 which is a method related to multireference

configuration interaction (MR-CI), taking both dynamical and non-dynamical correlation effects

into account. This would suggest that ring-opening of cyclobutane leads directly to 1 -butene

without a biradical intermediate. Later, Kiefer et al. found a concerted pathway from

cyclohexane to 1 -hexene using CASPT2(2,2) with relatively low barrier, but concluded that the

kinetics were not competitive with the biradical pathway due to a low Arrhenius pre-factor. 13 3

7.3.2.2 DFT calculations

Two saddle points, labeled as TS5 and TS6, corresponding to a concerted JP-

10<-+MA 110 reaction, have been found at the UB3LYP level. The corresponding reactions are

shown below.

(Reaction 5)

(Reaction 6)
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Our CBS-QB3 calculations, performed with Gaussian09, suggest a high barrier of over 110

kcal/mol for TS5 and a lower barrier of about 80 kcal/mol for TS6 (see Table 4). The latter is

comparable to the barrier of 77 kcal/mol estimated by Herbinet et al. for the ring-opening of JP-

10 to form BR 1, which provides a rough indication that the concerted pathway could be

competitive with the biradical pathway for JP-10 decomposition. The existence of the TS5 and

TS6 transition states has been reexamined using the CASSCF(4,4) approach. We were unable to

locate a saddle point similar to TS5 on the CASSCF(4,4) potential energy surface, but

calculations affirmed the existence of the saddle-point structure for TS6 on the CASSCF(4,4)

potential energy surface. The lack of success in locating a CASSCF(4,4) saddle point similar to

TS5 could suggest that it is spurious, but it is also noted that this method has been shown to be

unreliable for different (though somewhat similar) systems elsewhere in this work.

Table 42. CBS-QB3 absolute and relative energetics for Reactions 5 and 6, with T1 diagnostic137 results for

the CCSD(T) step of the CBS-QB3 calculation for each saddle-point

Species CBS-QB3 (0 K) energy Barrier Height TI diagnostic

(Hartree) (kcal/mol)

JP-10 -389.881322 - -

TS5 -389.702457 112.2 0.0127

TS6 -389.754219 79.8 0.0173

Table 42 reports the CBS-QB3 results (electronic energy + zero point energy) for the JP-10

reactant and TS5 and TS6 saddle points on the UB3LYP surface. The TI diagnostic values, both

being less than 0.02, suggest that multi-reference considerations are not critical for this pathway.

(It is noted, however, that the utility of the TI diagnostic has been called into question.) The

UB3LYP geometries of TS5 and TS6 are shown in Figure 49.
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(a) TS5

6

(b) TS6

Figure 49. UB3LYP saddle-point geometries for Reactions 5 and 6: (a) TS5 and (b) TS6

Using CanTherm,72 a modified Arrhenius fit was obtained for each of these reactions based on

CBS-QB3 results and transition state theory. This led to the following rate parameter estimates

for Reactions 5 and 6:
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T )6.88 -99.31 kcal/mol

k5 (T) = 2.54x10" s-1 00 K e RT Eq. 11

= 9.1 X1014S-1 T 1.23 -80.34 kcalmol

k6(T) = 9.1x10 4s' e RT Eq. 12

In both cases, the chiral nature of the saddle-point (i.e. the fact that it is not superimposable on its

miffor image) indicates that there are two distinct, but isoenergetic pathways for each of these

reactions; consequently, the Arrhenius prefactors from CanTherm have been multiplied by a

factor of two to account for this reaction path degeneracy in the expressions above.

It is possible that additional concerted JP-10 decomposition pathways exist that were not

identified in this study.

7.3.2.3 Kinetics implications

An attempt was made to assess the importance of the Reaction 6 concerted pathway

relative to the biradical pathways considered by Herbinet et al. For the biradical pathways,

kinetic parameters for the JP-10<-*BR1 reaction, Reaction 1 (both pathways), and Reaction 2

were taken from Herbinet et al. Thermochemistry for JP-10 is based on the Herbinet et al. values

and thermochemistry for BRI is based on the values from Herbinet et al. estimated using

quantum methods. Two approaches were used to calculate an effective rate constant for the two-

step biradical pathway. One approach was to assume rapid equilibrium between BRI and JP-10.

The second approach was to apply the pseudo-steady-state approximation to BRI. A comparison

of these effective rates with the Reaction 6 concerted pathway rate (computed as described

previously) is shown in Figure 50.
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Figure 50. Effective rates for initial decomposition of JP-10 through various pathways (RE=rapid equilibrium

assumption; PSSA=pseudo-steady-state approximation)

The comparison suggests that the concerted pathway is competitive at very low

temperatures, but the biradical pathway to MA1 10 dominates at higher temperatures of interest

to combustion. Even so, the concerted pathway to MA 111 appears to be faster than the

corresponding biradical pathway for temperatures less than 2000 K. The lower magnitude slope

for the concerted reaction in the Arrhenius plots shown in Figure 10 suggests that the activation

energy for the concerted pathway is lower than the effective activation energy for the

intramolecular disproportionation process (taking recombination and disproportionation of the

biradical into consideration).

It should be noted that this comparison is particularly sensitive to both the Herbinet et al.

kinetic parameters for the BRI intramolecular disproportionation reactions (which, as previously

discussed, may be inaccurate) and the thermochemistry of JP-10 and BR1. For example, if the

group additivity estimates for BRI thermochemistry from Herbinet et al. are used in place of the

BRI quantum chemistry values from Herbinet et al., the concerted pathway appears to be

noticeably less competitive, apparently due largely to the significant entropy discrepancy
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between the two estimates. This suggests that accurately capturing biradical thermochemistry

will be an important consideration in future efforts to refine JP-10 decomposition models.

It should also be noted that it has recently been proposed that ring opening via carbenes may

be competitive with biradical routes, 138 but the issue is far from settled. These carbene pathways

have not been considered here.

7.4 Conclusions

Multireference (CASSCF and MCQDPT) and completely renormalized coupled-cluster (CR-

CC(2,3)) calculations have been applied to study the initial stages of JP-10 decomposition.

Results of these studies demonstrate interesting method-dependent phenomena for the potential

energy surfaces of disproportionation reactions and provide evidence that the barriers to these

reactions may be much lower than previously thought in the case of intramolecular

disproportionation in a key JP-10 decomposition pathway. The new calculations provide

evidence that some disproportionation steps may be barrierless. Results suggest that the

CASSCF(4,4) approach's neglect of dynamical electron correlation produces unphysical saddle-

point structures and unreliable reaction path energetics for intramolecular disproportionation

processes, while these artifacts may be eliminated through the inclusion of appropriate

dynamical and non-dynamical many-electron correlation effects via use of MCQDPT or CR-

CC(2,3) methods. Modeling results suggest that the effect of reducing activation energies for the

intramolecular disproportionation pathways would be to extend the time to ignition for

conditions with the longest ignition delay. Our quantum chemical calculations have also

identified previously unexplored pathways for JP-10 decomposition involving concerted ring-

opening pathways that bypass biradical formation. Preliminary analysis suggests that these

additional pathways are likely not quite competitive with the biradical pathways that are

characterized (according to high-level MCQDPT and CR-CC(2,3) calculations) by low-energy

barriers or lack of activation barriers, though they are not necessarily insignificant. Overall, our

findings demonstrate that the chemistry of ring-opening and associated pathways is not yet

completely understood and further study is needed. In particular, in order to obtain reliable

estimates, effort should focus on incorporating the results of higher level ab initio quantum

chemistry calculations that accurately accounting for dynamical and non-dynamical correlation

effects.
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It appears that this study calls into question not only the Herbinet et al. kinetic parameters

for the JP-10 system considered here, but also the kinetic modeling of smaller cycloalkane

systems that have been studied with DFT methods previously. As such, it is judged that further

study of the intramolecular disproportionation reaction class is warranted before effort is placed

on implementing intramolecular disproportionation kinetic parameter estimation routines in

RMG that account for three-dimensional geometry effects. (However, other reaction classes,

such as intramolecular hydrogen migration, may be more suitable to applying such three-

dimensional geometry-based kinetic parameter estimation approaches, without the need for

substantial additional high-level theoretical investigation; such opportunities are discussed

further in the final chapter.)

The clearest route to further explore these reactions in a computationally efficient manner

appears to be through use of CASPT2(4,4) calculations with MOLPRO. The CASPT2 method is

a multi-reference approach incorporating second-order perturbation theory, and as such, it

incorporates both dynamical and non-dynamical electron correlation effects. It is similar to the

MCQDPT method in GAMESS; however, the MOLPRO implementation of CASPT2 includes

analytical gradients, which greatly speed optimization to saddle-points and minima, as well as

the computation of Hessians in order to compute frequencies, partition functions, zero-point

energies, etc.

Ultimately, this work sows the seeds for future improvements to RMG rate parameter

estimation. In particular, evidence has been presented to suggest that application of methods

incorporating both dynamical and non-dynamical correlation can potentially improve upon

existing intramolecular disproportionation rate parameter estimates. Following such refinement,

the next step would be to improve upon the rate parameter estimation scheme used by RMG.

This might be done using an approach like that originally envisioned, similar to the approach of

Herbinet et al. or, depending on the findings of the application of more accurate ab initio

methods, some variant of this approach may be warranted. Finally, the concerted reactions

identified here involving ring opening with simultaneous hydrogen transfer may ultimately be

found to be suitable for inclusion as a new and separate reaction class within RMG's reaction

templates, particularly if further investigation demonstrates that these reactions are more

widespread than the cases presented here and if they are found to be important relative to

competing pathways.
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8 Chapter 8: Opportunities for further investigation and

conclusions

8.1 Introduction

In addition to providing concrete contributions in areas such as JP-10 combustion

modeling and improvements to RMG functionality and accuracy, the work undertaken in this

thesis has generated a number of ideas for further avenues of exploration. Several of these

opportunities have been presented, as appropriate, in the preceding chapters. Here, the discussion

is expanded to introduce an opportunity for improving the reaction mechanism generation

algorithm, and further discuss opportunities to better account for conformational flexibility and

to improve kinetic parameter estimates using explicit three-dimensional geometry-based

approaches. The chapter concludes with a summary of the contributions of this thesis and some

general conclusions.

8.2 Improvement to reaction mechanism generation algorithm

The main focus of this thesis is improvement to parameter estimation and expanding the

scope of applications for mechanism generation. Nevertheless, the underlying mechanism

generation algorithm is an important aspect to consider, and an idea for improving upon the

existing approach is proposed here.

The algorithm currently implemented in RMG determines model validity using a criterion

based on a user-specified tolerance and a characteristic flux, Rchar-:

dC 1 <tol -Rchar VjE edge species
dt

with Rcha, = 2 is core species Eq.13

This criterion works well under many circumstances, and has been found to produce reasonable

mechanisms. However, a potential issue arises when trying to generate a model that is valid over

long time scales or for high conversions. In particular, the system will tend to approach

equilibrium, such that the net rate of change of the core species concentrations tends to zero,

correspondingly causing the characteristic flux, Rehar, as defined above, to tend to zero. The flux
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to edge species, however, only considers unidirectional flux as there is no "reverse" reaction to

consider for reactions to edge species. Thus, the model validity criterion becomes difficult to

satisfy as equilibrium is approached, and the algorithm becomes more likely to enlarge the

model. This appears to be an artifact related to the definition of the characteristic flux, rather than

a phenomenon that should be captured by the model building algorithm. The potential

consequence is that mechanisms are needlessly expanded, diverting computational resources

from important chemistry to explore relatively unimportant processes. To work around this issue,

a change in definition of the characteristic flux is proposed, wherein both forward and reverse

contributions are considered separately such that the opposing sign of these terms does not

cancel, as it would if the net flux were used:

I s, 2 2]2
Rchar proposed ,,,,,= dC e- core species Eq. 14

dt forward) dt reverse)

In contrast to the original definition, this characteristic flux does not approach zero as

equilibrium is approached, and appears to offer a potentially more appropriate metric for

mechanism generation. The net effect of this definition change of Rchar should be a shift to a

focus on earlier time scales when species concentrations are changing rapidly and away from

later time scales near steady-state. It is anticipated that this could allow more efficient generation

of chemical kinetic models, by allowing the use of lower tolerances (given fixed computational

resources) and/or producing smaller mechanisms that still capture all of the important chemistry.

8.3 Better approaches for accounting for conformational flexibility

8.3.1 Models to account for conformational flexibility

As discussed previously, the typical treatment by the QMTP system is to assume harmonic

behavior for all internal modes; we have implemented experimental rotor scan methods with the

MM4 force field that account for conformational flexibility at a higher level (separable hindered

rotor treatment), but even this approach may not achieve a sufficient level of accuracy for certain

molecules/applications, and some examples of this appear in the literature. 79 There is opportunity

for improvement of this treatment, particularly when using the relatively computationally

inexpensive MM4 approach.
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One possible approach is to use "conformational averaging" or a "mixture of conformers

model".139 This is the approach commonly taken with Allinger's MMn force fields.2324 The first

step in such an approach would be to enumerate most (ideally all) low-lying local minima on the

molecule's potential energy surface. Then, corrections are applied, using the minimum energy

conformation as a reference. For example, corrections to heat of formation include a "POP"

correction which incorporates a weighted average of the conformer energies; the weighing is

done with respect to population, with populations determined by Gibbs free energy computed

with the harmonic oscillator approximation. Entropy is adjusted by considering the entropy of

mixing associated with a mixture of conformers with populations weighted by the Gibbs free

energy, again computed with the harmonic oscillator approximation. Although Allinger's

literature is not clear on the recommended heat capacity treatment with this approach, one could

extrapolate from the heat of formation and entropy treatments to suggest that it also would

involve population-weighted average of harmonic-oscillator-based conformer heat capacities;

alternatively, it could be computed based on S(T). One advantage of this approach is the fact that

it implicitly accounts for non-separable multi-dimensional torsional considerations; additionally,

it can account for certain non-rotor anharmonic motions, such as ring inversion. However, the

theoretical foundations for this approach are not very solid, and, for example, in a simple

averaging approach, the heat capacity wouldn't obey proper high-temperature limits for

molecules with rotors, as this approach would effectively include +R for each rotor mode, rather

than the appropriate +R/2 contribution.

There are also much more sophisticated approaches that have a strong physical foundation

based on path-integral calculations.14 0 Unfortunately, these approaches can be extremely

computationally demanding, even for relatively small molecules. Alternative approaches based

on various approximations and simplifications are discussed elsewhere. 4 1

The most promising approach that appears to offer a favorable balance between accuracy

and speed for our application is the recently introduced multi-structural method of Truhlar and

coworkers8 0; this method is reportedly able to account for conformational flexibility via both

rotation about bonds as well as other modes such as ring inversion, and obeys desired statistical

mechanical limits, including high temperature heat capacity. Implementation of this approach

within the QMTP system for use with MM4 calculations would seem to be the next logical step

for improving treatment of conformational flexibility.
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8.3.2 Enumeration of conformers

A key aspect of such an implementation would be accurate and robust enumeration of all the

minima on the molecule's potential energy surface, without double counting equivalent

conformations. Many approaches have been developed to explore a molecule's potential energy

surface with the goal of identifying low-lying local minima; a complete discussion is beyond the

scope of this chapter, but potentially-promising methods include distance geometry,45 stochastic

proximity embedding,4 6-4 8, 142 the Monte Carlo method of Saunders,143 and systematic searches

over torsion angles. The Saunders approach is, in fact, built in to the MM4 program; however,

internal tests suggest that this implementation can have some difficulties identifying essentially

equivalent conformations as being equivalent. Also, this type of approach might be expected to

be relatively slow at identifying new conformers compared to more directed approaches, such as

systematic searches over torsion angles.

8.3.2.1 Conformational equivalence testing

Regardless of the chosen approach for exploring a molecule's potential energy surface, a

key aspect of the conformer enumeration process is the identification of conformational

equivalence to avoid double counting the same conformer. Toward this end, I have developed

and implemented a novel conformational equivalence algorithm, designed for this particular

application, in the MoleCoor utility.66 This algorithm is described in further detail below.

8.3.2.1.1 Background

First, the definition of conformational equivalence used here should be made clear.

Examples of equivalent and distinct conformers are shown in Figure 51.
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distinct-4mmomk

Figure 51. Examples of conformational equivalence as defined in text

In the figure, panel (a) shows two configurations of n-butane that differ with respect to atom

numbering but are still considered equivalent; panel (b) shows that two mirror image

conformations of gauche n-butane are considered equivalent here; panel (c) shows that the

gauche and anti conformations of n-butane are distinct; finally, panel (d) shows that two

conformations of JP-10 arising from ring flipping are also distinct. It should be emphasized that

for our purposes, we consider mirror image conformers to be identical (e.g. panel (b) above), as

although the two forms are topologically distinct and non-superposable, they are iso-energetic,

and in practice, the two iso-energetic enantiomers may be accounted for by a simple statistical

chirality correction (i.e. multiplying the partition function by two).

147

a)

b)

c)

d)



A number of approaches have been developed for testing conformational equivalence for

various applications. MM4(2008), for example, determines conformational equivalence based

upon structures having nearly the same energy and moment of inertia;76 however, because these

are necessary, but not sufficient, conditions for conformational equivalence, the approach is

susceptible to false positive results in rare cases. Additionally, as alluded to previously, the

implementation of conformational equivalence testing in MM4(2008) does not appear to be

robust for our application and seems to produce many false negative results; in particular, the

tolerance threshold for conformational equivalence is not adjustable, and the approach will

unexpectedly find dozens of "different" conformations for n-butane. Another common approach

is to use a molecular alignment procedure to minimize the root-mean-squared-deviation (RMSD)

between the atomic coordinates; alignment may be performed using the well-known Kabsch

algorithm.144 The resulting RMSD of the optimally aligned structures then provides a measure of

the (mis)alignment between two conformers which can be used, in conjunction with an

appropriate tolerance threshold, to test for conformational equivalence.

In these approaches, it should be noted that the Kabsch algorithm requires a mapping

between corresponding atoms in the two conformers to be compared. In general, the number of

potential mappings is quite significant (for a molecule with N atoms, all the same type, there will

be N! possible atom mappings), making an exhaustive search over all possible mappings

computationally intractable. The program TORMAT uses connectivity information to perform

graph matching and narrow down the number of possible atom mappings. 145 However,

connectivity is often ambiguous, and such information can be unreliable or unavailable (e.g.

transition states or molecules with hydrogen bonds). More recently, Bond developed an approach

that utilizes the general assignment algorithm of Munkres 14 6 to obtain appropriate atom

mappings and does not rely on a priori connectivity or atomic correspondence information;147

however, in determining the best atom mapping, it relies on a global optimization approach,

which is not, in general, guaranteed to converge to the global optimum. Additionally, the use of

RMSD as an error metric can, itself, be seen as a limitation of these methods. Limitations of the

RMSD metric have been noted elsewhere,147-148 and Bond, for example, citing Collins et al.,

notes that "the r.m.s. deviation for the least-squares overlay may not always be the most

revealing measure of molecular similarity, since it is an average measure and may conceal cases
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where large parts of molecules are closely comparable but a small number of significant

discrepancies exist".

The approach described here and implemented in MoleCoor avoids these limitations: it

relies instead on an alternative error metric based on maximum deviations between

intraconformer atom-pair distances and is robust (guaranteed to produce an accurate result)

without relying on connectivity information; it is well-suited to the application of conformational

equivalence testing where we want to check whether two conformations are equivalent within

some small tolerance.

8.3.2.1.2 The MoleCoor algorithm

As alluded to previously, the MoleCoor algorithm makes use of an error metric based on

maximum deviations between intraconformer atom-pair distances. Let us consider distance

matrices for each of the two conformers, labeled D and E, respectively. The distance matrices

contain the Euclidean distances between atoms i and j, labeled, for example, D1. Assuming we

have an atomic correspondence, mapping atoms in one conformer to the other, we will consider

the two conformers to be equivalent if and only if:

E£i !a8Vi, j with
Eq. 15

ha = DJ- E

In this expression, ca is an absolute tolerance specified by the user. Alternatively, the user can

specify a relative tolerance, which will tolerate larger absolute deviations over large distances,

while requiring smaller deviations over short ranges; this could be more appropriate for extended

molecular systems, where small deviations in an angle can lead to large variations in positions of

atoms connected through long arms from that angle. In this case, the requirement for

conformational equivalence, given a user-specified relative tolerance, Er, is:

eijrCeaVi, j with

jD1 -Ejj Eq. 16

Cir min(D1 ,E 1)

The use of the minimum of D1 and E in the denominator ensures that the criterion is symmetric

with respect to interchange of the two conformers. In the following discussion, the absolute case

will be considered for the sake of conciseness and simplicity, but it is noted that the treatment

when using relative tolerance readily follows by analogy.
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The use of distance matrices in the comparison avoids the aforementioned averaging-related

shortcomings of the RMSD metric. Also, it is a reasonable and intuitive metric in the context of

energy calculations where energy is solely a function of the distance matrix. It should be noted

that the concept of comparing distance matrices has been put forth previously;14 3 however, the

issue of establishing atomic correspondence for general cases that can arise, along with other

details associated with the distance matrix comparison, do not seem to have been addressed.

So, given an atomic correspondence, the conformational equivalence test is relatively

straightforward, and the conditions above may be readily evaluated to determine whether the

criteria above are met; alternatively, if we are looking for a more quantitative answer, the

quantities max(eij,a) and max(eij,,) are simple to compute. The challenge, which will be described

next, is how to establish correct, consistent atomic correspondence between the two conformers.

As mentioned previously, if considered in a brute force manner, the problem suffers from

combinatorial explosion in the number of possible atom mappings. The basic idea of the

MoleCoor algorithm is to reduce the number of potential atom mappings considered by asking

the Boolean question of conformational equivalence ("Is max(Eij,a) Ea?") rather than asking the

quantitative question of how close two the two conformers are to each other ("What is

max(egj,a)?". We don't directly obtain as much information from asking the Boolean question, but

if the answer is "yes", it turns out that we can obtain one or more viable atom mappings in the

process of computing the answer, which in turn, can be used to quickly obtain the answer to the

quantitative question, if desired.

The mechanism behind the approach for asking this Boolean question is demonstrated below

for a simplistic case that omits the consideration of atom types.
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Figure 52. Distance matrices for example illustrating MoleCoor algorithm mechanics; as the matrices are

symmetric, the lower left hand portion has been omitted

Figure 52 illustrates the distance matrices that will be used for the example. In this case, we

illustrate working with an absolute tolerance, Ea = 0.01, though there is a mapping (1+-+2'; 2+-*3';

3+-+4'; 4+-+5'; 5+-+1') with exactly equivalent intraconformer atom-pair distances (i.e. max(Ega) =

0).
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Look for elements in [0.99,1.01]

0 1.00 3.14 2.00 1.41 '0 .41 1.73 3.50 4.0

0 2.72 1.62 1.73 1.00 3.14 2.00

0 1.64 3.50 0 2.72 1.62

0 4.00 0 1.64

0

(1, 2) ->(2',3'

(1->3'; 2-)2')

Figure 53. Iteration 0 for example illustrating MoleCoor algorithm mechanics

The 0th iteration of the algorithm is depicted in Figure 53. We start with an arbitrary element of

the distance matrix for Conformer A, which includes a distance of 1.00. Based on the chosen Ea,

we look for elements of the Conformer B distance matrix in the range [0.99,1.01]. One such

element is found, and two possible partial mappings are implied by this match: (1<-*2'; 2<-+3') or

(1<-+3'; 2<-+2'). Each of these mappings is explored in the subsequent steps, though only the first

will be considered here, as the second mapping leads to a "dead end" in the algorithm, and does

not produce a viable atom mapping.
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Figure 54. Iteration 1 for example illustrating MoleCoor algorithm mechanics

The I"t iteration of the algorithm with the first mapping is shown in Figure 54. We start with the

(1,3) element of the Conformation A distance matrix, which, based on the proposed mapping,

should correspond to an element involving 2' in the Conformation B distance matrix. Examining

such matrix elements (again using the user-specified ea) produces one match, suggesting a

mapping of (1 -+2'; 2+-+3'; 3+-4'). In the second portion of this iteration, we confirm this

mapping by checking that all remaining distances involving the mapped atoms also match within

the user-specified tolerance. A similar process repeats in subsequent iterations, as shown in

Figure 55 and Figure 56.
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Figure 55. Iteration 2 for example illustrating MoleCoor algorithm mechanics
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Figure 56. Iteration 3 for example illustrating MoleCoor algorithm mechanics
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In the 3 rd and final iteration of the algorithm, all atoms are successfully mapped (within the user-

specified tolerance), indicating that an atom mapping has been identified that satisfies the

conformational equivalence criteria outlined previously. In subsequent discussion, this will be

termed a "viable atom mapping" or "v.a.m.". The existence of one or more such atom mappings

is a necessary and sufficient condition for conformational equivalence, as considered here.

We can now take a step back to consider the general structure of the algorithm. At each

iteration, the MoleCoor algorithm can branch, exploring multiple paths in the process of testing

for viable atom mappings. Some (or all) of these paths may lead to "dead ends" corresponding to

non-viable atom mappings (given the user-specified tolerance). Other paths can continue until

they reach a point where all atoms have been successfully mapped; each of these paths

corresponds to a unique viable atom mapping. This general structure is summarized in Figure 57.

N layers

dead end

'Sj
unique unique

viable atom viable atom
mapping mapping

Figure 57. General structure of the MoleCoor algorithm

Although not shown in the above example, the MoleCoor algorithm, as implemented,

incorporates additional logic to take atom type constraints into account.
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8.3.2.1.3 Results

Testing was performed on several cases of practical relevance to conformational equivalence

testing. MoleCoor was used, with Ea = 0.001 A, to compare the (independently optimized)

mirror-image conformers shown in part (b) of Figure 51, and the expected "True" result was

returned in under 2 milliseconds. The conformers shown in part (d) of Figure 51 were compared

with Ea = 0.10 A, and the expected "False" result was returned in under 7 milliseconds. In a third

test, a three-dimensional molecular structure of buckminsterfullerene (C60) was compared to

itself, producing 120 unique viable atom mappings in about one second. The effect of the

tolerance on the algorithm speed in the case of the conformers from part (d) of Figure 51 is

shown in Figure 58.

10000

1000 -

2,096 v.a.n.

100
85C v.aj.m.

10 - ---- _ _ _ _ _ _ _ _ _ * 280.'.. in.

100 80va.m.

I16 viable atom mapp is

0.14

0.01

0.001 _

0.0001 0.001 0.01 01 1 10

Figure 58. Effect of the absolute tolerance, Ea, on MoleCoor algorithm speed for the conformers shown in part

(d) of Figure 51

The graph demonstrates the dramatic effect of the tolerance on the speed of the algorithm. As the

tolerance is loosened, the space of possible atom mappings is explored more broadly and deeply,

resulting in longer time to return the result; in fact, the plot shows that if the tolerance is

loosened excessively, viable atom mappings are identified. (For a given pair of conformers, the
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computational cost of the algorithm monotonically increases with the tolerance, and deviations

from monotonic increase in the figure are due to timing noise.) It is anticipated that when

working with typical geometries from quantum mechanics programs, optimized with default

tolerances using the same method and basis set, the tolerances can be chosen quite low (e.g. La

0.05 A ore 0.01).

The utility of the (dis)similarity metric used here was also evaluated, using the pair of

distinct molecules (C4 9H94 0 6 ) from the Cambridge Structural Database with refcode ABOPUC1 49

considered by Bond147. Using constraints of the type considered here (atom type constraints, but

no connectivity constraint), Bond's approach produces a quite low RMSD of 1.2718 A,

illustrating the aforementioned issues with averaging effects. In comparison, tests with the

MoleCoor approach using the intraconformer atom-pair distance deviation metric suggest that

max(Ea) > 2.85 A; in particular, MoleCoor returns "False" in under a second with Ea = 2.00 A

and was also found to produce a result of "False" with Ea = 2.85 A; results with looser tolerances

are not available due to excessive computational cost. This demonstrates how the alternative

metric used here avoids the averaging issues associated with the use of the RMSD metric.

Additionally, testing was performed to assess best-case algorithm scaling with the number of

atoms in the system. This best case scaling is possible when the user-specified tolerance is

sufficiently small and there are 0(1) viable atom mappings. Results are shown in Figure 59. The

slope of this log-log plot suggests that the actual scaling is fairly close to the expected theoretical

scaling of O(N 2) and are much better than hypothetical O(N!) scaling.
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Figure 59. 'Best-case' scaling of MoleCoor algorithm

In the "worst case", when the tolerance is sufficiently large that all possible atom mappings are

explored, scaling will be worse than O(N!).

8.3.2.1.4 Implementation

The MoleCoor algorithm is implemented in the publicly available MoleCoor utility

hosted at https://github.com/gmagoon/MoleCoor. The utility is written in Python 2.x and also

includes several unit tests. The MoleCoor utility accepts MM4, MOL and XYZ formats as input;

additionally, the utility has file-conversion functionality and can produce MM4, MOL, and XYZ

formats.

8.3.2.1.5 Summary

The MoleCoor algorithm introduced here appears to be well-suited to conformational

equivalence testing of the type that would be desired when performing conformational sampling

using a consistent force field or electronic structure method to identify unique conformations.

More generally, the algorithm works well if the goal is just to robustly and quickly determine
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whether two conformers are equivalent within some (small) user-specified tolerance; on the other

hand, the algorithm is far from ideal for quantifying deviations for different conformations of

large molecules with no atomic correspondence information provided. For application to

automated thermodynamic parameter estimation based on three-dimensional-structure, the tool

could be practically useful and determines conformational equivalence for reasonably sized

molecules within a fraction of a second.

8.4 Improved kinetic parameter estimates based on explicit three-

dimensional structures

Work with the JP-10 system brought attention to a number of reaction families in which

kinetic parameter estimates can be significantly impacted by steric effects and three-dimensional

geometry considerations; it is expected that the bulk of these effects (and the biggest opportunity

for improvement) is associated with the intramolecular reaction families including:

intramolecular hydrogen migration, intramolecular disproportionation, intramolecular radical

addition to multiple bond (the reverse of ring opening by beta-scission), and biradical

recombination (with its reverse, ring opening). In fact, in can be argued that these opportunities

for improvement in kinetic parameter estimation are analogous the limitations of group-

additivity for thermodynamic parameter estimation; in particular, the groups currently used in

kinetic parameter estimation for these families all involve a ring component, where the size of

the ring can affect the estimated parameters.

It is envisaged that kinetic parameter estimation based on explicit three-dimensional

structures could follow either of two different approaches: minimum-based and saddle-point-

based. Additionally, three major challenges can be associated with these approaches:

1. Combinatorial nature of the kinetic parameter estimation problem: The number of

reactions for which kinetic parameter estimation must be performed is at least an order

of magnitude higher than the number of species for which thermodynamic parameter

estimation must be performed.

2. Automated saddle-point location: Kinetic parameter estimation may require automated

routines to reliably and robustly locate saddle-points on a potential energy surface. This

is analogous to the issues associated with generating an initial guess geometry,
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optimizing to a minimum, and checking the resulting structure, which are addressed by

the QMTP system, for thermodynamic parameter estimation.

3. Reliable method for reactive potential energy surface (PES): Availability of methods

that produce a potential energy surface that is sufficiently reliable for treating chemical

reactions and transition states may need to be considered.

The minimum-based approach is to use properties of a potential energy surface minimum

(with structural properties resembling those of the transition state of interest) to estimate kinetic

parameters. Efforts towards using such an approach for intramolecular disproportionation

reaction barrier estimates were discussed in the previous chapter. This approach avoids the

second and third challenges discussed above, and its use of minima rather than saddle-points

should make it relatively robust. However, this approach relies on correlations (as opposed to

rigorous formulas) of a kinetic parameter, such as the energy barrier, with energetic properties,
and the theoretical foundations aren't as solid; these correlations also require additional work to

develop and validate. Additionally, although a minimum-based approach for intramolecular

disproportionation was discussed in the previous chapter, generalization of this approach to other

important reaction families may not be as straightforward.

The alternative, saddle-point-based approach involves use of properties of a saddle-point

on the potential energy surface, corresponding to the transition state for the reaction of interest,
for estimation of kinetic parameters. Through transition state theory (TST), or one of its

extensions, this approach has a much more solid theoretical basis; also this approach can be

generalized to any reaction involving a tight transition state. However, this approach also brings

in additional challenges through the second and third items mentioned previously: automated

saddle point location and the availability of reliable PES methods.

A method to perform robust, automated saddle-point location would be needed with the

saddle-point-based approach. As with energy minima, most transition state optimization methods

require a good initial guess molecular geometry. It is proposed here that the use of distance

geometry could address this issue. For instance, the rules for assigning distance bounds in

existing distance geometry programs (such as those discussed previously) could be modified to

have special distance, angle, and/or dihedral constraints around breaking and forming bonds for a

particular reaction to locate an initial guess to that reaction's transition state. An alternative (or

perhaps backup) approach could involve the use of interpolation methods to locate a saddle-point
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based only on reactant and product structures. Promising interpolation methods include the

Synchronous Transit-Guided Quasi Newton (STQN) method developed by Schlegel and

coworkers (implemented in Gaussian03 with keywords QST2)26 , 151 and the growing string

method of Peters et al.15 0 In either case, in order to avoid use of incorrect saddle-points, one

needs to be able to obtain confirmation that the structure obtained by these methods is the

transition state for the desired reaction. This is analogous to the issue of connectivity checking

for PES minima. Analyzing the eigenvector of the vibrational mode with imaginary frequency is

probably the fastest and most straightforward method; the vibrational motion should correspond

to motion along the reaction path, which should in many cases correspond to translation

associated with the breaking and forming bonds. A more computationally demanding, though

more rigorous, approach would be to automate intrinsic reaction coordinate (IRC) calculations to

march along the reaction path towards reactants and products to confirm that these structures

have the desired connectivity.

The saddle-point-approach places also places special demands on the method used to

evaluate the potential energy surface, as it must be reliable for modeling reactive processes. As

discussed in the previous chapter, all but the most advanced ab initio methods appear be

unreliable for modeling intramolecular disproportionation, likely making this reaction family ill-

suited to a saddle-point-based approach with the current state of technology and research;

however, other reaction families, such as intramolecular hydrogen migration, might be more

amenable to treatment using low-level electronic structure methods such as PM3. As with

thermodynamic parameter estimation, there is also the opportunity to use force fields to evaluate

the potential energy surface. Most force-fields, including MM4, are not designed to model

reactions, and therefore, if applied to determining properties of reaction saddle-points, results

would be unreliable. An exception to this is ReaxFF, which is a force field specifically designed

to model reactive processes.15 2 The MMX force field developed by Gilbert and Gajewski

(available in PCMODEL from Serena Software) also includes atom types for certain types of

transition states.' 5 3 Alternatively, a method has been proposed to develop novel parametrizations

of Allinger's MM2 and MM3 force fields suitable for transition state determination.' 53b, 154
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8.5 Main contributions

The main contributions of this thesis work are summarized below:

e Improved group additivity thermodynamic parameter estimates for branched species in

RMG via implementation of a method of accounting for non-nearest neighbor steric

effects, partly by developing an approach to map bond-centered groups/group values to

atom-centered groups/group values

e Investigated approaches for three-dimensional structure generation and explored tradeoffs

between the methods, within the context of automated reaction mechanism generation

e Interfaced automated reaction mechanism generation code with an appropriate three-

dimensional structure generation tool to reliably and robustly provide three-dimensional

structures for purposes of kinetic modeling

e Designed and implemented a robust next-generation approach to on-the-fly

thermochemistry parameter estimation using explicit three-dimensional structures during

automated reaction mechanism generation with RMG, making the estimates more reliable

and general than previous approaches within RMG

* Developed interface between MM4 and automatic reaction mechanism generation

software to improve accuracy of thermochemistry estimates in many cases

e Demonstrated an automatic method of accounting for conformational flexibility within

separable hindered rotor model, using automated, on-the-fly rotor scans with MM4 force-

field

* Designed and implemented a novel algorithm for testing conformational equivalence,

which could potentially be combined with newly-developed statistical-mechanics models

to provide an alternative approach to account for conformational flexibility

e Applied explicit-3D-structure-based estimation tools within automated reaction

mechanism generation to study combustion of the widely-used jet fuel, JP- 10, producing

a significantly more comprehensive and reliable model than previously available

e Identified novel concerted pathways for JP- 10 decomposition and explored their

significance compared to previously-identified biradical pathways

e Obtained insights into intramolecular disproportionation and disproportionation using

high-level ab initio multireference methods
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* Explored potential approaches to on-the-fly kinetic parameter estimation using explicit

three-dimensional structures

8.6 Conclusions

As summarized in the previous section, this work has meaningfully and significantly

contributed to the field of automated reaction mechanism generation in multiple ways. New

capabilities have been added to RMG, parameter estimates have been refined, and a system has

been implemented for robustly and quickly performing on-the-fly thermodynamic calculations

using explicit three-dimensional geometries. These refinements allow a wider range of systems

to be considered more reliably than previously. These updated tools have been applied to

redefine the state-of-the-art in JP-10 combustion modeling. Finally, a number of opportunities

for further refinement have been identified and the identification of these opportunities can help

to chart a path for developing the next generation of automated reaction mechanism generation

tools.

Ultimately, models constructed using the automated reaction mechanism generation tools

described here can have a practical impact for systems in a number of areas, including defense,

energy, and transportation, by providing insight into the relevant chemistry and assisting in the

engineering of improved performance.
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9 Appendix I: Glossary for ambiguous species names
The tables discussing JP-10 model sensitivity analysis results in Chapter 6 include some

species names for which the corresponding structure is not immediately obvious. The short name

and structure for these species are summarized in the table below.

Name Structure Name Structure

cyclopentadienyl H MA 110
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C5H7 _A

C5H7 _B

C5 H7 _C

CioH 15 _B

'HC
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10 Appendix II: Derivation of matrix formulation for variable

moment of inertia treatment of hindered rotors

The kinetic energy term in the Hamiltonian for a one-dimensional rotor with reduced

moment of inertia that varies with the dihedral angle may be written as follows15:

- d
h2 d 1 dW(#) h2  1 d 2 T(g) I_(0)_ ) d_(p)

8)x2 d$ I(#) dop 8)r2 I(g) d p2  dop d$

We now consider a matrix formulation of the Schrodinger equation. 155 The CanTherm v1.0

manual describes the case with a constant reduced moment of inertia. Here, we use the same

nomenclature, but consider the effect of a variable reduced moment of inertia. The potential

energy term is unaffected by the relaxation of the constant reduced moment of inertia

approximation. To facilitate expression of the refined kinetic energy component in the matrix

formulation, the inverse of the reduced moment of inertia for the rotor is expanded as a Fourier

series:

1 - B+ (ak cos(k p)+,k sin(k$)) = B+ 2 /ke + 2 e-i
I1 (#) k=1 2

(Since the development and implementation of this treatment, it was found that the approach of

expanding the inverse of the reduced moment of inertia as a Fourier series has been used

previously in the literature.issa, 156)

Now, the two kinetic energy terms will be considered separately. First, we consider the

first kinetic energy term in the product rule expansion above:

h2  1 d 2 T(b)

8)r 2 Ij(p) dqp 2

The first kinetic energy term of the Hamiltonian may be expressed in the matrix formulation,

with row n defined as follows:

M h2B m ')2 B M 
/ N 

2  k 
/kk ( )2 hC 2( n 2

E )2 cm.S', .+8)r2 -cm , -m_.+ 8)2 _cm'1.S
8x ,=, 8xk81
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Now, the second kinetic energy term of the Hamiltonian is:

d I
h 2 d(41), dT(p)

8ff 2  d$ do

This second term may be expressed in the matrix formulation with row n defined as follows:

m N h2 ak - Ok (km') h2 a+ fJ (-km')
2 c,. _, + 28x c.

The total kinetic energy term in the matrix formulation is then the sum of these two, with row n

defined as follows:

8ff 2 a 8ff 2  
Cmdn + ff 2  

Cr h2B(m') 2  
N h ( k 28k - m)2 +m'k) h2la 2 )( -m'k) j2 Cm'n,m' 2  

m'kn-m' 2 m8f
2  

-n87cM 8k=8

M,2)2 Nm(Shm2 a /k- A (m'n) h2 a+ i/k m'n)
h2B m ) (

2 m c 5, ' + )2 cm , _-m.+ 2cm".ko._-M=M 8)Z7 k=1 8x 8 /T

The second and third terms in the brackets in the final expression represent off-diagonal terms in

the kinetic energy matrix that are not present in the treatment with constant reduced moment of

inertia.

This treatment has been implemented in CanTherm (with N=5) to work with one-

dimensional rotor scans, as discussed in Chapter 5. The added computational cost of relaxing the

assumption of constant moment of inertia is not significant, as the new off-diagonal kinetic

energy terms are located at the same positions as the (generally) non-zero potential energy

entries, so the sparsity of the Hamiltonian matrix should be preserved. It is noted however, that a

cancellation of errors has been noted wherein variation of the reduced moment of inertia is

compensated for by variation in vibrational frequencies through rotation about the bond 0 '157.

this treatment only addresses one of these approximations.
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